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Human motor adaptation to novel environments is often modeled by a basis function
network that transforms desired movement properties into estimated forces. This network
employs a layer of nodes that have fixed broad tunings that generalize across the input
domain. Learning is achieved by updating the weights of these nodes in response to
training experience. This conventional model is unable to account for rapid flexibility
observed in human spatial generalization during motor adaptation. However, added
plasticity in the widths of the basis function tunings can achieve this flexibility, and
several neurophysiological experiments have revealed flexibility in tunings of sensorimotor
neurons. We found a model, Locally Weighted Projection Regression (LWPR), which
uniquely possesses the structure of a basis function network in which both the weights
and tuning widths of the nodes are updated incrementally during adaptation. We
presented this LWPR model with training functions of different spatial complexities
and monitored incremental updates to receptive field widths. An inverse pattern of
dependence of receptive field adaptation on experienced error became evident, underlying
both a relationship between generalization and complexity, and a unique behavior in which
generalization always narrows after a sudden switch in environmental complexity. These
results implicate a model that is flexible in both basis function widths and weights, like
LWPR, as a viable alternative model for human motor adaptation that can account for
previously observed plasticity in spatial generalization. This theory can be tested by using
the behaviors observed in our experiments as novel hypotheses in human studies.
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INTRODUCTION
Humans have the ability to skillfully adapt their movements to a
variety of novel tasks and environments. Achieving this seemingly
straightforward behavior, however, requires complex neurologi-
cal processes and computations. Studies have shown that when
learning a novel motor task, humans adapt by estimating the
forces they need to exert to execute the task (Shadmehr and
Mussa-Ivaldi, 1994). This force estimation is often modeled by
a radial basis function neural network, in which some input is
transformed via a layer of n nodes or neurons into an output
(Pouget and Snyder, 2000; Poggio and Bizzi, 2004). In this case,
the input would be properties of the desired movement, such
as position, velocity, or trajectory, while the output would be
the force required to execute that movement. The transforming
layer is composed of a set of nodes that are tuned to the input
dimensions, and whose receptive fields as a population collec-
tively tile the input domain. By weighting these nodes (wn) and
linearly combining their activities (gn), one can approximate any
non-linear function Y of the input x (Figure 1A, Equation 1).

Y =
∑

wn · gn(x) (1)

The value Y is the model’s prediction of the output for the given
input X. The receptive fields of these nodes are generally broad

Gaussian curves that respond preferentially to a particular input
value. In this conventional model, the broad tunings allow for
generalization across the input domain, i.e., the effect where
learning in one area of the domain affects the output for differ-
ent area of the domain. Wider receptive fields respond to more
inputs, thereby affecting the output for a range of the domain
beyond its preferred value; the Gaussian properties ensure that
a receptive field’s influence diminishes the further away the input
is from its center. In this way, the widths of the receptive fields are
inextricably related to generalization.

Learning in this model occurs via incremental adaptation of
the individual node weights, usually via some gradient descent
such as the delta rule (Equation 2).

�wn = −a · gn(xt)(yt − ŷt) (2)

The weights are updated by an amount that is proportional to
some error signal between the actual output (yt ) and predicted
output (ŷt), a learning rate (a), and the activation of their respec-
tive nodes, (gn) for some input x at time t, ensuring that error
is minimized but that the weights are only modified when their
receptive fields are appropriately relevant. Conventional imple-
mentations of this model fully attribute learning to this opti-
mization of the weights, either implying or explicitly requiring
receptive fields that are fixed in their broad shape (Poggio and
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FIGURE 1 | Diagrams of different basis function network models. (A)

Diagram of a conventional basis function network model, in which learning is
accomplished by incrementally updating the individual unit weights. (B)

Diagram of the LWPR model, which possesses the same structure as a basis
function network model, but in which both the weights and widths of the
individual units are incrementally adapted.

Bizzi, 2004). This fixedness provides both theoretical and compu-
tational advantages for learning; it provides a consistent structural
basis with which to approach novel tasks and it is more tractable
to optimize weights alone instead of both weights and receptive
fields’ shape. However, this may be a critical limitation when
trying to model human motor adaptation (Thoroughman and
Taylor, 2005).

Motivated by recent observations that human generalization
during motor learning is flexible (Thoroughman and Taylor,
2005), our study seeks to address the limitations of conventional
motor theory and puts forth an alternative model for motor adap-
tation that can accommodate these observations. In the context
of these psychophysical results, we test this alternative model
using a simplified, but analogous experimental design to deter-
mine the mechanism and nature of generalization in the model.
Our simulations generate new hypotheses that can be tested in
humans to see if they employ a similar strategy when adapting
their movements to novel environments.

FLEXIBILITY IN GENERALIZATION
Our study is motivated by the results of a human motor adap-
tation experiment in which participants were directed to make
horizontal reaching arm movements from a center starting posi-
tion to targets in 16 radial directions while grasping a robotic
manipulandum (Thoroughman and Taylor, 2005). While their
arm was occluded from view, starting and target positions, as well
as veridical cursor visual feedback, were provided via a projection
onto a horizontal surface above their arm. Subject movements
were made in the presence of viscous force fields, exerted on their
arm by the robot. In order to perform the movement task cor-
rectly, participants had to successfully estimate the forces required
to compensate for the ones they were experiencing through the
robot. These force fields varied in spatial complexity, in that the
forces were a function of the angle of movement multiplied by a
complexity constant. For a simple force field, the forces changed
slowly as a function of the movement angle; as the complexity
increased, the forces varied more rapidly as a function of the
movement angle, resulting in a more spatially dynamic force field
across the workspace.

After subjects adapted to these different force fields,
Thoroughman and Taylor (2005) fit the movement data to a state
space model that included a function that represented the amount
of generalization that was occurring across directions, i.e., how
much a movement in one direction affected the updates to move-
ment in all other directions. They observed that the amount of
generalization was inversely related to the level of spatial com-
plexity of the experienced force field. For a simple rotational
field, with low spatial complexity, generalization was high and
broad, extending across many directions. As field complexity
increased, generalization levels became lower and less broad, with
movement adaptation affecting a smaller range of directions.

This study demonstrated that under certain conditions, specif-
ically environments of varying spatial complexity, the amount of
generalization exhibited by humans and, presumably, the under-
lying neural structure that gives rise to generalization are indeed
flexible. They showed that neural network models with different
receptive field widths could achieve these differences in gener-
alization. In the context of the conventional model for motor
learning, this would imply that the receptive fields’ shapes, namely
their widths, are also flexible and are adapted in conjunction with
the weights. This would allow for the model to optimize not what
it is learning through the magnitude of the weights, but how it
is learning through the generalization afforded by the receptive
fields. Intuitively, this is a sensible strategy; while broad receptive
fields and generalization can make learning more efficient in situ-
ations where the environment to be learned is consistently simple,
the steeper slopes of narrower receptive fields allow for more
sensitivity to the dynamic changes that are present in more com-
plex environments. Lending credence to this theory are a number
of examples of neurons in the visual and motor control path-
ways that exhibit flexibility in their tuning parameters, including
preferred stimulus, slopes, and widths; we consider this physio-
logical evidence, and the biological plausibility of our theory, in
the Discussion.

Motivated by the 2005 study and neurophysiological evidence,
here we assess the viability of receptive field flexibility as a criti-
cal feature in motor adaptation, something that has not yet been
considered in the context of conventional learning models. We
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hypothesize that updating motor control theory to include this
flexibility will result in improved models of human motor learn-
ing. Our experiments seek to evaluate a computational model
with this structure, first to see if such a model generally exhibits a
similar inverse relationship between environment complexity and
generalization. Second, we want to analyze this model to identify
the inherent relationships between salient learning features that
facilitate these environmentally-dependent changes in generaliza-
tion. These relationships can be used to form hypotheses that can
be used to test for this structure in human motor studies.

LOCALLY WEIGHTED PROJECTION REGRESSION
We investigated several existing learning models as potential
frameworks for testing the relationship between basis function
width and generalization. For our computational studies, we
chose to use the Locally Weighted Projection Regression (LWPR)
algorithm developed by Vijayakumar et al. (2005) over other can-
didate models. LWPR was unique in its structure and possessed
all of the key features we sought in a model for our computation
studies, namely that: (1) LWPR is a monolayer radial basis func-
tion network that can model mappings between input and output
parameters, (2) LWPR learns incrementally via individual train-
ing data, and (3) LWPR exhibits flexibility in both the weights
and widths of its basis functions. Again, its straightforward neu-
ral network construction could be functionally relatable to neural
population behavior. A detailed description of LWPR is included
in the Supplementary Appendix.

Originally designed for robotics, LWPR uses a highly robust
learning algorithm that is well-equipped to handle large amounts
of repetitive and multi-dimensional data. The input is a tar-
get function presented as incremental training points that is
transformed via a single weighted basis function layer into the
predicted output (Figure 1B). The activations g, or receptive fields
of these basis functions, are Gaussian shaped, with their width
controlled by a distance metric parameter, D (Equation 3):

gn = exp
(−0.5(x − cn)

2Dn
)

(3)

where x is the input and cn is the center of the receptive field.
The activities of the receptive fields are linearly combined via a set
of weights to produce the predicted output. The basis function
g serves both to interpolate over the local input space, thereby
avoiding overfitting, and to generate a natural domain over
which individual adaptive steps affect the local and global output.
This feature necessitates that even while global performance may
improve and plateau over time, individual input–output training
data pairs will continue to cause fluctuations about a mean in the
weights at the local level (Supplementary Appendix).

Two types of error are calculated and used to update both
the weights and the widths of each receptive field: the indi-
vidual local error between the weighted output of each basis
function and the actual output, and the global error between
the overall model’s predicted output and the actual output. The
weights are optimized via a partial least squares regression analy-
sis along projections in several directions in the input space, while
the receptive field widths are updated using stochastic gradient
descent.

Receptive fields are added or pruned locally across the input
domain as needed during training to better capture the tar-
get function (Supplementary Appendix). The model adapts its
widths via a gradient descent of a cost function J (Vijayakumar
et al., 2005):

J = 1
∑M

i = 1 wi

M∑

i = 1

J1 + γ

N
J2 (4)

Where M is the number training points seen by this receptive
field, w is the Gaussian activation of that receptive field, N is
the dimensionality of the input domain, and γ is a tradeoff
parameter. This function has two terms. The first-term calcu-
lates a proxy for mean squared error with “leave-one-out cross
validation,” which avoids over-fitting to single trials. The divisor
uses an inverse covariance matrix (P = (XTWX)−1)−1 to effec-
tively calculate across training data without explicitly carrying
all experienced errors (Schaal and Atkeson, 1998). The second
term provides a penalty for inverse width such that receptive
field widths are not drive to infinitesimal size (Supplementary
Appendix).

There are minor implementation differences between the con-
ventional models and LWPR. In conventional basis function
networks, the population of all the weights is usually normal-
ized such that the sum of all the weights in effect is equal to 1,
so that the total contribution of all the nodes or neurons is 100
percent. Thus, the overall magnitude of the weighted prediction
of each node is due to the scale of the receptive field, or the max
firing rate in a neuronal context. On the contrary, in the design
of LWPR, the scale of the receptive fields is normalized instead,
and the magnitude comes from the weights. While the end result
of the linear combination is effectively the same, as a result, our
terminology conflicts with that found in the original LWPR arti-
cle. As a point of clarification, the tunings that we call receptive
fields the authors instead call “weights,” and the individual mul-
tipliers that we call weights the authors refer to as the individual
basis function “predictions,” which is not to be confused with the
overall model prediction Y (Equation 1). To be explicitly clear, we
will continue to refer to the receptive fields as such, and to what
the LWPR authors call “predictions” we will continue to refer to
as weights, because we are interested primarily in the progression
of the widths of the receptive fields, and not their scale.

While the neural network structure of LWPR is evident, appli-
cation of the model has almost exclusively been in robotic learn-
ing, especially in biologically inspired robotic control. LWPR has
been used as an effective algorithm for simulating the real-time
adaptability, coordination, and robustness of human motor con-
trol in representation of the workspace and goal-oriented tasks
such as reaching and grasping (Atkeson et al., 2000; Vijayakumar
et al., 2002; Bendahan and Gorce, 2006; Eskiizmirliler et al., 2006;
Hoffmann et al., 2007). Other studies compare LWPR perfor-
mance against other real-time learning models (Nguyen-Tuong
et al., 2008). However, few or no studies have directly applied
the LWPR system as a model for actual biological neural com-
putation to explain human behavior. Our experiments seek to
take the fundamental mechanisms by which LWPR is a success-
ful learning algorithm and make analogous hypotheses about
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real neural network features that could underlie observed human
motor behavior.

METHODS
MODIFICATIONS TO LWPR ALGORITHM
We made two major modifications to the original LWPR
MATLAB software, which was provided to us by Stefan Schaal
and the Computational Learning and Motor Control Laboratory
at the University of Southern California. First, our primary inter-
est was how the receptive fields in LWPR adapted their widths.
Allowing the LWPR model to add or prune units during training
would provide additional higher-order mechanisms for adapta-
tion beyond changes in receptive field widths and weights. To
focus study on receptive field shapes, we disabled the online addi-
tion and pruning of receptive fields during learning. Instead, the
locations of the receptive field centers were manually set by the
simulation to be uniformly distributed across a 2-dimensional
square input domain (Figure 2). The size of the domain to be cov-
ered and the density of the receptive fields were made adjustable
parameters. This modification allowed us to better monitor the
widths of the receptive fields during learning and how they
individually adapted to different environments.

Second, we disabled the effect of the transient multiplier on
updates to receptive field width. The purpose of the transient
multiplier is to ensure that a receptive field has seen a reliable
number of training points before updating its width. Because
we are using a controlled source of input training functions,
the transient multiplier is not required, and the receptive fields
were allowed to update their widths right away during learning.
Furthermore, we did not see any significant differences in final
performance levels or receptive field widths when the transient

multiplier was disabled. We detail these modifications in the
Supplementary Appendix.

SIMULATION DETAILS
We presented to the LWPR model target functions y that were
2-dimensional sine fields across the input domain x (Equation 5),
where the frequency m controlled the complexity of the field
(Figure 2).

y = sin(mx1) + sin(mx2) (5)

We used values of 1, 2, and 4 for m to simulate zero-mean 2-D
fields of relatively low, medium, and high spatial complexities.
Points were randomly selected without replacement from these
input fields and presented as training point inputs to the model.
This process was repeated as needed for more training points.
To ensure consistency and reproducibility, random number seeds
were reinitialized before each condition.

A population of 100 receptive fields was distributed on a
uniform 10 × 10 square grid across the 2-D input domain. All
receptive fields were initialized with the same width. Since the
receptive fields were 2-D and elliptical, the distance metric D had
the form of a 2 × 2 matrix. In our observations, the receptive
fields were generally circular with little elliptical inclination, so
the square root of the determinant of the D matrix was used as
a singular distance metric. Because the activation functions for
the receptive fields are Gaussian (Equation 2), there is no dis-
crete measure of their width, so for the purposes of this study,
we refer to a “radius” measure r, which is 1/v(D). The r for each
receptive field, their individual local prediction errors, and the
overall global prediction error were recorded at every training
point throughout learning.

FIGURE 2 | Experimental design of LWPR target functions and basis

function layout. (A) Examples of target function sine fields of varying spatial
complexities (m = 1, 2, and 4). (B) Distribution of 100 basis function

receptive fields, their centers, and their widths across the input domain.
(C) Example of a predicted function, the weighted sum of the basis
functions, after LWPR learning (shown for m = 2).

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 100 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marongelli and Thoroughman Flexible tunings in neural network models

PARAMETER ANALYSIS
In order to choose appropriate parameters for the model, we
assessed the performance of the model while systematically vary-
ing the initial values of the two most important parameters: the
distance metric D and the internal learning rate α. We tested a
range of values from 10 to 100 for D and a range of values from
1e-5 to 1e4 for α at each of the three levels of spatial complex-
ity m = 1, 2, and 4. For each condition, the magnitude of the
global error was fitted (using least squares methods) to an expo-
nential decay as a measure of performance over time (t) using
three parameters for scale, decay rate, and asymptote (k1, k2, and
k3 respectively; Equation 6).

epred = k1 · exp(−k2t) + k3 (6)

Characterizing the dependence of decay rate and asymptote on
D and α permitted exploration of an operational dynamic range
for these parameters and the assignment of parameters for subse-
quent modeling and more sophisticated analyses.

NO SWITCH CONDITION
Our first system analysis of the LWPR model was to observe
its behavior given stable, unchanging target functions. In this
condition, the input was training points derived from a sin-
gle target function (m = 1, 2, or 4) and the model was allowed
to learn this function alone until the widths of the receptive
fields became relatively stable. The progression of receptive field
widths throughout training was observed in detail, and compared
to other salient features during learning, including individual
receptive field prediction error, overall model prediction error,
and individual receptive field predictions (“weights”) to identify
correlative relationships that would influence how the recep-
tive fields adapt their widths. After learning, the distributions
of the receptive field widths were compared across spatial com-
plexities. These distributions were approximately normal and
were compared to each other using a t-test to test for signif-
icant differences in the distribution mean. To be clear, we are
not using these statistical analyses for conventional hypothesis
testing, but merely as a simple summary statistic to identify
differences in receptive field population widths under different
conditions.

SWITCH CONDITION
Finally, the other systems inspired analysis was to observe the
LWPR model’s behavior due to a step change in input. In
this condition, the model was first presented a target func-
tion of one spatial complexity (∼33,000 training points); after
learning this function, the input suddenly switched to a tar-
get function of a different spatial complexity (∼900,000 training
points). The widths of the receptive field populations before
and after the switch were assessed for trends in their adapta-
tion behavior both qualitatively and with an ANOVA test to
determine any differences between the various conditions. We
also fit the magnitude of global error to exponential decays
(Equation 6), one before and one after the switch, to assess
any differences in learning performance due to changes in
complexity.

RESULTS
PARAMETERIZATION
The distance metric D is the primary mechanism by which the
modified LWPR algorithm adapts, being the parameter that is
most flexible and incrementally optimized. This value must be
carefully chosen so as to avoid local minima when optimizing
receptive field widths. The internal learning rate α is a secondary
mechanism by which the model constrains adaptation of the indi-
vidual receptive fields. The parameter α never increases and is
reduced by half only when the model is learning too fast; in this
way it serves as a cap if changes in the model becomes too noisy.
Therefore we sought to optimize D first, and α second.

We found a dynamic range of initial D values between 1 and 35,
corresponding to an r-value range of 0.17–1; in this range, there is
a clear demarcation in performance under the different complex-
ity conditions. Fit decay rates and final error levels were averaged
across different α conditions to discern general trends due to ini-
tial D-values. Fit decay rates were inversely related to complexity,
while final error levels increased with complexity (Figure 3A),
demonstrating that the model was able to learn lower complexity
targets faster and better. Generally, decreasing the initial D-value
(i.e., increasing the initial receptive field width) decreased learn-
ing rates, with effects being strongest under higher complexities.
However, there was an optimal initial D-value for which the final
error levels were minimized in the highest complexity condition;
deviating from this value worsened performance in the high-
est complexity, while the other conditions were more robust to
larger initial receptive field widths (Figure 3A). This is likely due
to generalization (i.e., wider receptive fields) being more useful
in lower complexities and more detrimental in higher complex-
ities. We therefore chose an initial value of D near the middle
of the dynamic range that optimized final performance for all
conditions, D = 15 (r = 0.26).

For the observed dynamic range of D, we looked at effects of
increasing orders of magnitude of α on overall learning rate and
final error levels. We found the dynamic range of α to be α = 1.
In this range, the relative performance levels between target func-
tions of varying complexity were consistent with the initial D
observations. The α parameter appeared to have an upper thresh-
old of α = 1 above which final error levels increased slightly, but
otherwise had little effect, especially on error decay rate or rel-
ative performance between complexities (Figure 3B). However,
because a faster learning rate is theoretically more efficient and
α is usually updated to be made smaller, not larger, we erred
on the side of larger for the initial value, choosing one order of
magnitude just at or slightly above the threshold of acceptable
performance levels: α = 10. These values for D and α were used
hereinafter for all simulation experiments.

An example of temporal global error profiles for each com-
plexity condition and their fitted exponential decay functions for
our chosen initial values of D and α are shown in Figure 3C.
As discussed above, less complex functions generally learn faster
and to lower asymptotes of error than more complex functions.
While there are usually clear decays in error, we found that
global error can be very noisy, with large occasional spikes. These
error spikes usually occur when a training point falls in between
receptive fields, i.e., when a training point fails to activate any
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FIGURE 3 | Parameterization of LWPR initial values for learning

rate and receptive field width. (A) Effect of initial D-values on
overall error decay rate and final error for spatial complexities of
m = 1, 2, and 4. Larger initial receptive fields slow the rate of
learning, but an intermediate initial width yields optimal final error
levels. (B) Effect of initial α values on overall error decay rate and
final error for spatial complexities of m = 1, 2, and 4. There is

little effect on learning rate, but higher initial values of α worsens
final error levels. (C) Examples of temporal error profiles and their
exponential fits for each complexity condition, for initial α = 10 and
initial D = 15. For each condition, both the global error and
averaged local receptive field error is shown. Less complex
functions have generally higher decay rates and lower error
asymptotes than more complex functions.

basis function, and subsequently occurs more frequently when
receptive fields are narrower. For all of our quantitative analy-
ses, such as fitting an exponential decay to measure performance,
we use global error, which is a more accurate representation
of overall performance. However, in later figures regarding the
switch in function complexity, which uses much longer train-
ing durations than our parameterizations, we will use mov-
ing average windows of various sizes to provide clearer visual
assessments.

ERROR MAGNITUDE vs. CHANGES IN RECEPTIVE FIELD WIDTHS
We aimed to find a relationship between the updates to recep-
tive field width and other features of the learning process. While
we did not observe any trends due to either overall predic-
tion error or to the individual receptive field weights, there
was a clear inverse relationship between the magnitude of indi-
vidual receptive field error and the subsequent update to that
receptive field’s width (Figure 4). When individual errors were
large, the receptive fields in turn narrowed in width, presumably

to increase specificity to improve performance. However, when
errors were small, receptive fields did not maintain their cur-
rent widths but widened. This effect is stronger in early learning
than in late learning, exhibiting slopes that are much steeper
early in learning that gradually flatten over time and into late
learning. This shows that the model exhibits the most dra-
matic incremental learning early on, but the effects of indi-
vidual training points diminish over time as prior experience
is weighted more heavily and receptive fields converge upon
stable widths. Still, the overall relationship remains consistent
throughout the duration of learning, suggesting that the model
is predisposed to increase generalization whenever it is affordable
to do so.

RECEPTIVE FIELD WIDTH DISTRIBUTIONS
After learning functions of low, medium, and high spatial com-
plexity, histograms of the receptive field radii for each con-
dition were computed and compared (Figure 5). Although all
receptive fields were initialized to the same width, the distribution
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FIGURE 4 | Relationship between experienced error and receptive field

adaptation during learning. The updates to receptive field radii plotted
against the magnitude of local experienced error, for spatial complexities of
m = 1, 2, and 4, during the first ∼10,000 training points of learning. There is

an inverse relationship that shows receptive field narrowing when error is
large and broadening with error is small. The magnitude of this effect
diminishes over time from early to late learning, but its trend remains
consistent.

FIGURE 5 | Distribution of receptive field widths after learning

functions of different spatial complexities. Histograms showing the
distribution of receptive field radii after learning target functions of varying
spatial complexity. Receptive fields grow significantly narrower as spatial
complexity increases.

of adapted receptive field widths, after learning, varied with
the complexity of the target function. These distributions were
approximately normal in shape, and their means were inversely
related to spatial complexity: for low, medium, and high com-
plexities, the mean widths were 0.21, 0.17, and 0.13, respectively.
T-tests showed consistent differences between these distribu-
tion means (p = 3.017e-17 between m = 1 and 2, p = 3.92e-26
between m = 2 and 4, and p = 1.56e-34 between m = 1 and 4).
Low spatial complexity afforded wider receptive fields, or more
generalization, while high spatial complexity induced narrower
receptive fields, or less generalization. The data shown is for the
chosen initial values for α and D, but we noted that this inverse

relationship between adapted receptive field radii and spatial
complexity was consistent across many initial values of α and D.

Here we trained our LWPR models with sine fields to most
directly identify the dependence on model output and receptive
field structure on spatial complexity. We also trained an LWPR
model on the exact force fields used in the 2005 psychophysical
study (Thoroughman and Taylor, 2005) and replicated the finding
that receptive field widths narrow with increased spatial frequency
(Supplemental Appendix).

SWITCHING SPATIAL COMPLEXITY
So far, these results demonstrate some of the inherent relation-
ships between function complexity, error, and receptive field
widths. We now aim to assess the types of behaviors these
relationships induce in the LWPR model. To do this, we exam-
ine model response when the function complexity is altered
mid-training. First, fitted exponential error decays rates were
always smaller after the switch. However, fitted asymptotes after
the switch were appropriately improved or worsened depend-
ing on the change in relative complexity before and after the
switch (Figure 6, Table 1). Switching to a more complex func-
tion resulted in a higher error asymptote, while switching to a less
complex function lowered the error asymptote.

Based on the previously identified relationship between local
error magnitude and updates to receptive field widths, we pre-
dicted that a step change in input function should initially induce
a narrowing in receptive fields, due to the larger errors that would
be associated with learning a new function. As the weights read-
just and the LWPR model learns the new function, it should
eventually adapt its receptive field widths to more appropriate
values. While there was a range of adaptation behaviors for indi-
vidual receptive fields due to local spatial dynamics, the overall
observed mean behaviors were consistent with our hypothesis. In
all conditions, shortly after the switch (∼25,000 training points),
there was on an average a decrease in receptive field widths
compared to just before the switch (Figure 7).
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FIGURE 6 | Temporal error profiles during a switch in spatial complexity.

Global local receptive field error for each switch condition is shown, sorted by
initial function complexity. To improve readability, the error has been averaged

using moving window of varying sizes. The final error asymptotes after the
switch are appropriately improved or worsened depending on the relative
difference in function complexity before and after the switch.

Table 1 | Exponential decay fits to global error magnitude before and

after a switch in function complexity.

Field 1 Field 2

k2: Decay k3: Asymptote k2: Decay k3: Asymptote

m = 1 2.30E-03 0.084
m = 2 2.24E-05 0.241

m = 4 5.65E-05 0.574

m = 2 1.63E-04 0.257
m = 4 5.18E-05 0.569

m = 1 1.44E-05 0.176

m = 4 2.17E-04 0.620
m = 1 1.26E-05 0.372

m = 2 1.65E-05 0.395

However, after the model continued learning (∼900,000 train-
ing points), the receptive fields adapted to a width more appro-
priate for the second function (Figure 7). When the switch was
from a less complex to a more complex function, the receptive
fields stayed narrow compared to just before the switch. However,
when the switch was from a more to less complex function, the
receptive fields eventually grew wider, despite having narrowed
earlier just after the switch. We divided the data into two groups,

more-to-less complex and less-to-more complex, each with three
samples. ANOVA tests of the mean receptive field widths showed
a more significant difference between the two groups in the
long-term (p = 0.029) than in the short-term (p = 0.049).

DISCUSSION
The results of these LWPR simulations outline a succession of
observations. First, this radial basis function network with both
adaptable receptive field widths and weights is capable of learn-
ing functions of varying spatial complexities with a distinct,
consistent strategy, in which larger errors induce narrowing of
receptive fields, while smaller errors lead to widening of recep-
tive fields. This relationship between local error magnitude and
updates to receptive field widths becomes less pronounced as
training progresses, but remains present throughout the duration
of learning.

Secondly, this relationship with experienced error by which
the widths of the receptive fields are adapted lends to the model
inherently different means for learning functions of different
complexities. Simpler functions tend to be easier to learn than
complex functions, eliciting smaller errors. As a result, when
learning simpler functions, the LWPR model ends up with rela-
tively wide receptive fields. On the other hand, complex functions
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FIGURE 7 | Progression of receptive field widths after a switch in

spatial complexity. Progression of mean receptive field radii after
switching the target function to a new spatial complexity, relative to the
mean receptive field radii just before the switch. Short-term effects
(∼25,000 training points) are highlighted, while long-term effects
(∼900,000 training points) span the remainder of the training period.

Conditions are grouped by color based on whether the new target
function was more or less complex than the old target function. All
conditions demonstrate a narrowing in receptive fields immediately after
the switch. However, if the new function is less complex, receptive
fields rebroaden, while they continue to narrow if the new function is
more complex.

necessitated narrower, more specific receptive fields by the model.
Together, these results illustrate the innate advantage of being
able to generalize more under simpler spatial constraints when
such broadness is economically affordable, and being able to
increase the specificity of the model’s underlying structure when
demanded by a more complex, spatially dynamic environment.

Finally, the immediate decrease in receptive field widths fol-
lowing any switch in environmental complexity is a novel behav-
ior that appears inherent to a model of this form. This unique
observation is clearly an effect of the aforementioned relationship
between experienced local error and updates to receptive field
width; the initial spike in error caused by a sudden switch in task
would intuitively induce a narrowing of receptive fields, which
can only begin to approach more task-appropriate widths once
performance has begun to stabilize. When conditions become
more complex, long term adaptation of receptive field widths
yield consistently narrower widths compared to before the switch.
Conversely, when conditions become less complex, long term
adaptation produces wider receptive fields. There is a clear qual-
itative difference in the overall trend of receptive field changes
depending on the relative shift in complexity, indicating that the
model behaves very differently between learning a new field that
is more or less complex.

While there is a clear difference in behavior between switching
to a more or less complex field, these changes are small com-
pared to the mean receptive field widths (Figure 5). Furthermore,
after switching to the new complexity, the receptive field widths
never reach the same mean value that was associated with that
complexity during the no-switch condition (Figure 5). In our

results, when we observed that the slope of the relationship
between error magnitude and receptive field updates decreased
from early to late learning (Figure 4), we alluded to the fact that,
like humans, LWPR is influenced by past experience. Indeed, the
LWPR has a built in “forgetting factor” that controls how biased
the learning is toward past experience. In addition, the implemen-
tation of the LWPR model ensures that the weights and widths
of the receptive fields are converged upon gradually. The learn-
ing rate α that influences the magnitude of the updates is never
increased but is reduced if changes are too large. Furthermore,
projections are never removed and only added to the weight cal-
culations if they prove to decrease error by a certain amount.
These measures and the fact that receptive field properties are
only updated if locally activated leads to very small updates
that prevents oscillations in these values on the global timescale
(Supplementary Appendix).

Thoroughman and Taylor’s observation that human spa-
tial generalization is flexible (Thoroughman and Taylor, 2005)
highlights an aspect of current motor control theory that is
incomplete. From their study, the psychophysical dependence of
generalization on environmental complexity provided a frame-
work by which we could similarly test the viability of LWPR as
an alternative model for motor adaptation. By analyzing LWPR
using target functions of varying spatial complexity, we have gen-
erated model results that can be directly tested as hypotheses in
human motor adaptation studies. Thoroughman and Shadmehr
demonstrated that humans similarly employ Gaussian shaped
motor primitives tuned to position and velocity when estimat-
ing forces (Thoroughman and Shadmehr, 2000). If we observe
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in human studies that generalization narrows immediately after
a switch in environment, regardless of the relative spatial com-
plexity of the environment before and after the switch, followed
by a more appropriate shift in generalization widths after longer-
term learning, it would suggest that humans do employ a similar
algorithm to LWPR when computing estimated forces for the
task. This would first require the design of an experimental
paradigm that could measure incremental changes in human
motor generalization.

Since we are assuming such learning would take place in a rel-
atively short period of time, it is a safe and practical assumption
that in neurophysiology, the synaptic weights would generally
not be binary (off and on), which would translate to having
neural connections being completely newly forged or destroyed.
Therefore, that rules out the possibility that these same end results
could be computationally achieved by using a much larger pop-
ulation of receptive fields that have different widths but are fixed
in size. Incremental optimization of the weights in this scenario
would result in the weights of unfavorably sized receptive fields
to completely drop out, i.e., equaling zero, so learning would
otherwise have to somehow occur via a manual switch between
receptive fields of different widths, which is not neurologically
likely in this kind of short timescale learning.

Although LWPR advances the flexibility of model adapta-
tion, it retains qualities of radial basis function network in that
both the overall estimate (Equation 1) and the update of weights
(Equation 2) linearly depend on activation. The activations in
each instance, when used in motor control, are driven by the
input space of trajectory kinematics. Consider a first movement
A, after which weights are updated, followed by a second move-
ment B, When the model generates a movement as updated by a
single trial A, the substitution of Equation 2 into Equation 1 gen-
erates a term gn(xa)·gn(xb). The change in prediction after a single
trial therefore depends on the dot product of all nodes’ activity in
movement A into all nodes’ activity in movement B. As derived by
Thoroughman and Taylor (2005), since the dependence of these
activities constitute the tuning curve, the transfer of learning from
movement A to movement B reveals the narrowness or width
of the entire population of the underlying tuning. This algebraic
finding suggests that we can seek behavioral analogs to the tuning
changes in Figure 7 by measuring trial-by-trial learning transfer
immediately, then eventually, following a switch in environmental
complexity.

These results are especially appealing because it could have
direct analogous applicability to neurophysiology. First, many
neurons are tuned to position and/or velocity: in the cere-
bellum (Stone and Lisberger, 1990a; Coltz et al., 1999) and
premotor (Johnson et al., 1999) and primary motor cortex
(Georgopoulos et al., 1992; Schwartz, 1992, 1993; Ashe and
Georgopoulos, 1994; Johnson et al., 1999; Moran and Schwartz,
1999; Paninski et al., 2004; Wang et al., 2007); these tunings are
usually cosine or Gaussian shaped in their selectivity (Schwartz,
1993; Moran and Schwartz, 1999; Wang et al., 2007). These neu-
rons collectively combine as a population similar to the conven-
tional model to produce fairly accurate representations of motor
output parameters (Georgopoulos et al., 1988, 1993; Schwartz,
1992, 1993; Moran and Schwartz, 1999). Furthermore, while a

relationship between plasticity in these tuning curves and spatial
generalization has never been explicitly addressed, there are sev-
eral examples in literature of flexible neuronal tunings that corre-
late with improved accuracy and discriminability. These observa-
tions of flexible tunings have been mostly in visual and motor cor-
tex, and include shifts in preferred direction (Kohn and Movshon,
2004; Ghisovan et al., 2008) and tuning curve slopes (Muller et al.,
1999; Gandolfo et al., 2000; Schoups et al., 2001; Paz and Vaadia,
2004; Krekelberg et al., 2005). The authors do suggest that these
changes in tuning slopes could be attributed to changes in tun-
ing curve widths. One study that specifically investigated tuning
curve widths in macaque MT found a significant trend of nar-
rowing tuning curves during visuomotor adaptation (Krekelberg
et al., 2005). These examples suggest that flexible motor bases
are not only possible, but likely. In particular, Purkinje cells have
been identified as potential neural analogs for the basis nodes in
this model (Thoroughman and Shadmehr, 2000). These cells are
located in the cerebellum, which has been recognized as a key
brain area in motor coordination and adaptation processes (Hore
and Flament, 1988; Baizer et al., 1999; Maschke et al., 2004; Smith
and Shadmehr, 2005; Rabe et al., 2009). Purkinje cells also have
broadly tuned receptive fields that respond to movement param-
eters (Mano and Yamamoto, 1980; Marple-Horvat, 1990; Stone
and Lisberger, 1990a; Coltz et al., 1999) and receive error signals
via climbing fibers (Stone and Lisberger, 1990b; Kitazawa et al.,
1998), which makes them feasible candidates for basis functions
in an LWPR-like motor learning model.

The results of the LWPR experiments appear to be inherent
to its unique structure in which both the widths and weights
of receptive fields are incrementally and concurrently adaptable.
Flexible receptive fields are also consistent with physiological
observations of neuronal tuning plasticity. Conventional fixed
radial basis function networks cannot accommodate these find-
ings with fixed basis functions. Even other basis function models
that have mechanisms for adjusting both their weights and the
shape of their receptive fields, such as Gaussian processes, are
at a disadvantage because they cannot optimize both simultane-
ously (Rasmussen and Williams, 2006), like LWPR. In this way,
LWPR stands out as a particularly viable new model for motor
adaptation.

This study is an initial step in updating motor theory to
better understand and represent how humans adapt their move-
ments to novel tasks and environments. Decoding this process can
elucidate human learning and motor control overall in normal
subjects, leading to insights about the underlying neural processes
that perform the necessary computations for motor adaptation,
as well as suggest new roles for neurons throughout the brain that
have been shown to exhibit flexible activity during learning.
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