
HYPOTHESIS AND THEORY ARTICLE
published: 23        August 2013

doi: 10.3389/fncom.2013.00117

The situated HKB model: how sensorimotor spatial
coupling can alter oscillatory brain dynamics
Miguel Aguilera 1*, Manuel G. Bedia1, Bruno A. Santos2,3 and Xabier E. Barandiaran 4

1 Department of Computer Science and Engineering Systems, University of Zaragoza, Zaragoza, Spain
2 Department of Informatics, CCNR, University of Sussex, Brighton, UK
3 Laboratory of Intelligent Systems, Cefet-MG, Belo Horizonte, Brazil
4 Department of Philosophy, IAS-Research Centre for Life, Mind and Society, University School of Social Work, UPV/EHU University of the Basque Country, San

Sebastián, Spain

Edited by:

Rava A. Da Silveira, Ecole Normale
Supérieure, France

Reviewed by:

Tatyana Sharpee, Salk Institute for
Biological Studies, USA
Emili Balaguer-Ballester,
Bournemouth University, UK

*Correspondence:

Miguel Aguilera, Departamento de
Informática e Ingeniería de
Sistemas, Universidad de Zaragoza,
Edificio Ada Byron, C/ María de
Luna, 1, 50018 Zaragoza, Spain
e-mail: miguel.academic@
maguilera.net

Despite the increase of both dynamic and embodied/situated approaches in cognitive
science, there is still little research on how coordination dynamics under a closed
sensorimotor loop might induce qualitatively different patterns of neural oscillations
compared to those found in isolated systems. We take as a departure point the
Haken-Kelso-Bunz (HKB) model, a generic model for dynamic coordination between two
oscillatory components, which has proven useful for a vast range of applications in
cognitive science and whose dynamical properties are well understood. In order to explore
the properties of this model under closed sensorimotor conditions we present what we
call the situated HKB model: a robotic model that performs a gradient climbing task and
whose “brain” is modeled by the HKB equation. We solve the differential equations that
define the agent-environment coupling for increasing values of the agent’s sensitivity
(sensor gain), finding different behavioral strategies. These results are compared with two
different models: a decoupled HKB with no sensory input and a passively-coupled HKB
that is also decoupled but receives a structured input generated by a situated agent. We
can precisely quantify and qualitatively describe how the properties of the system, when
studied in coupled conditions, radically change in a manner that cannot be deduced from
the decoupled HKB models alone. We also present the notion of neurodynamic signature
as the dynamic pattern that correlates with a specific behavior and we show how only a
situated agent can display this signature compared to an agent that simply receives the
exact same sensory input. To our knowledge, this is the first analytical solution of the HKB
equation in a sensorimotor loop and qualitative and quantitative analytic comparison of
spatially coupled vs. decoupled oscillatory controllers. Finally, we discuss the limitations
and possible generalization of our model to contemporary neuroscience and philosophy of
mind.

Keywords: HKB model, situated hkb model, embodied cognition, sensorimotor coupling, coordination dynamics,

dynamical analysis, neurodynamics

1. DYNAMICISM AND SITUATEDNESS IN COGNITIVE
(NEURO)SCIENCE

Cognitive science (and cognitive neuroscience in particular) is
witnessing an increasing success of dynamical systems models,
often displacing computational and representational conceptions
of cognitive functioning. This change is not new, it can be traced
back to early cybernetics (Ashby, 1952; Walter, 1963; Powers,
1973), neuroscience (Holst, 1973) phenomenology (Merleau-
Ponty, 1942), and pragmatism (Dewey, 1896, 1922). But it was
not until the 1990’s that a strong paradigmatic shift began to
take place in the fields of autonomous robotics (Brooks, 1991),
adaptive behavior (Beer, 1990, 1997), coordination dynamics
(Kelso, 1995), neuroscience (Skarda and Freeman, 1987), devel-
opmental psychology (Thelen and Smith, 1994), and philoso-
phy of mind (Port and Gelder, 1995; Clark, 1997). Dynamicist
approaches have had two central contributions: (a) that cognitive

mechanisms (neural or otherwise) could be better effectively
modeled and understood in terms of dynamical systems (Haken,
1978; Kelso, 1995; Freeman, 2001) instead of symbolic represen-
tational algorithms (e.g., Fodor, 1983; Pinker, 1997; Carruthers,
2006) and (b) that cognitive behavior could emerge out of recur-
rent sensorimotor loops in a self-organized manner, without the
need for explicit encoding and planning on the side of the agent.
And yet the relationship between both contributions remains rel-
atively under-explored: how does the self-organization of behav-
ior change the dynamical properties of brains? What is lost when
we study brain dynamics in isolation from the sensorimotor loops
they are naturally embedded in?

Some of the latest progress at both mechanistic (neurody-
namic) and behavioral levels of dynamic modeling is related
to oscillatory dynamics. Interactions between oscillatory com-
ponents (neurons, brain regions, limbs or humans interacting
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with each other) are studied in terms of synchronization and
phase-difference at various scales where macroscopic variables
provide indexes of emergent collective behavior (Strogatz, 2004;
Buzsaki, 2006). Oscillations are ubiquitous in nature, from plan-
etary motion to circadian rhythms (Pittendrigh, 1960), from
predator-prey populations (Lotka, 1920) to chemical dynamics
(Kuramoto, 1984). Oscillatory activity is also present at dif-
ferent levels of the nervous system (Freeman, 2001). At the
individual neural level, neurons undergo cyclic alterations on
their membrane potential following different dynamical regimes
depending on the cell properties (Izhikevich, 2006). At higher lev-
els, global oscillations are observed as a collective phenomenon
generated by groups of neural cells that fire synchronously
[entrained by pacemaker cells or as a result of recurrent network
activity with inhibitory-excitatory connections (Buzsaki, 2006)].
Different aspects of large-scale brain oscillatory activity (e.g., self-
organization of emergent patterns, synchronization and oscilla-
tory rhythms) have become a common explanatory resource in
behavioral and cognitive neuroscience. Some of the phenom-
ena that have gained explanatory benefit from this approach
include the binding of the different perceived features of an object
(Phillips and Singer, 1997), the representation of position infor-
mation in navigation tasks (O’Keefe and Recce, 1993), attention
(Deco and Thiele, 2009), memory (Jensen et al., 2007), and con-
scious experience (Crick and Koch, 1990; Engel et al., 1999; Varela
et al., 2001).

Despite the significant progress recently achieved by investi-
gating oscillatory dynamics in cognitive neuroscience, existing
theoretical frameworks and models are mostly developed with-
out taking into account sensorimotor dynamics and, even appear
limited in the establishment of oscillatory correlations after a
given stimulus onset. Computational models are generally built
without considering the body and the environment and often
assuming a representational theory of brain function (that is, they
assume that the main job of the brain is to create a representation
or model of the environment, and focus on neuronal mecha-
nisms capable of supporting the processing of such a model). As a
result, the focus of oscillatory brain dynamics is often centered on
those aspects of oscillatory activity that might carry information
within the brain, without considering the coupled brain-body-
environment dynamics. This is even true for non-representational
approaches to cognition that acknowledge the theoretical rele-
vance of situated cognition but conduct most of their studies in
search for cognitive correlates in oscillatory brain activity leav-
ing aside the potential effects of the sensorimotor coupling (e.g.,
Skarda and Freeman, 1987; Varela et al., 2001).

Sensorimotor coordination implies more than the state-
ment that sensory input will, through its influence on brain
oscillations, create an action that, in turn, will produce a
change that leads to a new perceptual state. The central claim
of situated approaches to cognitive behavior is that the agent-
environment coupling shapes brain dynamics in a manner
that is essential to behavioral or cognitive functionality (Steels,
1990; Chiel and Beer, 1997; Clark, 1997). In other words,
macroscopic functional behavior (e.g., intentional grasping or
perception) emerges from microscopic sensorimotor dynam-
ics (e.g., proprioceptive and visual feedback in grasping or

saccadic movements in visual perception). Thus, cognitive
behavior is not the result of a linear computational sequence
involving sensation→perceptive-categorization→planning→
action-selection→motor-execution, but the result of recurrent
sensorimotor and brain oscillatory coordination at multiple
scales. The central role that sensorimotor dynamics play in
cognitive phenomenology has been recently highlighted by
Sensorimotor Contingency Theory (O’Regan and Noë, 2001),
defending that what is constitutive of perceptual awareness (and,
it could be argued, other cognitive states) is not a specific internal
state of an agent, but the structure of sensorimotor contingencies.
To perceive is to act in a specific manner that brings forth the
structure of sensory changes in relation to the activity of the
agent. To see or to perceive is something that is done and lies on
the very sensorimotor coupled dynamics of an agent.

Filling the gap between the study of brain oscillatory activ-
ity and the situated sensorimotor dynamics is essential if we
want to understand the nature of cognition. However, despite
the repeated emphasis on the importance of sensorimotor cou-
pling for neurodynamic approaches 1 (Kelso, 1995; Freeman,
2001; Dreyfus, 2007; Chemero, 2009), there are very few exam-
ples of these types of models that exploit sensorimotor coupling
and almost none for oscillatory models (some recent exceptions
include Moioli et al., 2010; Santos et al., 2011). Current under-
standing of brain oscillatory dynamics is limited to “passive”
conditions. The dynamical properties of oscillatory networks
(even when studied within the context of behavioral or cognitive
neuroscience, see Strogatz, 2004) are deduced from mathematical
and computational models that have constant or no input at all,
and the effect of sensorimotor or situated dynamics on the oscilla-
tory properties of such networks is rarely considered. The goal of
this paper is to make a theoretical contribution in the direction of
explicitly quantifying the difference between dynamics that result
from isolated vs. situated oscillatory controllers, and those that
result from actively vs. passively coupled systems.

We have chosen the Haken-Kelso-Bunz (HKB) model as a
paradigmatic example of oscillatory dynamics and behavior to
address these questions. There are a number of good reasons to
choose the HKB model. On the one hand the HKB model is sim-
ple enough to be treated analytically, on the other hand it has been
used both to model behavioral phenomena and to model brain
dynamics (see next section for details). Finally, to our knowl-
edge, no variation of the HKB model exists that has used it as
a controller of a sensorimotor system and no analytic study exists
of a comparison between the dynamics of the HKB studied in
isolation (with a parametric analysis) and its dynamics under sen-
sorimotor loop conditions (with few exceptions as, for instance,
Kelso et al., 2009).

The structure of the paper is as follows: (1) first we intro-
duce the well known HKB model and the coordination dynamics
paradigm; (2) next, we characterize the notion of dynamically
coupled and spatially situated system and present a novel exten-
sion of the HKB model with sensorimotor embodiment that we

1By neurodynamic approaches we refer to dynamical system approaches to
the understanding of neural activity (Gelder, 1998; Freeman, 2001; Buzsaki,
2006, etc.).
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call the situated HKB model; (3) then, we analytically solve a par-
ticular case of the situated HKB model performing a gradient
climbing task in a 2D environment. Later, (4) we compare the
obtained dynamics of the coupled system with the dynamics of
a decoupled HKB and with a passively-coupled HKB model for
an equivalent parametric analysis. Qualitative changes between
the eigenvalues describing the three HKB-system dynamics will
be identified, as well as experimental measures characterizing the
transformation of the complete phase space of the agent pro-
duced by sensorimotor coupling. Finally, (5) we discuss some
implications for the study of oscillatory brain dynamics.

2. THE HKB MODEL AND THE “COORDINATION DYNAMICS”
PARADIGM

One of the most important current conceptual and modeling
frameworks that might integrate oscillatory dynamics and senso-
rimotor coupling is Scott Kelso’s coordination dynamics paradigm
(Kelso, 1995) and the different variations of the HKB model
(Haken et al., 1985) that have been used to study coordination
phenomena. Coordination dynamics is a mathematical and con-
ceptual framework used to investigate coordinated patterns in
brain dynamics and behavior. It was proposed and developed
by Kelso (1995), and is based on Haken’s work on synergetics
(Haken, 1978). It combines experiments and formal theoretical
models to study how the components of a system interact and
produce coherent coordination patterns.

The HKB model has been the driving example for the coor-
dination dynamics paradigm, describing the behavior of two
non-linearly coupled oscillators. The model was originally formu-
lated in 1985 to explain experimental observations in the relative
phase dynamics of bimanual coordination (Haken et al., 1985)
but it has been shown to capture the coordination dynamics
of different behavioral (Kelso, 1995), neural (Jirsa et al., 1994),
and social (Oullier and Kelso, 2009) phenomena as well. Using
the language of synergetics (order parameters, control param-
eters, instability, etc., see Haken, 1978), the HKB describes
a simple non-linearly coupled dynamical system that captures
the self-organized behavior of two generic coordinated nodes
or units (Fuchs et al., 1995). More specifically, the HKB model
was conceived to provide insights about: (1) the formation of
ordered states of coordination; (2) the multistability of these
states; and (3) the conditions that give rise to switching among
coordinative states (Kelso, 1995). Moreover, the HKB model has
been proven to describe fundamental features of self-organization
such as multistability, phase transitions and hysteresis (Kelso,
1995).

In this paper we will use the “extended HKB” equation (Kelso
et al., 1990),2 in which a system composed of two coupled oscilla-
tors is reduced to a single equation where the main variable is the
relative phase between the two oscillators, and whose dynamics

2We shall hereafter use the terms “HKB model” or “HKB system” to refer
to the “extended HKB model” (Kelso et al., 1990) rather than the original
(and simpler) HKB model (Haken et al., 1985). The reason for this is that
we are further going to distinguish situated, decoupled and passively-coupled
versions of the extended HKB model and names would become far too long if
referred to as, for example, “passively-coupled extended HKB”.

are shaped by the difference between the natural frequency of the
oscillators and their coupling strength:

ϕ̇ = �ω − a · sin(ϕ) − 2b · sin(2ϕ) (1)

The relative phase or phase difference, ϕ, represents the order
parameter or collective variable that emerges from lower-level
interactions of the two coupled oscillators, a and b are the cou-
pling coefficients between the two oscillators, and �ω is the
difference between their intrinsic frequencies. Despite its sim-
plicity, this equation captures a wide range of self-organized
phenomena. Different combinations of the control parameters a,
b (or rather b/a) and �ω give rise to different collective behav-
iors. For example, when shifting the value of �ω while the values
of a and b are held fixed, the system experiences phase transitions
between three different modes of behavior: monostable, bistable
and metastable (Figure 1).

The HKB has been used to model different kinds of coordina-
tion phenomena but rarely used as a controller of an embodied
agent. To be fair to the HKB model, that was never the intent
of the original authors. The HKB model (and its extended ver-
sion) was rather conceived to describe the behavioral dynamics at
the macroscopic level (i.e., ϕ representing the collective variable
of phase difference between two “behaving” oscillatory compo-
nents, like fingers, oscillating armchairs in social coordination,
etc.). It can be said that the HKB model was meant to capture
the global agent-environment dynamics, not any explicit behav-
ior generating mechanism that is coupled through sensors and
motors to an environment. In addition, the HKB has also been
used to model inter-areal coordination in the cortex (Tognoli
and Kelso, 2009), ignoring the potential influence of the cou-
pling between brain and environment. In sum, previous uses of
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FIGURE 1 | Phase space of the extended HKB equation for fixed values

of the coupling coefficients a and b. The system exhibits three different
kinds of phase space depending on the control parameter �ω, showing
multistable (black), monostable (dark gray) or metastable (light gray)
dynamics. The filled and empty dots represent respectively the attractors
and repellers of the system for different values of �ω. In this paper, the
parameters used are choosen to ensure that the monostable region is the
only one that is stable for the agent.
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the HKB model involve either full behavioral phenomena or “iso-
lated” brain dynamics. However, there is a theoretical modeling
gap that remains under-explored: the HKB as a controller of an
agent that could modulate the control parameter (influenced by
sensory input) through the behavior it generates when embod-
ied in a robot. By filling in this gap we can address the following
questions: How does the HKB model change its properties when
situated (i.e., under closed-loop sensorimotor coupling in a spa-
cial environment)? Is there any qualitative change that comes out
of this coupling? Can the behavioral properties of an oscillatory
“brain”, or controller, be deduced from the study of the brain in
isolation or under constant input? Or even from variation of the
input corresponding to those found in the coupled system? In the
next section, we will try to provide answers to these questions
by modeling a “situated HKB” and analytically solving the cou-
pled agent-environment system and comparing it with isolated
and passively coupled conditions.

3. SITUATED HKB MODEL
3.1. SENSORIMOTOR EMBODIMENT OF THE HKB EQUATION
In this section we describe what we have called the situated HKB
system: a robotic model where the HKB equation describes the
“neural system” of the agent which is embodied with sensors and
motors and, in turn, situated in an environment. The agent has
circular body of radius R with two diametrically opposed motors
(see Figure 2A), that can move forward or backwards with dif-
ferent velocities in a 2D arena, and it has only one sensor that
provides an input to the HKB neural controller.

Thereby, the HKB equation provides the macroscopic descrip-
tion of the dynamics of the two coupled oscillators. It allows us
to describe the behavior of the situated HKB system in the fol-
lowing manner: (1) the agent has a “brain” where two regions
(e.g., sensory and motor cortex) oscillate with their correspond-
ing natural or intrinsic frequency (the difference between these
frequencies is expressed by �ω0); (2) when a sensory input I
modifies the natural frequency of one of the oscillators (e.g., sen-
sory cortex), the frequency difference term changes;3 (3) since the
frequency difference term is the control parameter of the phase
difference, ϕ, we can consider that the situated HKB agent mod-
ulates its control parameter through sensorimotor contingencies:
i.e., through the sensory changes that result from motor actions
and the displacements they generate.
The dynamics of our agent is driven by:

ϕ̇ = (�ω0 + I) − a · sin(ϕ) − 2b · sin(2ϕ) (2)

It is assumed that the agent is situated in a two-dimensional
environment where a radial gradient of a stimulus η is present
with its peak on the origin of coordinates (one can interpret this
environment in different manners, e.g., as a light source or a
chemical gradient that diffuses from its center symmetrically in
all directions).

3The term �ω of the original extended HKB equation has been substituted
by the term �ω0 + I, where I is the sensory input term whose effect is mathe-
matically equivalent to changing the natural frequency of one of the oscillators
(see Figure 2A).

A

C

B

FIGURE 2 | Situated HKB agent. (A) Structure of the agent, consisting in a
sensor, two oscillatory controllers, and two motors. (B) Sensorimotor loop
of the agent. (C) Representation of the agent interacting with its
environment. The position and orientation of the agent respect to the
center of the gradient are represented through the variables d and α.

With regard to the “sensory system” of the model, since the
agent lives in a world of gradients, we designed its sensor not to
perceive the absolute amount of stimulus present in the environ-
ment but its change. Thus, the agent is sensitive to changes in
η mediated by a sensitivity factor s that characterizes the sensor
gain:

I = η̇ · s

With respect to the “motor system” of the model, we define the
activations of the motors as functions of the state of the controller,

Mr(ϕ) = m · cos(ϕ)

Ml(ϕ) = m · cos(ϕ + c)

where Mr and Ml represent the right and left motors, respectively,
m is a speed parameter, and c is a bias parameter that breaks the
symmetry between the right and left motors.

In this way, the brain-body-environment coupling can be
understood as a process that repeats a cycled-course of four
stages involving successive transformations of I(t), �ω(t), ϕ(t),
M(ϕ(t)) and back to I(t) (see Figure 2B). To fully describe the
movement of the agent (see Appendix 6 for a complete deriva-
tion of the agent’s description) we include an additional variable
describing the angle α of the agent’s orientation relative to the
peak of the gradient (see Figure 2C).
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In Appendix A, the reader can find detailed information on
the mathematical assumptions that we have considered for sim-
plicity. As a direct result of assuming radial symmetry in the
problem: (1) we can use a polar coordinates system (distance d
of the agent to the center of the gradient, and angle α of ori-
entation of the agent relative to the peak of the gradient) as the
reference frame, and (2) it is considered that the variation of the
gradient in terms of polar coordinates does not depend on the
angle, η̇(d,α) = η̇(d).

The process can be characterized as follows : (1) with the
movement of the agent in the environment (variation of d) the
sensor receives a new input I, (2) the input influences the firing
rate of the oscillators, changing the frequency difference between
the HKB nodes (variation of �ω); (3) these frequency differ-
ence translates to a change in the phase difference between the
oscillators (variation of ϕ) and, finally, (4) the new value of the
phase difference changes the state of the motors [variation of
M(ϕ)] moving the robot (variation of α) and starting the cycle
again.

In terms of polar coordinates and substituting values (see
Appendix A), the behavior of the agent {ϕ(t), M(ϕ(t))} can be
represented by a reduced set of equations describing the system-
environment coupling:

ϕ̇ = 1 + η̇ · s − a · sin(ϕ) − 2b · sin(2ϕ)

η̇ = cos(α) · (cos(ϕ) + cos(ϕ + c))

α̇ = −sin(α)/η · (cos(ϕ) + cos(ϕ + c)) + (cos(ϕ)

−cos(ϕ + c)) (3)

where a, b, c, and s are the parameters of the system.

3.1.1. Behaviorial analysis
We have chosen a basic a gradient climbing4 task for our agent to
solve. That is, we ask the agent to climb up a linear gradient and
maintain itself as close as possible to the maximum peak. A simple
trial-and-error hand-tuning of the parameters gives us combi-
nations that perform the desired behavior. We chose to adjust
the parameters to a = 5, b = 1, and c = 5, leaving unspecified
the sensitivity parameter s in order to have one free parameter
to explore different kinds of behavior. This selection is arbi-
trary (except for the relation of a/b, which was chosen to ensure
that the HKB is always in a monostable mode of functioning)
but other combinations of parameters which result in gradient

4Gradient climbing is a minimal (yet not totally trivial) task, which is
widespread in nature. Most of small scale adaptive behavior occurs along
chemical gradients. The microscopic world is a world of gradients (like ther-
mal gradients or light gradients but mostly chemical gradients). The adaptive
behavior of small animals (e.g., C. elegans) and individual motile cells (e.g.,
bacteria but also animal cells migrating during development) is mostly a
gradient-related adaptive behavior. Navigating smell or heat gradients is also
a stereotypical adaptive task for higher animals. Moreover many instances of
higher-level behavior can also be interpreted as abstract gradient climbing
(e.g., a human can move up a gradient of social popularity or economic wealth
that might involve complex strategic decisions combined with an emotional
or sensitive gradient climbing of the perceived result of such strategies).

climbing behavior lead us to similar results in the analysis. For
the experiments, the value of s will be defined in an interval
of [0, 15].

For these parameters, we see that the agent displays differ-
ent behavioral strategies depending on the value of its sensitivity
parameter s, ranging from: (1) for values of s ∈ [0, 2.4] display-
ing cycloidal strategies where the agent turns over itself with a
corkscrew-like movement, to (2) spiral paths where the agent
slowly climbs the gradient, when s ∈ [2.6, 15]. At the frontier
between these two behavioral strategies, we find (3) a critical
region (s = 2.5) where the agent displays the most efficient gradi-
ent navigation (in terms of time and trajectory efficiency), taking
a curved approximation path ending in an spiral-circular pattern
around the peak of the gradient. These different behaviors are
shown in Figure 3, where the efficiency of each gradient climb-

ing strategy is computed with a parameter Fd = 1 − d(t = t1)
d(t = 0)

, that
represents how close the agent gets to the center of the gradient in
a given time (it is taken t1 = 40 s).

How do these behavioral strategies work? In the critical region
(s = 2.5) the agent maps the highest gradient “sensation” with
high activation of both motors, moving effectively toward the
peak of the gradient. As we increase the value of s, sensory stim-
ulation is more intense, so the agent needs an strategy where the
approaching to the gradient peak is slower in order to maintain a
compensated activation between the motors. On the other hand,
when the value of s is decreased, the agent experiences difficulties
to maintain an equilibrated velocity for both motors, having to
turn around periodically to find again a trajectory where a high
sensor input is perceived.

3.2. ANALYTICAL SOLUTION FOR THE SITUATED-HKB SYSTEM
We shall now analytically solve the coupled brain-body-
environment system in order to understand the emergence of the
qualitatively different kinds of behavior that appear as we increase
the sensitivity s of the agent. As usual, if we want to understand
the behavior of an artifact modeled by a dynamical system, we will
need to calculate the linearization of the system around its fixed
points (Strogatz, 2001).

Thus, if we take the situated-HKB system of equations to be
solved,

ϕ̇ = (1 + η̇(d,α) · s) − a sin(ϕ) − 2b · sin(2ϕ))

η̇ = cos(α) · (cos(ϕ) + cos(ϕ + c))

α̇ = −sin(α)/η · (cos(ϕ) + cos(ϕ + c)) + (cos(ϕ)

−cos(ϕ + c)) (4)

where the parameter s (sensitivity) will be used as a con-
trol parameter to analyse the solutions in our range of inter-
est s ∈ [0, 15], it is easy to find that two fixed points can be
obtained: (1) the first one is an attractor with values of ϕ, η,α

at (0.11, 2.28,−π/2) and (2) the second one is a repeller at
(2.53, 0.43,π/2).

Computing the Jacobian matrix of the system at the fixed
points, and making an eigenvectors/eigenvalues analysis, we get
the behavior of our dynamical system around the regions of
its state space that bear qualitative significance. In Figure 4, it
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FIGURE 3 | Different behaviors performed by the situated HKB system.

We observe how different gradient climbing strategies arise depending on
the value of s. For s = 1.5, the agent follows a cycloidal trajectory

continuously turning over itself, for s = 2.5 the agent finds a direct path
toward the peak of the gradient, and for s = 8 the agent slowly approaches
the gradient peak following an spiral path.

FIGURE 4 | Eigenvalues (λ1, λ2, and λ3) of the attractor (left) and

repeller (right) fixed points of the situated-HKB: force of the

attraction/repulsion vs. variation of the control parameter s. Real part
(solid), Imaginary part (dashed).

is illustrated the range of different values of the eigenvalues
(denoted by λ1,λ2, and λ3) at each of the fixed points, depend-
ing on the parameter s (that corresponds to different observed
behavioral patterns for gradient climbing, see Figure 3). We find
regions that present simple attractor/repulsion dynamics (when
λ1, λ2, λ3 are real numbers) whereas other regions present spiral
attractions/repulsions (when λ1, λ2, λ3 have complex values).

In the following (see Figure 4), we show a detailed descrip-
tion of the relations between eigenvalues and behavior, analyzing
the transitions of the eigenvalues in both the attractor and the
repeller and focusing on the correspondences between those

transitions and the respective transitions in the behavioral modes
(Figure 5). Concretely, we analyse the transitions from real to
complex eigenvalues (from regular attraction to spiral attraction),
and behavioral transitions from underdamped to overdamped
behavior (the system finds equilibrium with or without oscillat-
ing) on one hand and from spiral to cycloidal movement of the
agent on the other.

3.2.1. Attractor
• Transition at s = 5.1: At this point, the attractor experiences a

change in its dynamics. An spiral attraction in the plane λ1λ2

disappears and the attraction of the system has no longer a
spiral shape. At the same point, the approaching strategy of
the agent experiences a change. For s < 5.1 the agent enters
the final stable circular trajectory from within, whereas for s >

5.1 the agent enters from outside the circle. This approaching
strategies correspond to a under-damped and a over-damped
behavior of the {ϕ, η,α}−system, respectively.

• Transition at s = 10.4: The attractor changes again into a spi-
ral shape, now in the plane λ2λ3. The behavioral change here
is more subtle. It appears at the initial turning behavior of the
agent until it finds an stable trajectory and enters into the spiral
trajectory of the robot. When s < 10.4, the robot enters into
the trajectory by softly adjusting the value of α with an over-
damped behavior, while when s > 10.4 the value of α oscillates
around the trajectory, adjusting to the optimal value with an
under-damped behavior. This damping behavior also affects
ϕ and η. Oscillations are too small to be clearly appreciated
in the trajectory of the robot. That is why in Figure 5, in the
enlarged boxes, we just represent the orientation of the agent
α, which shows how the robot adjusts its behavior to the final
trajectory.
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FIGURE 5 | Transitions in the phase space and changes in the agent’s

behavior. We can observe how changes in behavior coincide with
transition points in the dynamical description of the system: (s = 2.4) an
abrupt transition of the repeller’s plane of spiral repulsion explains the
switch from cycloidal to stable movement in the agent, (s = 5.1) as the
effect of spiral attraction vanishes, the agent changes from entering from
inside to the final circular trajectory to entering from outside, and (s = 10.4)
when the spiral attraction appears in a different plane, the agent displays an
oscillatory movement for adjusting the followed trajectory (the effect of the
oscillations is shown over the value of α in the enlarged box, its amplitude
is damped so fast to be appreciated in the plot of the agent’s trajectory).

3.2.2. Repeller
• Transition at s = 2.4: At this point, a different kind of transi-

tion takes place. While transitions in the attractor were gradual,
the change in the repeller at this value is an abrupt bifurca-
tion. The system suddenly changes from a spiral in the plane
λ1λ2 to a spiral in the plane λ2λ3. Also, a redistribution of
the values of the real part of λ1 and λ3 (i.e., the “strength” of
the repulsion) takes place in the transition. Consequently, the
change in the agent’s behavior is more dramatic in this case.
As we saw in Figure 3, the agent changes from a cycloidal tra-
jectory to a more stable strategy where the agent continuously
approaches to the gradient source (either directly or following
more pronounced spirals as s increases).

4. COMPARISON BETWEEN SITUATED,
PASSIVELY-COUPLED AND DECOUPLED HKB SYSTEMS

In the previous section we have provided a full dynamical anal-
ysis and understood how, in the situated HKB, the coupled
brain-body-environment system gives rise to a gradient climbing
behavior. We also analyzed the transitions that take place as we
increase the sensitivity parameter.

Now, we want to explore the effect of the sensorimotor sit-
uatedness of the system (i.e., the role of closed sensorimotor
loop) upon the dynamics of the HKB equation by comparing the
situated HKB with two homologous systems (see Figure 6):

1. A decoupled HKB system, as the one originally used by Kelso,
in which the effect of situated interaction with an external
environment is not taken into account.

2. A passively-coupled HKB system, where the HKB equation
receives a structured input resulting from a real interaction
between a situated HKB system and its environment, but

FIGURE 6 | Representation of a situated, decoupled and

passively-coupled HKB systems. The situated HKB system receives an
input from its interaction with a gradient source. The passively-coupled
HKB receives the copy of the input generated by a situated HKB. The
decoupled HKB receives no input at all.

where this input does not directly correspond to the activity
of the system but is received from a recording or virtual input
of a truly behaving agent.5

In the following subsections, we analyse the dynamics of these
HKB models, under equivalent parametric conditions, searching
for the qualitative difference that highlight the functional and
neurodynamic significance of the closed sensorimotor loop.

4.1. CASE 1: NO SENSORY INPUT—THE DECOUPLED HKB SYSTEM
The decoupled HKB system simply consists in the classical HKB
Equation (1) whose dynamics have been widely analysed. Given
the classical HKB equation with the parameters used above for
the situated HKB (�ω0 = 1, a = 5, and b = 1) and removing the
sensory input, we get:

ϕ̇ = �ω0 − a · sin(ϕ) − 2b · sin(2ϕ)

It is easy to see that, for this equation, two fixed points (or equi-
librium points) are obtained by finding which values of ϕ make
ϕ̇ = 0. The fixed or equilibrium points are found at ϕ = 0.11
and ϕ = 2.53. Computing the Jacobian matrix of the equation
for these values of ϕ, J(0.11) = −8.87 (attractor), and J(2.53) =
2.75 (repeller), provides us the values for the eigenvalue of the
decoupled HKB at each point (denoted as λ4 and represented in
Figure 7).

5A similar experimental setup in developmental neuroscience was carried
out by Held and Hein (1963) where two kittens were reared by holding one
immobile and attached to the other, so that both received the same sensory
stimulation, yet only one had freedom to control movement.
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FIGURE 7 | Eigenvalues for the decoupled HKB (λ4): Force of the

attraction/repulsion vs. variation of the control parameter s. Real part
(solid), Imaginary part (dashed).

As we see, the eigenvalue is a real number at each fixed point,
generating a simple pattern of attraction/repulsion in the dynam-
ics of the system. Thus, the decoupled HKB alone cannot explain
the behavioral changes shown in Figure 4, where simple patterns
of attraction/repulsion were transformed into spiral cycles, or
abrupt changes arise changing the plane of the resulting patterns.
The decoupled HKB system displays simple attraction and repul-
sion forces around every fixed point and, therefore, the dynamics
of the system are going to be described by constant attraction and
repulsion forces regardless of the value of the parameter s.

In the situated HKB, we observed how the system displays
“qualitatively different” behaviors, that is, behaviors that are not
just due to gradual variations of a single dynamical regime but
as a consequence of a phase transition in the system dynamics.
This is a phenomenon that also appears for the original HKB
equation (under some conditions the system is able to switch
from one attractor to another, see Kelso, 1995). However, the
situated-HKB with the parametric configuration used here (a = 5
and b = 1) ϕ remains within the monostable region (except for
brief instants of time where the system visits the metastable region
before stabilizing in the monostable). Thus, it cannot display the
phase transitions observed in the bistable configuration of the
HKB. Taking the decoupled HKB as a reference, the situated HKB
should not present, in principle, qualitative changes that are not
due to external factors.

Thus, the observed phase transition in the situated HKB sys-
tem cannot be explained by the dynamics of the HKB model
alone. Instead, the reason of this transition lies in the joint
dynamics of the agent-environment system, as we illustrated
when we solved the eigenvalues of the system. However, it is true
that, in a certain sense, the difference of dimensionality of the
two models is enough to substantially modify the dynamics of the
system, independently of the fact that these extra dimensions cor-
respond to the agent or the environment. The very fact that the
situated HKB has three dimensions instead of one makes both
systems are somewhat incommensurable.

The eigenvalues that determine the qualitative evolution of the
system cannot be translated or mapped from the situated to the
decoupled conditions: the whole brain-body-environment system
defines a new eigenvalue coordinate system where the “brain”
contribution cannot be isolated. The main issue is that we are
talking about different systems: one consists of a single differen-
tial equation and the other of three coupled differential equations.
It is hard if not impossible to compare the dynamics of a one
dimensional system with the dynamics of a three dimensional
system.

A B

FIGURE 8 | Comparison of the evolution of the system around the

attractor for (A) the situated HKB with s = 2.5 and (B) the decoupled

HKB (with �ω = 1, both with a = 5 and b = 1). The black line in the
vertical axis represents the evolution over time (right vertical axis) of ϕ,
which has been simulated during 6.5 s with an Euler step of 0.1 with
arbitrary initial values of ϕ = 0.65,η = −2.78, and α = −2.07. The blue line
represents the phase space of the HKB, representing the attractors as filled
dots and the repellers as empty dots. We observe how the decoupled HKB
is only affected by a simple attraction force with constant strength, while a
much richer dynamics is shown in the situated HKB, where different forces
of attraction interact to modulate the systems evolution.

The decoupled HKB is affected by a constant force of attrac-
tion/repulsion (see Figure 8A) while the situated HKB is sub-
ject to forces in three different dimensions that continuously
modulate each other (Figure 8B). Note that even if we were
inducing a constant input (anywhere in the input range displayed
by the situated system) the result will be equivalent. The next logi-
cal step is to question whether the crucial factor when comparing
the HKB and the situated HKB systems is the specific structure
of the input. In order to address this question we introduce the
passively-coupled HKB model where the HKB equation receives
the exact same input as the freely behaving situated HKB, but
whose output has no effect.

4.2. CASE 2: EXTERNALLY STRUCTURED SENSORY INPUT—THE
PASSIVELY-COUPLED HKB SYSTEM

We can model the passively-coupled HKB system by just adding a
new variable ϕ∗ that receives the same input as ϕ [i.e., a new equa-
tion ϕ̇∗ = 1 + η̇ · s − a · sin(ϕ∗) − 2b · sin(2ϕ∗) is held together
with the previous system (see Equation 4)]. As a result, we have to
solve a four-dimensional system under the same conditions than
before (parameters a = 5, b = 1, and c = 5, and the value of s
defined in [0, 15]).

Analogously to the previous system we get two fixed
points, an attractor at (0.11, 2.28, −π/2, 0.11) and a repeller at
(2.53, 0.43,π/2, 2.53), and through the diagonalization of the
respective jacobian matrices, four eigenvalues (λ1,λ2,λ3,λ4) are
obtained.

As we will see below, although the term λ4 is decoupled from
the activity of the situated HKB (and therefore independent of the
type of coupling, i.e., independent of the value of s), the behavior
of the new variable ϕ∗ will necessarily be described by a combina-
tion of the eigenvalues of the situated HKB system (λ1, λ2, λ3)
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and the decoupled HKB equation (λ4). This will provide us a
qualitative difference between the activity in ϕ and ϕ∗.

In order to show it, we need to remind how the general solu-
tion of a dynamical system is built. It is well-known that the
eigenvalues of a linearized dynamical system define the behavior
of the system around the fixed points as a series of exponen-
tial functions which converge to an attractor or diverge from a
repeller (Strogatz, 2001). For both the attractor and the repeller,
the solution of any variable of the passively-coupled HKB system
will have the form:

x(t) = x0 + Aλ1 · v1xe−λ1t + Aλ2 · v2xe−λ2t

+Aλ3 · v3xe−λ3t + Aλ4 · v4xe−λ4t

where x can stand for (ϕ, η,α or ϕ∗), λi and vix in general have
complex values (where vix are the eigenvectors of the solution and
λi are the eigenvalues, i = 1, 2, 3, 4), x0 represents the position of
the fixed point and Aλi are the coefficients that fix the initial state
of the system (with i = 1, 2, 3, 4).

After making some simple calculations, we find that: (1) some
eigenvectors are null (v4ϕ, v4η, v4α = 0) so λ4 will only be part
of the solution of ϕ∗; (2) moreover, other ones share the same
values (v1ϕ = v1ϕ∗ , v2ϕ = v2ϕ∗ , and v3ϕ = v3ϕ∗ ), so λ1,λ2, and
λ3 will be equally present in the dynamics of ϕ and ϕ∗, (3) finally,
we can simplify the system a little more because (v4ϕ∗ = 1) and
(ϕ0 = ϕ∗

0) for any value of s.
Given that, the solutions of the system around x0 are

simplified to:

ϕ(t) = ϕ0 + Aλ1 · v1ϕe−λ1t + Aλ2 · v2ϕe−λ2t + Aλ3 · v3ϕe−λ3t

η(t) = η0 + Aλ1 · v1ηe−λ1t + Aλ2 · v2ηe−λ2t + Aλ3 · v3ηe−λ3t

α(t) = α0 + Aλ1 · v1αe−λ1t + Aλ2 · v2αe−λ2t + Aλ3 · v3αe−λ3t

ϕ∗(t) = ϕ0 + Aλ1 · v1ϕe−λ1t + Aλ2 · v2ϕe−λ2t + Aλ3 · v3ϕe−λ3t

+ Aλ4 · e−λ4t

Here, we can see that the dynamics of ϕ∗ corresponds to the
dynamics of ϕ plus an extra term which determines the difference
between the situated and the decoupled model:

ϕ∗(t) = ϕ(t) + Aλ4 · e−λ4t

This term, in the following, will be denoted as �ϕ∗(t) = Aλ4 ·
e−λ4t , representing the difference between the situated and
passively-coupled HKB. We now quantify the influence of this
extra term. Computing the solution in t = 0, we obtain that
around the fixed points:

Aλ4 = ϕ∗(0) − ϕ(0)

That is, the influence of the decoupled term around the fixed
points depends on the linear difference between the initial con-
ditions of ϕ∗ and ϕ.

Therefore, we can interpret the dynamics of the partially-
coupled HKB, ϕ∗(t), as composed of two “partially-decoupled”
terms ϕ(t) and �ϕ∗(t) (partially decoupled because ϕ(t)

influences �ϕ∗(t) but not the other way around). What is the
difference between these two terms?

On the one hand, ϕ(t) follows a complex dynamic unfolding,
intertwined with and modulated by the dynamics of η(t) and α(t)
as a combination of the eigenvalues λ1,λ2, and λ3 (Figure 8A).
On the other hand, the dynamics of �ϕ∗(t) are much simpler,
defined by a unique eigenvalue λ4 (Figure 8B). However, we are
analysing a highly idealized situation, where the system easily con-
verges into its attractor without having to deal with any kind of
perturbation.

In the subsection below we quantify the contribution of the
�ϕ∗(t) term to the dynamics of the system in a more realistic sit-
uation. We analytically derive a theoretical expression to calculate
�ϕ∗(t) in the presence of persistent perturbations and we validate
the analytic results with numerical experimentation.

4.2.1. Comparing situated and partially-decoupled HKB systems
under perturbations

Typically, in a real system, variables are not subject just to dif-
ferent initial values as the term ϕ∗(0) − ϕ(0) seems to represent.
Variables in real systems are subject to continuous fluctuations in
different forms. Each fluctuation in the difference between ϕ(t)
and ϕ∗(t) [that is, the difference between the fluctuations of ϕ(t)
and the fluctuations of ϕ∗(t)] is going to provoke an effect as
function with the form Aλ4 · e−λ4t , with Aλ4 being equal to the
amplitude in the fluctuation at time t, and λ4 the eigenvalue of
the decoupled HKB in the attractor [thus assuming that the value
of �ϕ∗(t) is small]. If fluctuations are present at different instants
of time, the result will be a linear combination of all the expo-
nential functions multiplied by the respective values of Aλ4 for
each instant of time. If the fluctuations in the difference of ϕ(t)
and ϕ∗(t) are given by the function ξ(t), we can compute the
final expression of the passively-coupled HKB around the fixed
points as:

ϕ∗(t) = ϕ(t) + �ϕ∗(t) = ϕ(t) +
∫ t

0
ξ(τ) · e−λ4(τ−t) dτ (5)

Without internal fluctuation the value of ϕ∗(t) would converge to
the value of ϕ(t) after an initial phase of adjustment. But if fluc-
tuations are present, we can use the expression above to compare
the fluctuations in the situated model with the fluctuations in the
passively-coupled model.

As an example, we have simulated the situated HKB system
with a passively-coupled HKB connected to it with an Euler step
of 1 ms during a period of 5 s. We have introduced an addi-
tive white noise to the variables ϕ and ϕ∗ with a variance of
10−4. Then, ξ(t) will be equal to the difference between these
two sources of noise, which will conserve their white noise struc-
ture with twice its variance (2 · 10−4) (Figure 9, gray line). With
Equation (5) we can compute the resulting fluctuation �ϕ∗(t)
that will determine the differences between the values of ϕ(t) and
ϕ∗(t) (Figure 9, black line). We can observe how the fluctuations
in �ϕ∗(t) have lost the uncorrelated white noise structure of the
initial fluctuation, and now have a radically different structure
with different temporal correlations induced by the e−λ4t term.
We can validate this result by comparing �ϕ∗(t) computed with
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Equation (5) with the difference between ϕ(t) and ϕ∗(t) mea-
sured experimentally without the effects reducing the system to
a linear system around the attractor. That is, we can measure the
error in the estimation of the fluctuation:

e(t) = (ϕ(t) − ϕ∗(t)) − �ϕ∗(t)

By computing e(t) we find that the amplitude of the error is signif-
icantly smaller than the amplitude of the theoretical measures of
fluctuation �ϕ∗(t). Calculating the coefficient of determination
for measuring how well the theoretical results adjust to experi-
mental data, we obtain that (ϕ(t) − ϕ∗(t)) fits �ϕ∗(t) with an R2

coefficient of 0.95, indicating a good fit of the data.
If we compute the variance of �ϕ∗(t) we find that it is equal

to 12.3 · 10−4, that is, about 6 times bigger than the fluctuation
introduced to the system. This tells us that if we are about to
measure a passively-coupled version of the phenomenon we are
interested in, we are to expect a bigger amount of fluctuation than
in the real situated case. Furthermore, in the passively-coupled
model fast fluctuations are modulated by slow fluctuations. And,
whereas the original white noise introduced to the system can
be averaged out and removed, the fluctuations added to the
passively-coupled variable ϕ∗(t) presents correlations at different
scales that cannot be filtered easily.

4.2.2. Dynamical signature
Above we have presented proof of the dynamical differences
between a situated HKB system and a passively-coupled HKB sys-
tem in the transients around the attractor and repellor of the
system. As well, we have compared the results with experimental
measures during the whole trajectory and without the effects of
the linearization of the dynamical system, and demonstrated sim-
ilar results. We have concluded that these changes are the product
of the different modes of interaction of the situated and passively-
coupled agent, which modulate the dynamical landscape of the
brain-body-environment system. What do we mean when we say
that the different types of coupling transform the dynamical land-
scape of the system? To clarify that we are going to analyse the
dynamical signature of the HKB equation for the situated HKB
and the passively-coupled HKB.

We can interpret this dynamic signature as the functional brain
correlate of gradient climbing behavior. No single brain “state”

FIGURE 9 | Effects of fluctuations in the passively coupled system:

(gray line) ξ(t), difference of the introduced fluctuations in ϕ(t) and

ϕ∗(t) and (black line) �ϕ∗(t), fluctuations in the difference between

ϕ(t) and ϕ∗(t) computed through Equation (5).

(i.e., value of ϕ) is functionally significant in terms of behavior,
what matters is the shape of the temporal pattern of phase relation
among oscillators. In this sense, the “gradient-climbing behav-
ior”, as a unit of explanation, is not the result of a set of brain
states encoding a decision or a motor-program output, but results
from a specific coordination pattern between sensor and motor
surfaces, mediated by a specific coordination pattern between
“brain oscillations”. The specific pattern of internal coordination
that corresponds to gradient climbing behavior is here called its
“dynamic signature”, the temporal structure of internal changes
that is both cause and effect of different instances of a particular
behavior.

To obtain and compare the dynamic signature of our agents,
we have simulated the situated HKB system (with the sensitiv-
ity parameter s = 2.5) and a passively-coupled HKB connected
to it, with an Euler step of 1 ms and a duration 10, 000 s, and
we periodically reset the variables of the system (ϕ, η, and α)
to new randomized values with intervals of 20 ms. The goal of
this randomization is to sample a wide range of initial conditions
of the system, that is, to capture a wide enough range of differ-
ent situations that altogether constitute the abstract category of
“gradient climbing behavior”. This way we can identify what a
“neural signature” or dynamic pattern trace that corresponds to
all the instances of this form of behavior. We formally define the
dynamic signature of the HKB system as the density distribution
of the derivative of the relative phase ϕ̇ with respect to ϕ (or in
terms of ϕ∗ in the passively-coupled case).

What we see (Figure 10) is that the dynamical signature of the
system changes severely when the system is situated in an envi-
ronment. Whereas the passively-coupled HKB displays the shape
of the original HKB phase space with a “blurring” effect created
by the addition of an structured input (we can see it in Figure 10
as a “thick” line shaped with the form of the HKB original phase

FIGURE 10 | Signature of the situated HKB with s = 2.5 and the

corresponding passively-coupled HKB. It represents the density
distribution of the effective phase space of the HKB equation when it is
coupled with an environment, showing the difference between situated
and passive coupling.
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space), in the situated system the structure of the dynamical sig-
nature no longer resembles the original HKB phase space. The
situated system has modulated or re-shaped its state space into a
specific pattern through sensorimotor coordination.

5. RECAPITULATION, DISCUSSION, AND INTERPRETATION
OF RESULTS

We have just shown how the HKB system displays qualitatively
different dynamics under situated conditions, as compared to
decoupled and passively-coupled conditions. We can recapitulate
the main results as follows:

1. Transitions between qualitatively different types of sensori-
motor behavior, that are generated by the situated HKB with
increasing sensitivity, cannot be deduced from the behavior
of the decoupled HKB nor from the analysis of the passively
coupled HKB alone. The nature of these transitions can only
be revealed through the analysis of the whole brain-body-
environment system.

2. Even for a single fixed value of the sensitivity parameter the
transient trajectory of the situated HKB system toward its
attractor is far from trivial, it unfolds in different ways at differ-
ent temporal scales. The transient trajectory of the decoupled
HKB system, instead, is relatively simple and monotonic.

3. A passively-coupled agent receiving an input generated by a
situated agent shows correlated and amplified fluctuations that
are not present in the situated agent.

4. Finally, the dynamical signature of the agents shows us how the
type of coupling (passive or situated) severely transforms the
phase space of the HKB system. The specificity of functional
neural signatures is lost when studying the brain out of the
closed sensorimotor loop, even if it is subjected to exactly the
same input.

These kinds of differences between situated and decoupled oscil-
latory controllers illustrate how much we would miss if we
analysed the “brain” of an agent isolated from its embodied sit-
uatedness in an environment. On the one hand, the brain-body-
environment system constitutes a dynamical holistic continuum
where phase transitions can take place, without necessarily cor-
responding to phase transitions that would occur in an isolated
brain. Quite the opposite, in general this joint dynamical struc-
ture would be hardly deduced from the isolated controller of an
agent. On the other hand, the unfolding of behavior shown by a
system is modulated by the continuous interplay with the envi-
ronment at different time-scales that generally are not present in
the dynamics of the controller system alone, giving rise to much
richer behavioral dynamics.

Our situated HKB is a case of double coordination: senso-
rimotor coordination of the coordinated dynamics of the two
oscillatory components (modeled by the HKB equation). What is
crucial is the fact that under situated conditions the dynamics of the
HKB can be modulated by the precise and interactively structured
coordination between its internal dynamics and the sensorimo-
tor environment. The mode in which sensory input (the control
parameter) changes as a function of the motor output (which is in
turn generated by internal dynamics) through the environment,

makes possible this higher order coordination. It can be said that
the agent modulates its internal dynamics through sensorimotor
coordination, in a manner that is not available to the decou-
pled or passively-coupled system, resulting in functionally specific
internal patterns that we have demonstrated with the dynamic
signature.

We can learn about the HKB system as a model in
(sensori)motor control and oscillatory brain dynamics.
Notwithstanding are the important contributions that this
model has brought with its application to behavioral and neural
sciences. There are, however, important limitations on the type of
modeling. The most relevant for us is that, for the paradigmatic
cases (like finger coordination), there is no genuine sensorimotor
coupling being modeled. A subject is asked to move the fingers in
coordination with a metronome but this is the only coupling that
exists. Finger movement is a motor task, driven by a sensory cue
(the pace of the metronome) but it is not a sensorimotor task. It is
unnatural to instruct or constrain habitual behavior in response
to the tight instructions of an experimenter. Human and animal
behavior is generally the result of a “free” sensorimotor coupling
where every motor variation carries with it a sensory variation,
bringing about a coordinated behavioral pattern. In terms of
the finger coordination experimental paradigm, the “natural
situation” would resemble one where a finger movement alters
the metronome’s pace, which in turn alters the finger movement,
etc. The HKB model has been applied to other, more complex
tasks (like social coordination) but, to our knowledge and despite
the emphasis of many advocates of sensorimotor dynamics
(Kelso, 1995; Chemero, 2001, 2009), there is no available model
of HKB for sensorimotor coordination itself. It was therefore
crucial to understand the dynamics of the situated HKB to
explore in detail the way in which coordination dynamics can
be radically altered when oscillatory dynamics appear coupled
to sensorimotor dynamics. The HKB equation has been used
to model cases of sensorimotor coupling such as (Kelso et al.,
2009), where a human subject receives sensory feedback from a
computer screen, and the human’s behavior in turn affects the
computer. The novelty of the situated HKB model is that the
coupling is spatial and the HKB is not meant to capture the global
feedback dynamics, but is used directly as a robotic controller. As
well, whereas in the experiment above part of the interaction was
an human subject, the situated HKB is a model which can be fully
described by just three equations. This is a great advantage in
terms of dynamical analysis, allowing us a much deeper analysis
of the system’s behavior.

It is important to note that the present paper has focused
on the most simple configuration of the HKB model; with an
extremely simplified body and environment. Regarding the inter-
nal configuration of the HKB, we have studied it under the
simplest parametric configuration that produces a single attrac-
tor instead of two or none, which is due to the a/b coefficient
value that we kept fixed. Even for this simple configuration we
have found qualitative differences of the transient dynamics of the
system before falling into the attractor—see ϕ = 0.11 and tran-
sient dynamics around (−1, 2.50) in Figure 8. The behavior of
the system shows strong differences under the situated and decou-
pled conditions. But the HKB can display much richer behavior
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on its bistable configuration (with two attractors and repellers) or
along the metastable region (see light gray area in Figure 1) where
there are no fixed points but just attractor and repeller shadows
(a phenomenon that appears for high values of difference between
the natural frequencies �ω (Kelso, 1995) (something that did not
occur on our model given the low value of �ω0).

The differences we found between decoupled, passively-
coupled and situated dynamics can be expected to be amplified
for richer parametric configurations of the HKB model. In fact, in
a parallel paper (Santos et al., 2012), some of this paper’s authors
have studied the dynamics of the same situated HKB model per-
forming a gradient climbing task under metastable regimes of ϕ.
In this case the effect of sensorimotor modulation of the HKB
dynamics was much stronger, shaping specific metastable regimes
and transitions between them, whereas passively-coupled agents
showed different regimes and transitions. We want to stress that
the appearance of qualitative differences between situated and
decoupled systems was not a contingent results of the parame-
ter values chosen in this paper (nor those of Santos et al., 2012).
We have observed the same changes for different parameter values
and also with different oscillatory controllers (such as Kuramoto
oscillators—unpublished results).

As the experimental setup is regarded, we have seen that a
simple linear and radially symmetric 2D gradient environment,
a single sensor and two motors were sufficient for the HKB to
exploit the sensorimotor coupling so as to modulate its inter-
nal dynamics in qualitatively different manners under different
coupling conditions. Richer environments, more complex tasks
and, multimodality and higher dimensional sensory and motor
surfaces could increase the divergences we have shown here. It
has been shown that in cross-modal perception, perturbations
to one sensory modality can be compensated by other sensory
modalities (Ernst and Banks, 2002), it is therefore to be expected
that multi-modal sensorimotor engagement could have an even
greater effect on brain dynamics than a single sensorimotor
modality.

Could these results be generalized to neuroscience? Not
directly, we have just provided a proof of concept of how severely
can oscillatory brain dynamics be altered by sensorimotor coordi-
nation. However, even if true for our extremely simplified model
this conclusion has still to be proven for neuro-biological sys-
tems. We are not aware of any neuroscientific study comparing
situated and passively coupled recordings for perceptuomotor
tasks, but new recording techniques (Linderman et al., 2006;
Santhanam et al., 2007; Fan et al., 2011) might help replicate
the experiments we have developed in this paper. The cogni-
tive or psychological effects of different degrees of disruption
of the sensorimotor loop could range from a complete lack of
perceptual capacity (e.g., when inducing sensory streams result-
ing from input recorded from saccadic exploration) to a loose
sense of reality when sensorimotor coupling conditions in virtual
reality are not optimal. New experimental paradigms in substi-
tutional reality (SR) (playing back recorded visual experience to
re-create realistic scenes) (Suzuki et al., 2012) have shown that “a
major factor influencing successful substitution in the SR system
was consistent visuo-motor coupling throughout the experience”
(Suzuki et al., 2012, p.6).

At a more abstract level of discussion, the present model makes
a theoretical contribution to the ongoing debate around the causal
vs. constitutive role of action in perception. Roughly speaking
causal theories (Prinz, 2006; Adams and Aizawa, 2008) claim that
movement can perfectly be a cause of the right sensory input
that in turn causes perceptual states but it is not strictly neces-
sary. Constitutive theories on the other hand (O’Regan and Noë,
2001; Noë, 2004) claim that movement itself is part of the percep-
tual process. Causal theories are generally internalist by asserting
that what matters is the brain state (caused by the sensory input),
whereas constitution theories tend to align with externalism (per-
ception is a process that involves a distributed set of brain, body
and environmental components, all of them constituting the same
percept). Our model can be used to show how, even if favor-
ing internalism, the neural signature that corresponds to a given
cognitive episode can be qualitatively different from the neural
signature obtained when the very same input (cause) is induced
into a passively-coupled system and fine grained sensorimotor
contingencies become strictly necessary or constitutive of func-
tionally distinct neural signatures. Whether this holds also true
for natural systems is open to experimentation but the concep-
tual discussion, which is often obscured by a lack of clear models,
can benefit from the findings presented here.

6. CONCLUSION
Contemporary neuroscience often assumes that it is possible to
deduce the behavioral properties of the brain by just studying its
dynamics under “passive” input conditions (e.g., neural record-
ings in anesthetized animals) or building models that ignore
sensorimotor dynamics (like large scale networks with noise-
inputs or otherwise non-behaviorally controllable input). The
brain-body-environment coupled dynamics are rarely consid-
ered as a unified dynamical system and there is still a limited
understanding of the interplay between sensorimotor and neural
dynamics.

In this paper we have illustrated what neuroscience might be
missing when ignoring the role of sensorimotor coordination,
particularly when drawing models of brain dynamics out of neu-
ral recordings in the absence of closed sensorimotor loops. We
have presented a minimal model that shows the qualitative differ-
ences that can arise under situated and decoupled sensorimotor
conditions. Our analysis was centered in the HKB model, which is
a widely accepted minimal model of neural and behavioral coor-
dination, and is simple enough to facilitate a deep formal analysis
of its dynamical structure. The HKB model has been widely
used to explore both coordination dynamics of sensorimotor
self-organizing phenomena and coordination dynamics in brain
activity. But none of the previous variations and developments of
this model has integrated both aspects. To fill this gap we have
formalized the situated HKB system, where a sensory input mod-
ulates the control parameter, and the main variable of the model
produces motor variations that in turn result in sensory input
change. A detailed mathematical analysis of the situated HKB has
shown that there is features of the model which cannot not be
deduced from the analysis of the isolated or passively-coupled sys-
tems (even if it receives the exact same sensory input). We have
shown how some features, such as (a) the phase transition that
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takes place modifying a sensitivity parameter, (b) the attraction
patterns, (c) the neurodynamic signatures, and (d) the mod-
ulatory capacity of the situated system. All of them need to
be explained by a framework that takes into account the cou-
pled dynamics of the brain-body-environment system. How far
these results can be generalized to experimental neuroscience
remains open to experimentation, the present contribution was
a theoretical one aiming at making a formal characterization
and a proof of concept of how sensorimotor dynamics can alter
the oscillatory coordination properties of behavior-generating
mechanisms.
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A. APPENDIX
A.1. DEVELOPMENT OF THE THREE-DIMENSIONAL EQUATION OF THE
SITUATED-HKB MODEL

FIGURE A1 | The equations of the movement of the agent can be

deduced from this schema.

As we have seen, the behavior of the situated HKB agent will
be completely addressed by the variable ϕ(t) and the position of
the motors of the agent M(ϕ(t)) at each time t.

• Assumption 1: The choice of polar coordinates (d represent-
ing the distance to the source and α representing the relative
angle between the agent’s orientation and the source), instead
of cartesian coordinates, will allow us to simplify the dimen-
sionality of the model.
Assuming that the agent’s mass is small enough to be neglected
(in order to avoid inertial resistance), we can describe the speed
of the agent as follows: the translational speed of the robot Vt is
calculated as the vectorial average of the motor velocities, and
the angular speed Va as the difference of the motor velocities
divided by the body diameter).

Vt(ϕ) = (Mr(ϕ) + Ml(ϕ))/2

Va(ϕ) = (Mr(ϕ) − Ml(ϕ))/2 · R

Knowing the tangential and angular velocities of the robot Vt

and Va, we can deduce the movement of the agent in terms of
polar coordinates (see Figure A1):
Taking �t,�d,�α → 0, we get

Vt · �t · cos(α) + (d + �d)cos(�α) = d

from which, the next equation is easily obtained

ḋ = −cos(α) · Vt (6)

Similarly, if we take

Vt · �t + (d + �d) · cos(α + �α + Vt · �t) = d · cos(α)

we find that

Vt + d · sin(α) · (α̇ + Va) + ḋ · cos(α) = 0 (7)

Putting together Equations (6) and (7), we obtain the move-
ment equations:

ḋ = −cos(α) · Vt

α̇ = sin(α)/d · Vt + Va

where we know that Vt and Va depend on the speed of the
motors:

• Assumption 2: For simplicity, it is considered that η = d0 − d,
where d is the distance to the center of the gradient and d0 is
the intensity of the stimulus at the center of the gradient, which
will decrease linearly with d.
Since η and d are inversely proportional and radial symme-
try allows us to dismiss the angle of the position of the agent
respect to the gradient when we describe it in polar coordi-
nates, so the change of the perceived gradient only depends on
the position of the agent and the gradient itself,

η̇ = Ḟ(d, α) = ∂F(d, α)/∂d · ḋ + ∂F(d, α)/∂α · α̇

and the set of equations describing the system-environment
coupling can be reduce to only three:

ϕ̇ = �ω0 + η̇ · s − a sin(ϕ) − 2b · sin(2ϕ)

η̇ = cos(α) · (Mr(ϕ) + Ml(ϕ))/2

α̇ = sin(α)/(d0 − η) · (Mr(ϕ) + Ml(ϕ))/2

+(Mr(ϕ) − Ml(ϕ))/(2R)

• Assumption 3: Without loss of generality, we choose m = 2,
�ω0 = 1, d0 = 0 and radius of the body R = 1, and we get:

ϕ̇ = 1 + η̇ · s − a · sin(ϕ) − 2b · sin(2ϕ)

η̇ = cos(α) · (cos(ϕ) + cos(ϕ + c))

α̇ = −sin(α)/η · (cos(ϕ) + cos(ϕ + c)) + (cos(ϕ)

−cos(ϕ + c)) (8)

where a, b, c, and s are the parameters of the system.
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