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Competitive neural networks are often used to model the dynamics of perceptual
bistability. Switching between percepts can occur through fluctuations and/or a slow
adaptive process. Here, we analyze switching statistics in competitive networks with
short term synaptic depression and noise. We start by analyzing a ring model that yields
spatially structured solutions and complement this with a study of a space-free network
whose populations are coupled with mutual inhibition. Dominance times arising from
depression driven switching can be approximated using a separation of timescales in
the ring and space-free model. For purely noise-driven switching, we derive approximate
energy functions to justify how dominance times are exponentially related to input
strength. We also show that a combination of depression and noise generates realistic
distributions of dominance times. Unimodal functions of dominance times are more
easily told apart by sampling, so switches induced by synaptic depression induced
provide more information about stimuli than noise-driven switching. Finally, we analyze
a competitive network model of perceptual tristability, showing depression generates a
history-dependence in dominance switching.
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INTRODUCTION
Ambiguous sensory stimuli with two interpretations can produce
perceptual rivalry (Blake and Logothetis, 2002). For instance,
presenting two orthogonal gratings to either eye results in
perception switching between gratings repetitively—binocular
rivalry (Leopold and Logothetis, 1996). Perceptual rivalry can
also be triggered by a single stimulus with two interpretations,
like the Necker cube (Orbach et al., 1963). The switching process
in perceptual rivalry is considerably stochastic—a histogram
of the dominance times of each percept spreads across a broad
range (Fox and Herrmann, 1967). Senses other than vision
also exhibit perceptual rivalry. When two different odorants
are presented to the two nostrils, a similar phenomenon occurs
with olfaction, termed “binaral” rivalry (Zhou and Chen, 2009).
Similar experiences have been evoked in the auditory (Deutsch,
1974; Pressnitzer and Hupé, 2006) and tactile (Carter et al., 2008)
system.

Several principles govern the relationship between the strength
of ambiguous stimuli and the mean switching statistics in percep-
tual rivalry (Levelt, 1965). “Levelt’s propositions” relate stimulus
contrast to the mean dominance times: (1) increasing the contrast
of one stimulus increases the proportion of time that stimulus
is dominant; (2) increasing the contrast of one stimulus does
not affect its average dominance time; (3) increasing the con-
trast of one stimulus increases the rivalry alternation rate; and (4)
increasing the contrast of both stimuli increases the rivalry alter-
nation rate. Properties of the input also affect the stochastic varia-
tion in the dominance times (Brascamp et al., 2006). For instance,
a histogram of dominance times is well fit by a gamma distri-
bution (Fox and Herrmann, 1967; Lehky, 1995; van Ee, 2009).

The fact that dominance times are not exponentially distributed
suggests some background slow adaptive process plays a role in
providing a non-zero peak in the dominance histograms (Shpiro
et al., 2009). Two commonly proposed mechanisms for this adap-
tation are spike frequency adaptation and short term synaptic
depression (Laing and Chow, 2002; Wilson, 2003; Shpiro et al.,
2007). A stronger case can be made for the existence of adaptation
in perceptual processing networks by examining results of exper-
iments on perceptual tristability (Hupe, 2010). Here, perception
alternates between three possible choices and subsequent switches
are determined by the previous switch (Naber et al., 2010). This
memory suggests switches in perceptual multistability are not
purely noise-driven (Moreno-Bote et al., 2007).

Most theoretical models of perceptual rivalry employ two
pools of neurons, each selective to one percept, coupled to one
another by mutual inhibition (Matsuoka, 1984; Laing and Chow,
2002; Shpiro et al., 2007; Seely and Chow, 2011). With no other
mechanisms at work, such architectures lead to winner-take-all
states, where one pool of neurons inhibits the other indefinitely
(Wang and Rinzel, 1992). However, switches between the domi-
nance of one pool and the other can be initiated with the inclusion
of fluctuations (Moreno-Bote et al., 2007) or an adaptive pro-
cess (Laing and Chow, 2002; Shpiro et al., 2007). Combining the
two mechanisms leads to dominance times that are distributed
according to the gamma distribution (Laing and Chow, 2002;
Shpiro et al., 2009; van Ee, 2009). Thus, slow adaptation and
noise allow sampling of the stimulus through changes in network
activity.

In light of these observations, we wish to consider the
role adaptive mechanisms play in properly sampling ambiguous
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stimuli in a mutual inhibitory network. Two stimuli of differ-
ent orientations are presented to the network (Levelt, 1965).
The network outputs a time-dependent, orientation-dependent
firing rate, whose peak switches between two locations deter-
mined by the two stimuli. We think of the information output
by the network as a series of dominance times. We will study
how well the relative strength of the two stimuli (information)
is encoded by the amount of time each subpopulation remains
active during a dominance period (Levelt, 1965; Moreno-Bote
et al., 2007). Purely fluctuation driven switching provides a noisy
sample of the two percepts, but adaptation driven switching pro-
vide an extremely reliable sampling of percept contrast (Shpiro
et al., 2009). As the level of adaptation is increased and noise is
decreased, mutual inhibitory networks encode information about
ambiguous stimuli better. We focus specifically on the adap-
tive mechanism of short term synaptic depression (Tsodyks and
Markram, 1997).

Using parameterized models, we will explore how synaptic
depression improves the ability of a network to extract stim-
ulus contrasts. First, we study how much information can be
determined about the contrast of each of the two percepts of
an ambiguous stimulus. In the case of a winner-take-all solution,
only information about a single percept can be known, since the
pool of neurons encoding the other percept is quiescent. We will
study this using an anatomically motivated neural field model
of an orientation column with synaptic depression (York and
van Rossum, 2009; Kilpatrick and Bressloff, 2010a). Increasing
the strength of synaptic depression leads to a bifurcation which
produces rivalrous oscillations. When rivalrous switching occurs
through a combination of depression and noise, we show stronger
depression improves the transfer of information. We also ana-
lyze a reduced network model with depression and noise to help
study the combined effects of noise and depression on perceptual
switching. Finally, we study perceptual tristability as oscillations
generated in a three population network, where each population
spends time in dominance. This shows depression generates a his-
tory dependence in switching that would not arise in the network
with purely noise-driven switching.

MATERIALS AND METHODS
RING MODEL WITH SYNAPTIC DEPRESSION
As a starting point, we consider a model for processing the
orientation of visual stimuli (Ben-Yishai et al., 1995; Bressloff
and Cowan, 2002) which also includes short term synap-
tic depression (York and van Rossum, 2009; Kilpatrick and
Bressloff, 2010a). Since GABAergic inhibition is much faster than
AMPA-mediated excitation (Kawaguchi and Kubota, 1997), we
assume that inhibition is slaved to excitation as in Amari (1977).
Reduction this disynaptic pathway and assuming depression
acts on excitation (Tsodyks and Markram, 1997), we then have
the model

τmu̇ = −u(x, t) + w ∗ (qf (u)) + I(x) + ξ(x, t), (1a)

τq̇ = 1 − q(x, t) − βq(x, t)f (u(x, t)). (1b)

Here u(x, t) measures the synaptic input to the neural population
with stimulus preference x ∈ [−π/2, π/2] at time t, evolving

on the timescale τm. Synaptic interactions are described by the
integral term

w ∗ (qf (u)) =
∫ π/2

−π/2
w(x − y)q(y, t)f (u(y, t))dy,

so w(x − y) describes the strength (amplitude of w) and net
polarity (sign of w) of synaptic interactions from neurons with
stimulus preference y to those with preference x. The modulation
of the synaptic strength is given by the cosine

w(x − y) = cos(2(x − y)), (2)

so neurons with similar orientation preference excite one another
and those with dissimilar orientation preference disynaptically
inhibit one another (Ben-Yishai et al., 1995; Ferster and Miller,
2000). The factor q(x, t) measures of the fraction of available
presynaptic resources, which are depleted at a rate βf (Tsodyks
and Markram, 1997), and are recovered on a timescale specified
by the time constant τ (Chance et al., 1998). Firing rates are given
by taking the gain function f (u) of the synaptic input, which we
usually proscribe to be (Wilson and Cowan, 1973)

f (u) = 1

1 + e−γ(u−κ)
, (3)

and often take the γ → ∞, so (Amari, 1977)

f (u) = H(u − κ) =
{

0 : u < κ,

1 : u ≥ κ.
(4)

External input, representing flow from upstream in the visual
system is prescribed by the time-independent function I(x)
(Ben-Yishai et al., 1995; Bressloff and Cowan, 2002). For the
majority of our study of Equation (1), we employ the bimodal
stimulus

I(x) = −I0 cos(4x) + Ia sin(2x), (5)

representing stimuli at the two orthogonal angles −π/4 and
π/4 and I0 controls the mean of each peak and Ia controls
the level of asymmetry between the peaks. Effects of noise are
described by the stochastic process 〈ξ(x, t)〉 with 〈ξ(x, t)〉 = 0
and 〈ξ(x, t)ξ(y, s)〉 = C(x − y)δ(t − s), and spatial correlations
are take to have a cosine profile C(x) = π cos(x).

We assume units of time t to be 10 ms each. Excitatory synap-
tic time constants are roughly 10 ms (Häusser and Roth, 1997),
so we set τm = 1 (10 ms). Experimental observations have shown
synaptic resources specified q are recovered on a timescale of 200–
800 ms (Tsodyks and Markram, 1997), so we require τ is between
20 and 80, usually setting it to be τ = 50. Our parameter β can
then be varied independently to adjust the effective depletion rate
of synaptic depression. In our numerical simulations, we typically
use the winner-take-all state as the initial condition.

IDEALIZED COMPETITIVE NEURAL NETWORK
We also study space-free competitive neural networks with
synaptic depression (Shpiro et al., 2007). As a general model of
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networks connected by mutual inhibition, we consider the system
(Laing and Chow, 2002; Moreno-Bote et al., 2007; Shpiro et al.,
2007)

u̇R = −uR(t) + f (IR − qL(t)uL(t)) + ξ1(t), (6a)

u̇L = −uL(t) + f (IL − qR(t)uR(t)) + ξ2(t), (6b)

τq̇R = 1 − qR(t) − βuR(t)qR(t), (6c)

τq̇L = 1 − qL(t) − βuL(t)qL(t), (6d)

where uj(t) represents the firing rate of the j = L, R population.
The resource usage rate by synapse projecting from population
j = L, R is specified by βujqj and the resource recovery timescale is
τ. Fluctuations are introduced into population j with the indepen-
dent white noise processes ξj with 〈xj(t)〉 = 0 and 〈ξj(t)ξj(s)〉 =
εδ(t − s). Units of time are taken to be 10 ms each. In numeri-
cal simulations, uj(0) are initialized by randomly drawing from a
uniform distribution on [0, 1]; qj(0) are initialized by randomly
drawing from a uniform distribution on [1/(1 + β), 1].
NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS
The spatially extended model (Equation 1) is simulated using
an Euler–Maruyama method with a timestep dt = 10−4, using
Riemann integration on the convolution term with 2000 spatial
grid points. A population is considered dominant if the peak
of its activity bump is higher than the other; switches occur
when the other bump attains a higher peak. The reduced net-
work (Equation 6) was also simulated using Euler–Maruyama
with a timestep dt = 10−6. Population j is considered domi-
nant when uj > uk (j 	= k); switches occur when the inequality
switches direction. To generate histograms of dominance times,
we simulated systems for 20,000s.

FITTING DOMINANCE TIME DISTRIBUTIONS
To generate the theoretical curves presented for exponentially
distributed dominance times, we simply take the mean of
dominance times and use it as the scaling in the exponential
(Equation 28). For those densities that we presume are gamma
distributed, we solve a linear system to fit the constants c1, c2,
and c3 of

f (T) = ec1 Tc2e−c3T (7)

an alternate form of Equation (30). Upon taking the logarithm of
Equation (7), we have the linear sum

ln f (T) = c1 + c2 ln T − c3T. (8)

Then, we select three values of the numerically generated
distribution pn(Tn) along with its associated dominance
times: (Tn

1 , pn
1); (Tn

2 , pn
2); (Tn

3 , pn
3) where pn

j = pn(Tn
j ). We

always choose Tn
2 = arg maxT pn(T) as well as Tn

1 = Tn
2 /2 and

Tn
3 = 3Tn

2 /2. It is then straightforward to solve the linear system⎛
⎝ 1 ln Tn

1 −Tn
1

1 ln Tn
2 −Tn

2

1 ln Tn
3 −Tn

3

⎞
⎠

⎛
⎝ c1

c2

c3

⎞
⎠ =

⎛
⎝ ln pn

1

ln pn
2

ln pn
3

⎞
⎠

using the\command in MATLAB.

RESULTS
We now present results that reveal the importance of synaptic
depression in preserving information about bimodal stimuli. No
previous work, to our knowledge, has studied how activity in a
ring model with depression (Equation 1) can be collapsed to a
low dimensional oscillation. The oscillation results from a com-
bination of depression and mutual inhibition, which produces
population dominance times and can thus be sampled to give
information about the strength of the stimulus that produced
them. Once noise is added to these low dimensional oscillations,
dominance time distributions still remain relatively tight, which
can be sampled to infer relative contrasts of each input. We con-
trast this with a previous cue orientation selective model which
used a heterogeneous population of spiking neurons with lat-
eral inhibition and slow adaptation, so chaos rather than noise
produced apparent stochasticity in dominance times (Laing and
Chow, 2002). We can use an energy function for a reduced system
to approximate the relative effect of depression and noise on dom-
inance times. These energy methods are also useful in the study of
perceptual tristability, where we also show depression introduces
a history dependence in dominance transitions.

DETERMINISTIC SWITCHING IN THE RING MODEL
To start we consider the ring model with depression (Equation 1)
in the absence of noise, so ξ ≡ 0. In previous work, noise-free
versions of Equation (1) have been analyzed to explore how
synaptic depression can generate traveling pulses (York and van
Rossum, 2009; Kilpatrick and Bressloff, 2010b), self-sustained
oscillations (Kilpatrick and Bressloff, 2010b), and spiral waves
in two-dimensions (Kilpatrick and Bressloff, 2010c). Here, we
will extend previous work that explored input-driven oscillations
in two-layer networks possessing statistics matching binocular
rivalry (Kilpatrick and Bressloff, 2010a). We think of Equation (1)
as a model of monocular rivalry, since oscillations can be due
to competition between representations in a single orientation
column (Ben-Yishai et al., 1995). Competition between ocular
dominance columns (Kilpatrick and Bressloff, 2010a) is not nec-
essary for our theory. For exposition, we will employ specific
functional forms: cosine weight (Equation 2); a Heaviside firing
rate function (Equation 4); and a bimodal input (Equation 5).

Winner take all state
We now look for winner-take-all solutions, as shown in
Figure 1A. These states consist of a single activity bump arising
in the network, representing only one of the two percepts con-
tained in the bimodal stimulus (Equation 5). These are station-
ary in time, so ut = qt = 0, implying u = U(x) and q = Q(x).
Also, they are single bump solutions, so there is a single region
x ∈ (π/4 − a,π/4 + a) that is superthreshold (U(x) > κ). The
parameter a is the half-width of the bump. We assume the right
stimulus is represented by a bump, although we can derive analo-
gous results when the left stimulus is represented. The steady state
solution is then determined

U(x) =
∫ π/4 + a

π/4 − a
cos(2(x − y))Q(y)dy − I0 cos(4x)

+ Ia sin(2x), (9)
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Q(x) = [1 + βH(U(x) − κ)]−1 , (10)

so by plugging Equation (10) into (9) and using cos(2(x − y)) =
cos(2x) cos(2y) + sin(2x) sin(2y) we have

U(x) = A cos(2x) + (B + Ia) sin(2x) − I0 cos(4x),

where the constants A, B can be computed

A = 1

1 + β

∫ π/4 + a

π/4 − a
cos(2x)dx = 0,

B = 1

1 + β

∫ π/4 + a

π/4 − a
sin(2x)dx = sin(2a)

1 + β
.

Therefore, by simplifying the threshold condition,
U(π/4 ± a) = κ, we have

U(π/4 ± a) = sin(4a)

2(1 + β)
+ I0 cos(4a) + Ia cos(2a) = κ. (11)

The implicit Equation (11) can be solved numerically using root
finding algorithms. For symmetric inputs (Ia = 0), we can solve
(Equation 11) explicitly

a = 1

2
tan−1

⎡
⎣1 ±

√
1 + 4(1 + β)2(I2

0 − κ2)

2(1 + β)(I0 + κ)

⎤
⎦ , (12)

and winner-take-all solutions take the form

U(x) = sin(2a)

1 + β
sin(2x) − I0 cos(4x) + Ia sin(2x). (13)

With this solution, we can relate the parameters of the model to
the existence of the winner-take-all state. To do so, we need to
look at a second condition that must be satisfied, U(x) < κ for
all x /∈ (π/4 − a,π/4 + a). Since the function (Equation 13) is
bimodal across (−π/2,π/2), we check the other possible local

maximum at x = −π/4 as

U(π/4) = I0 − Ia − sin(2a)

1 + β
< κ. (14)

At the point in parameter space where the Equation (14) is
violated, a bifurcation occurs, so the winner-take-all state
ceases to exist. This surface in parameter space is given by
the equation

I0 = κ + Ia + sin(2a)

1 + β
, (15)

along with the explicit formula for the bump half-width
(Equation 12). Beyond the bifurcation boundary (Equation 15),
one of two behaviors can occur. Either there is a symmetric two-
bump solution that exists, the fusion state (Wolfe, 1986; Blake,
1989; Shpiro et al., 2007), or rivalrous oscillations (Levelt, 1965;
Blake and Logothetis, 2002).

Fusion state
Experiments on ambiguous stimuli have shown sufficiently
strong contrast rivalrous stimuli can be perceived as a sin-
gle fused image (Blake, 1989; Buckthought et al., 2008). This
should not be surprising, considering stereoscopic vision and
audition behave in exactly this way (Wolfe, 1986). However, the
contrast necessary to evoke this state with dissimilar images is
much higher than with similar images (Blake and Logothetis,
2002). The fusion state (Figure 1C) is represented as two
disjoint bumps. Therefore

U(x) = 1

1 + β

[∫ −π/4 + b

−π/4 − b
+

∫ π/4 + a

π/4 − a

]
cos(2(x − y))dy

−I0 cos(4x) + Ia sin(2x).

Computing the integrals, we find

U(x) = S(x, a) − S(x, b)

1 + β
− I0 cos(4x) + Ia sin(2x), (16)

FIGURE 1 | Three possible active states of the noise-free stimulus

driven ring model with depression (Equation 1). (A) Winner take
all (I0 = 0.6) defined by the bump half-width a; (B) Rivalrous

oscillations (I0 = 0.84); (C) Fusion (I0 = 1), where initial condition is
(Equation 16). Other parameters are κ = 0.5, β = 1, and
τ = 50.
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where S(x, y) = sin2(x + y) − sin2(x − y). Requiring the thresh-
old conditions U(−π/4 ± b) = U(π/4 ± a) = κ are satisfied,

C(a, b)

1 + β
+ I0 cos(4a) + Ia cos(2a) = κ,

C(b, a)

1 + β
+ I0 cos(4b) − Ia cos(2b) = κ,

where C(x, y) = cos(2x)[sin(2x) − sin(2y)], which implicitly
relates parameters to the half-widths a, b of each bump. We will
now study rivalrous oscillations by simply constructing them
using a fast-slow analysis.

Rivalrous oscillations
Oscillations can occur, where the two bump locations trade dom-
inance successively (Figure 1B). We will show Levelt’s proposition
(i) holds; increasing the contrast of a stimulus (Figures 2A–C)
increases the proportion of time that stimulus is dominant
(Figures 2D–F). This information is not revealed when the sys-
tem is stuck in a winner-take-all state. Thus, synaptic depression
can unmask otherwise hidden stimuli. We will also examine how
well the noise-free version of Equation (1) recapitulates Levelt’s
other propositions concerning the mean dominance of percepts.

To study oscillations, we assume that the timescale of
synaptic depression τ � τm, is long enough that we can decom-
pose (Equation 1), with ξ ≡ 0, into a fast and slow system

FIGURE 2 | Dependence of rivalry dominance times on the amplitudes

of the bimodal input (Equation 5). (A–C) Various profiles of the
external input I(x), showing only positive part. Increasing I0 increases
both peaks; increasing Ia decreases the left and increases the right peak.
(D–F) Rivalrous oscillations in the neural activity u(x, t) corresponding to
the input in (A–C). Dominance times decrease from (D) to (E) since the
input amplitude increases from (A) to (B). (F) Dominance time of right
input (red bar : TR ≈ 0.9 s) is longer than left (blue bar : TL ≈ 0.6 s) for

asymmetric input in (C). (G) Increasing the strength of the symmetric
(Ia = 0) bimodal input (Equation 5) decreases the dominance time T of
both populations. Our theory (black) computed from fast-slow analysis
(Equation 19) fits results of numerical simulations (blue) well. (H) For
asymmetric inputs (Ia 	= 0), we find that varying IR = I0 + Ia while keeping
IL = I0 − Ia fixed changes the dominance times of the left percept TL

(blue) much more than that of the right percept TR (red). Other
parameters are κ = 0.5, β = 1, and τ = 50.
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(Laing and Chow, 2002; Kilpatrick and Bressloff, 2010a).
Synaptic input u then tracks the slowly varying state of the
synaptic scaling term q. We have also verified in simulations
q is essentially piecewise constant in space, in the case of the
Heaviside non-linearity (Equation 4), which yields

u(x, t) ≈
∫ π/2

−π/2
cos(2(x − y))q(y, t)H(u(y, t) − κ)dy

− I0 cos(4x), (17)

and q is governed by Equation (1b). To start, we will also assume a
symmetric bimodal input (Ia = 0). This way, we can simply track
q in the interior of one of the bumps, given qi(t) = q(π/4, t).
Solving the resulting piecewise system of differential equations,
we can derive an implicit formula for

q0 = 1

1 + β
+ β

1 + β
e−T/τ − (1 − q0)e−2T/τ, (18)

the value of the synaptic depression variable inside a bump just
prior to a switch. We can rearrange (Equation 18) to yield a
formula for the dominance time

T = τ ln

[
β + √

β2 − 4(1 + β)(1 − q0)[(1 + β)q0 − 1]
2(1 + β)q0 − 2

]
,

(19)

so that we now must specify the value q0. We can examine the fast
Equation (17), solving for the form of the slowly narrowing right
bump during its dominance phase

u(x, t) = qi(t)
[
sin2(x + a(t)) − sin2(x − a(t))

]
− I0 cos(4x). (20)

We solve for the slowly changing width a(t) by enforcing the
threshold condition u(π/4 ± a(t), t) = κ and using trigonomet-
ric identities to find

a(t) = 1

2
tan−1

⎡
⎣qi(t) +

√
qi(t)2 + 4(I2

0 − κ2)

2(I0 + κ)

⎤
⎦ . (21)

We can also identify the maximal value of qi(t) = q0 which still
leads to the right bump suppressing the left. Once qi(t) falls below
q0, the other bump escapes suppression, flipping the dominance
of the current bump. This is the point at which the other bump
of Equation (20) rises above threshold, as defined by the equation
I0 − q0 sin(2a0) = κ. Combining this with Equation (21) and
solving the resulting algebraic equation, we find

q0 = 2I0
√

(I0 − κ)(3I0 + κ)

3I0 + κ
. (22)

The amplitude of synaptic depression is excluded from
Equation (22), but we know q0 ∈ ([1 + β]−1, 1). This establishes
a bounded region of parameter space in which we can expect to
find rivalrous oscillations, which we use to construct a partition-
ing of parameter space in Figure 3. We can also now approximate
the dominance time using Equation (19) with (22), as shown in
Figure 2G.

In the case of an asymmetric bimodal input (Ia > 0), we can
also solve for explicit approximations to the dominance times
of the right TR and left TL populations. Following the same
formalism as for the symmetric input case

TR = τ ln

⎡
⎣Q+ +

√
Q2+ − BR

2(1 + β)qR − 2

⎤
⎦ , (23)

TL = τ ln

⎡
⎣Q− +

√
Q2− − BL

2(1 + β)qL − 2

⎤
⎦ , (24)

where Q± = β ± (1 + β)(qR − qL) and BR,L = 4(1 + β)(1 −
qL,R)[(1 + β)qR, L − 1], in terms of the local values qL and qR

of the synaptic scaling in the right and left bump immediately
prior to their suppression. Notice when qL = qR, then qd = 0
and Equations (23) and (24) reduce to Equation (19). We now
need to examine the fast Equation (17) to identify these two
values. This is done by generating two implicit equations for
the half-width of the right bump aR and qR at the time of a
switch

qR

2
sin(4aR) + I0 cos(4aR) + Ia cos(2aR) = κ,

I0 − Ia − qR sin(2aR) = κ,

FIGURE 3 | Partition of parameter space (β, I0) into various

stimulus-induced states of (Equation 1) when ξ ≡ 0, κ = 0.5, and

τ = 50.
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which we can solve explicitly for

aR = 1

2
cos−1

[
κ

2I0
+ 1

2

]
,

and

qR = 2I0(IL − κ)√
(3I0 + κ)(I0 − κ)

, (25)

where IL = I0 − Ia is the strength of input to the left side of the
network. Likewise, we can find the value of the synaptic scaling in
the left bump immediately prior to its suppression

qL = 2I0(IR − κ)√
(3I0 + κ)(I0 − κ)

, (26)

where IR = I0 + Ia is the strength of input to the right side of
the network. Using the expressions (25) and (26) we can now
compute the dominance time formulae (23) and (24), show-
ing the relationship between inputs and dominance times in
Figure 2H. Notice that all of Levelt’s propositions are essentially
satisfied. Changing the strength of the right stimulus IR has a
very weak effect on the dominance time of the right percept.
Thus, dominance times obey the classic description of Levelt’s
second proposition (Levelt, 1965). Recent evidence does suggest
this only holds at high contrast (Brascamp et al., 2006), and our
study is consistent with this since inputs are high contrast here,
since it lies just below a fusion state. This is characteristic of
competitive networks whose switches occur via an escape mecha-
nism (Wang and Rinzel, 1992; Shpiro et al., 2007), whereby the
suppressed population comes on and overtakes the previously
dominant population.

Finally, we demonstrate how the strength of a symmetric
input I0 and strength of depression β lead to different behaviors
of the network (Equation 1) in Figure 3. For weaker synap-
tic depression strength β, there is a narrower range of stim-
ulus strengths I0 for which rivalrous oscillations exist. When
synaptic depression is sufficiently strong, the range of I0 that
leads to a winner-take-all state narrows. For sufficiently strong
I0, increasing β leads to a network that reveals a piece of
the stimulus that would otherwise be kept hidden. As we
will show, synaptic depression helps the network reveal stim-
ulus information in a way that is much more reliable than
noise.

PURELY STOCHASTIC SWITCHING IN THE RING MODEL
We will now study rivalrous switching brought about by fluctua-
tions. In particular, we ignore depression and examine the noisy
system

u̇(x, t) = −u(x, t) + w ∗ f (u) + I(x) + ξ(x, t). (27)

where 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(y, s)〉 = εC(x − y)δ(t − s)
defines the spatiotemporal correlations of the system. Since
there is no synaptic depression in the model (Equation 27), no
deterministic mechanisms will generate switches between one

winner-take-all state and another. Thus, consider the effects
of introducing a small amount of noise (0 < ε � 1), reflec-
tive of synaptic fluctuations, with spatial correlation function
C(x) = cos(x). Noise generates switches in between the two
dominant states (Figure 4A). Activity of neurons not driven
by the stimulus remains close to zero even during dominance
switching. There will be no mixing of the two inputs in the
networks representation of the stimulus. Dominance switching
occurs via an escape mechanism (Wang and Rinzel, 1992),
whereby noise drives the suppressed population on, which
in turn suppresses the dominant population. As opposed to
depression-induced switching, there is an exponential spread
in the possible dominance times for a given set of parameters
(Figure 4B). By sampling two dominance times back to back, it
may be difficult to tell if the input strengths are roughly the same
or not.

We now explore the task of discerning the relative contrasts of
the two stimuli IR and IL based on samples of the dominance time
distributions. Notice in Figure 5 that the likelihood assigned to
IR > IL approaches 1/2 as the number of observations n increases.

FIGURE 4 | Noise-induced switching of dominance in the

depression-free ring model (Equation 27). (A) Numerical simulations of
the system for I0 = 0.9 and Ia = 0 in bimodal input (Equation 5). (B)

Distribution of dominance times computed numerically (blue bars) with the
exponential distribution (Equation 28) with numerically computed mean
〈T 〉 ≈ 0.70 s (red) superimposed for I0 = 0.9. Other parameters are κ = 0.5
and ε = 0.04.
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We compute p[IR > IL|T∗(n)], the predicted probability IR > IL

based on sampling dominance time pairs from n cycles T∗(n) =
{T(1)

R , T(1)
L ; T(2)

R , T(2)
L ; . . . ; T(n)

R , T(n)
L }. As n → ∞, the exponen-

tial distributions approximately defining the identical probability

FIGURE 5 | Predicted probability right input IR is higher than the left

input IL, based on the sampling n cycles (2n switches between

percepts), for symmetric inputs IL = IR = 0.9. After 2000 cycles,
p[IR > IL|T ∗(n)] ≈ 0.5. Other parameters are κ = 0.5 and ε = 0.04.

densities pR(TR) = pL(TL) = p(T) are fully sampled and p(IR >

IL|T∗(∞)) = 1/2, as in Figure 5.
We explore this further in the case of asymmetric inputs,

showing dominance times are still specified by exponential dis-
tributions as shown in Figure 6. Despite the fact IR > IL, the
exponential distributions p(TR) and p(TL) still have substantial
overlap, so sampling from these distributions can yield TR < TL.
Using such a sample to guess the ordering of amplitudes IR

and IL would yield IR < IL, rather than the correct IR > IL. In
terms of conditional probabilities, we expect situations where
p(IR > IL|T∗(n)) < 1/2 for finite n, even though IR > IL. We can
quantify this effect numerically, as shown in Figure 6B. Since the
marginal distributions are approximately exponential

pj(Tj) = e−Tj/〈Tj〉/〈Tj〉 j = L, R, (28)

we can approximate the conditional probability

p[IR > IL|T∗(∞)] =
∫ ∞

0

∫ x

0
pR(x)pL(y)dydx

= 〈TR〉
〈TR〉 + 〈TL〉 . (29)

Using Equation (29), we can estimate the limit p(IR > IL|T∗(∞))

(Figure 6B). Recent psychophysical experiments suggest humans

FIGURE 6 | Purely noise-induced switching in the stochastic neural field

(Equation 27). (A) Single realization of (Equation 27) with asymmetric inputs
IR = 0.92 and IL = 0.88, leads to longer dominance times for right percept
TR . (B) Likelihood p[IR > IR |T ∗(n)] that the right input IR is stronger than left
IL based on n comparisons of dominance times TR and TL sampled. Upper
gray line is theoretical prediction (Equation 29) of the limit n → ∞. (C)

Numerically computed dominance time distributions (blue bars) are well fit by

the exponential distribution (Equation 28) for the left (〈TL〉 ≈ 0.5 s) and right
(〈TR 〉 ≈ 1 s) percepts. (D) Dependence of mean dominance times 〈TR 〉 and
〈TL〉 on the strength of the right input IR when IL = 0.9. Black curves are best
fits to exponential functions of IR . (E) Expected likelihood p[IR > IL |T ∗(∞)]
right input IR is stronger than left IL in the limit of high sample number
n → ∞, as computed theoretically by Equation (29). Other parameters are
κ = 0.5, and ε = 0.04.
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would perform this task of contrast differentiation of bistable
images in this way (Moreno-Bote et al., 2011).

We also see the mean dominance times still obey Levelt’s
propositions (Figure 6D). Thus, comparing the mean dominance
times 〈TR〉 and 〈TL〉 provides very precise information about the
ordering of contrasts IR and IL. However, when comparing suc-
cessive dominance times, accurately discerning the relative input
contrasts is more difficult. This becomes more noticeable when
the input contrasts are quite close to one another, as in Figure 6E.
We will explore now how introducing depression along with noise
improves discernment of the input contrasts by an observer using
simple comparison of dominance times.

SWITCHING THROUGH COMBINED DEPRESSION AND NOISE
We now study the effects of combining noise and depression in
the full ring model of perceptual rivalry (Equation 1). Numerical
simulations of Equation (1) reveal that noise-induced switches
occur robustly, even in parameter regimes where the noise-free
system supports no rivalrous oscillations, as shown in Figure 7.
Rather than dominance times being distributed exponentially,
they roughly follow a gamma distribution (Fox and Herrmann,
1967; Lehky, 1995)

pj(Tj) = 1

σ k�(k)
Tk

j exp
[−Tj/σ

]
, k > 1, (30)

which is peaked away from zero at Tj = kσ , the mean of the dis-
tribution. We show two gamma distributions of dominance times
with different means can be more easily discerned than two expo-
nential distributions. Gamma distributions with different means
are better separated than two exponential distributions. We sum-
marize how this separation improves the inference of relative
contrast in Figure 8. As the strength β of depression is increased
discernment of relative contrast from sampling dominance time
distributions is improved. The likelihood assigned to IR being
greater than IL is a sigmoidal function of IR whose steepness
increases with β. For no noise, the likelihood function is simply
a step function H(IR > IL), implying perfect discernment.

ANALYZING SWITCHING IN A REDUCED MODEL
We now perform similar analysis on a reduced network model
(Equation 6) and extend some of the results for the ring model.
We can construct an energy function (Hopfield, 1984), which
provides us with intuition as to the exponential dependence of
mean dominance times on input strengths in the noise-driven
case. In particular, we analyze Equation (6) where the firing rate
function is Heaviside (Equation 4), starting with the case of no
noise

u̇R = −uR + H(IR − qLuL), (31a)

u̇L = −uL + H(IL − qRuR) (31b)

FIGURE 8 | Comparing the probability densities of dominance times in

the stochastic ring model with depression (Equation 1). Expected
likelihood p[IR > IR |T ∗(∞)] the right input IR is stronger than the left IL
based in the limit of an infinite number of samples of the dominance times
TR and TR for the parameters: β = 0, ε = 0.04 (pink); β = 0.2, ε = 0.01
(magenta); and β = 0.4 and ε = 0.0025 (red). Other parameters are τ = 50
and κ = 0.5.

FIGURE 7 | Switching in the stochastic ring model with depression

(Equation 1) with asymmetric inputs (Ia > 0). (A) Single realization for
asymmetric inputs with IR = 0.92 and IL = 0.88, which leads to right percept
dominating longer. (B) Distribution of left percept dominances times pL(TL)

over 1000 s is well fit by a gamma distribution (Equation 30). (C) Distribution
of right percept dominance times pR(TR) across 1000 s is well fit by a
gamma distribution (Equation 30). Other parameters are κ = 0.5, β = 0.2,
τ = 50, and ε = 0.01.
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τq̇R = 1 − qR − βuRqR, (31c)

τq̇L = 1 − qL − βuLqL. (31d)

First, we note Equation (31) has a stable winner-take-all solu-
tion in the jth population (j = R, L) for Ij > 0 and Ik < 1/(1 + β)

(k 	= j). Second, a stable fusion state exists when both IL, IR >

1/(1 + β). Coexistent with the fusion state, there may be rival-
rous oscillations, as we found in the spatially extended system
(Equation 1). To study these, we make a similar fast-slow decom-
position of the model (Equation 31), assuming τ � τm to find
uj’s possess the quasi-steady state

uR = H(IR − qLuL), uL = H(IL − qRuR). (32)

so we expect uj = 0 or 1 almost everywhere. Therefore, we can
estimate the dominance time of each stimulus using a piecewise
equation for the slow subsystem

τqj =
{

1 − qj − βqj : uj = 1,

1 − qj : uj = 0,
j = L, R. (33)

Combining the slow subsystem (Equation 33) with the quasi-
steady state (Equation 32), we can use self-consistency to solve for
the dominance times TR and TL of the right and left populations.
We simply note that switches will occur through escape, when
cross-inhibition is weakened enough by depression such that the
suppressed population’s (j) input becomes superthreshold, so Ij =
qk. Using Equation (33), we find

TR = τ ln

⎡
⎣Q− +

√
Q2− − 4BR

2(1 + β)IL − 2

⎤
⎦ , (34)

TL = τ ln

⎡
⎣Q+ +

√
Q2+ − 4BL

2(1 + β)IR − 2

⎤
⎦ , (35)

where Q± = β ± (1 + β)[IR − IL] and BR,L = (1 − IR,L)(1 +
β)[(1 + β)IL,R − 1]. For symmetric stimuli, IL = IR = I, both
Equations (34) and (35) reduce to

T = τ ln

[
β + √

β2 − 4(1 − I)(1 + β)[(1 + β)I − 1]
2(1 + β)I − 2

]
,(36)

using which we can solve for the critical input strength I above
which only the fusion state exists, I = (2 + β)/[2(1 + β)], in
the case of symmetric inputs. We show in Figure 9 that this
asymptotic approximations Equations (34) and (35) of the domi-
nance times match well with the results of numerical simulations,
recapitulating Levelt’s propositions.

Next, we show that the network with depression and noise gen-
erates activity oscillations with dominance times that are gamma
distributed (Fox and Herrmann, 1967; Lehky, 1995; Brascamp
et al., 2006). We now provide some analytic intuition as to how
gamma distributed dominance times may arise in the fast-slow
system. First, we display as single realization of the network

FIGURE 9 | Dominance times TL and TR as a function of right input IR

keeping IL = 0.8 fixed as computed by theory (curves) in Equations

(34) and (35) fits numerically computed (dots) very well. Other
parameters are β = 1 and τ = 50.

(Equation 6) in Figure 10A. An approximate energy function for
Equation (6) can be computed in the limit of slow depression
recovery time τ � τm by assuming we can augment the energy
of the depression-free (β = 0) network (Hopfield, 1984)

E[uR, uL] = H(IL − uR)H(IR − uL)

− ILH(IL − uR) − IRH(IR − uL),

by the synaptic scalings imposed by qR and qL (Mejias et al.,
2010), so

E[uR, uL, qR, qL] = H(IL − qRuR)H(IR − qLuL)

− IL

qR
H(IL − qRuR) − IR

qL
H(IR − qLuL).

A similar energy function was previously used in a model with
spike frequency adaptation (Moreno-Bote et al., 2007). Here,
we are able to derive the energy function from the model
(Equation 6). Therefore, the energy gap between a winner-
take-all state and the fusion state will be time-dependent,
varying as the synaptic scaling variables qR and qL change.
The energy difference between the right dominant state and
fusion is

�ER(t) = 1 − IL

qR(t)
, �EL(t) = 1 − IR

qL(t)
,

for the right and left population, respectively.
Notice that dominance times of stochastic switching

(Figures 10B,C) in Equation (6) are distributed roughly accord-
ing to a gamma distribution (Equation 30). Superimposing
the probability density of right (left) dominance times on
the left (right) probability density, we see they are reasonably
separated. Using the analysis we performed for the spatially
extended system, we could also show that depression improves
discernment of the input contrast difference. Mainly here, we
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FIGURE 10 | Switching induced by noise and depression. (A) Single
realization of the network (Equation 6) with depression and noise. Activity
variables uR (black) and uL (blue) stay close to attractors at 0 and 1, aside
from depression or noise induced switching. Depression variables qR (red)
and qL (green) slowly exponentially change in response to the states of uR

and uL. (B) Right and (C) left dominance time distributions fit with gamma
distributions (Equation 30), in the network (Equation 6) with depression and
noise in the case of asymmetric inputs IR = 0.82 and IL = 0.78, sampled over
1000 s. The right population has a longer mean dominance time. Other
parameters are β = 0.2, τ = 50, and ε = 0.036.

wanted to provide a justification as to the relationship between
input strength and mean dominance times. Using energy
arguments, we have provided reasoning behind why Levelt’s
propositions are still preserved in this model, when noise is
included, even when switches are noise-induced. Increasing
one input leads to a reduction in the energy barrier between
the other population’s winner-take-all state and the fusion
state. This leads to the other population’s dwell time being
shorter.

SWITCHING BETWEEN THREE PERCEPTS
Finally, we will compare the transfer of information in competi-
tive networks that process more than two inputs. Recently, exper-
iments have revealed that perceptual multistability can switch
between three or four different percepts (Fisher, 1968; Burton,
2002; Naber et al., 2010; Hupé and Pressnitzer, 2012). In partic-
ular, the work of Naber et al. (2010) characterized some of the
switching statistics during the oscillations of perceptual trista-
bility. Figure 11A shows an example of a tristable percept. Since
dominance times are gamma distributed and there is memory evi-
dent in the ordering of percepts (Naber et al., 2010), the process
is also likely governed by some slow adaptive process in addition
to fluctuations.

We study perceptual tristability in a competitive neural net-
work model with only depression, to start, with a Heaviside firing
rate (Equation 4), and symmetric inputs I1 = I2 = I3 = I, we
study the system

u̇1 = −u1 + H(I − q2u2 − q3u3), (37a)

u̇2 = −u2 + H(I − q1u1 − q3u3), (37b)

u̇3 = −u3 + H(I − q1u1 − q2u2), (37c)

τq̇j = 1 − qj − βujqj, j = 1, 2, 3. (37d)

We are interested in rivalrous oscillations, which do arise in
this network (Figure 11B). Once again, we can perform a fast-
slow decomposition of our system, assuming τ � τm to compute

the dominance time T of a population as it depends on input
strength I. We find

T = τ ln

[
B + √

B[3I(1 + β) + β − 3]
2[(1 + β)I − 1]

]
,

where B = (1 − I)(1 + β), which compares very well with
numerically computed dominance times in Figure 12. Recent
experimental observations have suggested relationships between
mean dominance time and input contrast in perceptual tristabil-
ity may be similar to the two percept case (Hupé and Pressnitzer,
2012). In our model, we see that as the input strength is
increased, dominance times decrease. One other important point
is that percept dominance occurs in the same order every time
(Figure 11B): one, two, three. There are no “switchbacks.” We
will show that switchbacks can occur in the noisy regime, which
degrades history dependence.

Now, we study how noise alters the switching behavior when
added to the deterministic network (Equation 37). Thus, we dis-
cuss the three population competitive network with noisy in
activity

u̇1 = −u1 + H(I − q2u2 − q3u3) + ξ1, (38a)

u̇2 = −u2 + H(I − q1u1 − q3u3) + ξ2, (38b)

u̇3 = −u3 + H(I − q1u1 − q2u2) + ξ3, (38c)

τq̇j = 1 − qj − βujqj, j = 1, 2, 3, (38d)

where ξj are identical independent white noise processes with
variance ε. In Figure 13, we show the noise in Equation (38)
degrades two pieces of information carried by dominance
switches: the switching time and the direction of switching.
Notice that adding noise spreads out the distribution of dom-
inance times (Figure 13B). Thus, there is a less precise charac-
terization of the input strength in the network. Concerning the
direction of switching, the introduction of noise makes “switch
backs” more likely. We define a “switch back” as a series of three
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percepts that contains the same percept twice (e.g., 1 → 3 → 1).
This is opposed to a “switch forward,” which contains all three
percepts (e.g., 1 → 3 → 2). Statistics like these were analyzed
from psychophysical experiments of perceptual tristability, using
an image like Figure 11A (Naber et al., 2010). The main finding
of Naber et al. (2010) concerning this property is that switch for-
wards occur more often than chance would suggest. Therefore,
they proposed that some slow process may be providing a mem-
ory of the previous image. Memory in perceptual rivalry has also
been observed in experiments where ambiguous stimuli are pre-
sented intermittently (Leopold et al., 2002; Pastukhov and Braun,
2008; Gigante et al., 2009). We suggest short term depression as
a candidate substrate for this memory. As seen in Figure 13B, the
bias in favor of switching forward persists even for non-zero levels
of noise. The idea of short term plasticity as a substrate of work-
ing memory was also recently proposed in Mongillo et al. (2008).

FIGURE 11 | Perceptual tristability. (A) Three overlapping grating stimuli,
which generates tristable perception. Redrawn with permission from Naber
et al. (2010). (B) Numerical simulation of Equation (37) showing the activity
variables u1, u2, u3 and the second synaptic scaling variable q2 (cyan) of the
three population network (Equation 37) driven by symmetric stimulus
I = 0.6. Other parameters are β = 1 and τ = 50.

Our results extend this idea, suggesting synaptic mechanisms of
working memory may be useful in visual perception tasks, such
as understanding ambiguous images. In Figure 14, we show that
the process of dominance switching becomes more Markovian,
less history dependent, as the level of noise

√
ε is increased. In

the limit of large noise, the likelihoods of “switch forwards” and
“switch backs” are the same, making the ordering of switching
purely Markovian.

DISCUSSION
Mechanisms underlying stochastic switching in perceptual rivalry
have been explored in a variety of psychophysical (Fox and
Herrmann, 1967; Lehky, 1995; Brascamp et al., 2006), physi-
ological (Leopold and Logothetis, 1996; Blake and Logothetis,
2002), and theoretical studies (Matsuoka, 1984; Laing and Chow,
2002; Moreno-Bote et al., 2007). Since psychophysical data is
widely accessible, it can be valuable to use the hallmarks of its
statistics as benchmarks for theoretical models. For instance,
the fact that dominance time distributions are unimodal func-
tions peaked away from zero suggests that some adaptive process
must underlie switching in addition to noise (Laing and Chow,
2002; Brascamp et al., 2006; Shpiro et al., 2009). In addition,
Moreno-Bote et al. (2011) information about bistable images
may be extracted by sampling a posterior distribution associ-
ated with the dominance fraction of each percept. This type of
sampling can be well modeled by attractor networks analogous
to those presented here (Moreno-Bote et al., 2007). Thus, many
dominance time statistics from perceptual rivalry experiments
can be employed as points of reference for physiologically based
models of visual perception. New data now exists concerning
tristable images showing this process also is likely guided by a
slow adaptive process in addition to fluctuations (Naber et al.,
2010).

We have studied various aspects of competitive neuronal net-
work models of perceptual multistability that include short term
synaptic depression. First, we were able to analyze the onset of

FIGURE 12 | Relationship between the strength of the stimulus I and

the dominance times T computed using fast-slow analysis (black) and

numerics (red dots) for a perceptually tristable stimulus. Other
parameters are β = 1 and τ = 50.
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FIGURE 13 | Noise degrades two sources of information provided by

dominance switches. (A) In the absence of noise, switches always move
“forward,” so that the previous percept perfectly predicts the subsequent
percept. Dominance times accumulate at a single value too. (B) For

non-zero noise (
√

ε = 0.003), “switch backs” can occur where the
subsequent percept is the same as the previous percept. Also, the
distribution of dominance times spreads. Other parameters are I = 0.6,
β = 1, and τ = 50.

FIGURE 14 | The probability pf of a switch being in the forward

direction in simulations of (Equation 38) as a function of the amplitude√
ε of noise. As

√
ε increases, network switches behave in more of a

Markovian way, not reflecting any memory of the previous percept.
Therefore, information of the previous percept is lost as soon as a switch
occurs.

rivalrous oscillations in a ring model with synaptic depression
(York and van Rossum, 2009; Kilpatrick and Bressloff, 2010a).
Stimulating the network with a bimodal input leads to winner-
take-all solutions, in the form of single bumps, in the absence

of synaptic depression. As the strength of synaptic depression
is increased, the network undergoes a bifurcation which leads
to slow oscillations whose timescale is set by that of synap-
tic depression. Each stimulus peak is represented in the net-
work by a bump whose dominance time is set by the height of
each peak. When noise is added, dominance time histograms
obey a gamma distribution. We considered the simple task of
an upstream network inferring the relative contrast of stim-
uli based on partial and whole observations of the dominance
time distribution. Thus, we study how well the dominance times
(information output) of the network reflect the relative stimulus
contrasts (information input). Sampling dominance times better
identifies contrast differences when switches are more depression-
driven and less noise-driven. Thus, short term depression
improves information transfer of networks that process ambigu-
ous images in multiple ways. To our knowledge, no previous
studies have explored how sampling dominance time distribu-
tions might be used by upstream neurons to infer relative stimulus
contrast.

We also used energy methods in reduced models to under-
stand how a combination of noise and depression interact to
produce switching. Using the energy function derived by Hopfield
(1984) for analog neural networks, we justify the exponential
dependence of dominance times upon input strength in purely
noise-driven switching. Studying an adiabatically derived energy
function for the case of slow depression, we also show how depres-
sion works to reduce the energy barrier between winner-take-all
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states, leading to the slow timescale that defines the peak in
depression-noise generated switches. Finally, using a three popu-
lation space-clamped neural network, we analyzed depression and
noise generated switching that may underlie perceptual trista-
bility. We found this network also sustained some of the same
relationships between input contrast and dominance times as
the two population network. When switches are generated by
depression there is an ordering to the population dominance
that is lost when switches are noise generated. This is due
to the memory generated by short term depression (Mongillo
et al., 2008), so the switching process is non-Markovian due
to the inherent slow timescale in the background. Dynamical
variability must be weak enough to not totally wash out the
non-Markovian character of switches. To our knowledge, nei-
ther short term depression or adaptation has been proposed
before as a mechanism for history dependence in the switch-
ing between tristable stimuli. Also, no previous authors have
used the history dependence of switching observed in Naber
et al. (2010) as a bench mark for a perceptually tristable net-
work model. As opposed to tristability, perceptual bistability
generally does not demonstrate strong history dependence in
dominance time statistics, behaving more as a renewal process
(Lehky, 1995; Laing and Chow, 2002). However, there is some
recent evidence that suggests there may be very minor serial cor-
relations in dominance times (van Ee, 2009), likely arising as
a signature of a slow adaptive process partially responsible for
switching.

Mutual inhibitory rate models with terms representing only
spike frequency adaptation (Wilson, 2003; Moreno-Bote et al.,
2007) or only short term depression (Kilpatrick and Bressloff,
2010b; Bressloff and Webber, 2012) or both adaptation and
depression (Laing and Chow, 2002; Shpiro et al., 2007; Seely and
Chow, 2011) have been analyzed in several previous studies. Both
mechanisms, when they are included in rate models, can generate
dominance time statistics that correspond well with the stimu-
lus contrast dependencies of Levelt (1965), if placed in the right
parameter regime. One subtle difference is that if the firing rate
function is steep enough in models with depression only, there
are no parameter regimes where dominance times increase with
contrast (Seely and Chow, 2011). Even if the firing rate function
is not very steep, rate models with only depression favor param-
eter regimes where dominance times decrease with contrast. The
effect is not seen in mutually inhibitory rate models with only
adaptation (Shpiro et al., 2007). Since Levelt (1965) observed that
dominance times decrease with contrast, this suggests depres-
sion may be a more suitable choice of slow negative feedback
in models of perceptual multistability. On the other hand, it has
been demonstrated that gamma distributed dominance time dis-
tributions also emerge in perceptual rivalry models with spike
frequency adaptation (Shpiro et al., 2009), so it seems the mod-
els may often yield similar results (see Shpiro et al., 2007). Note,
we have demonstrated a combination of mutual inhibition and
depression can generate ordered switching that may be a substrate
of perceptual tristability. We presume these results would also
extend to a model with mutual inhibition and spike frequency
adaptation.

Spatially extended neural field models are a useful tool
for understanding complex dynamics that emerge in networks
connected by synapses that are stimulus preference dependent
(Wilson and Cowan, 1973; Amari, 1977; Bressloff and Cowan,
2002). Processes underlying perceptual rivalry can evolve with
a characteristic spatiotemporal structure, as has been found in
experiments where observers report waves of visual dominance
sweeping one percept over another (Wilson et al., 2001). Bressloff
and Webber (2012) and Webber and Bressloff (2013) recently
modeled this using a two spatially extended populations coupled
to one another by mutual inhibition, where short term depression
leads to switches in the direction of activity wave propagation.
Our work is distinct from this in several ways. First, we are con-
cerned with non-propagating activity whose switches are abrupt,
not gradual as in Bressloff and Webber (2012). In addition, we
compute dominance time distributions whereas Bressloff and
Webber (2012) compute mean first passage time distributions for
their traveling wave. Finally, we have demonstrated phenomena
that only require a single cortical layer, and their results require
one layer for each percept.

Note to analytically study the relationship between domi-
nance times and input contrast in the noisy system, we resorted
to a simple space-clamped neural network. In future work,
we plan to develop energy methods for spatially extended sys-
tems like Equation (27). Such methods have seen success in
analyzing stochastic partial differential equation models such
as Ginzburg-Landau models (E et al., 2004). Energy functions
have recently been developed for neural field models, but have
mostly been studied as a means of determining global stability
in deterministic systems (Wu et al., 2002). The fact that pure
noise does lead to exponentially distributed dominance times
suggests it may be possible to develop a large deviations the-
ory for switching in the system (Equation 27), using techniques
like those of E et al. (2004). We propose that by deriving the
specific potential energy of spatially extended neural fields, it
may be possible to approximate the transition rates of solu-
tions from the vicinity of one attractor to another. In the system
(Equation 27), there should be some separatrix between the two
winner-take-all states that must be crossed in order for a transi-
tion to occur. The least action principle states that there is even
a specific point on this separatrix through which the dynam-
ics most likely flows (E et al., 2004). Finding this point using
an energy function would allow us to relate the parameters of
the model to the distribution of dominance times. This would
provide a theoretical framework for interpreting data concerning
rivalry of spatially extended images, such as those that produce
waves (Wilson et al., 2001). We could also extend this work
to analyze interocular grouping Lee and Blake (2004), the phe-
nomenon by which partial images split between either eye are
grouped together in perception and rival. Thus, we would need
to consider several orientation columns associated with each eye.
Columns driven by similarly oriented stimuli would excite one
another, overriding weak inhibition between columns in differ-
ent eyes. Our fast-slow analysis could be useful for analyzing
how system dynamics might collapse to group images together in
perception.
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