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Persistent activity observed during delayed-response tasks for spatial working memory
(Funahashi et al., 1989) has commonly been modeled by recurrent networks whose
dynamics is described as a bump attractor (Compte et al., 2000). We examine the effects
of interareal architecture on the dynamics of bump attractors in stochastic neural fields.
Lateral inhibitory synaptic structure in each area sustains stationary bumps in the absence
of noise. Introducing noise causes bumps in individual areas to wander as a Brownian
walk. However, coupling multiple areas together can help reduce the variability of the
bump’s position in each area. To examine this quantitatively, we approximate the position
of the bump in each area using a small noise expansion that also assumes weak amplitude
interareal projections. Our asymptotic results show the motion of the bumps in each
area can be approximated as a multivariate Ornstein–Uhlenbeck process. This shows
reciprocal coupling between areas can always reduce variability, if sufficiently strong, even
if one area contains much more noise than the other. However, when noise is correlated
between areas, the variability-reducing effect of interareal coupling is diminished. Our
results suggest that distributing spatial working memory representations across multiple,
reciprocally-coupled brain areas can lead to noise cancelation that ultimately improves
encoding.
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INTRODUCTION
Persistent spiking activity has been experimentally observed in
prefrontal cortex (Funahashi et al., 1989; Miller et al., 1996), pari-
etal cortex (Colby et al., 1996; Pesaran et al., 2002), superior
colliculus (Basso and Wurtz, 1997), caudate nucleus (Hikosaka
et al., 1989; Levy et al., 1997), and globus pallidus (Mushiake and
Strick, 1995; McNab and Klingberg, 2008) during the retention
interval of visuospatial working memory tasks. Often, the subject
must remember a cue’s location for several seconds (Funahashi
et al., 1989). Delay period neurons persistently fire in response
to a preferred cue orientation as described by a bell-shaped tun-
ing curve. Networks of these neurons, with recurrent excitation
between similarly tuned neurons and broadly tuned feedback
inhibition, can generate spatially localized “bumps.” The posi-
tion of these bumps encodes the remembered location of the cue
(Compte et al., 2000).

Dynamic variability can degrade the accuracy of working
memory over time though. Fluctuations in membrane voltage
and synaptic conductance can lead to spontaneous spike or failure
events at the edge of the bump, causing the bump to wan-
der diffusively (Compte et al., 2000; Laing and Chow, 2001).
Bump attractor networks are particularly prone to such diffu-
sive error because bump positions lie on a line attractor where
each location is neutrally stable (Amari, 1977). Interestingly, psy-
chophysical data demonstrates spatial working memory error
does scale linearly with delay time, suggesting the underlying
process that degrades memory is diffusive (White et al., 1994;

Ploner et al., 1998). Much theoretical work has examined net-
work properties that might limit memory degradation. Several
computational studies have explored networks built from bistable
neuronal units, which sustain persistent states that are less suscep-
tible to noise (Camperi and Wang, 1998; Koulakov et al., 2002;
Goldman et al., 2003). In addition, synaptic facilitation has been
shown to slow the drift of bump position due to internal variabil-
ity (Itskov et al., 2011). Synaptic plasticity has also be shown to
reduce diffusion of bumps in (Hansel and Mato, 2013). Finally,
spatially heterogeneous recurrent excitation can reduce wander-
ing of bumps quantizing the line attractor by stabilizing a finite set
of bump locations (Kilpatrick and Ermentrout, 2013; Kilpatrick
et al., 2013).

Complementary to these possibilities, we propose that inter-
areal coupling across multiple areas of cortex may reduce error
in working memory recall generated by dynamic fluctuations.
Multiple representations of spatial working memory have been
identified in different cortical areas (Colby et al., 1996). This
distributed representation makes working memory information
readily available for motor (Owen et al., 1996) and decision-
making (Curtis and Lee, 2010) tasks. In addition, this redundancy
may serve to reduce degrading effects of noise. It is known
that several areas involved in oculomotor delayed response tasks
are reciprocally coupled to one another (Constantinidis and
Wang, 2004; Curtis, 2006). We presume the representation of
a spatial working memory in a single area takes the form of a
bump in a recurrently coupled neural field. Projections between
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areas share information about bump position across the multi-
area network. Recently, (Folias and Ermentrout, 2011) showed
several novel activity patterns emerge when considering neural
fields with multiple areas. In addition, recent analyses of spa-
tiotemporal dynamics of perceptual rivalry have exploited dual
population neural field models, where activity in each area rep-
resents a single percept (Kilpatrick and Bressloff, 2010; Bressloff
and Webber, 2012b). In this study, we focus on activity pat-
terns where bumps in each area have positions that remain
close.

Our study mostly focuses on a dual area model of spatial
working memory, where each area provides a replicate repre-
sentation of the presented cue. We begin by demonstrating the
neutral stability of the bump position in each area, in the absence
of noise and interareal projections. Upon including noise and
interareal projections, we use a small-noise expansion to derive
an effective stochastic differential equation for the position of
the bump in each area. The effective system is a multivariate
Ornstein–Uhlenbeck process, which we can analyze using diago-
nalization. The variance of this stochastic process decreases as the
strength of connections between areas increases. Variance reduc-
tion relies on cancelations arising due to averaging noise between
both areas. Thus, when noise is strongly correlated between areas,
the effect of interareal coupling is negligible. Lastly, we show this
analysis extends to the case of N (more than two) areas and
that for sufficiently strong interareal connections, variance scales
as 1/N.

MATERIALS AND METHODS
DUAL AREA MODEL OF SPATIAL WORKING MEMORY
We consider a recurrently coupled model commonly used for spa-
tial working memory (Camperi and Wang, 1998; Ermentrout,
1998) and visual processing (Ben-Yishai et al., 1995). GABAergic
inhibition (Gupta et al., 2000) typically acts faster than excita-
tory NMDAR kinetics (Clements et al., 1992), and we assume
excitatory synapses contain a mixture of AMPA and NMDA com-
ponents. Thus, we make the assumption that inhibition is slaved
to excitation as in (Amari, 1977). We can then describe aver-
age activity u1(x, t) and u2(x, t) of neurons in either area by
the system (Ben-Yishai et al., 1995; Folias and Ermentrout, 2011;
Kilpatrick and Ermentrout, 2013)

τdu1(x, t) = [−u1 + w11 ∗ f (u1) + ε1/2w12 ∗ f (u2)
]

dt

+ ε1/2dW1(x, t), (1a)

τdu2(x, t) = [−u2 + w22 ∗ f (u2) + ε1/2w21 ∗ f (u1)
]

dt

+ ε1/2dW2(x, t), (1b)

where the effects of synaptic architecture are described by the
convolution

wjk ∗ f (uk) =
∫ π

−π

wjk(x − y)f (uk(y, t))dy, (2)

for j, k = 1, 2, so the case j = k describes recurrent synaptic con-
nections within a area and j �= k describes synaptic connections

between areas (interareal). Several fMRI and electrode recordings
have revealed correlations between activity in multiple cortical
areas during spatial working memory tasks (Constantinidis and
Wang, 2004; Curtis, 2006), such as parietal and prefrontal cor-
tex (Chafee and Goldman-Rakic, 1998). However, it seems the
strength of these correlations is often not on the order of the activ-
ity itself (di Pellegrino and Wise, 1993). For this reason, we pre-
sume the strength of interareal connections is weak 0 ≤ ε1/2 � 1.
Note, we could choose to make them a different magnitude than
the noise, but for analytical convenience, we choose interareal
connection and noise magnitude to be roughly the same. Analysis
could still be performed in other cases, but it would simply be
more complicated. By setting τ = 1, we can assume that time
evolves on units of the excitatory synaptic time constant, which
we presume to be roughly 10 ms (Häusser and Roth, 1997). The
function wjk(x − y) describes the strength (amplitude of wjk) and
net polarity (sign of wjk) of synaptic interactions from neurons
with stimulus preference y to those with preference x. Following
previous studies, we presume the modulation of the recurrent
synaptic strength is given by the cosine

wjj(x − y) = w(x − y) = cos(x − y), j = 1, 2, (3)

so neurons with similar orientation preference excite one another
and those with dissimilar orientation preference disynaptically
inhibit one another (Ben-Yishai et al., 1995; Ferster and Miller,
2000). Lateral inhibitory type network architectures are sup-
ported by anatomical studies of the delay period neurons in
prefrontal cortex (Goldman-Rakic, 1995). Our general analysis
will apply to any even symmetric function of the distance x − y,
but we typically compute things using (Equation 3) since it eases
calculations. Finally, synaptic connections from area k to j are
specified by the weight function wjk(x − y), and we typically take
this to be the function

wjk(x − y) = Ej + Mj cos(x − y), k �= j (4)

where Ej and Mj specify the strength of baseline excitation and
modulation projecting to the jth area.

Output firing rates are given by taking the gain function f (u)

of the synaptic input, which we usually proscribe to be (Wilson
and Cowan, 1973)

f (u) = 1

1 + e−γ(u − θ)
,

and often take the high gain limit γ → ∞ for analytical conve-
nience, so (Amari, 1977)

f (u) = H(u − θ) =
{

0 : u < θ,

1 : u ≥ θ.
(5)

Effects of noise are described by the small amplitude (0 ≤
ε � 1) stochastic processes ε1/2Wj(x, t) that are white in time and
correlated in space so that 〈dWj(x, t)〉 = 0 and

〈dWj(x, t)dWj(y, s)〉 = Cj(x − y)δ(t − s)dtds,

〈dWj(x, t)dWk(y, s)〉 = Cc(x − y)δ(t − s)dtds,
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describing both local and shared noise in either area, j = 1, 2
with j �= k. For simplicity, we assume the local spatial correlations
have a cosine profile Cj(x) = cj cos(x). We also typically assume
the correlated noise component has cosine profile so Cc(x) =
cc cos(x). Therefore, in the limit cc → 0, there are no interareal
noise correlations, and in the limit cc → min(c1, c2), noise in
each area is maximally correlated. For instance, when c1 = c2 =
cc = 1, noise in each area is drawn from the same process.

MULTIPLE-AREA MODEL OF SPATIAL WORKING MEMORY
To incorporate the effects of many coupled, redundant areas
encoding a spatial working memory, we consider a model with
N areas and arbitrary synaptic architecture, given by

τduj(x, t) =
[
−uj + ε1/2

N∑
k = 1

wjk ∗ f (uk)

]
dt

+ ε1/2dWj(x, t) (6)

where uj represents neural activity in the jth area where j =
1, . . . , N. As before, we set τ = 1, so each time unit corresponds
to the roughly 10 ms timescale of excitatory synaptic conduc-
tance. The weight function wjk(x − y) represents the connection
from neurons in area k with cue preference y to neurons in area
j with cue preference x as described by (Equation 2). For com-
parison with numerical simulations, we take weight functions to
be the cosines (Equation 3) and (Equation 4) and the firing rate
function to be Heaviside (Equation 5). As in the dual area model,
noises Wj(x, t) are white in time and correlated in space so that
〈dWj(x, t)〉 = 0 and

〈dWj(x, t)dWk(y, s)〉 = Cjk(x − y)δ(t − s)dtds,

with j, k = 1, . . . , N, where local noise correlations are described
when j = k and noise correlations between areas are described
when j �= k. For comparison with numerical simulations, we
consider Cjj(x) = cos(x) and Cjk(x) = cc cos(x) for all j �= k.

NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS
The spatially extended model (Equation 1) was simulated
using an Euler–Maruyama method with a timestep 10−4, using
Riemann integration on the convolution term with 2000 spatial
grid points. To compute and compare the variances 〈�1(t)2〉 for
the dual and multiple area model, we simulated the system 5000
times. The position of the bump �j at each timestep, in each sim-
ulation, was determined by the position x in each area j at which
the maximal value of uj(x, t) was attained. The variance was then
computed at each timepoint and compared to our asymptotic
calculations.

RESULTS
We will now study how interareal architecture affect the dynam-
ics of bumps in multiple area stochastic neural fields. To start,
we demonstrate that in the absence of reciprocal connectivity
between areas bump attractors exist that are neutrally stable to
perturbations that change their position, which has long been
known (Amari, 1977; Camperi and Wang, 1998; Ermentrout,

1998). Introducing weak interareal connectivity can decrease the
variability in bump position because noise that moves bumps in
the opposite direction is canceled due to an attractive force intro-
duced by connectivity. Perturbations that push bumps in the same
direction are still integrated, so bumps wander due to dynamic
fluctuations, but their effective variance is smaller than it would
be without interareal synaptic connections. In the presence of
noise correlations between areas, effects of noise cancelation are
weaker since stochastic forcing in each area is increasingly simi-
lar. Our asymptotic analysis is able to explain all of this with its
resulting multivariate Ornstein–Uhlenbeck process.

BUMPS IN THE NOISE-FREE SYSTEM
To begin, we seek stationary solutions to Equation (1) in the
absence interareal connections and noise (ε → 0). Similar anal-
yses have been carried out for bumps in single area populations
(Ermentrout, 1998; Hansel and Sompolinsky, 1998). For this
study, we assume recurrent connections are identical in all areas
(wjj = w). Relaxing this assumption slightly does not dramati-
cally alter our results. Note first stationary solutions take the form
(u1(x, t), u2(x, t)) = (U1(x), U2(x)). In the absence of any inter-
areal connections, we would not necessarily expect the peaks of
these bumps to be at the same location. However, translation
invariance of the system (Equation 1) allows us to set the cen-
ter of both bumps to be x = 0 to ease calculations. The stationary
bump solutions then satisfy the system

U1 = w ∗ f (U1), U2 = w ∗ f (U2), (7)

so the shape of each bump is only determined by the
local connections w. For w given by Equation (3),
since U1(x) and U2(x) are assumed to be peaked at
x = 0, then by also assuming even symmetric solutions,
we find

U1(x) =
∫ π

−π

cos yf (U1(y))dy cos x,

U2(x) =
∫ π

−π

cos yf (U2(y))dy cos x, (8)

where we use cos(x − y) = cos x cos y + sin x sin y. We can more
easily compute the precise shape of these bumps in case of
a Heaviside firing rate function (Equation 5). There is then
an identical active region of each bump such that U1(x) >

θ and U2(x) > θ when x ∈ (−a, a), so the Equation (8)
become U1(x) = U2(x) = 2 sin a cos x. Applying self-consistency,
U1(±a) = U2(±a) = θ, we can generate an implicit equation for
the half-widths of the bumps a given by 2 sin a cos a = sin(2a) =
θ. Solving this explicitly for a, we find two solutions on a ∈
[0, π]: au = 1

2 sin−1 θ and as = π
2 − 1

2 sin−1 θ. Only the bump
associated with as is stable.

The bumps (Equation 7) are neutrally stable to perturbations
in both directions, which can lead to encoding error once the
effects of dynamic fluctuations are considered (Kilpatrick et al.,
2013). Since the two areas are uncoupled, examining bumps’ sta-
bility can be reduced to studying each bump’s stability individu-
ally (see Kilpatrick and Ermentrout, 2013 for details). Translating
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a bump by a scaling of the spatial derivative U ′(x), we find
uj(x, t) = Uj(x) + ε1/2U ′

j (x)eλt is associated with a zero eigen-
value (λ = 0), corresponding to neutral stability. To see this, we
plug it into the corresponding bump equation of Equation (1) in
the absence of noise and interareal connections and examine the
linearization

λU ′
j (x) = −U ′

j (x) +
∫ π

−π

w(x − y)f ′(Uj(y))U ′
j (y)dy. (9)

Note, in the limit of infinite gain γ → ∞, a sigmoid f becomes
the Heaviside (Equation 5), and

f ′(U(x)) = dH(U(x))

dU
= δ(x − a)

|U ′(a)| + δ(x + a)

|U ′(a)| ,

in the sense of the distributions. Equation (9) still hold in
this case. Differentiating (Equation 7), and integrating by parts,
we find

− U ′
1 + w ∗ [f ′(U1)U ′

1] = 0,

−U ′
2 + w ∗ [f ′(U2)U ′

2] = 0, (10)

where the boundary terms vanish due to periodicity of the
domain [−π, π]. Thus, the right hand side of Equation (9) van-
ishes, and λ = 0 is the only eigenvalue corresponding to translat-
ing perturbations. Thus, either bump (in area 1 or 2) is neutrally
stable to perturbations that shifts its position in either direction
(rightwards or leftwards), since the bump in each area experiences
no force from the other bump.

This changes when we consider the effect of interareal connec-
tivity. Once the two areas of Equation (1) are reciprocally coupled,
bumps are stable to perturbations that translate them in opposite
directions of one another (see Figure 1). Interareal connections
act as a restoring force between the two positions of each bump.
We will demonstrate this in the subsequent section by deriving
a linear stochastic system for the position of either bump in the
presence of small noise and weak interareal connectivity. The
restorative nature of interareal connectivity is revealed by the neg-
ative eigenvalue associated with the interaction matrix (Equation
15) of our stochastic system, as shown in Equation (18).

NOISE-INDUCED WANDERING OF BUMPS
Now we consider the effects of small noise on the position of
bumps in the presence of weak interareal connections. We start
by presuming noise generates two distinct effects in the bumps
(see Figure 2). First, noise causes both bumps to wander away
from their initial positions, while still being pulled back into place
by the bump in the other area. Bump position in areas 1 and 2
will be described by the time-varying stochastic variables �1(t)
and �2(t). Second, noise causes fluctuations in the shape of both
bumps, described by a correction �j. To account for this, we
consider the ansatz

u1 = U1(x − �1(t)) + ε1/2�1(x − �1(t), t) + · · ·
u2 = U2(x − �2(t)) + ε1/2�2(x − �2(t), t) + · · · (11)

FIGURE 1 | Effect of interareal coupling on the stability of bumps to

translating perturbations. (A) In the absence of interareal coupling,
bumps (solid) are neutrally stable to perturbations (dashed) that translate
them in opposite directions. (B) In the presence of interareal coupling,
bumps are linearly stable, as revealed by the negative eigenvalue in
Equation (18), to perturbations that translate them in opposite directions.

Armero et al. (1998) originally developed this approach to ana-
lyze of front propagation in stochastic PDE models. In stochastic
neural fields, it has been modified to analyze wave propagation
(Bressloff and Webber, 2012a) and bump wandering (Kilpatrick
and Ermentrout, 2013). Plugging the ansatz (Equation 11) into
the system (Equation 1) and expanding in powers of ε1/2, we find
that atO(1), we have the bump solution (Equation 7). Proceeding
to O(ε1/2), we find

d� − L� =
(

ε−1/2�̇1U ′
1 + dW1

ε−1/2�̇2U ′
2 + dW2

)
+ K(x, t), (12)

where K(x, t) is the 2 × 1 vector function

K(x, t) =
(

w12 ∗ [
f (U2) + f ′(U2)U ′

2 · (�2 − �1)
]

dt
w21 ∗ [

f (U1) + f ′(U1)U ′
1 · (�1 − �2)

]
dt

)
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FIGURE 2 | Diffusion of bumps in the dual area stochastic neural field

(Equation 1). (A) Without interareal connections (w12 = w21 ≡ 0), each
bump executes Brownian motion about the domain, due to stochastic forces.
(B) In the presence of interareal connections

√
εw12(x) = √

εw21(x) =
0.01(cos(x) + 1), the position of bump 1 (magenta) is attracted to the

position of bump 2 (cyan) and vice versa. Due to the reversion of each bump
to the position of the other, both bumps effectively wander the domain less.
Local connectivity is described by the cosine (Equation 3); the firing rate
function is Equation (5). Other parameters are threshold θ = 0.5 and noise
amplitude ε = 0.025.

� = (�1(x, t),�2(x, t))T ; and L is the linear operator

Lu =
(−u(x) + w(x) ∗ [f ′(U1(x))u(x)]

−v(x) + w(x) ∗ [f ′(U2(x))v(x)]
)

for any vector u = (u(x) v(x))T of integrable functions. Note that
the nullspace of L includes the vectors (U ′

1, 0)T and (0, U ′
2)

T ,
due to Equation (10). The last terms in the right hand side
vector of Equation (12) arise due to interareal connections. We
have linearized them under the assumption |�1 − �2| remains
small, so

f (Uj(x + �k − �j)) ≈ f (Uj(x))

+ f ′(Uj(x))U ′
j (x) · (�k − �j),

where j = 1, 2 and k �= j. To make sure that a solution to
Equation (12) exists, we require the right hand side is orthogonal

to all elements of the null space of the adjointL∗, which is defined

∫ π

−π

pTLudx =
∫ π

−π

uTL∗pdx,

for any integrable vector p = (
p(x) q(x)

)T
. It then follows

L∗p =
(−p(x) + f ′(U1(x))[w(x) ∗ p(x)]

−q(x) + f ′(U2(x))[w(x) ∗ q(x)]
)

. (13)

We can show that the nullspace of L∗ contains the vector
f1 = (f ′(U1)U ′

1, 0)T by plugging it into Equation (13) to yield

L∗f1 =
(−f ′(U1)U ′

1 + f ′(U1)[w ∗ [f ′(U1)U ′
1]

0

)
= 0
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where 0 = (0, 0)T and we use Equation (10). We can also show
the nullspace ofL∗ contains f2 = (0, f ′(U2)U ′

2)
T in the same way.

Thus, we can ensure Equation (12) has a solution by taking the
inner product of both sides of Equation (12) with the two null
vectors to yield

〈f ′(U1)U ′
1, ε−1/2�̇1U ′

1 + dW1

+ w12 ∗ [
f (U2) + f ′(U2)U ′

2 · (�2 − �1)
]

dt〉 = 0

〈f ′(U2)U ′
2, ε−1/2�̇2U ′

2 + dW2

+ w21 ∗ [
f (U1) + f ′(U1)U ′

1 · (�1 − �2)
]

dt〉 = 0,

where we define the inner product 〈u, v〉 = ∫ π

−π
u(x)v(x)dx.

Therefore, the stochastic vector �(t) = (�1(t),�2(t))T obeys
the multivariate Ornstein–Uhlenbeck process

d�(t) = K�(t)dt + dW(t) (14)

where effects of interareal connections are described by the matrix

K =
(−κ1 κ1

κ2 −κ2

)
, (15)

with

κ1 = 〈f ′(U1)U ′
1, ε1/2w12 ∗ [

f ′(U2)U ′
2

]〉
〈f ′(U1)U ′

1, U ′
1〉

,

κ2 = 〈f ′(U2)U ′
2, ε1/2w21 ∗ [

f ′(U1)U ′
1

]〉
〈f ′(U2)U ′

2, U ′
2〉

, (16)

and (w12 ∗ f (U2)) · U ′
1 and (w21 ∗ f (U1)) · U ′

2 vanish upon
integration since they are odd. Noise is described by the vector
dW(t) = (dW1, dW2)

T with

dW1(t) = −ε1/2 〈f ′(U1)U1, dW1〉
〈f ′(U1)U ′

1, U ′
1〉

,

dW2(t) = −ε1/2 〈f ′(U2)U2, dW2〉
〈f ′(U2)U ′

2, U ′
2〉

.

The white noise term W has zero mean 〈W(t)〉 = 0 and variance
described by pure diffusion so 〈W(t)WT(t)〉 = Dt with

D =
(

D1 Dc

Dc D2

)
(17)

where the associated diffusion coefficients of the variance are

D1 = ε

∫ π

−π

∫ π

−π
F1(x)F1(y)C1(x − y)dxdy[∫ π

−π
F1(x)U ′

1(x)dx
] ,

D2 = ε

∫ π

−π

∫ π

−π
F2(x)F2(y)C2(x − y)dxdy[∫ π

−π
F2(x)U ′

2(x)dx
] .

where Fj(x) = f ′(Uj(x))U ′
j (x) and covariance is described by the

coefficient

Dc = ε

∫ π

−π

∫ π

−π
F1(x)f ′(U2(y))F2(y)Cc(x − y)dxdy[∫ π

−π
F1(x)U ′

1(x)dx
] [∫ π

−π
F2(x)U ′

2(x)dx
] .

In the next section, we analyze this stochastic system
(Equation 14), showing how coupling between areas can
reduce the variability of the bump positions �1(t) and �2(t).

EFFECT OF COUPLING ON BUMP POSITION VARIANCE
To analyze the Ornstein–Uhlenbeck process (Equation 14), we
start by diagonalizing the matrix K = V�V−1 using the eigen-
value decomposition

� =
(

0 0
0 −κ1 − κ2

)
,

V = 1

κ1 + κ2

(
1 κ1

1 −κ2

)
, (18)

V−1 =
(

κ2 κ1

1 −1

)
,

such that � is the diagonal matrix of eigenvalues; columns of
V are right eigenvectors; and rows of V−1 are left eigenvectors.
Eigenvalues λ1, λ2 and eigenvectors v1, v2 inform us of the effect
of interareal coupling on linear stability. The eigenvalue λ1 = 0
corresponds to the neutral stability of the positions (�1,�2)

T

to translations in the same direction v1 = (1, 1)T . The negative
eigenvalue λ2 = −(κ1 + κ2) corresponds to the linear stability
introduced by interareal connections. The positions (�1,�2)

T

revert to one another when perturbations translate them in
opposite directions v2 = (κ1, −κ2)

T .
Diagonalizing K = V�V−1 using Equation (18), we can com-

pute the mean and variance of the vector �(t) given by Equation
(14). First, note that the mean 〈�(t)〉 = eKt�(0) (Gardiner,
2003), which we can compute

〈�〉 =
(

(κ2 + κ1eλ2t)�1(0) + (κ1 − κ1eλ2t)�2(0)

(κ2 − κ2eλ2t)�1(0) + (κ1 + κ2eλ2t)�2(0)

)

using the diagonalization eKt = Ve�tV−1. Since λ2 = −(κ1 +
κ2) < 0,

lim
t →∞〈�(t)〉 = [κ2�1(0) + κ1�2(0)]

(
1
1

)
.

Thus, the means of �1(t) and �2(t) always relax to the same
position in long time, due to the linear stability introduced by
connections between areas. Under the assumption they both
begin at �1(0) = �2(0) = 0, the covariance matrix is given
(Gardiner, 2003)

〈�(t)�T(t)〉 =
∫ t

0
eK(t−s)DeKT (t−s)ds, (19)
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where D is the covariance coefficient matrix of the white noise
vector W(t) given by Equation (17). To compute Equation (19),
we additionally need the diagonalization KT = (V−1)T�VT ,

so eKT t = (V−1)Te�tVT . After multiplying and integrating
(Equation 19), we find the elements of the covariance matrix

〈�(t)�T(t)〉 =
( 〈�1(t)2〉 〈�1(t)�2(t)〉

〈�1(t)�2(t)〉 〈�2(t)2〉
)

are

〈�1(t)2〉 = D+t + 2κ1r1(t) + κ1

κ2
r2(t) (20)

〈�2(t)2〉 = D+t − 2κ2r1(t) + κ2

κ1
r2(t) (21)

〈�1(t)�2(t)〉 = D+t + (κ1 − κ2)r1(t) − r2(t)

where the effective diffusion coefficients are

D+ = κ2
2D1 + 2κ1κ2Dc + κ2

1D2

(κ1 + κ2)2
, (22)

Dr = κ2D1 − κ1D2 + (κ1 − κ2)Dc

(κ1 + κ2)2
, (23)

D− = D1 − 2Dc + D2

(κ1 + κ2)2
, (24)

so that D+ and D− are variances of noises occurring along
the eigendirections v1 and v2. The functions r1(t), r2(t) are
exponentially saturating

r1(t) = Dr

κ1 + κ2

[
1 − e−(κ1 + κ2)t

]
,

r2(t) = κ1κ2D−
2(κ1 + κ2)

[
1 − e−2(κ1 + κ2)t

]
.

The main quantities of interest to us are the variances (Equation
20) and (Equation 21) with which we can make a few observations
concerning the effect of interareal connections on the variance of
bump positions.

First, note the long term variance of either bump’s position
�1(t) and �2(t) will be the same, described by the averaged
diffusion coefficient D+, since

lim
t →∞〈�1(t)2〉 = lim

t →∞〈�2(t)2〉 = D+t. (25)

As the effective coupling strengths κj are increased, we can expect
the variances 〈�j(t)2〉 approach these limits at faster rates since
other portions of the variance decay at a rate proportional to
|λ2| = κ1 + κ2.

Next, we study the case, across all times t, where connec-
tions between areas are the same (w12 ≡ w21 = wr) and noise

within areas is identical (D1 ≡ D2 = Dl), the mean reversion
rates will be the same (κ1 = κ2 = κ) and terms in Equation
(23) cancel so Dr = 0. Thus, the variances will be identical
(〈�1(t)2〉 = 〈�2(t)2〉 = 〈�(t)2〉) and

〈�(t)2〉 = Dl + Dc

2
t + Dl − Dc

8κ

[
1 − e−4κt] .

This demonstrates the way in which correlated noise (Dc)
contributes to the variance. When noise within each area is
shared (Dc → Dl), there is no benefit to interareal coupling and
〈�(t)2〉 = Dlt (see Kilpatrick and Ermentrout, 2013). However,
when any noise is not shared between areas (Dc < Dl), variance
can be reduced by increasing coupling strength κ between areas.
The variance 〈�(t)2〉 is monotone decreasing in κ since

∂

∂κ
〈�(t)2〉 = Dl − Dc

8

(1 + 4κt)e−4κt − 1

κ2
≤ 0.

Inequality holds because (1 + 4κt) ≤ e4κt is ensured by the Taylor
series expansion of e4κt when κt > 0.

Thus, variance is minimized in the limit

lim
κ→∞〈�(t)2〉 = Dl + Dc

2
t. (26)

Therefore, strengthening interareal connections in both directions
reduces the variance in bump position. On the other hand, in the
limit of no interareal connections, we find limκ→0〈�(t)2〉 = Dlt,
and the variance in a bump’s position is determined entirely by
local sources of noise.

Returning to asymmetric connectivity (κ1 �= κ2), we consider
the case of feedforward connectivity from area 1 to 2 (w12 ≡ 0),
κ1 = 0, so D+ = D1 and the formulas for the variances reduce to

〈�1(t)2〉 = D1t,

〈�2(t)2〉 = D1t + 2(D1 − Dc)

κ2

[
1 − e−κ2t]

+ D1 − 2Dc + D2

2κ2

[
1 − e−2κ2t] ,

so the pure diffusive term of both variances is wholly determined
by the local noise of area 1. Then, only the position of the bump
in area 2 possesses additional mean-reverting fluctuations in its
position, which arise from local sources of noise that force it away
from the position of the bump in area 1. In this situation, the
variance of the bump in area 2’s position is minimized when

lim
κ2 →∞〈�1(t)2〉 = lim

κ2 →∞〈�2(t)2〉 = D1t.

Comparing this with Equation (26) we see that, since Dc ≤ D1,
the variances 〈�j(t)2〉 will always be higher in this case than in
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the case of very strong reciprocal coupling between both areas.
Averaging information and noise between both areas decreases
positional variance as opposed to one area simply receiving noise
and information from another. Similar results have been recently
identified in the context of studying synchrony of reciprocally
coupled noisy oscillators (Ly and Ermentrout, 2010).

One important caveat is that if area 1 has more noise than area
2, the weighting of reciprocal connectivity, κ1 and κ2, should be
balanced to minimize the variance. If the average diffusion coef-
ficient D+ is weighted too heavily with the area having the larger
variance, the area with less intrinsic noise can end up noisier than
it would be without reciprocal connectivity. To see this in the
extreme case feedforward coupling, note that if D2 < D1, then
D2t < D1t < 〈�2(t)2〉. Thus, the variance of �2(t) increases as
opposed to the uncoupled case where 〈�2(t)2〉 = D2t.

We now derive the optimal weighting of κ1 and κ2 to minimize
the long term variance (Equation 25) for general asymmetric con-
nectivity, in the absence of correlated noise Dc = 0. To do so, we
fix κ2 and find the κ1 that minimizes D+, which happens to be

κ1 = κ2
D1

D2
.

Thus, for identical noise D1 = D2, setting κ1 = κ2 minimizes D+.
For much stronger noise in area 2 (D2 � D1), κ1 should be made
relatively small. In the case of noise correlations between areas
(Dc > 0), the optimal value of κ1 that minimizes (Equation 25) is

κ1 = κ2
D1 − Dc

D2 − Dc
.

CALCULATING THE STOCHASTIC MOTION OF BUMPS
We now compute the effective variances (Equation 20) and
(Equation 21), considering the specific case of Heaviside firing
rate functions (Equation 5), cosine synaptic weights (Equation 3)
and (Equation 4). Doing so, we can compare our asymptotic
results to those computed from numerical simulations. We com-
pute the mean reversion terms κ1 and κ2 by noting the spatial
derivative of each bump will be U ′

1(x) = U ′
2(x) = −2 sin a sin x

and the null vector components are

f ′(Uj(x))U ′
j (x) = δ(x + a) − δ(x − a).

for j = 1, 2. Plugging these formulae into Equation (16), we find
κ1 = ε1/2M1 and κ2 = ε1/2M2.

We first consider the case of uncorrelated noise between areas,
so cc ≡ 0, meaning Dc = 0. We can compute the diffusion coeffi-
cients associated with the local noise in each area assuming cosine
spatial correlations

D1 = c1ε

2 + 2
√

1 − θ2
, D2 = c2ε

2 + 2
√

1 − θ2
. (27)

We can then compute Equations (20) and (21) directly, for
the case of no noise correlations between areas, by plugging in
Equation (27).

For symmetric connections between areas, κ = ε1/2M1 =
ε1/2M2, as well as identical noise, c1 = c2 = 1, we have
〈�1(t)2〉 = 〈�2(t)2〉 = 〈�(t)2〉 and

FIGURE 3 | Variance in the position of bumps as computed numerically

(red shades) and from theory (blue shades) using Equation (28).

Coupling between areas is symmetric
√

εw12(x) = √
εw21(x) =

κ(cos(x) + 1), so 〈�1(t)2〉 = 〈�2(t)2〉, and there is no shared noise (cc = 0).
(A) The increase in variance is slower for stronger amplitudes of interareal
coupling κ. Notice variance climbs sublinearly for κ > 0, due to the
mean-reversion caused by coupling. (B) Variance drops considerably more
over low values of κ that over high values. Other constituent functions and
parameters are the same as in Figure 2.

〈�(t)2〉= εt

4(1 + √
1 − θ2)

+ ε

16(1 + √
1 − θ2)κ

[
1 − e−4κt].

(28)

We compare the formula (28) to results we obtain from numeri-
cal simulations in Figure 3, finding our asymptotic formula (28)
matches quite well. In addition, we compare our results for gen-
eral (possibly asymmetric) reciprocal connectivity to results from
numerical simulations in Figure 4. We also show in Figure 5, as
predicted, when κ2 is held fixed, there is a finite optimal value of
κ1 that minimizes variance 〈�1(t)2〉. Therefore, reciprocal con-
nectivity in multi-area networks should be balanced, in order to
minimize positional variance of the stored bump.

Next, we consider the case of correlated noise between areas,
so cc > 0, meaning Dc > 0. In this case, the covariance terms in
D+ and D− are non-zero. We can thus compute the diffusion
coefficient associated with correlated noise

Dc = ccε

2 + 2
√

1 − θ2
.
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FIGURE 4 | Variance in the position of bumps as it depends on

asymmetric reciprocal connectivity (κ1 �= κ2) when noise in each area

is independent and identical (c1 = c2 = 1). Fixing κ2 = 0.02 and
varying κ1, we find (A) the variance 〈�1(t)2 of bump 1 decreases as
coupling from area 2 to 1 (κ1) increases; (B) variance 〈�2(t)2〉 of bump 2
remain relatively unchanged. Other constituent functions and parameters
are the same as in Figure 2.

In the case of symmetric connections between areas,
κ = ε1/2M1 = ε1/2M2, and identical internal noise, c1 = c2 = 1,
we have 〈�1(t)2〉 = 〈�2(t)2〉 = 〈�(t)2〉 and

〈�(t)2〉 = (1 + cc)ε

4
(

1 + √
1 − θ2

) t + (1 − cc)ε

16
(

1 + √
1 − θ2

)
κ

[
1 − e−4κt] ,

(29)

which reflects the fact that interareal connections do not reduce
variability as much when there are strong noise correlations cc

between areas. We demonstrate the accuracy of the theoretical cal-
culation (Equation 29) as compared to numerical simulations in
Figure 6. Numerical simulations also reveal the fact that stronger
noise correlations between areas diminish the effectiveness of
interareal connections at reducing bump position variance.

FIGURE 5 | Bump position variance depends non-monotonically on

asymmetric connectivity strength. (A) For κ2 = 0.01 and high enough
values of coupling (κ1 = 0.05), variance 〈�1(t)2〉 scales more quickly than
for symmetric coupling (κ1 = 0.01). Layer 1 is being sourced by the noisier
area 2. (B) Non-monotonic dependence of variance 〈�1(t)2〉 on projection
strength from area 2 to area 1 κ1 is shown for fixed time T = 50 and
κ2 = 0.01 fixed. Amplitude of noise in area 2 is twice that of area 1 (c1 = 1
and c2 = 2). Other constituent functions and parameters are the same as in
Figure 2.

REDUCTION OF BUMP WANDERING IN MULTIPLE AREAS
We now examine the effect of interareal connections in net-
works with more than two areas using the system (Equation
6). As with the dual area network without noise or inter-
areal connectivity, stationary bump solutions take the form
(u1, . . . , uN) = (U1(x), . . . , UN(x)), and translation invariance
let us to set all bump peaks to be located at x = 0 so

Uj = w ∗ f (Uj), j = 1, . . . , N. (30)

As before, we presume wjj = w, and relaxing this assumption
does not dramatically alter our results. Linear stability analysis
of bumps proceeds along similar lines to the dual area network,
so we omit those calculations and summarize the results. In the
absence of interareal connections, each bump is neutrally stable to
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perturbation in either direction. In the presence of interareal con-
nections, all bumps are only neutrally stable to translations that
move them all in the same direction. Therefore, networks with
more areas provide more perturbation cancelations.

To study how noise and interareal connections affect the
trajectory of bump positions, we again note noise causes all
bumps to wander away from their initial position, while being
pulled back into place by projections from other areas (see
Figure 7). The position of the bump in area j is described by the
stochastic variable �j. Noise also causes fluctuations in the shape

FIGURE 6 | Variance in the position of bumps as noise correlation

between areas is increased. Numerically computed variance (red shades)
match theoretical curves from Equation (29), blue shades, very well.
Reciprocal connectivity reduces variability the most when there is no
correlated noise (cc = 0) between areas. As the shared noise between
areas increased is amplitude (cc = 0.5, 1), the advantage of reciprocal
connectivity is diminished. When cc = 1 changing κ does not affect the
variance 〈�(t)2〉 (see formula (29) in the limit cc → 1). Other constituent
functions and parameters are the same as in Figure 2.

of both bumps, which is described by the correction term �j.
Therefore, we presume the resulting state of the system satisfies
the ansatz

uj = Uj(x − �j(t)) + ε1/2�j(x − �j(t), t) + · · · ,

where j = 1, . . . , N. Plugging this ansatz into Equation (6) and
expanding in powers of ε1/2, we find that at O(1), we simply have
the system of Equation (30) for the bump solutions. Proceeding
to O(ε1/2), we find

d� − L� = K(x, t) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε−1/2�̇1U ′
1 + dW1

...

ε−1/2�̇jU ′
j + dWj

...

ε−1/2�̇N U ′
N + dWN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(31)

where K(x, t) is an N × 1 vector whose jth entry is

Kj =
∑
k �= j

wjk ∗ [
f (Uk) + f ′(Uk)U ′

k · (�k − �j)
]

dt;

� = (�1(x, t), · · · , �N(x, t))T ; and L is the linear operator

L� =
⎛
⎜⎝

−�1(x) + w ∗ [f ′(U1(x))�1(x)
...

−�N(x) + w ∗ [f ′(UN)�N(x)

⎞
⎟⎠

for any integrable vector � = (�1(x), . . . , �N(x))T . The
nullspace of L is spanned by the vectors (U ′

1, 0, . . . , 0)T ;
(0, U ′

2, 0, . . . , 0)T ; . . . ; and (0, . . . , 0, U ′
N)T , which can be seen

FIGURE 7 | Stochastic evolution of bump position in multi-area

networks. (A) With weak coupling (
√

εwjk (x) = 0.01(cos(x) + 1) for j �= k)
between N = 3 areas, the position of bumps 1 (magenta), 2 (cyan), and 3
(green) reverts to one another. We show only the evolution of activity u(x, t)

in area 1. (B) For N = 6 areas and the same interareal coupling, the reduction
in bump wandering is even more considerable. The trajectories of bumps in
all areas (colored lines) stay close together. All other parameters are as in
Figure 2.
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by differentiating (Equation 30). The last terms on the right hand
side of Equation (31) arise due to interareal connections. We have
linearized them under the assumption that |�k − �j| remains
small for all j, k. To ensure a solution to Equation (31), we require
the right hand side is orthogonal to all elements of the null space
of the adjoint operator L∗. The adjoint is defined with respect to
the inner product

∫ π

−π

ϒTL�dx =
∫ π

−π

�TL∗ϒdx

where ϒ = (ϒ1(x), . . . , ϒN(x))T is integrable. It then follows

L∗ϒ =
⎛
⎜⎝

−ϒ1(x) + f ′(U1(x))[w ∗ ϒ1]
...

−ϒN(x) + f ′(UN)[w ∗ ϒN ]

⎞
⎟⎠ .

The nullspace of L∗ contains the vectors (f ′(U1)U ′
1, 0, . . . , 0)T ;

(0, f ′(U2)U ′
2, 0, . . . 0)T ; . . . ; and (0, . . . , 0, f ′(UN)U ′

N), which
can be shown by applying L∗ to them and using the formula
generated by differentiating (Equation 30). Thus, to be sure
(Equation 31) has a solution, we take the inner product of both
sides of the equation with all N null vectors and isolate d�j terms
to yield the multivariate Ornstein–Uhlenbeck process

d�(t) = K�(t)dt + dW(t), (32)

where effects of interareal connections are described by the
matrix K ∈ R

N×N where the diagonal and off-diagonal entries
are given

Kjj = −
∑
k�=j

κjk, Kjk = κjk

for j = 1, . . . , N and k �= j, where

κjk =
〈f ′(Uj)U ′

j , ε
1/2wjk ∗ [f ′(Uk)U ′

k]〉
〈f ′(Uj)U ′

j , U ′
j 〉

,

and we have used the fact that wjk ∗ f (Uk) · U ′
j is an odd function

for all j, k, so they vanish on integration. Stochastic forces are
described by the vector

dW(t) =
⎛
⎜⎝

dW1(t)
...

dWN(t)

⎞
⎟⎠ ,

dWj(t) = −ε1/2
〈f ′(Uj)U ′

j , dWj〉
〈f ′(Uj)U ′

j , U ′
j 〉

.

The white noise vector W(t) has zero mean 〈W(t)〉 = 0, and
covariance matrix 〈W(t)WT(t)〉 = Dt where associated coeffi-
cients of the matrix D are

Djj = ε

∫ π
−π

∫ π
−π

Fj(x)Fj(y)Cj(x − y)dxdy[∫ π

−π
Fj(x)U ′

j (x)dx
]2

.

where Fj(x) = f ′(Uj(x))U ′
j (x), which describe the variance

within an area and

Djk = ε

∫ π

−π

∫ π

−π
Fj(x)Fk(y)Cjk(x − y)dxdy[∫ π

−π
Fj(x)U ′

j (x)dx
] [∫ π

−π
Fk(x)U ′

k(x)dx
] ,

which describes covariance between areas. Since correlations are
symmetric Cjk(x) = Ckj(x) for all j, k, then Djk = Dkj for all j, k.

A detailed analysis of the linear stochastic system (Equation
32) is difficult without some knowledge of the entries κjk.
However, we can make a few general statements. We note that
all eigenvalues of K must have negative real part or be zero,
due to the Gerschgorin circle theorem (Feingold and Varga,
1962), which states that all eigenvalues a matrix K must lie in
one of the disks with center Kjj and radius

∑
k�=j |Kjk|. Since

Kjj = − ∑
k�=j κjk and Kjk = κjk, then

Kjj +
∑
k �= j

Kjk = −
∑
k �= j

κjk +
∑
k �= j

|κjk| = 0 (33)

is the maximal possible eigenvalue, since κjk ≥ 0 for all j, k.
Therefore, we expect N eigenpairs λj, vk associated with K, where
λN ≤ λN−1 ≤ · · · ≤ λ2 ≤ λ1 = 0. This means we can perform
the diagonalization K = V�V−1, where � is the diagonal matrix
of eigenvalues; columns of V are right eigenvectors; and rows
of V−1 are left eigenvectors. Therefore, we can decompose the
stochastic solution to Equation (32), when �(0) = 0 as

�(t) =
∫ t

0
eK(t−s)dW(s) =

∫ t

0
Ve�(t−s)V−1dW(s),

Thus, as we expect, any stochastic fluctuations in Equation (32)
will be integrated or decay over time due to the exponential filters
eλj(t−s). In addition, when �(0) = 0 the covariance matrix can
be computed as

〈�(t)�T(t)〉 =
∫ t

0
eK(t−s)DeKT (t−s)ds, (34)

where D is the matrix of diffusion coefficients for the covariance
〈W(t)WT(t)〉. We now compute the covariance in the specific case
of symmetric connectivity.

In the case of symmetric connectivity between areas, wjk =
wr for all j �= k, so κjk = κ for all j �= k. Effects of connectivity
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between areas are described by the symmetric matrix

K = κJN − NκI

where JN is the N × N matrix of ones and I is the identity. The
eigenvalues of JN are N, with multiplicity one, and zero, with mul-
tiplicity N − 1. Thus, the largest eigenvalue of K = κJN − NκI
is λ1 = 0 with associated eigenvector v1 = (1, . . . , 1)T . All other
eigenvalues are λj = −Nκ for j ≥ 2, with associated eigenvectors
vj = e1 − ej, where j = 2, . . . , N and ej is the unit vector with a
one in the jth row and zeros elsewhere. Our diagonalization of
the symmetric matrix K = KT = V�V−1 then involves the diag-
onal matrix � of eigenvalues λj; the symmetric matrix V whose
columns vj are right eigenvectors; and the symmetric matrix V−1

whose rows are left eigenvectors. The matrix V−1 takes the form

V−1 = 1

N

⎛
⎜⎜⎜⎜⎝

1 1 · · ·
1 −(N − 1) 1 · · ·

. . . 1
1 · · · 1 −(N − 1)

⎞
⎟⎟⎟⎟⎠ .

We can thus compute the covariance using the diagonalization

eKt = eKT t = Ve�t V−1. In addition, we will assume each area
receives noise with identical statistics (Djj = Dl) and there are
identical noise correlations between areas (Djk = Dc for j �= k), so
D = (Dl − Dc)I + DcJN . Multiplying and integrating (Equation
34), we find the diagonal entries (variances) of 〈�(t)�T(t)〉 are

〈�j(t)2〉 = Dl + (N − 1)Dc

N
t + (N − 1)(Dl − Dc)

2N2κ

[
1 − e−2Nκt] ,

(35)

and the off-diagonal entries (true covariances) are

〈�j(t)�k(t)〉 = Dl + (N − 1)Dc

N
t − (Dl − Dc)

2N2κ

[
1 − e−2Nκt] .

As revealed by the diffusive term in Equation (35), the system
still possesses a rotational symmetry, given by the action of rotat-
ing all the bumps in the same direction. Thus, the component of
noise in this direction is not damped out by coupling. Thus, note
that the long term variance of any bump’s position �j(t) will be
approximately described by the averaged diffusion

lim
t →∞〈�j(t)2〉 = Dl + (N − 1)Dc

N
t.

As the strength of coupling κ or number of areas N is increased,
the variances 〈�j(t)2〉 approach this limit at a faster rate, since the
other portions of variance decay at a rate proportional to |λ2| =
Nκ. Note also that in the limit Dc → Dl, effects of coupling are
negligible and the long term variance of each bump is determined
by the diffusion introduced by its area’s internal noise.

Returning to study the full variance Equation (35) for sym-
metric coupling and noise, we make a few observations. First, in
the limit of purely correlated noise across areas (Dc → Dl), inter-
areal connections have no effect, and 〈�j(t)2〉 = Dlt for all areas

and arbitrary coupling strength. However, if there is any indepen-
dent noise in each area (Dc < Dl), variance 〈�j(t)2〉 can always be
reduced further by increasing coupling strength or the number of
areas since

d

dκ
〈�j(t)2〉 = (N − 1)(Dl − Dc)

2N2
× (1 + 2Nκ)e−2Nκt) − 1

κ2
≤ 0,

where inequality (1 + 2Nκt) ≥ e2Nκt holds due to the Taylor
expansion of e2Nκt when Nκt ≥ 0, and

d

dN
〈�j(t)2〉 = −Dl − Dc

N2

+ Dl − Dc

2N3κ

[
2(1 + Nκt)e−2Nκt − N

] ≤ 0

FIGURE 8 | (A) Variance in the position of the bump in the first area
〈�1(t)2〉 builds up more slowly in networks with more areas N, and we
expect similar behavior in all other areas. Fixing the strength of interareal
connections,

√
εwjk (x) = 0.01(cos(x) + 1) for j �= k, we see that varying N

decreases the variance 〈�j (t)2〉. (B) As in dual area networks, increasing
the level of noise correlations between areas diminishes the effectiveness
of interareal connectivity as a noise cancelation mechanism. Other
parameters are as in Figure 2.
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when N ≥ 2, since Dl ≥ Dc and due to the Taylor expansion
of e2Nκt . Note, we have temporarily treated N as a continuous
variable. Thus, we know the variance 〈�j(t)2〉 to decrease with
increasing κ and expect it to decrease with increasing N.

We can compute the variance 〈�j(t)2〉 explicitly in the case
of Heaviside firing rate functions (Equation 5), cosine synaptic
weights (Equation 3) and (Equation 4). With these assumptions,
as well as there being identical noise to all areas (cjj = 1 for all j,
cjk = cc for j �= k), we find

Dl = ε

2 + 2
√

1 − θ2
, Dc = ccε

2 + 2
√

1 − θ2
,

so that

〈�j(t)2〉 = (1 + (N − 1)cc)ε

2N(1 + √
1 − θ2)

t + (1 − cc)ε

4N2κ

[
1 − e−2Nκt] ,

(36)

which reflects the fact that increasing the number of areas will
decrease variability, when noise between areas is not too strongly
correlated. We demonstrate the accuracy of this formula (36) in
Figure 8. In numerical simulations, as predicted by our asymp-
totic calculations, the variance scales more slowly in time in
networks with more areas.

DISCUSSION
We have shown that interareal coupling in multi-area stochas-
tic networks can reduce the diffusive wandering of bumps. Since
bump attractors offer a well studied model of persistent activ-
ity underlying spatial working memory (Compte et al., 2000),
our results provide a novel suggestion for how the memory net-
works may reduce error. Our calculations have exploited a small
noise approximation for the position of the bump in each area
(Armero et al., 1998; Bressloff and Webber, 2012a). Assuming
connectivity between areas is weak, we have shown the equations
describing bump positions reduce to a multivariate Ornstein–
Uhlenbeck process. In this formulation, we find interareal con-
nectivity stabilizes all but one eigendirection in the space of bump
position movements. Neutral stability does still exist, so stochas-
tic forces that move bumps in all areas in the same direction do
not decay away. However, sources of noise that force bumps in
opposite directions create bump movements that will decay with
time. Thus, interareal connectivity provides a noise cancelation

mechanism that operates by stabilizing the bumps in each area
to stochastic forces that push them in opposite directions. (Polk
et al., 2012) recently explored noise correlation statistics in per-
sistent state networks that reduce wandering. Our work comple-
ments these results by studying synaptic architectures that limit
persistent state diffusion.

Storing spatial working memories with neural activity that
spans multiple brain areas does serve other purposes than poten-
tial noise cancelation. Delayed response tasks that lead to limb
motion can generate persistent activity in the parietal cortex
(Colby et al., 1996; Pesaran et al., 2002) so that motor responses
can be readily executed. In addition, superior colliculus demon-
strates sustained activity (Basso and Wurtz, 1997), which is
an area also thought to underlie directed behavioral responses.
Therefore, activity is distributed between areas providing short
term information storage, like prefrontal cortex (Goldman-Rakic,
1995), and those responsible for motor responses and/or behav-
ior. An additional effect of this delegation of activity is that
reciprocal connections between areas may provide noise cance-
lation during the storage period of working memory. However,
our work suggests distributing working memory-serving neural
activity between areas that receive strongly correlated noise will
not provide as effective cancelation.

Our work should be contrasted with several other results
concerning the stabilization of networks that encode a continu-
ous variable (Koulakov et al., 2002; Goldman et al., 2003; Cain
and Shea-Brown, 2012; Kilpatrick et al., 2013). Pure integrators,
which are usually line attractors, are notoriously fragile to para-
metric perturbations, so (Koulakov et al., 2002) suggested they
may be made more robust by considering networks that integrate
in discrete bursts, rather than continuously. This can be imple-
mented by considering a population of bistable neural units so
that firing rate integration of a stimulus occurs in a stairstep fash-
ion, rather than a ramplike fashion (see Goldman et al., 2003 for
example). Related ideas were recently implemented in a bump
attractor model of spatial working memory (Kilpatrick et al.,
2013), but quantization was implemented with synaptic archi-
tecture rather than single neural unit properties. As opposed
to the approach of quantizing the space of possible stimulus
representations, we have kept the representation space a con-
tinuum. Deleterious effects of noise are reduced by considering
reciprocal connectivity between encoding areas that redundantly
represent the stimulus. Due to noise cancelations, the encod-
ing error of the network decreases as the number of areas is
increased.
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