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Emerging technologies are revealing the spiking activity in ever larger neural ensembles.
Frequently, this spiking is far from independent, with correlations in the spike times of
different cells. Understanding how such correlations impact the dynamics and function
of neural ensembles remains an important open problem. Here we describe a new,
generative model for correlated spike trains that can exhibit many of the features observed
in data. Extending prior work in mathematical finance, this generalized thinning and shift
(GTaS) model creates marginally Poisson spike trains with diverse temporal correlation
structures. We give several examples which highlight the model’s flexibility and utility.
For instance, we use it to examine how a neural network responds to highly structured
patterns of inputs. We then show that the GTaS model is analytically tractable, and derive
cumulant densities of all orders in terms of model parameters. The GTaS framework can
therefore be an important tool in the experimental and theoretical exploration of neural
dynamics.
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1. INTRODUCTION
Recordings across the brain suggest that neural populations spike
collectively—the statistics of their activity as a group are distinct
from that expected in assembling the spikes from one cell at a
time (Bair et al., 2001; Salinas and Sejnowski, 2001; Harris, 2005;
Averbeck et al., 2006; Schneidman et al., 2006; Shlens et al., 2006;
Pillow et al., 2008; Ganmor et al., 2011; Bathellier et al., 2012;
Hansen et al., 2012; Luczak et al., 2013). Advances in electrode
and imaging technology allow us to explore the dynamics of neu-
ral populations by simultaneously recording the activity of hun-
dreds of cells. This is revealing patterns of collective spiking that
extend across multiple cells. The underlying structure is intrigu-
ing: For example, higher-order interactions among cell groups
have been observed widely (Amari et al., 2003; Schneidman et al.,
2006; Shlens et al., 2006, 2009; Ohiorhenuan et al., 2010; Ganmor
et al., 2011; Vasquez et al., 2012; Luczak et al., 2013). A num-
ber of recent studies point to mechanisms that generate such
higher-order correlations from common input processes, includ-
ing unobserved neurons. This suggests that, in a given recording
or given set of neurons projecting downstream, higher-order cor-
relations may be quite ubiquitous (Barreiro et al., 2010; Macke
et al., 2011; Yu et al., 2011; Köster et al., 2013). Moreover, these
higher-order correlations may impact the firing statistics of down-
stream neurons (Kuhn et al., 2003), the information capacity of
their output (Ganmor et al., 2011; Cain and Shea-Brown, 2013;
Montani et al., 2013), and could be essential in learning through
spike-time dependent synaptic plasticity (Pfister and Gerstner,
2006; Gjorgjieva et al., 2011).

What exactly is the impact of such collective spiking on
the encoding and transmission of information in the brain?
This question has been studied extensively, but much remains
unknown. Results to date show that the answers will be varied
and rich. Patterned spiking can impact responses at the level of
single cells (Salinas and Sejnowski, 2001; Kuhn et al., 2003; Xu
et al., 2012) and neural populations (Amjad et al., 1997; Tetzlaff
et al., 2003; Rosenbaum et al., 2010, 2011). Neurons with even
the simplest of non-linearities can be highly sensitive to correla-
tions in their inputs. Moreover, such non-linearities are sufficient
to accurately decode signals from the input to correlated neural
populations (Shamir and Sompolinsky, 2004).

An essential tool in understanding the impact of collective
spiking is the ability to generate artificial spike trains with a pre-
determined structure across cells and across time (Brette, 2009;
Gutnisky and Josić, 2009; Krumin and Shoham, 2009; Macke
et al., 2009). Such synthetic spike trains are the grist for testing
hypotheses about spatiotemporal patterns in coding and dynam-
ics. In experimental studies, such spike trains can be used to
provide structured stimulation of single cells across their den-
dritic trees via glutamate uncaging (Gasparini and Magee, 2006;
Reddy et al., 2008; Branco et al., 2010; Branco and Häusser,
2011). In addition, entire populations of neurons can be acti-
vated via optical stimulation of microbial opsins (Han and
Boyden, 2007; Chow et al., 2010). Computationally, they are used
to examine the response of non-linear models of downstream
cells (Carr et al., 1998; Salinas and Sejnowski, 2001; Kuhn et al.,
2003).
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Therefore, much effort has been devoted to developing sta-
tistical models of population activity. A number of flexible, yet
tractable probabilistic models of joint neuronal activity have
been proposed. Pairwise correlations are the most common type
of interactions obtained from multi-unit recordings. Therefore,
many earlier models were designed to generate samples of neu-
ral activity patterns with predetermined first and second order
statistics (Brette, 2009; Gutnisky and Josić, 2009; Krumin and
Shoham, 2009; Macke et al., 2009). In these models, higher-order
correlations are not explicitly and separately controlled.

A number of different models have been used to analyze
higher-order interactions. However, most of these models assume
that interactions between different cells are instantaneous (or
near-instantaneous) (Kuhn et al., 2003; Johnson and Goodman,
2009; Staude et al., 2010; Shimazaki et al., 2012). A notable
exception is the work of Bäuerle and Grübel (2005), which devel-
oped such methods for use in financial applications. In these
previous efforts, correlations at all orders were characterized by
the increase, or decrease, in the probability that groups of cells
spike together at the same time, or have a common temporal
correlation structure regardless of the group.

The aim of the present work is to provide a statistical method
for generating spike trains with more general correlation struc-
tures across cells and time. Specifically, we allow distinct tempo-
ral structure for correlations at pairwise, triplet, and all higher
orders, and do so separately for different groups of cells in the
neural population. Our aim to describe a model that can be
applied in neuroscience, and can potentially be fit to emerging
datasets.

A sample realization of a multivariate generalized thinning
and shift (GTaS) process is shown in Figure 1. The multivari-
ate spike train consists of six marginally Poisson processes. Each
event was either uncorrelated with all other events across the pop-
ulation, or correlated in time with an event in all other spike
trains. This model was configured to exhibit activity that cascades
through a sequence of neurons. Specifically, neurons with larger
index tend to fire later in a population wide event (this is simi-
lar to a synfire chain (Abeles, 1991), but with variable timing of
spikes within the cascade). In Figure 1B, we plot the “population
cross-cumulant density” for three chosen neurons—the summed
activity of the population triggered by a spike in a chosen cell.
The center of mass of this function measures the average latency
by which spikes of the neuron in question precede those of the rest
of the population (Luczak et al., 2013). Finally, Figure 1C shows
the third-order cross-cumulant density for the three neurons. The
triangular support of this function is a reflection of a synfire-
like cascade structure of the spiking shown in the raster plot of
panel (A): when firing events are correlated between trains, they
tend to proceed in order of increasing index. We demonstrate the
impact of such structured activity on a downstream network in
section 2.2.3.

2. RESULTS
Our aim is to describe a flexible multivariate point process capa-
ble of generating a range of high order correlation structures.
To do so, we extend the TaS (thinning and shift) model of
temporally- and spatially-correlated, marginally Poisson counting

processes (Bäuerle and Grübel, 2005). The TaS model itself gen-
eralizes the SIP and MIP models (Kuhn et al., 2003) which
have been used in theoretical neuroscience (Tetzlaff et al., 2008;
Rosenbaum et al., 2010; Cain and Shea-Brown, 2013). However,
the TaS model has not been used as widely. The original TaS
model is too rigid to generate a number of interesting activ-
ity patterns observed in multi-unit recordings (Ikegaya et al.,
2004; Luczak et al., 2007, 2013). We therefore developed the
GTaS which allows for a more diverse temporal correlation
structure.

We begin by describing the algorithm for sampling from
the GTaS model. This constructive approach provides an intu-
itive understanding of the model’s properties. We then present a
pair of examples, the first of which highlights the utility of the

FIGURE 1 | (A) Raster plot of event times for an example multivariate
Poisson process X = (X1, . . . , X6) generated using the methods presented
below. This model exhibits independent marginal events (blue) and
population-level, chain-like events (red). (B) Some second order population
cumulant densities (i.e., second order correlation between individual unit
activities and population activity) for this model (Luczak et al., 2013).
Greater mass to the right (resp. left) of τ = 0 indicates that the cell tends to
lead (resp. follow) in pairwise-correlated events. (C) Third-order
cross-cumulant density for processes X1, X2, X3. The quantity κX

123(τ1, τ2)

yields the probability of observing spikes in cells 2 and 3 at an offset τ1, τ2

from a spike in cell 1, respectively, in excess of what would be predicted
from the first and second order cumulant structure. All quantities are
precisely defined in the Methods. Note: system parameters necessary to
reproduce results are given in the Appendix for all figures.
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GTaS framework. The second example demonstrates how sam-
ple point processes from the GTaS model can be used to study
population dynamics. Next, we present the analysis which yields
the explicit forms for the cross-cumulant densities derived in
the context of the examples. We do so by first establishing a
useful distributional representation for the GTaS process, par-
alleling Bäuerle and Grübel (2005). Using this representation,
we derive cross-cumulants of a GTaS counting process, as well
as explicit expressions for the cross-cumulant densities. After
explaining the derivation at lower orders, we present a theorem
which describes cross-cumulant densities at all orders.

2.1. GTaS MODEL SIMULATION
The GTaS model is parameterized first by a rate λ which deter-
mines the intensity of a “mother process”—a Poisson process on
R. The events of the mother process are marked, and the mark-
ings determine how each event is distributed among a collection
of N daughter processes. The daughter processes are indexed by
the set D = {1, . . . , N}, and the set of possible markings is the
power set 2D, the set of all subsets of D. We define a probability
distribution p = (pD)D ⊂ D, assigning a probability to each possi-
ble marking, D. As we will see, pD determines the probability of
a joint event in all daughter processes with indices in the set D.
Finally, to each marking, D, we assign a probability distribution
QD, giving a family of shift (jitter) distributions (QD)D ⊂ D. Each
(QD) is a distribution over R

N .
The rate λ, the distribution p over the markings, and

the family of jitter distributions (QD)D ⊂ D, define a vector
X = (X1, . . . , XN) of dependent daughter Poisson processes
described by the following algorithm, which yields a single real-
ization (see Figure 2):

1. Simulate the mother Poisson process of rate λ on R, generating
a sequence of event times {tj}. (Figure 2A).

FIGURE 2 | An illustration of a GTaS simulation. (A) Step 1: Simulate the
mother process—a time-homogeneous Poisson process with event times
{tj }. (B) Step 2: For each tj in step 1, select a set Dj ⊂ D according to the
distribution pD , and project the event at time tj to the subsets with indices
in Dj . The legend indicates the colors assigned to three possible markings
in this example. (C) Step 3: For each pair (tj , Dj ) generated in the previous
two steps, draw Yj from QDj , and shift the event times in the daughter
processes by the corresponding values Y j

i .

2. With probability pDj assign the subset Dj ⊂ D to the event of
the mother process at time tj. This event will be assigned only
to processes with indices in Dj. (Figure 2B).

3. Sample a vector (Y
j
1, . . . , Y

j
N) = Yj from the distribution QDj .

For each i ∈ D, the time tj + Y
j
i is set as an event time for the

marginal counting process Xi. (Figure 2C).

Hence copies of each point of the mother process are placed into
daughter processes after a shift in time. A primary difference
between the GTaS model and the TaS model presented in Bäuerle
and Grübel (2005) is the dependence of the shift distributions QD

on the chosen marking. This allows for greater flexibility in setting
the temporal cumulant structure.

2.2. EXAMPLES
2.2.1. Relation to SIP/MIP processes
Two simple models of correlated, jointly Poisson processes were
defined in Kuhn et al. (2003). The resulting spike trains exhibit
spatial correlations, but only instantaneous temporal dependen-
cies. Each model was constructed by starting with independent
Poisson processes, and applying one of two elementary point
process operations: superposition and thinning (Cox and Isham,
1980). We show that both models are special cases of the GTaS
model.

In the single interaction process (SIP), each marginal process Xi

is obtained by merging an independent Poisson process with a
common, global Poisson process. That is,

Xi(·) = Zi(·) + Zc(·), i = 1, . . . , N,

where Zc and each Zi are independent Poisson counting processes
on R with rates λc, λi, respectively. An SIP model is equivalent to
a GTaS model with mother process rate λ = λc +∑N

i = 1 λi, and
marking probabilities

pD =

⎧⎪⎨
⎪⎩

λi
λ

D = {i}
λc
λ

D = D

0 otherwise

.

Note that if λc = 0, each spike will be assigned to a different pro-
cess Xi, resulting in N independent Poisson processes. Lastly, each
shift distribution is equal to a delta distribution at zero in every
coordinate (i.e., qD(y1, . . . , yN) ≡ ∏N

i = 1 δ(yi) for every D ⊂ D).
Thus, all joint cumulants (among distinct marginal processes) of
orders 2 through N are delta functions of equal magnitude, λpD.

The multiple interaction process (MIP) consists of N Poisson
processes obtained from a common mother process with rate λm

by thinning (Cox and Isham, 1980). The ith daughter process is
formed by independent (across coordinates and events) deletion
of events from the mother process with probability p = (1 − ε).
Hence, an event is common to k daughter processes with proba-
bility εk. Therefore, if we take the perspective of retaining, rather
than deleting events, the MIP model is equivalent to a GTaS pro-
cess with λ = λm, and pD = ε|D|(1 − ε)d−|D|. As in the SIP case,
the shift distributions are singular in every coordinate. Below, we
present a general result (Theorem 1.1) which immediately yields
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as a corollary that the MIP model has cross-cumulant functions
which are δ functions in all dimensions, scaled by εk, where k is
the order of the cross-cumulant.

2.2.2. Generation of synfire-like cascade activity
The GTaS framework provides a simple, tractable way of generat-
ing cascading activity where cells fire in a preferred order across
the population—as in a synfire chain, but (in general) with vari-
able timing of spikes (Abeles, 1991; Abeles and Prut, 1996; Aertsen
et al., 1996; Aviel et al., 2002; Ikegaya et al., 2004). More generally,
it can be used to simulate the activity of cell assemblies (Hebb,
1949; Harris, 2005; Buzsáki, 2010; Bathellier et al., 2012), in which
the firing of groups of neurons is likely to follow a particular
order.

In the Introduction, we briefly presented one example in which
the GTaS framework was used to generate synfire-like cascade
activity (see Figure 1), and we present another in Figure 3. In
what follows, we will present the explicit definition of this sec-
ond model, and then derive explicit expressions for its cumulant
structure. Our aim is to illustrate the diverse range of possi-
ble correlation structures that can be generated using the GTaS
model.

Consider an N-dimensional counting process X =
(X1, . . . , XN) of GTaS type, where N ≥ 4. We restrict the
marking distribution so that pD ≡ 0 unless |D| ≤ 2 or D = D.
That is, events are either assigned to a single, a pair, or all daugh-
ter processes. For sets D with |D| = 2, we set QD ∼ N (0,�)—a
Gaussian distributions of zero mean and some specified
covariance. The choice of the precise pairwise shift distribu-
tions is not important. Shifts of events attributed to a single

process have no effect on the statistics of the multivariate
process—this will become clear in section 2.3, when we exhibit
that a GTaS process is equivalent in distribution to a sum
of independent Poisson processes. In that context, the shifts
of marginal events are applied to the event times of only
one of these Poisson processes, which does not impact its
statistics.

It remains to define the jitter distribution for events common
to the entire population of daughter processes, i.e., events marked
by D. We will show that we can generate cascading activity, and
analytically describe the resulting correlation structure. We will
say that a random variable T follows the exponential distribution
Exp(α) if it has probability density

f (t|α) = αe−αt�(t),

where �(t) is the Heaviside step function. We generate ran-
dom vectors Y ∼ QD according to the following rule, for each
i = 1, . . . , N:

1. Generate independent random variables Ti ∼ Exp(αi) where
αi > 0.

2. Set Yi = ∑i
j = 1 Tj.

In particular, note that these shift times satisfy YN ≥ . . . ≥ Y2 ≥
Y1 ≥ 0, indicating the chain-like structure of these joint events.

From the definition of the model and our general result
(Theorem 1.1) below, we immediately have that κX

ij (τ), the second

FIGURE 3 | An example of a six dimensional GTaS model exhibiting

synfire-like cascading firing patterns. (A) A raster-plot of spiking activity
over a 100 ms window. Blue spikes indicate either marginal or pairwise
events (i.e., events corresponding to markings for sets D ⊂ D with |D| ≤ 2).
Red spikes indicate population-wide events which have shift-times given by
cumulative sums of independent exponentials, as described in the text.
Arrows indicate the location of the first spike in the cascade. (B) A

second-order cross-cumulant κX
13 (black line) of this model is composed of

contributions from two sources: correlations due to second-order markings,
which have Gaussian shifts (c2

13—dashed red line), and correlations due to the
occurrence of population wide events (cN

13—dashed blue line). (C) Density
plots of the third-order cross-cumulant density for triplets (i) (1, 2, 3) and (ii)

(1, 2, 4)—the latter is given explicitly in Equation (6). System parameters are
given in the Appendix.
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order cross-cumulant density for the process (i, j), is given by

κX
ij (τ) = c2

ij(τ) + cN
ij (τ), (1)

where

c2
ij(τ) = λp{i, j}

∫
q
{i, j}
{i, j}(t, t + τ)dt,

cN
ij (τ) = λpD

∫
q
{i, j}
D

(t, t + τ)dt (2)

define the contributions to the second order cross-cumulant
density by the second-order, Gaussian-jittered events and the
population-level events, respectively. Therefore, correlations
between spike trains in this case reflect distinct contributions
from second order and higher order events. The functions qD′

D
indicate the densities associated with the distribution QD, pro-
jected to the dimensions of D′. All statistical quantities are
precisely defined in the methods.

By exploiting the hierarchical construction of the shift times,
we can find an expression for the joint density qD, necessary
to explicitly evaluate Equation (1). For a general N-dimensional
distribution,

f (y1, . . . , yN) = f (yN |y1, . . . , yN − 1)f (yN − 1|y1, . . . , yN − 2) · · ·
· f (y2|y1)f (y1). (3)

Since Y1 ∼ Exp(α1), we have f (y1) = exp
[−α1y1

]
�(y1),

where �(y) is the Heaviside step function. Further, as
(Yi − Yi − 1)|(Y1, . . . , Yi − 1) ∼ Exp(αi) for i ≥ 2, the conditional
densities of the yi’s take the form

f (yi|y1, . . . , yi − 1) = f (yi|yi − 1) = αi exp
[−αi(yi − yi − 1)

]
·� (yi − yi − 1), i ≥ 2.

Substituting this in to the identity Equation (3), we have

qD(y1, . . . , yN ) =

⎧⎪⎨
⎪⎩

α1 exp
[−α1y1

]∏N
i = 2 αi yN ≥ . . . ≥

· exp
[−αi(yi − yi − 1)

]
y2 ≥ y1 ≥ 0

0 otherwise

. (4)

Using Theorem 1.1 (Equation A8) we obtain the Nth order cross-
cumulant density (see the Methods),

κX
1 ··· N(τ1, . . . , τN − 1)

= λpD

∫
qD(t, t + τ1, . . . , t + τN − 1)dt (5)

= λpD ·

⎧⎪⎨
⎪⎩
∏N − 1

i = 1 αi + 1 τi ≥ τi − 1

· exp [−αi + 1(τi − τi − 1)] i = 1, . . . , N − 1,

0 otherwise

where, for notational convenience, we define τ0 = 0. A raster plot
of a realization of this model is shown in Figure 3A. We note
that the cross-cumulant densities of arbitrary subcollections of

the counting processes X can be obtained by finding the appropri-
ate marginalization of qD via integration of Equation (4). In the
case that common distributions are used to define the shifts, sym-
bolic calculation environments (i.e., Mathematica) can quickly
yield explicit formulas for cross-cumulant densities. Mathematica
notebooks for Figure 1 available upon request.

As a particular example, we consider the cross-cumulant den-
sity of the marginal processes X1, X3. Using Equations (2, 4), we
find

cN
13(τ) = λpD�(τ) ·

{
α2α3

α3−α2

{
exp [−α2τ] − exp [−α3τ]

}
α2 	= α3

α2α3τ exp [−α2τ] α2 = α3

.

An expression for c2
13(τ) may be obtained similarly using

Equation (2) and recalling that Q{i, j} ≡ N (0,�) for all i, j. In
Figure 3B, we plot these contributions, as well as the full covari-
ance density.

Similar calculations at third order yield, as an example,

κX
124(τ1, τ2) = λpD

·

⎧⎪⎪⎨
⎪⎪⎩

α2α3α4
α4−α3

exp [−α2τ1]
{

exp [−α3(τ2 − τ1)]

− exp [−α4(τ2 − τ1)]
}

α3 	= α4

α2α3α4(τ2 − τ1) exp [−α2τ1 − α3(τ2 − τ1)] α3 = α4

, (6)

where the cross-cumulant density κX
124(τ1, τ2) is supported

only on τ2 ≥ τ1 ≥ 0. Plots of the third-order cross-cumulants
for triplets (1, 2, 3) and (1, 2, 4) in this model are shown in
Figure 3C. Note that, for the specified parameters, the condi-
tional distribution of Y4—the shift applied to the events of X4

in a joint population event—given Y2 follows a gamma distribu-
tion, whereas Y3|Y2 follows an exponential distribution, explain-
ing the differences in the shapes of these two cross-cumulant
densities.

General cross-cumulant densities of at least third order for
the cascading model will have a form similar to that given
in Equation (6), and will contain no signature of the corre-
lation of strictly second order events. This highlights a key
benefit of cumulants as a measure of dependence: although
they agree with central moments up to third order, we know
from Equation (23) below [or Equation (22) in the general
case] that central moments necessarily exhibit a dependence on
lower order statistics. On the other hand, cumulants are “pure”
and quantify only dependencies at the given order which can-
not be inferred from lower order statistics (Grün and Rotter,
2010).

One useful statistic for analyzing population activity through
correlations is the population cumulant density (Luczak et al.,
2013). The second order population cumulant density for cell i
is defined by (see the Methods)

κX
i, pop(τ) =

∑
j 	= i

κX
ij (τ).

This function is linearly related to the spike-triggered average of
the population activity conditioned on that of cell i. In Figure 4
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we show three different second-order population-cumulant func-
tions for the cascading GTaS model of Figure 3A. When the
second order population cumulant for a neuron is skewed to
the right of τ = 0 (as is κX

1, pop—blue line), a neuron tends to
precede other cells in the population in pairwise spiking events.
Similarly, skewness to the left of τ = 0 (κX

6, pop—orange line) indi-
cates a neuron which tends to trail other cells in the population in
such events. A symmetric population cumulant density indicates
a neuron is a follower and a leader. Taken together, these three
second order population cumulants hint at the chain structure of
the process.

Greater understanding of the joint temporal statistics in a mul-
tivariate counting process can be obtained by considering higher-
order population cumulant densities. We define the third-order
population cumulant density for the pair (i, j) to be

κX
ij, pop(τ1, τ2) =

∑
k 	= i, j

κX
ijk(τ1, τ2).

The third-order population cumulant density is linearly related
to the spike-triggered population activity, conditioned on spikes
in cells i and j separated by a delay τ1. In Figures 4B–D, we
present three distinct third-order population cumulant densities.
Examining κX

12, pop(τ1, τ2) (panel B), we see only contributions
in the region τ2 > τ1 > 0, indicating that the pairwise event
1 → 2 often precedes a third spike elsewhere in the population
(i.e., with a probability above chance). The population cumu-
lant κX

34, pop(τ1, τ2) has contributions in two sections of the plane
(panel C). Contributions in the region τ2 > τ1 > 0 can be under-
stood following the preceding example, while contributions in
the region τ2 < 0 < τ1 imply that the firing of other neurons
tends to precede the joint firing event 3 → 4. Lastly, contribu-
tions to κX

16, pop(τ1, τ2) (panel D) are limited to 0 < τ2 < τ1,
indicating an above chance probability of joint firing events of
the form 1 → i → 6, where i indicates a distinct neuron within
the population.

A distinct advantage of the study of population cumulant
densities as opposed to individual cross-cumulant functions in

FIGURE 4 | Population cumulants for the synfire-like cascading GTaS

process of Figure 3. See Equation (25) for the definition of population
cumulants. (A) Second order population cumulant densities for processes 1, 3,
and 6. Greater mass to the right (resp. left) of τ = 0 indicates that a cell tends
to lead (resp. follow) in pairwise-correlated events. (B) Third order population

cumulant for processes X1, X2 in the cascading GTaS process. Concentration
of the mass in different regions of the plane indicates temporal structure of
events correlated between X1, X2 relative to the remainder of the population
(see the text). (C) Same as (B), but for processes X3, X4. (D) Same as (B), but
for processes X1, X6. System parameters are given in the Appendix.
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practical applications is related to data (i.e., sample size) lim-
itations. In many practical applications, where the temporal
structure of a collection of observed point processes is of inter-
est, we often deal with a small, noisy samples. It may there-
fore be difficult to estimate third- or higher-order cumulants.
Population cumulants partially circumvent this issue by pool-
ing (Tetzlaff et al., 2003; Rosenbaum et al., 2010, 2011) (or
summing) responses, to amplify existing correlations and average
out the noise in measurements.

We conclude this section by noting that even cascading GTaS
examples can be much more general. For instance, we can include
more complex shift patterns, overlapping subassemblies within
the population, different temporal processions of the cascade, and
more.

2.2.3. Timing-selective network
The responses of single neurons and neuronal networks in exper-
imental (Meister and Berry II, 1999; Singer, 1999; Bathellier
et al., 2012) and theoretical studies (Jeffress, 1948; Hopfield,
1995; Joris et al., 1998; Thorpe et al., 2001; Gütig and
Sompolinsky, 2006) can reflect the temporal structure of their
inputs. Here, we present a simple example that shows how
a network can be selective to fine temporal features of its
input, and how the GTaS model can be used to explore such
examples.

As a general network model, we consider N leaky integrate-
and-fire (LIF) neurons with membrane potentials Vi obeying

dVi

dt
= −Vi +

N∑
j = 1

wij(F ∗ zj)(t) + winxi(t), i = 1, . . . , N.(7)

When the membrane potential of cell i reaches a threshold
Vth, an output spike is recorded and the membrane poten-
tial is reset to zero, after which evolution of Vi resumes the
dynamics in Equation (7). Here wij is the synaptic weight

of the connection from cell j to i, win is the input weight,
and we assume time to be measured in units of mem-
brane time constants. The function F = τsyn

−1e−(t − τd)/τsyn�(t −
τd) is a delayed, unit-area exponential synaptic kernel with
time-constant τsyn and delay τd. The output of the ith
neuron is

zi(t) =
∑

j

δ(t − t
j
i),

where t
j
i is the time of the jth spike of neuron i. In addition, the

input {xi}N
i = 1 is

xi(t) =
∑

j

δ(t − s
j
i),

where the event times {sj
i} correspond to those of a GTaS count-

ing process X. Thus, each input spike results in a jump in the
membrane potential of the corresponding LIF neuron of ampli-
tude win. The particular network we consider will have a ring

topology (nearest neighbor-only connectivity)—specifically, for
i, j = 1, . . . , N, we let

wij =
{

wsyn i − j mod N ≡ 1 or N − 1

0 otherwise
.

We further assume that all neurons are excitatory, so that
wsyn > 0.

A network of LIF neurons with synaptic delay is a minimal
model which can exhibit fine-scale discrimination of temporal
patterns of inputs without precise tuning (Izhikevich, 2006) (that
is, without being carefully designed to do so, with great sensitivity
to modification of network parameters). To exhibit this depen-
dence we generate inputs from two GTaS processes. The first
(the cascading model) was described in the preceding example. To
independently control the mean and variance of relative shifts we
replace the sum of exponential shifts with sums of gamma vari-
ates. We also consider a model featuring population-level events
without shifts (the synchronous model), where the distribution QD

is a δ distribution at zero in all coordinates.
The only difference between the two input models is in the

temporal structure of joint events. In particular, the rates, and
all long timescale spike count cross-cumulants (equivalent to the
total “area” under the cross-cumulant density, see the Methods)
of order two and higher are identical for the two processes. We
focus on the sensitivity of the network to the temporal cumulant
structure of its inputs.

In Figures 5A,B, we present two example rasters of the nearest-
neighbor LIF network receiving synchronous (left) and cascading
(right) input. In the second case, there is an obvious pattern in
the outputs, but the firing rate is also increased. This is quan-
tified in Figure 5C, where we compare the number of output
spikes fired by a network receiving synchronous input (horizon-
tal axis) with the same for a network receiving cascading input
(vertical axis), over a large number of trials. On average, the cas-
cading input increases the output rate by a factor of 1.5 over
the synchronous inputs—we refer to this quantity as the cascade
amplification factor (CAF).

Finally, in Figure 5D, we illustrate how the cascade amplifica-
tion factor depends on the parameters that define the timing of
spikes for the cascading inputs. First, we study the dependence on
the standard deviation σshift of the gamma variates determining
the shift distribution. We note that amplification factors above 1.5
hold robustly (i.e., for a range of shift σshift values). The amplifica-
tion factors decrease with shift variance. In the inset to panel (D),
we show how the gain depends on the mean of the shift distri-
bution μshift. On an individual trial, the response intensity will
depend strongly on the total number of input spikes. Thus, in
order to enforce a fair comparison, the mother process and mark-
ings used were identical in each trial of every panel of Figure 5.
We note that network properties, such as the membrane proper-
ties of individual cells or synaptic timescales, may have an equally
large impact on the cascade amplification factor—indeed, as we
explain below, the observed behavior of the CAF is a result of syn-
ergy between the timescales of input and interactions within the
network.
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FIGURE 5 | (A) Example input (left) and output (right) for the nearest
neighbor LIF network receiving input with synchronous input. (B) Same as
(A), but for cascading input. (C) Scatter plot of the output spike count of the
network receiving synchronous (horizontal axis) and cascading input (vertical
axis) with μshift = 2, σshift = 0.3. The red line is the diagonal. (D) Average gain
(rate in response to cascading input divided by rate in response to

synchronous input) as a function of the standard deviation of the gamma
variates which compose the shift vectors for population-level events (μshift

was fixed at 2). The red dot indicates the value of σshift used in panel (C).
Inset shows the same gain as panel (D), but for varying the mean of the shift
distribution (σshift = 0.3). Spike counts in panels (C,D) were obtained for trials
of length T = 100. Other system parameters are given in the Appendix.

These observations have simple explanations in terms of the
network dynamics and input statistics. Neglecting, for a moment,
population-level events, the network is configured so that correla-
tions in activity decrease with topographic distance. Accordingly,
the probability of finding neurons that are simultaneously close
to threshold also decreases with distance. Under the synchronous
input model, a population-level event results in a simultane-
ous increase of the membrane potentials of all neurons by an
amount win, but unless the input is very strong (in which
case every, or almost every, neuron will fire regardless of fine-
scale input structure), the set of neurons sufficiently close to
threshold to “capitalize” on the input and fire will typically be
restricted to a topographically adjacent subset. Neurons which do
not fire almost immediately will soon have forgotten about this
population-level input. As a result, the output does not signif-
icantly reflect the chain-like structure of the inputs (Figure 5A,
right).

On the other hand, in the case of the cascading input, the tem-
poral structure of the input and the timescale of synapses can
operate synergistically. Consider a pair of adjacent neurons in
the ring network, called cells 1 and 2, arranged so that cell 2 is
downstream from cell 1 in the direction of the population-level
chain events. When cell 1 spikes, it is likely that cell 2 will also
have an elevated membrane potential. The potential is further ele-
vated by the delayed synaptic input from cell 1. If cell 1 spikes
in response to a population-level chain event, then cell 2 immi-
nently receives an input spike as well. If the synaptic filter and
time-shift of the input spikes to each cell align, then the firing
probability of cell 2 will be large relative to chance. This reasoning
can be carried on across the network. Hence synergy between the

temporal structure of inputs and network architecture allows the
network to selectively respond to the temporal structure of the
inputs (Figure 5B, right).

In Kuhn et al. (2003), the effect of higher order correlations
on the firing rate gain of an integrate-and-fire neuron was stud-
ied by driving single cells using sums of SIP or MIP processes
with equivalent firing rates (first order cumulants) and pairwise
correlations (second order cumulants). In contrast, in the pre-
ceding example, the two inputs have equal long time spike count
cumulants, and differ only in temporal correlation structure. An
increase in firing rate was due to network interactions, and is
therefore a population level effect. We return to this comparison
in the Discussion.

These examples demonstrate how the GTaS model can be
used to explore the impact of spatio-temporal structure in pop-
ulation activity on network dynamics. We next proceed with a
formal derivation of the cumulant structure for a general GTaS
process.

2.3. CUMULANT STRUCTURE OF A GTaS PROCESS
The GTaS model defines an N-dimensional count-
ing process. Following the standard description for a
counting process, X = (X1, . . . , XN) on R

N , given a col-
lection of Borel subsets Ai ∈ B(R), i = 1, . . . , N, then
X(A1 × · · · × AN) = (X1(A1), . . . , XN (AN)) ∈ N

N is a ran-
dom vector where the value of each coordinate i indicates the
(random) number of points which fall inside the set Ai. Note that
the GTaS model defines processes that are marginally Poisson.
All GTaS model parameters and related quantities are defined in
Table 1.
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Table 1 | Common notation used in the text.

D D = {1, 2, . . . , N} where N is the system size of the GTaS process under consideration

(pD)D ⊂ D Marking probabilities of a GTaS process

(QD)D ⊂ D Family of shift distributions on R
N for a GTaS process

B(R) Borel subsets of the real line R

ξ(D; A1, . . . , AN) Independent Poisson variables which count points which, after shifting, lie in the sets Ai only along the dimensions
corresponding to the indices of D. These counts consist of contributions from subsets marked for D′ ⊃ D, but indices in
D′\D end up outside the corresponding Ai . Defined in the statement of Theorem 0

ζD(A1, . . . , AN) Independent Poisson variables which are context-dependent resummations of the variables ξ(D; A1, . . . , AN). Defined
below Equation (10)

κ(X1, . . . , XN ) Cross-cumulant of the random variables X1, . . . , XN defined in the Methods

κX
i1 ···ik (τ1, . . . , τk − 1) Cross-cumulant density defined in Equation (24)

κX
i1 ···ik − 1 ,pop(τ1, . . . , τk − 1) Population cumulant density defined in Equation (25)

For each D ⊂ D = {1, . . . , N}, define the tail probability p̄D by

p̄D =
∑

D ⊂ D′ ⊂ D

pD′ . (8)

Since pD is the probability that exactly the processes in D are
marked, p̄D is the probability that all processes in D, as well as
possibly other processes, are marked. An event from the mother
process is assigned to daughter process Xi with probability p̄{i}. As
noted above, an event attributed to process i following a marking
D 
 i will be marginally shifted by a random amount determined

by the distribution Q{i}
D which represents the projection of QD

onto dimension i. Thus, the events in the marginal process Xi

are shifted in an independent and identically distributed (IID)
manner according to the mixture distribution Qi given by

Qi =
∑

D 
 i pDQ{i}
D∑

D 
 i pD
.

Note that IID shifting of the event times of a Poisson process gen-
erates another Poisson process of identical rate. Thus, the process
Xi is marginally Poisson with rate λp̄{i} (Ross, 1995).

In deriving the statistics of the GTaS counting process X, it will
be useful to express the distribution of X as

⎛
⎜⎝

X1(A1)

...

XN(AN)

⎞
⎟⎠ =distr

⎛
⎜⎝
∑

D 
 1 ξ(D; A1, . . . , AN)

...∑
D 
 N ξ(D; A1, . . . , AN)

⎞
⎟⎠ . (9)

Here, each ξ(D; A1, . . . , AN ) is an independent Poisson process,
and the notation =distr indicates that the two random vectors are
equal in distribution. This process counts the number of points
which are marked by a set D′ ⊃ D, but (after shifting) only the
points with indices i ∈ D lie in the corresponding set Ai. Precise
definitions of the processes ξ and a proof of Equation (9) may
be found in the Appendix. We emphasize that the Poisson pro-
cesses ξ(D) do not directly count points marked for the set D, but

instead points which are marked for a set containing D that, after
shifting, only have their D-components lying in the “relevant”
sets Ai.

Suppose we are interested in calculating dependencies among
a subset of daughter processes, {Xij }ij∈D̄ for some set D̄ ⊂ D, con-

sisting of |D̄| = k distinct members of the collection of counting
processes X. Then the following alternative representation will be
useful:⎛

⎜⎝
Xi1 (Ai1)

...

Xik(Aik)

⎞
⎟⎠ =distr

⎛
⎜⎝
∑

i1 ∈ D ⊂ D̄ ζD(A1, . . . , AN)

...∑
ik ∈ D ⊂ D̄ ζD(A1, . . . , AN)

⎞
⎟⎠ (10)

where

ζD(A1, . . . , AN) =
∑

D′ ⊃ D
(D̄\D)∩ D′ = ∅

ξ(D′; A1, . . . , AN).

We illustrate this decomposition in the cases k = 2, 3 in Figure 6.
The sums in Equation (10) run over all sets D ⊂ D containing the
indicated indices ij and contained within D̄. The processes ζD are
comprised of a sum of all of the processes ξ(D′) (defined below
Equation 9) such that D′ contains all of the indices D, but no
other indices which are part of the subset D̄ under consideration.
These sums are non-overlapping, implying that the ζD are also
independent and Poisson.

The following examples elucidate the meaning and signifi-
cance of Equation (10). We emphasize that the GTaS process
is a completely characterized, joint Poisson process, and we use
Equation (10) to calculate cumulants of a GTaS process. In
principle, any other statistics can be obtained similarly.

2.3.1. Second order cumulants (covariance)
We first generalize a well-known result about the dependence
structure of temporally jittered pairs of Poisson processes, X1, X2.
Assume that events from a mother process with rate λ, are
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FIGURE 6 | (A) Illustrating the representation given by Equation (10) in the
case of two distinct processes (see Equation 11) with N = 4 and D̄ = {1, 2}.
(B) Same as (A), for three processes with D̄ = {1, 2, 3} (see Equation 16).

assigned to two daughter processes with probability p. Each
event time is subsequently shifted independently according to a
univariate distribution f . The cross-cumulant density (or cross-
covariance function; see the Methods for cumulant definitions)
then has the form (Brette, 2009)

κX
12(τ) = λp

∫
f (t)f (t + τ)dt = λp(f × f )(τ).

We generalize this result within the GTaS framework. At
second order, Equation (10) has a particularly nice form.
Following Bäuerle and Grübel (2005) we write for i 	= j (see
Figure 6A)

(
Xi(Ai)

Xj(Aj)

)
=distr

(
ζ{i, j}(Ai, Aj) + ζ{i}(Ai)

ζ{i, j}(Ai, Aj) + ζ{j}(Aj)

)
. (11)

The process ζ{i, j} sums all ξ(D′) for which {1, 2} ⊂ D′, while the
process ζ{i} sums all ξ(D′) such that i ∈ D′, j /∈ D′, and ζ{j} is
defined likewise.

Using the representation in Equation (11), we can derive the
second order cumulant (covariance) structure of a GTaS process.

First, we have

cov
[
Xi(Ai), Xj(Aj)

] = κ[Xi(Ai), Xj(Aj)]
= κ[ζ{i, j}(Ai, Aj), ζ{i, j}(Ai, Aj)]

+ κ[ζ{i}(Ai), ζ{i, j}(Ai, Aj)]
+ κ[ζ{i, j}(Ai, Aj), ζ{j}(Aj)]
+ κ[ζ{i}(Ai), ζ{j}(Aj)]

= κ2[ζ{i, j}(Ai, Aj)] + 0

= E
[
ζ{i, j}(Ai, Aj)

]
.

The third equality follows from the construction of the processes
ζD: if D 	= D′, then the processes ζD, ζD′ are independent. The
final equality follows from the observation that every cumulant
of a Poisson random variable equals its mean.

The covariance may be further expressed in terms of model
parameters (see Theorem 1.1 for a generalization of this result to
arbitrary cumulant orders):

cov
[
Xi(Ai), Xj(Aj)

]
= λ

∑
D′ ⊃ {i, j}

pD′
∫

P
(
t + Yi ∈ Ai, t + Yj ∈ Aj | Y ∼ QD′

)
dt.

(12)

In other words, the covariance of the counting processes is given
by the weighted sum of the probabilities that the (i, j) marginal
of the shift distributions yield values in the appropriate sets. The
weights are the intensities of each corresponding component pro-
cesses ξ(D) which contribute events to both of the processes i
and j.

In the case that QD ≡ Q, Equation (12) reduces to the solution
given in Bäuerle and Grübel (2005). Using the tail probabili-
ties defined in Equation (8), if QD ≡ Q for all D, the integral
in Equation (12) no longer depends on the subset D′, and the
equation may be written as

cov
[
Xi(Ai), Xj(Aj)

]
= λp̄{i,j}

∫
P
(
t + Yi ∈ Ai, t + Yj ∈ Aj | Y ∼ Q

)
dt.

Using Equation (12), we may also compute the second cross-
cumulant density (also called the covariance density) of the
processes. From the definition of the cross-cumulant density
[Equation (24) in the Methods], this is given by

κX
ij (τ) = lim

�t → 0

cov
[
Xi([0,�t)), Xj([τ, τ + �t))

]
�t2

= λ
∑

D′ ⊃ {i,j}
pD′ (13)

∫
lim

�t→0

P
(
t + Yi ∈ [0, �t), t + Yj ∈ [τ, τ + �t) | Y ∼ QD′

)
�t2

dt.
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Before continuing, we note that given a random vector Y =
(Y1, . . . , YN) ∼ Q, where Q has density q(y1, . . . , yN), the vector
Z = (Y2 − Y1, . . . , YN − Y1) has density qZ given by

qZ(τ1, . . . , τN − 1) =
∫

q(t, t + τ1, . . . , t + τN − 1)dt. (14)

Assuming that the distributions QD′ have densities qD′ , and

denoting by q
{i, j}
D′ the bivariate marginal density of the variables

Yi, Yj under QD′ , we have that

κX
ij (τ) = λ

∑
D′ ⊃ {i, j}

pD′
∫

q
{i, j}
D′ (t, t + τ)dt. (15)

According to Equation (14), the integrals present in Equation (15)
are simply the densities of the variables Yj − Yi, where Y ∼ QD′ .

Thus κX
ij (τ), which captures the additional probability for

events in the marginal processes Xi and Xj separated by τ units of
time beyond what can be predicted from lower order statistics is
given by a weighted sum (in this case, the lower order statistics are
marginal intensities—see the discussion around Equation (24)
of the Methods). The weights are the “marking rates” λpD′ for
markings contributing events to both component processes, while
the summands are the probabilities that the corresponding shift
distributions yield a pair of shifts in the proper arrangement—
specifically, the shift applied to the event as attributed to Xi

precedes that applied to the event mapped to Xj by τ units of time.
This interpretation of the cross-cumulant density is quite natural,
and will carry over to higher order cross-cumulants of a GTaS
process. However, as we show next, this extension is not trivial at
higher cumulant orders.

2.3.2. Third order cumulants
To determine the higher order cumulants for a GTaS process, one
can again use the representation given in Equation (10). The dis-
tribution of a subset of three processes may be expressed in the
form (see Figure 6B)

⎛
⎝Xi(Ai)

Xj(Aj)

Xk(Ak)

⎞
⎠ =distr

⎛
⎝ ζ{i, j, k} + ζ{i, j} + ζ{i, k} + ζ{i}

ζ{i, j, k} + ζ{i, j} + ζ{j, k} + ζ{j}
ζ{i, j, k} + ζ{i, k} + ζ{j, k} + ζ{k},

⎞
⎠ , (16)

where, for simplicity, we suppressed the arguments of the differ-
ent ζD on the right hand side. Again, the processes in the repre-
sentation are independent and Poisson distributed. The variable
ζ{i, j, k} is the sum of all random variables ξ(D) (see Equation 9)
with D ⊃ {i, j, k}, while the variable ζ{i, j} is now the sum of all
ξ(D) with D ⊃ {i, j}, but k /∈ D. The rest of the variables are
defined likewise. Using properties (C1) and (C2) of cumulants
given in the Methods, and assuming that i, j, k are distinct indices,
we have

κ(Xi(Ai), Xj(Aj), Xk(Ak)) = κ3(ζ{i, j, k}) = E
[
ζ{i, j, k}

]
.

The second equality follows from the fact that all cumulants of
a Poisson distributed random variable equal its mean. Similar to

Equation (12), we may write

κ(Xi(Ai), Xj(Aj), Xk(Ak)) = λ
∑

D′ ⊃ {i, j, k}
pD′

∫
P (t + Yi ∈ Ai,

t + Yj ∈ Aj, t + Yk ∈ Ak | Y ∼ QD′
)
dt.

The third cross-cumulant density is then given similarly to the
second order function by

κX
ijk(τ1, τ2) = λ

∑
D′ ⊃ {i, j, k}

pD′
∫

q
{i, j, k}
D′ (t, t + τ1, t + τ2)dt.

Here, we have again assumed the existence of densities qD′ , and

denoted by q
{i, j, k}
D′ the joint marginal density of the variables

Yi, Yj, Yk under qD′ . The integrals appearing in the expression
for the third order cross-cumulant density are the probability
densities of the vectors (Yj − Yi, Yk − Yi), where Y ∼ QD′ .

2.3.3. General cumulants
Finally, consider a general subset of k distinct members of the
vector counting process X as in Equation (10). The following
theorem provides expressions for the cross-cumulants of the
counting processes, as well as the cross-cumulant densities, in
terms of model parameters in this general case. The proof of
Theorem 1.1 is given in the Appendix.

Theorem 1.1. Let X be a joint counting process of GTaS type with
total intensity λ, marking distribution (pD)D ⊂ D, and family of shift
distributions (QD)D ⊂ D. Let A1, . . . , Ak be arbitrary sets in B(R),
and D̄ = {i1, . . . , ik} ⊂ D with |D̄| = k. The cross-cumulant of the
counting processes may be written

κ(Xi1(A1), . . . , Xik(Ak))

= λ
∑

D′ ⊃ D̄

pD′
∫

P(t1 + YD̄ ∈ A1 × · · · × Ak|Y ∼ QD′)dt

(17)

where YD̄ represents the projection of the random vector Y onto the
dimensions indicated by the members of the set D̄. Furthermore,
assuming that the shift distributions possess densities (qD)D ⊂ D, the
cross-cumulant density is given by

κX
i1···ik (τ1, . . . , τk − 1)

= λ
∑

D′ ⊃ D̄

pD′
∫

qD̄
D′(t, t + τ1, · · · , t + τk − 1)dt, (18)

where qD̄
D′ indicates the kth order joint marginal density of qD′ in the

dimensions of D̄.

An immediate corollary of Theorem 1.1 is a simple expression
for the infinite-time-window cumulants, obtained by integrating
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the cumulant density across all time lags τi. From Equation (A8),
we have

γX
i1···ik(∞) =

∫
· · ·

∫
κX

i1···ik(τ1, . . . , τk − 1)dτk − 1 · · · dτ1

= λ
∑

D′ ⊃ D̄

pD′ · 1 = λp̄D̄. (19)

This shows that the infinite time window cumulants for a
GTaS process are non-increasing with respect to the ordering of
sets, i.e.,

γX
i1···ik(∞) ≥ γX

i1···ikik + 1
(∞).

We conclude this section with a short technical remark: Until this
point, we have considered only the cumulant structure of sets of
unique processes. However occasionally, one may wish to calcu-
late a cumulant for a set of processes including repeats. Take, for
example, a cumulant κ(X1(A1), X1(A2), X3(A3)). Owing to the
marginally Poisson nature of the GTaS process, we would have
(referring to the Methods for cumulant definitions)

κ(X1(A1), X1(A2), X3(A3))

= κ(2,1)(X1(A1 ∩ A2), X3(A3)) if X ∼ GTaS. (20)

For a general counting process X, it may be shown that

κX
113(τ1, τ2) = δ(τ1)κ

X
13(τ2) + “non-singular contributions”.

(21)
In addition, the second order auto-cumulant density may be
written (Cox and Isham, 1980)

κX
ii (τ) = riδ(τ) + “non-singular contributions”,

where ri is the stationary rate. The singular contribution shown in
Equation (21) at third order is in analogy to the delta contribution
proportional to the firing rate which appears in the second-order
auto-cumulant density. For a GTaS process, the non-singular con-
tributions in Equation (21) are identically zero, following directly
from Equation (20). Expressions similar to Equations (20, 21)
hold for general cases.

3. DISCUSSION
We have introduced a general method of generating spike trains
with flexible spatiotemporal structure. The GTaS model is com-
pletely analytically tractable: all statistics of interest can be
obtained directly from the distributions used to define it. It is
based on an intuitive method of selecting and shifting point pro-
cesses from a “mother” train. Moreover, the GTaS model can be
used to easily generate partially synchronous states, cluster fir-
ing, cascading chains, and other spatiotemporal patterns of neural
activity.

Processes generated by the GTaS model are naturally described
by cumulant densities of pairwise and higher orders. This raises
the question of whether such statistics are readily computable
from data, so that realistic classes of GTaS models can be

defined in the first place. One approach is to fit mechanis-
tic models to data, and to use the higher order structure that
is generated by the underlying mechanisms (Yu et al., 2011).
A synergistic blend of other methods with the GTaS frame-
work may also be fruitful—for example, the CuBIC framework
of Staude et al. (2010) could be used to determine relevant
marking orders, and the parametrically-described GTaS process
could then be fit to allow generation of surrogate data after
selection of appropriate classes of shift distributions. When it
is necessary to infer higher order structure in the face of data
limitations, population cumulants are an option to increase
statistical power (albeit at the cost of spatial resolution; see
Figure 4).

While the GTaS model has flexible higher order structure,
it is always marginally Poisson. While throughout the cortex
spiking is significantly irregular (Holt et al., 1996; Shadlen and
Newsome, 1998), the level of variability differs across cells, with
Fano factors ranging from below 0.5 to above 1.5—in com-
parison with the Poisson value of 1 (Churchland et al., 2010).
Changes in variability may reflect cortical states and computa-
tion (Litwin-Kumar and Doiron, 2012; White et al., 2012). A
model that would allow flexible marginal variability would there-
fore be very useful. Unfortunately, the tractability of the GTaS
model is closely related to the fact that the marginal processes are
Poisson. Therefore, an immediate generalization does not seem
possible.

A number of other models have been used to describe pop-
ulation activity. Maximum entropy (ME) approaches also result
in models with varied spatial activity; these are defined based
on moments or other averaged features of multivariate spik-
ing activity (Schneidman et al., 2006; Roudi et al., 2009). Such
models are often used to fit purely spatial patterns of activity,
though (Tang et al, 2008; Marre et al., 2009) have extended the
techniques to treat temporal correlations as well. Generalized
linear models (GLMs) have been used successfully to describe
spatiotemporal patterns at second (Pillow et al., 2008), and
third order (Ohiorhenuan et al., 2010). In comparison to the
present GTaS method, both GLMs and ME models are more
flexible. They feature well-defined approaches for fitting to data,
including likelihood-based methods with well-behaved convex-
ity properties. What the GTaS method contributes is an explicit
way to generate population activity with explicitly specified
high order spatio-temporal structure. Moreover, the lower order
cumulant structure of a GTaS process can be modified indepen-
dently of the higher order structure, though the reverse is not
true.

There are a number of possible implications of such spatio-
temporal structure for communication within neural networks.
In section 2.2.3, we showed that these temporal correlations
can play a role similar to that of spatial correlations established
in Kuhn et al. (2003) for determining network input-output
transfer. Our model allowed us to examine that impact of such
temporal correlations on the network-level gain of a downstream
population (cascade amplification factor). Even in a very sim-
ple network it was clear that the strength of the response is
determined jointly by the temporal structure of the input to the
network, and the connectivity within the network. Kuhn et al.
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examined the effect of higher order structure on the firing rate
gain of an integrate-and-fire neuron by driving it with a mix-
ture of SIP or MIP processes (Kuhn et al., 2003). However, in
these studies, only the spatial structure of higher order activity
was varied. The GTaS model allows us to concurrently change the
temporal structure of correlations. In addition, the precise control
of the cumulants allows us to derive models which are equivalent
up to a certain cross-cumulant order, when the configuration of
marking probabilities and shift distributions allow it (as for the
SIP and MIP processes of Kuhn et al. (2003), which are equivalent
at second order).

Such patterns of activity may be useful when experimentally
probing dendritic information processing (Gasparini and Magee,
2006), synaptic plasticity (Pfister and Gerstner, 2006; Gjorgjieva
et al., 2011), or investigating the response of neuronal networks
to complex patterns of input (Kahn et al., 2013). Spatiotemporal
patterns may also be generated by cell assemblies (Bathellier
et al., 2012). The firing in such assemblies can be spatially struc-
tured, and this structure may not be reflected in the activity
of participating cells. Assemblies can exhibit persistent patterns
of firing, sometimes with millisecond precision (Harris et al.,
2002). The GTaS framework is well suited to describe exactly
such activity patterns. The examples we presented can be eas-
ily extended to generate more complex patterns of activity with
overlapping cell assemblies, different cells leading the activity, and
other variations.

Understanding impact of spatiotemporal patterns on neural
computations remains an open and exciting problem. Progress
will require coordination of computational, theoretical, and
experimental work—the latter taking advantage of novel stimu-
lation techniques. We hope that the GTaS model, as a practical
and flexible method for generating high-dimensional, correlated
spike trains, will play a significant role along the way.

4. METHODS
4.1. CUMULANTS AS A MEASURE OF DEPENDENCE
We first define cross-cumulants (also called joint cumu-
lants) (Stratonovich and Silverman, 1967; Kendall et al.,
1969; Gardiner, 2009) and review some important properties of
these quantities. Define the cumulant generating function g of a
random vector X = (X1, . . . , XN) by

g(t1, . . . , tN) = log

⎛
⎝E

⎡
⎣exp

⎛
⎝ N∑

j = 1

tjXj

⎞
⎠
⎤
⎦
⎞
⎠ .

The r-cross-cumulant of the vector X is given by

κr(X) = ∂ |r|

∂tr1
1 · · · ∂trN

N

g(t1, . . . , tN)

∣∣∣∣
t1 = ···= tN = 0

.

where r = (r1, . . . , rN) is a N-vector of positive integers, and
|r| = ∑N

i = 1 ri. We will generally deal with cumulants where all
variables are considered at first order, without excluding the pos-
sibility that some variables are duplicated. In this case, we define
the cross-cumulant κ(X), of the variables in the random vector

X = (X1, . . . , XN) as

κ(X) := κ1(X) = ∂N

∂t1 · · · ∂tN
g(t1, . . . , tN)

∣∣∣∣
t1 = ···= tN = 0

where 1 = (1, . . . , 1).

This relationship may be expressed in combinatorial form:

κ(X1, . . . , XN) =
∑
π

(|π| − 1)!(−1)|π | − 1
∏

B ∈ π

E

[∏
i ∈ B

Xi

]
(22)

where π runs through all partitions of D = {1, . . . , N}, and B
runs over all blocks in a partition π. More generally, the r-cross-
cumulant may be expressed in terms of moments by expanding
the cumulant generating function as a Taylor series, noting that

g(t1, . . . , tN) =
∑

r

κr(X1, . . . , XN )

r! xr1
1 · · · xrN

d with

r! =
N∏

i = 1

ri!,

similarly expanding the moment generating function M(t) =
eg(t), and matching the polynomial coefficients. Note that the nth
cumulant κn of a random variable X may be expressed as a joint
cumulant via

κn(X) = κ(X, . . . , X)︸ ︷︷ ︸
n copies of X

.

We will utilize the following two principal properties of
cumulants (Brillinger, 1965; Stratonovich and Silverman, 1967;
Mendel, 1991; Staude et al., 2010):

(C1) Multilinearity - for any random variables X, Y, {Zi}N
i = 2, we

have

κ(aX + bY, Z2, . . . , ZN) = aκ(X,Z2, . . . , ZN)

+ bκ(Y, Z2, . . . , ZN).

This holds regardless of dependencies amongst the random
variables.

(C2) If any subset of the random variables in the cumulant
argument is independent from the remaining, the cross-
cumulant is zero—i.e., if {X1, . . . , XN1} and {Y1, . . . , YN2}
are sets of random variables such that each Xi is indepen-
dent from each Yj, then

κ(rX ,rY )(X1, . . . , XN1 , Y1, . . . , YN2) = 0

for all rX ∈ N
N1+ , rY ∈ N

N2+ .

To exhibit another key property of cumulants, consider a 4-
vector X = (X1, X2, X3, X4) with non-zero fourth cumulant and
a random variable Z independent of each Xi. Define Y = (X1 +
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Z, X2 + Z, X3 + Z, X4). Using properties (C1), (C2) above, it
follows that

κ(Y1, Y2, Y3) = κ(X1, X2, X3) + κ3(Z).

On the other hand, it is also true that

κ(Y) = κ(X),

that is, adding the variable Z to only a subset of the variables
in X results in changes to cumulants involving only that sub-
set, but not to the joint cumulant of the entire vector. In this
sense, an rth order cross-cumulant of a collection of random vari-
ables captures exclusively dependencies amongst the collection
which cannot be described by cumulants of lower order. In the
example above, only the joint statistical properties of a subset of
X were changed. As a result, the total cumulant κ(X) remained
fixed.

From Equation (22), it is apparent that κ(Xi) = E[Xi], and
κ(Xi, Xj) = cov

[
Xi, Xj

]
. In addition, the third cumulant, like

the second, is equal to the corresponding central moment:

κ(Xi, Xj, Xk) = E
[
(Xi − E[Xi])(Xj − E

[
Xj
]
)(Xk − E[Xk])

]
.

As cumulants and central moments agree up to third order,
central moments up to third order inherit the properties
discussed above at these orders. On the other hand, the
fourth cumulant is not equal to the fourth central moment.
Rather:

κ(Xi, Xj, Xk, Xl)

= E[(Xi − E[Xi])(Xj − E
[
Xj
]
)(Xk − E[Xk])(Xl − E[Xl])]

(23)−cov
[
Xi, Xj

]
cov[Xk, Xl] − cov[Xi, Xk] cov

[
Xj, Xl

]
−cov[Xi, Xl] cov

[
Xj, Xk

]
.

Higher cumulants have similar (but more complicated) expan-
sions in terms of central moments. Accordingly, central
moments of fourth and higher order do not inherit properties
(C1), (C2).

4.2. TEMPORAL STATISTICS OF POINT PROCESSES
In the Results, we present an extension of previous work (Bäuerle
and Grübel, 2005) in which we construct and analyze multivariate
counting processes X = (X1, . . . , XN) where each Xi is marginally
Poisson.

Formally, a counting process X is an integer-valued ran-
dom measure on B(RN). Evaluated on subset A1 × · · · × AN of
B(RN), the random vector (X1(A1), . . . , XN(AN)) counts events
in d distinct categories whose times of occurrence fall in to the sets
Ai. A good general reference on the properties of counting pro-
cesses (marginally Poisson and otherwise) is Daley and Vere-Jones
(2002).

The assumption of Poisson marginals implies that for a set
Ai ∈ B(R), the random variable Xi(Ai) follows a Poisson distri-
bution with mean λi	(Ai), where 	 is the Lebesgue measure on

R, and λi is the (constant) rate for the ith process. The pro-
cesses under consideration will further satisfy a joint stationarity
condition, namely that the distribution of the vector (X1(A1 +
t), . . . , XN (AN + t)) does not depend on t, where Ai + t denotes
the translated set {a + t : a ∈ Ai}.

We now consider some common measures of temporal depen-
dence for jointly stationary vector counting processes. We will
refer to the quantity Xi[0, T] as the spike count of process i over
[0, T]. The quantity γX

i1···ik(T) (which we will refer to as a spike
count cumulant) is given by

γX
i1···ik(T) = 1

T
κ[Xi1 [0, T], . . . , Xik [0, T]]

measures kth order correlations amongst spike counts for the
listed processes which occur over windows of length T. At sec-
ond order, γX

ij (T) measures the covariance of the spike counts
of processes i, j over a common window of length T. The infi-
nite window spike count cumulant quantifies dependencies in the
spike counts of point processes over arbitrarily long windows, and
is given by

γX
i1···ik(∞) = lim

T →∞
γX

i1···ik(T).

A related measure is the kth order cross-cumulant density
κX

i1,...,ik
(τ1, . . . , τk − 1), defined by

κX
i1···ik(τ1, . . . , τk − 1) = lim

�t → 0

1

�tk
κ[Xi1 [0, �t],

Xi2 [τ1, τ1 + �t], . . . , Xik [τk − 1, τk − 1 + �t]]. (24)

The cross-cumulant density should be interpreted as a measure
of the likelihood—above what may be expected from knowledge
of the lower order cumulant structure—of seeing events in pro-
cesses i2, . . . , ik at times τ1 + t, . . . , τk − 1 + t, conditioned on
event in process i1 at time t. The infinite window spike count
cumulant is equal to the total integral under the cross-cumulant
density,

γX
i1···ik(∞) =

∫
· · ·

∫
κX

i1···ik(τ1, . . . , τk − 1)dτk − 1 · · · dτ1.

As an example, we again consider the familiar second-order
cross-cumulant density κX

ij (τ)—often referred to as the cross-
covariance density or cross-correlation function. Defining the con-
ditional intensity hij(τ) of process j, conditioned on process i
to be

hX
ij (τ) = lim

�t → 0

1

�t
P(Xj[τ, τ + �t] > 0|Xi[0,�t] > 0),

that is, the intensity of j conditioned on an event in process i
which occurred τ units of time in the past, then it is not difficult
to show that

κX
ij (τ) = λihij(τ) − λiλj.
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That is, the second order cross-cumulant density supplies the
probability of chance of observing an event attributed to process i,
followed by one attributed to process j, τ units of time later, above
what would be expected from knowledge of first order statistics
(given by the product of the marginal intensities, λiλj). More
generally, at higher orders, the cross-cumulant density should be
interpreted as a measure of the likelihood (above what may be
expected from knowledge of the lower order correlation struc-
ture) of seeing events attribute to processes i2, . . . , ik at times
τ1 + t, . . . , τk − 1 + t, conditioned on an event in process i1 at
time t.

Another statistic useful in the study of a correlated vec-
tor counting process X is the population cumulant density. At
second-order, the population cumulant density for Xi takes the
form (Luczak et al., 2013)

κX
i, pop(τ) =

∑
j 	= i

κX
ij (τ).

More generally, the kth order population cumulant density corre-
sponding to the processes Xi1 , . . . , Xik − 1 is given by

κX
i1···ik − 1,pop(τ1, . . . , τk − 1) =

∑
j 	= i1,...,ik

κX
i1···ik − 1j(τ1, . . . , τk − 1). (25)
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APPENDIX
PROOF OF THE DISTRIBUTIONAL REPRESENTATION OF THE GTaS
MODEL IN EQUATION (9)
The construction of the GTaS model allows us to provide a useful
distributional representation of the process. We describe this rep-
resentation in a theorem that generalizes Theorem 1 in Bäuerle
and Grübel (2005). This theorem also immediately implies that
the GTaS process is marginally Poisson.

Some definitions are required: first, for subsets A1, . . . , AN ∈
B(R) and D, D′ ⊂ D with D ⊂ D′, let

M(D, D′; A1, . . . , AN) := B1 × · · · × BN with Bi

:=

⎧⎪⎨
⎪⎩

Ai, for i ∈ D,

Ac
i , for i ∈ D′\D,

R, otherwise

In addition, setting 1 = (1, . . . , 1) to be the N-dimensional vec-
tor with all components equal to unity, and if QD is a measure on
R

N , then we define the measure ν(QD) by

ν(QD)(A) :=
∫

QD(A − t1)dt for A ∈ B(RN)

=
∫

P(Y + t1 ∈ A|Y ∼ QD)dt.

(A1)

The measure ν(QD) can be interpreted as giving the expected
Lebesgue measure of the subset L of R for which uniform shifts
by the elements of L translate a random vector Y ∼ QD in to A.
Heuristically, one may imagine sliding the vector Y over the whole
real line, and counting the number of times every coordinate ends
up in the “right” set—the projection of A onto that dimension. In
equation form, this means

ν(QD)(A) = EY[	({t ∈ R : Y + t1 ∈ A})|Y ∼ QD] . (A2)

where the subscript Y indicates that we take the average over
the distribution of Y ∼ QD. A short proof of this representation
is presented below. We now present the theorem, with a proof
indicating adjustments necessary to that of Bäuerle and Grübel
(2005).

Theorem 0 Let X be an N-dimensional counting process of
GTaS type with base rate λ, thinning mechanism p = (pD)D ⊂ D,
and family of shift distributions (QD)D ⊂ D. Then, for any Borel sub-
sets A1, . . . , AN of the real line, we have the following distributional
representation:

⎛
⎜⎝

X1(A1)

...

XN(AN)

⎞
⎟⎠ =distr

⎛
⎜⎝
∑

D 
 1 ξ(D; A1, . . . , AN)

...∑
D 
 d ξ(D; A1, . . . , AN)

⎞
⎟⎠ , (A3)

where the random variables ξ(D; A1, . . . , AN),∅ 	= D ⊂ D, are
independent and Poisson distributed with

E[ξ(D; A1, . . . , AN)] = λ
∑

D′ ⊃ D

pD′ν(QD′ )(M(D, D′; A1, . . . , AN)).

Proof. For each marking D′ ⊂ D, define XD′
to be an independent

TaS (Bäuerle and Grübel, 2005) counting process with mother
process rate λpD′ , shift distribution QD′ , and markings (pD′

D )D ⊂ D

where pD′
D = 1 if D = D′ and is zero otherwise (i.e., the only

possible marking for XD′
is D′). We first claim that

X =distr

∑
D′

XD′
. (A4)

To see this, note that spikes in the mother process of the GTaS
process of X marked for a set D′ occur at a rate λpD′ , which is
the rate of the process XD′

. In addition, these event times are then
shifted by QD′ , exactly as they are for XD′

. Thus, the distribution
of event times (and hence the counting process distributions) are
equivalent.

Let A1, . . . , AN be any Borel subsets of the real line. Applying
Theorem 1 of Bäuerle and Grübel (2005) to each XD′

gives the
following distributional representation:⎛

⎜⎜⎝
XD′

1 (A1)

...

XD′
N (AN)

⎞
⎟⎟⎠ =distr

⎛
⎜⎜⎝
∑

D 
 1 ξD′
(D; A1, . . . , AN )

...∑
D 
 N ξD′

(D; A1, . . . , AN)

⎞
⎟⎟⎠ , (A5)

where the random variables ξD′
(D; , A1, . . . , AN) are taken to

be identically zero unless D ⊂ D′. In the latter case, they are
independent and Poisson distributed with

E
[
ξD′

(D; A1, . . . , AN)
]

= λpD′
∑

D′′ ⊃ D

pD′
D′′ν(QD′)(M(D, D′′; A1, . . . , AN ))

= λpD′ν(QD′)(M(D, D′; A1, . . . , AN)).

The second equality above follows from the fact that pD′
D′′ = 1 if

D′′ = D′ and is zero otherwise.
Next, define

ξ(D; A1, . . . , AN ) =
∑
D′

ξD′
(D; A1, . . . , AN)

=
∑

D′ ⊃ D

ξD′
(D; A1, . . . , AN).

As the sum of independent Poisson variables is again Poisson with
rate equal to the sum of the rates, we have that ξ(D; A1, . . . , AN)

is Poisson with mean

E[ξ(D; A1, . . . , AN)] = λ
∑

D′ ⊃ D

pD′ν(QD′ )(M(D, D′; A1, . . . , AN)).

(A6)
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Finally, combining Equations (A4, A5), we may write

⎛
⎜⎝

X1(A1)

...

XN(AN)

⎞
⎟⎠ =distr

⎛
⎜⎜⎝
∑

D′
∑

D 
 1 ξD′
(D; A1, . . . , AN )

...∑
D′
∑

D 
 N ξD′
(D; A1, . . . , AN)

⎞
⎟⎟⎠ ,

=

⎛
⎜⎜⎝
∑

D 
 1

∑
D′ ξD′

(D; A1, . . . , AN)

...∑
D 
 N

∑
D′ ξD′

(D; A1, . . . , AN)

⎞
⎟⎟⎠ ,

=
⎛
⎜⎝
∑

D 
 1 ξ(D; A1, . . . , AN)

...∑
D 
 N ξ(D; A1, . . . , AN)

⎞
⎟⎠ ,

which, along with Equation (A6), establishes the theorem.

A short note: The variable ξ(D; A1, . . . , AN) counts the num-
ber of points which are marked by a set D′ ⊃ D, but after shifting,
only the points attributed to the processes with indices i ∈ D
remain in the corresponding subsets Ai. Thus, to determine the
number of points attributed to the ith process which lie in Ai

(Xi(Ai)), one simply sums the variables ξ for all D containing i,
as in Equation (A3). Thus, the intensity of ξ(D; A1, . . . , AN),

λpD′ν(QD′)(M(D, D′; A1, . . . , AN)),

is simply the expected number of such points. Keeping in mind
these natural interpretations of terms, Theorem 1 is easier to
digest, and the result is not surprising.

PROOF OF EQUATION (27)
In Equation (A2), we gave a more intuitive representation of the
measure ν(QD) than the one first defined in Bäuerle and Grübel
(2005), which we prove here. Suppose that Q is a measure on
B(Rd), and A ∈ B(Rd). Then we have

ν(Q)(A) =
∫

Q(A − t1)dt

=
�

1A − t1(y)Q(dy)dt

=
�

1{t ∈ R:y+t1∈A}(t)dtQ(dy)

=
∫

	({t ∈ R : y + t1 ∈ A})Q(dy)

= EY[	({t ∈ R : Y + t ∈ A})|Y ∼ Q] ,

thus proving Equation (A2)

PROOF OF THEOREM 1.1
Theorem 1.1 Let X be a joint counting process of GTaS type with
total intensity λ, marking distribution (pD)D ⊂ D, and family of shift
distributions (QD)D ⊂ D. Let A1, . . . , Ak be arbitrary sets in B(R),

and D̄ = {i1, . . . , ik} ⊂ D with |D̄| = k. The cross-cumulant of the
counting processes may be written

κ(Xi1(A1), . . . , Xik(Ak)) = λ
∑

D′ ⊃ D̄

pD′
∫

P(t1 + YD̄ ∈ A1 × · · ·

× Ak|Y ∼ QD′ )dt
(A7)

where YD̄ represents the projection of the random vector Y onto the
dimensions indicated by the members of the set D̄. Furthermore,
assuming that the shift distributions possess densities (qD)D ⊂ 2D , the
cross-cumulant density is given by

κX
i1···ik (τ1, . . . , τk − 1)

= λ
∑

D′ ⊃ D̄

pD′
∫

qD̄
D′(t, t + τ1, · · · , t + τk − 1)dt, (A8)

where qD̄
D′ indicates the kth order joint marginal density of qD′ in the

dimensions of D̄.

Proof. First, as noted in the text, we may rewrite the distributional
representation of Theorem 0 (Equation A3) as

⎛
⎜⎝

Xi1(Ai1)

...

Xik(Aik)

⎞
⎟⎠ =distr

⎛
⎜⎝
∑

i1 ∈ D ⊂ D̄ ζD(A1, . . . , AN)

...∑
ik ∈ D ⊂ D̄ ζD(A1, . . . , AN)

⎞
⎟⎠ (A9)

where

ζD(A1, . . . , AN) =
∑

D′ ⊃ D
(D̄\D)∩ D′ = ∅

ξ(D′; A1, . . . , AN). (A10)

Repeating the description from the main text, the processes ζD are
comprised of a sum of all of the processes ξ(D′) (defined above,
in Theorem 0) such that D′ contains all of the indices D, but no
other indices which are part of the subset D̄ under consideration.
These sums are non-overlapping, implying that the ζD are also
independent and Poisson.

Using the representation of Equation (A9), we first find that

κ(Xi1(A1), . . . , Xik(Ak)) = κ

⎡
⎣ ∑

i1 ∈ D1⊂D̄

ζD1 , . . . ,
∑

ik ∈ Dk⊂D̄

ζDk

⎤
⎦

=
∑

i1 ∈ D1⊂D̄

· · ·
∑

ik ∈ Dk⊂D̄

κ[ζD1, . . . , ζDk].

where we suppressed the dependence of the variables ζD on the
subsets Ai. The first equality in the previous equation is simply
the representation defined in Equation (A10), and the second is
from the multilinear property of cumulants (property (C1) in
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the Methods). Note that the sums are over the sets D1, . . . , Dk

satisfying the given conditions. Recall that, by construction, the
Poisson processes ζD (see Equation A10) are independent for dis-
tinct marking sets. Accordingly, the cumulant κ[ζD1 , . . . , ζDk ] is
zero unless D1 = . . . = Dk, by property (C2) of cumulants—that
is,

κ[ζD1(A1, . . . , AN ), . . . , ζDk(A1, . . . , AN)]

=
{

κk(ζD̄(A1, . . . , AN)) Dj = D̄ for each j

0 otherwise
.

Hence,

κ(Xi1(A1), . . . , Xik(Ak)) = κk(ζD̄(A1, . . . , AN))

= E
[
ζD̄(A1, . . . , AN)

]
, (A11)

where we have again used that all cumulants of a Poisson-
distributed random variable are equal to its mean.

For what follows, taking D0, D′ ⊂ D fixed with D0 ⊂ D′, the
sets M(D, D′; A1, . . . , AN) with D0 ⊂ D ⊂ D′ are disjoint, and

∪D0 ⊂ D ⊂ D′ M(D, D′; A1, . . . , AN ) = B1 × · · · × BN

with Bi =
{

Ai, i ∈ D0

R, i /∈ D0

. (A12)

In particular, note the independence of the above union from D′.
Substituting Equation (A10) in to (A11), we have

κ(Xi1(A1), . . . , Xik(Ak))

=
∑

D ⊃ D̄

E[ξ(D; A1, . . . , Ak]

= λ
∑

D ⊃ D̄

∑
D′ ⊃ D

pD′ν(QD′)(M(D, D′; A1, . . . , AN))

= λ
∑

D′ ⊃ D̄

pD′
∑

D̄ ⊂ D ⊂ D′
ν(QD′)(M(D, D′; A1, . . . , AN))

= λ
∑

D′ ⊃ D̄

pD′ν(QD′)(∪D̄ ⊂ D ⊂ D′M(D, D′; A1, . . . , AN))

= λ
∑

D′ ⊃ D̄

pD′
∫

P(t + YD̄ ∈ A1 × · · · × Ak|Y ∼ QD′ )dt,

where the third equality above is a simple exchange of the order of
summation, and the fourth equality follows from the additivity of
the measure ν(QD′ ) over the disjoint sets M(D, D′; A1, . . . , AN).
Finally, the fifth equality makes use of the independence of
the set union on the fourth line from the set D′ as indi-
cated by Equation (A12), the definition of the measure ν(QD′)
in Equation (A1) and the value of the set union given in
Equation (A12).

This completes the proof of Equation (A7), and (A8) fol-
lows from the definition of the cross-cumulant density in
Equation (24) of the Methods.

OTHER DETAILS
Parameters for figures in the text
Figure 1. For Figure 1, the GTaS process of size N = 6 con-
sisted of only first order and population-level events which were
assigned marking probabilities

pD =

⎧⎪⎨
⎪⎩

0.05 D = D

0.95
6 D = {i} for some i ∈ D

0 otherwise

.

The rate of the mother process was λ = 0.5 kHz, and the shift
times for population level events were generated as in section 2.2.2
with

Ti ∼ 
(2, 1) − 1, i = 1, . . . , 6,

where the Gamma distribution has density

f (t|k, θ) = 1


(k)θk
xk − 1e− x

θ �(t).

Figures 3, 4. For Figures 3, 4, the GTaS process of size N = 6 con-
sisted of first and second order as well as population-level events.
These events had marking probabilities

pD =

⎧⎪⎨
⎪⎩

0.05 D = D

0.95
21 D = {i}, {i, j} for some i, j ∈ D

0 otherwise

.

The rate of the mother process was λ = 0.5 kHz, and the shift
times for population level events were generated as in section 2.2.2
with

Ti ∼ Exp(0.5), i = 1, . . . , 6.

The shift times of the second order events were drawn from an
independent Gaussian distribution with each coordinate having
standard deviation 5 ms.

Figure 5. For Figure 5, the network parameters were win =
0.4, wsyn = 6, τsyn = 0.1, τd = 1.75. The GTaS input had the
same size as the network (N = 10). As in the example of
Figures 3, 4, the GTaS input included first and second order as
well as population level events. Here, we set

pD =

⎧⎪⎨
⎪⎩

0.2 D = D

0.95
5 D = {i}, {i, j} for some i, j ∈ D

0 otherwise

.

The rate of the mother process was λ = 1.5 kHz, and the shift
times for population level events were generated as in section 2.2.2
with
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Ti ∼ 
(k, θ), i = 1, . . . , 6.

The shift parameters k, θ (representing shape and scale) were
determined by the given shift mean μshift and standard deviation
σshift as

μshift = kθ, σshift =
√

kθ2.

The shift times of the second order events were drawn from an
independent Gaussian distribution with each coordinate having
standard deviation 0.3 ms.
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