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During visuomotor adaptation a novel mapping between visual targets and motor
commands is gradually acquired. How muscle activation patterns are affected by
this process is an open question. We tested whether the structure of muscle
synergies is preserved during adaptation to a visuomotor rotation. Eight subjects applied
targeted isometric forces on a handle instrumented with a force transducer while
electromyographic (EMG) activity was recorded from 13 shoulder and elbow muscles.
The recorded forces were mapped into horizontal displacements of a virtual sphere with
simulated mass, elasticity, and damping. The task consisted of moving the sphere to
a target at one of eight equally spaced directions. Subjects performed three baseline
blocks of 32 trials, followed by six blocks with a 45◦ CW rotation applied to the planar
force, and finally three wash-out blocks without the perturbation. The sphere position at
100 ms after movement onset revealed significant directional error at the beginning of
the rotation, a gradual learning in subsequent blocks, and aftereffects at the beginning of
the wash-out. The change in initial force direction was closely related to the change in
directional tuning of the initial EMG activity of most muscles. Throughout the experiment
muscle synergies extracted using a non-negative matrix factorization algorithm from the
muscle patterns recorded during the baseline blocks could reconstruct the muscle patterns
of all other blocks with an accuracy significantly higher than chance indicating structural
robustness. In addition, the synergies extracted from individual blocks remained similar
to the baseline synergies throughout the experiment. Thus synergy structure is robust
during visuomotor adaptation suggesting that changes in muscle patterns are obtained by
rotating the directional tuning of the synergy recruitment.
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INTRODUCTION
Human subjects can learn to move in novel environments and
they can adapt to visuomotor (Ghilardi et al., 1995; Imamizu
et al., 1995; Ghahramani et al., 1996; Krakauer et al., 1999, 2000)
or dynamic (Lackner and Dizio, 1994; Shadmehr and Mussa-
Ivaldi, 1994) perturbations. Generally, when subjects are exposed
to a perturbation of the mapping between motor commands
and end-effector motion or force, they initially produce large
errors and they then gradually adapt, compensating for the per-
turbation and re-establishing baseline performance. When the
perturbation is removed subjects make large errors in the oppo-
site direction (after-effects) before gradually re-adapting. If the
perturbation is unexpectedly and occasionally removed in a single
trial (Thoroughman and Shadmehr, 2000) or if it changes contin-
uously and randomly (Scheidt et al., 2001; Baddeley et al., 2003;
Cheng and Sabes, 2007) the error experienced in one trial affects
the motor command generated in the following trial. These obser-
vations suggest that the central nervous system (CNS) relies on
internal models of the body and of the environment to predict
the sensory consequences of motor commands and that adaptive
processes adjust the internal models to reduce sensory predic-
tion errors (Shadmehr et al., 2010; Krakauer and Mazzoni, 2011;

Wolpert et al., 2011). Such adaptive processes can be modeled
as error-based learning that reduces sensory prediction error by
adjusting an internal state according to a linear time-invariant
dynamics (Thoroughman and Shadmehr, 2000; Donchin et al.,
2003; Cheng and Sabes, 2007; Tanaka et al., 2012). Multiple learn-
ing processes operating at different timescales (Smith et al., 2006)
and learning at different hierarchical levels in the internal model
(Braun et al., 2009) explain the time-course of performance errors
under a variety of experimental manipulations. However, albeit
behavioral observations, such as error time-course and general-
ization properties, made in numerous motor adaptation studies
are well captured by current models, how the motor commands
change during motor adaptation has been investigated only in a
few cases (Wise et al., 1998; Thoroughman and Shadmehr, 1999;
Li et al., 2001; Paz et al., 2003; de Rugy et al., 2009). Muscle pattern
generation and its relationship to force generation during motor
adaptation still needs to be fully understood.

Because of the redundancy in the musculoskeletal system, the
change in motor commands underlying the change in motion
or force necessary to compensate for a visuomotor or dynamic
perturbation is not unique. For example, the rotation of the
direction of force required to adapt to a rotation imposed onto
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the mapping between the force applied on an isometric joystick
and the motion of a cursor on a computer screen (visuomo-
tor rotation) may be accomplished by infinitely many different
combinations of changes in individual muscle activations. In
principle, during motor adaptation the performance error may
be gradually reduced by changing the force output associated to
each visual target using the same muscle pattern used for that
force output before the perturbation. Alternatively error may be
reduced by changing the activity of individual muscles indepen-
dently of the muscle patterns used before the perturbation. For
wrist muscles it has been shown that the rotation of the mus-
cle directional tuning curve closely follows the rotation imposed
onto the force-to-cursor mapping (de Rugy and Carroll, 2010),
suggesting that adaptation occurs at the level of the planned force
output. The first aim of our study was to investigate if this is also
true for shoulder and elbow muscles during visuomotor rotation
of the mapping between isometric forces generated by the arm
at the hand, i.e., with a musculoskeletal system involving a larger
number of muscles and joints.

The changes of the motor commands underlying adaptation
to a visuomotor rotation may occur at the target force or at the
muscle level, but in both cases the question of how a specific mus-
cle pattern is selected to generate a desired force remains open.
One hypothesis which has recently received considerable atten-
tion is that muscle patterns are generated as combinations of a
few muscle synergies, coordinated recruitment of groups of mus-
cles with specific activation balances, thus requiring the selection
of only a small number of synergy combination parameters to
generate a desired force. While muscle synergies have been stud-
ied intensively in human reaching movements (d’Avella et al.,
2006, 2008, 2011; Muceli et al., 2010), isometric force genera-
tion (Borzelli et al., 2012; Roh et al., 2012), locomotion (Ivanenko
et al., 2004; Dominici et al., 2011), cycling (Hug et al., 2010, 2011),

responses to postural perturbations (Krishnamoorthy et al., 2003;
Torres-Oviedo and Ting, 2007; Chvatal and Ting, 2012), complex
motor skills (Frere and Hug, 2012), and in several different animal
behaviors (Tresch et al., 1999; Saltiel et al., 2001; d’Avella et al.,
2003; Hart and Giszter, 2004; Cheung et al., 2005, 2009; d’Avella
and Bizzi, 2005; Ting and Macpherson, 2005; Torres-Oviedo and
Ting, 2007; Overduin et al., 2008, 2012; Hart and Giszter, 2010),
muscle synergies have not been directly investigated during adap-
tation to visuomotor rotations. Thus, our second aim was to
investigate whether the synergies capturing the muscle patterns
underlying the generation of multidirectional isometric forces are
robust during motor adaptation. Thus, we hypothesized that the
change in the tuning of muscles during adaptation to visuomo-
tor rotation closely follows the rotation of the force and that the
underlying changes in the muscle patterns can be explained by
changes in the recruitment of synergies whose structure remains
fixed.

MATERIALS AND METHODS
PARTICIPANTS
All procedures were approved by the Ethical Review Board of
Santa Lucia Foundation. Eight right-handed naïve subjects (mean
age 28.6 ± 6.0 year, age range 24–43, 5 females and 3 males,
see Table 1) participated in the experiments after giving written
informed consent.

EXPERIMENTAL SETUP
Subjects sat in front of a desktop with their torso immobilized by
safety belts. Their right forearm was inserted into a splint immo-
bilizing the hand, wrist, and forearm. The center of the palm was
aligned with the body midline at the height of the sternum and the
elbow was flexed approximately by 90◦. The subjects’ view of the
hand was occluded by a 21-inch LCD monitor inclined with its

Table 1 | Summary of characteristics and results for individual participants.

Subject Age Sex Number of R2 of cosine fit Number of Number of R2 of cosine fit

tuned muscles mean ± SD (range) synergies tuned synergies mean ± SD (range)

1 24 Male 8 0.76 ± 0.16
(0.49–0.96)

4 2 0.74 ± 0.15
(0.56–0.91)

2 26 Female 9 0.75 ± 0.17
(0.46–0.92)

5 3 0.73 ± 0.14
(0.54–0.86)

3 43 Male 9 0.78 ± 0.19
(0.32–0.95)

4 4 0.88 ± 0.02
(0.86–0.90)

4 28 Female 8 0.75 ± 0.17
(0.41–0.92)

5 3 0.74 ± 0.11
(0.63–0.91)

5 28 Male 8 0.73 ± 0.24
(0.02–0.98)

4 3 0.82 ± 0.10
(0.68–0.90)

6 25 Female 8 0.68 ± 0.23
(0.18–0.88)

4 4 0.83 ± 0.05
(0.78–0.88)

7 27 Female 9 0.73 ± 0.19
(0.25–0.95)

5 3 0.64 ± 0.33
(0.12–0.94)

8 28 Female 9 0.72 ± 0.26
(0.07–0.94)

5 3 0.74 ± 0.23
(0.47–0.93)

Mean 28.6 8.5 0.74 ± 0.20
(0.28–0.94)

4.5 3.1 0.77 ± 0.14
(0.58–0.91)
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surface approximately perpendicular to the subjects’ line of sight
when looking at their hand (Figure 1A). After a calibration pro-
cedure, the monitor could display a virtual desktop matching the
real desktop, a spherical cursor matching, at rest, the position of
the center of the palm and moving on a horizontal plane, and
spherical targets on the same plane (Figure 1B). A steel bar at
the base of the splint was attached to a 6-axis force transducer
(Delta F/T Sensor, ATI Industrial Automation, Apex, NC, USA)
positioned below the desktop to record isometric forces. Surface
electromyographic (EMG) activity from 13 muscles acting on
the shoulder and elbow muscles was recorded with active bipo-
lar electrodes (DE 2.1, Delsys Inc., Boston, MA), after band-pass
filtering (20–450 Hz) and amplification (gain 1000, Bagnoli-16,
Delsys Inc.). Force and EMG data were digitized at 1 kHz using
an A/D PCI board (PCI-6229, National Instruments, Austin, TX,
USA). The virtual scene was rendered by a PC workstation with
a refresh rate of 60 Hz using custom software. Cursor position
information was processed by a second PC workstation running
a real-time operating system and transmitted to the first work-
station through an Ethernet link. Cursor motion was simulated
in real time as a mass accelerated by the horizontal force (paral-
lel to the desktop) applied by the subject on the splint, a viscous
force, and an elastic force proportional to the distance for the rest

position. The spring constant was set such that a constant force
with a magnitude equal to 20% of the mean maximum volun-
tary force (MVF) magnitude across force directions (see below)
would maintain the cursor stationary at 5 cm from the origin. The
damping constant was set to make the system critically damped.

EXPERIMENTAL PROTOCOL
The experiment was subdivided into blocks, each consisting
of a set of trials (Figures 1C,D). The first maximum volun-
tary contraction (MVC) block served to establish a mean MVF
over horizontal force directions of each subject. At each trial
subjects moved the sphere along a virtual line in one of 8
directions (equally spaced by 45◦) by applying horizontal forces
until they reached their maximum force production capability.
After remaining 1 s at the position of maximum force, sub-
jects were instructed to relax and to bring back the sphere to
the rest position. When the trial stopped after 15 s, a new trial
with a different target direction was initiated. In the follow-
ing blocks, subjects performed center out forces to 8 equally
spaced targets with force levels of 20 and 30% of MVF (cor-
responding to displacements of 5 and 7.5 cm of the sphere,
respectively). Each target was repeated two times in a pseudo-
random order (i.e., 32 trials per block). A trial was initiated

FIGURE 1 | Experimental setup and procedures. (A) Subjects sat in a
moveable chair with their forearm pronated and fixed in a splint rigidly
coupled to a force transducer. A flat monitor occluded the subject’s hand
and displayed a virtual scene co-located with the real desktop. (B)

Screenshot of the virtual scene. Subjects controlled the position of the
blue sphere by applying forces to the force transducer. The sphere is
illustrated inside the yellow semi-opaque sphere indicating the start
position. The target is shown as a gray sphere. (C) Sequence of events in
a trial. Subjects had to maintain the blue sphere inside the start sphere for
1 s. Afterwards the target appeared and the start sphere disappeared

instructing the subject to reach it and to hold the blue sphere inside the
target sphere for 1 s. The target sphere changed its color from gray to
yellow when the target was reached. Finally, the subject was instructed to
return to the start position and remain there for 1 s. (D) Organization of an
experimental session. In the first block the maximum voluntary contraction
(MVC) during generation of maximum voluntary force across directions
was established followed by three baseline blocks, each consisting of 32
trials. From the fifth block to the tenth block a clockwise (CW) visuomotor
rotation was introduced followed by three washout blocks without
visuomotor rotation.
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by keeping the sphere at the start position (tolerance ±2% of
MVF, i.e., 0.5 cm) for 1 s. Afterwards, a target appeared and the
sphere indicating the start position disappeared. Subjects were
instructed to move to the target as fast as possible, and to remain
for 1 s at the target (tolerance ±2% of MVF). The trial was
finished successfully 0.5 s after returning to the start position
(Figure 1C).

Subjects performed three blocks of 32 trials (baseline), fol-
lowed by six blocks with a 45◦ clockwise (CW) visuomotor
rotation applied to the planar force used to compute the cursor
displacement (rotation), and another three blocks without the
rotation (washout) as shown in Figure 1D.

DATA ANALYSIS
Initial directional error
To evaluate the adaptation to the visuomotor rotation at the kine-
matics level we computed the initial directional error at 100 ms
after movement onset. Movement onset was defined when the
cursor speed exceeded 0.5 cm s−1. The initial directional error
was defined as the angle of the vector pointing from movement
onset to the cursor position at 100 ms after movement onset with
respect to a straight line to the target (Figure 2B).

Synergy extraction
Muscle synergies from each block were identified by non-negative
matrix factorization (NMF) from EMG patterns recorded from
the go signal to the end of successful target acquisition. Recorded
EMG data were rectified and digitally low-pass filtered (2nd order
Butterworth, 5 Hz cutoff) and re-sampled at 100 Hz to reduce

data size. In each trial, mean EMG activity of each muscle dur-
ing the initial rest phase was used as an estimate of baseline noise
level and subtracted from the rest of the data. The EMGs were
normalized to the maximum activation across direction recorded
during the MVC block. Finally, the rectified and normalized
EMGs of each trial from a given block (or from several blocks)
were pooled together into a single data matrix M. The concate-
nated EMG patterns m (columns of the matrix M) were described
by a combination of synergy coefficient by m = W c, with W the
M × N synergy matrix whose columns are vectors specifying rel-
ative muscle activation levels (invariant across time and trials),
and c a N-dimensional synergy activation vector (time- and trial-
dependent), N the number of synergies and M the number of
muscles. The number of data points (columns) in the matrix M
slightly varied between blocks and subjects because the time to
successfully complete the target acquisition was not constant for
each trial. For each possible N from 1 to M, the iterative opti-
mization algorithm (Lee and Seung, 1999, 2001) was repeated 10
times and the solution with the highest fraction of data varia-
tion explained (R2) was retained. We selected the smallest number
of synergies which explained more than 90% of the data vari-
ation. Synergies were extracted from the following 13 muscles:
Brachioradialis (BracRad), Biceps brachii, short head (BicShort),
Biceps brachii, long head (BicLong), Triceps brachii, lateral head
(TrLat), Triceps brachii, long head (TrLong), anterior Deltoid
(DeltA), medial Deltoid (DeltM), posterior Deltoid, posterior
(DeltP), clavicular part of the Pectoralis major (PectMajClav),
medial Trapezius (TrapMed), Latissimus dorsi (LatDorsi), Teres
Major (TerMaj) and Infraspinatus (InfraSp).

FIGURE 2 | Kinematic analysis. (A) Example force traces to targets located
at a distance 30% of MVF. Trajectories to the targets were straight in the
baseline block (Block 4) and curved at the beginning of the visuomotor
perturbation (Block 5). With practice subjects adapted to the rotation and
trajectories were again straight at the end of the exposure to the perturbation
(Block 10). Aftereffects were present at the beginning of the washout

(Block 11). At the end of the washout (Block 13) subjects re-adapted and were
again able to produce straight trajectories to the target. (B) The initial
movement direction angle with respect to a straight line to the target
established at 100 ms after movement onset was used as a measure to
quantify the adaptation process. (C) Mean initial direction error across
subjects for each block.
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Tuning curves
Muscle and synergy tuning curves and preferred directions (PDs)
were calculated for each block by a cosine fit (d’Avella et al.,
2006) between the activation of each muscle or the coefficients
of each synergy (averaged across target distances and repetitions
in a block) and the corresponding target position. We fitted
the muscle (or synergy) activity with a linear regression m(θ) =
β0 + βx cos(θ) + βy sin(θ), where m(ϑ) is the muscle (synergy)
activity for a target in direction ϑ and θPD = tan−1(βy/βx) is
the PD of the cosine tuning. Tuning curves were computed for
the time interval between movement onset and the following
100 ms, equivalent to the computation of the initial movement
angle error. For visualization, the tuning curves were smoothed
by a 2-dimensional spline interpolation and plotted in a polar
coordinate system. Muscles or synergy coefficients which were
not significantly cosine tuned were excluded from analysis (see
Table 1). Significant cosine tuning was assumed when the p-
value of the regression between the data and the optimal cosine
tuning was smaller than 0.05 (see Table 1 for R2 values of the
regression for each subject). After applying a CW visuomotor
rotation, the cursor movement was initially directed CW with
respect to the target, i.e., with the same directional error that
would have been obtained with a rotation of the target in a
counter-clockwise (CCW) direction instead of the CW cursor
rotation. Thus, the PDs of muscles and synergies were computed

according to the CCW-rotated visual targets, i.e., the actual
force targets. Then the initial change of PD is directed CCW as
displayed for individual muscles in Figure 3A. To better com-
pare the changes of muscle- and synergy-PDs with the cursor
initial direction error, we changed the sign of those PDs in
block 5–10.

Data reconstruction by synergies
To quantify how well the structure of the muscle patterns of one
block were captured by the synergies extracted from different
blocks we reconstructed the EMG traces by finding the synergy
coefficients that reconstructed those traces with the highest R2

value. To find the optimal synergy coefficients we ran the same
iterative optimization algorithm used for the extraction of the
synergies without updating the synergies. We calculated the R2

value of the reconstruction of EMG traces from blocks 2–13 using
the synergies extracted from the pooled data from blocks 2–4.
Monte-Carlo simulations were used to ensure that the reconstruc-
tion quality was higher than chance level. For the Monte-Carlo
simulation we selected 30 sets of EMG signals at randomly chosen
time points which reflected sets of M × N “random” synergies.
The number of random synergies for each set and subject was
chosen equal to the number of selected synergies. For each set of
random synergies the EMG traces were reconstructed and the R2

value computed.

FIGURE 3 | Tuning curves and preferred directions of individual

muscles. (A) Example of tuning curves for two muscles (first row :
PectMajClav, second row : DeltA) of subject 3 estimated from different
blocks (blue markers and lines) compared to the tuning curve of the
muscles calculated from the pooled data of all baseline blocks (reference
blocks, gray markers and lines). As for PectMajClav, the changes in
preferred direction (PD, blue radial segment) of many muscles with respect

to the PD in the reference blocks were similar to the initial direction angle
errors. However, the activation of some muscles such as DeltA was not
cosine tuned and those muscles were excluded from analysis. (B)

Examples of the mean PD-change of three muscles across subjects and
grand mean of the PD-change across muscles and subjects (rightmost
panel). The PD changes of the muscles (blue) was not statistically different
from the initial direction angle error (red).
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Synergy similarity
We measured the similarity between two synergies by normalizing
the synergy vectors (Euclidean norm) and computing their scalar
product. Similarity between two sets of synergies was assessed by
first matching pairs of synergies according to their normalized
scalar product (starting from the pair with the highest value and
continuing with the pairs from the remaining synergies until all
pairs were matched) and then computing the mean scalar product
over all matched pairs. We selected the number of synergies from
the reference synergies for all comparisons of different sets of syn-
ergies for each subject. As for the reconstruction R2, Monte-Carlo
simulations were used to ensure that the similarity was higher
than chance level.

Statistical analysis
Two-Way repeated measures ANOVAs (2 adaptation measures ×
6 perturbation blocks) were conducted to detect significant differ-
ences between the time course of initial direction error and that of
change of muscle PDs. Paired t-tests with Bonferroni correction
were applied where appropriate.

RESULTS
INITIAL DIRECTION ERROR CHANGES DURING VISUOMOTOR
ROTATION
In the baseline blocks subjects produced relatively straight tra-
jectories (Figure 2A, Block 4) with bell shaped velocity pro-
files (Figure 2A, bottom row). Change of visuomotor mapping
caused distorted trajectories (Figure 2A, Block 5) and multi-
peaked velocity profiles reflecting corrective movements nec-
essary to reach the target. After exposure of six blocks with
visuomotor rotation subjects compensated (Figure 2A, Block 7)
for the perturbation and were able to produce relatively straight
movements to the target (Figure 2A, Block 10). Velocity profiles
approached a single bell-shaped velocity profile again. When the
visuomotor rotation was removed (Figure 2A, Block 11), subjects
showed aftereffects in the opposite direction of the perturbation,
which were extinguished after three washout blocks (Figure 2A,
Block 13).

We quantified the adaptation of all subjects by analyzing the
initial movement direction error with respect to a straight line
to the target at 100 ms after movement onset (Figure 2B, right
dotted vertical line). Movement onset was defined as the time
when the cursor speed exceeded a threshold of 5 cm/s (Figure 2B,
left dotted vertical line) after the Go-signal had occurred. Across
subjects, the initial movement direction showed a large CW devi-
ation when the rotation was introduced (Block 5, Figure 2C) that
was gradually reduced with practice (Blocks 5–10) and a large
CCW deviation (aftereffect) once the perturbation was removed
(Block 11). One-Way repeated measures ANOVA confirmed a sig-
nificant difference of initial direction error (factor: block number,
F = 5.04, p < 0.001). In the baseline blocks the initial direc-
tion error was small (Block 2: −1.86 ± 2.41◦, mean ± SD, Block
3: −1.44 ± 3.05◦; Block 4: −1.96 ± 2.64◦). At the beginning of
the visuomotor perturbation the initial direction error (Block
5: −29.59 ± 8.42◦) was significantly different from the error in
the last baseline block (p < 0.001, two-tailed, paired t-test) but
approached baseline level by a gradual adaptation in subsequent

blocks (Block 10: −11.35 ± 4.53◦, p = 0.002 with respect to
Block 4). After the perturbation was removed, the initial direc-
tion error was significantly (Block 11: 18.62 ± 4.33◦, p < 0.001)
higher than in the last baseline block, but approached baseline
level at the end of the washout (Block 13: 7.02 ± 2.71◦, p < 0.001
with respect to Block 4). All comparisons remained significant
after Bonferroni correction.

PREFERRED DIRECTION CHANGE OF MUSCLES MATCHES INITIAL
DIRECTION ERROR CHANGE
We tested if the PD of muscle directional tuning followed the
change of initial direction error, as was observed in visuomotor
rotation of isometric wrist movements (de Rugy, 2010). We found
that not all recorded muscles were cosine-tuned. Some muscles
showed peaks of activity in multiple directions and their tun-
ing was not captured by a single cosine function. We therefore
excluded all muscles which were not significantly cosine-tuned
in the reference baseline blocks (see Table 1 for R2 values of the
cosine fit) for this analysis as their PDs did not characterize their
directional tuning reliably.

Figure 3A shows an example of a typical change of the PD
of a cosine-tuned muscle (blue tuning curves, PectMajClav) with
respect to the PD of the reference blocks (gray, Blocks 2–4).
Several muscles were found not to be cosine-tuned, for exam-
ple DeltA shown in Figure 3A (second row). The time-course of
the PD of DeltA across blocks would indicate a larger PD change
in the last baseline block (Block 4) than in the first visuomo-
tor rotation block (Block 5) with respect to the reference blocks.
Considering only cosine-tuned muscles the PDs closely followed
the change in force direction error as shown for three muscles
and the overall mean across muscles and subjects, respectively,
in Figure 3B. A Two-Way repeated measures ANOVA comparing
the mean change of the muscle PDs across subjects and muscles
with the mean initial direction error did neither reveal a difference
(adaptation measure × perturbation block, F = 0.73, p = 0.394)
between the two measures nor a significant interaction (F = 0.34,
p = 0.889).

ROBUSTNESS OF SYNERGY STRUCTURE
Given the close relationship between muscles and forces we tested
whether the adaptation process could be explained by fixed mus-
cle synergies being recruited with PDs rotating together with the
muscle PDs. We extracted synergies from each block from the
EMG signals beginning at movement onset until the time point
at which the target was successfully acquired. Figure 4A shows the
fraction of data variation explained by the extracted synergies for
the last baseline block (Block 4, black) and the first perturbation
block (Block 5, gray). The number of synergies selected according
to a 90% threshold was not significantly (p = 0.598, two-tailed
paired t-test) different between the two blocks (Block 4: 4.75 ±
0.71 synergies, Block 5: 4.62 ± 0.52 synergies). When consider-
ing all blocks, the minimum number of synergies explaining more
than 90% of the data variation was not significantly different
over time, as revealed by a One-Way repeated measures ANOVA
(factor: block number, F = 1.68, p = 0.093).

The structure of the synergies in most cases was similar across
subjects and blocks. Figure 4B compares the synergies extracted
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FIGURE 4 | Selection of number of synergies and synergy structure. (A)

Fraction of total variation explained (R2) by the synergies extracted from
Block 4 (last baseline block, black) and by the synergies extracted from Block
5 (first perturbation block, gray) were similar for all subjects (different plots).

(B) Synergies from all subjects (rows) extracted from Block 4 (black bars) and
Block 5 (gray bars). The numeric value in each plot represents the similarity
between the two synergies, quantified by the scalar product of the
normalized synergies (cosine-value).

from Block 4 (black bars) with those extracted from Block 5
(white bars) for each subject. We compared a number of syner-
gies in Block 4 and 5 equal to the number of synergies extracted
from the pooled data of Blocks 2, 3, and 4 (“reference synergies,”
see Table 1). We identified the best matching pairs of synergies

according to the similarity quantified by the cosine between the
synergy vectors and plotted them side-by-side (Figure 4B, cosine
values are shown with a gray shaded background). In general, the
similarity of synergies from Block 4 and 5 across subjects, as indi-
cated by a cosine-value close to one, was high (mean ± SD of
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similarity: 0.95 ± 0.06, range: 0.54–0.99). However, 2 out of 36
pairs had a similarity <0.8 (S1: second pair, similarity 0.54; S6:
second pair, similarity 0.71) and an additional pair had a sim-
ilarity <0.9 (S7, fifth pair, similarity 0.88). Additional analysis
of the synergies in such pairs indicated that they were similar
either to one of the synergies in the reference set with the same
number of synergies (S6: similarity 0.93 and 0.90 for the syn-
ergies extracted from Block 4 and 5 respectively; S1: similarity
0.98 for the synergy extracted from Block 5; S7: similarity 0.93
for the synergy extracted from Block 5) or to one of the syner-
gies in the reference set with an additional synergy (S1: similarity
0.95 for the synergy extracted from Block 4). In one case (S7),
the sets of 4 synergies extracted from Blocks 4 and 5 had a much
higher similarity (mean 0.97, minimum 0.94) than the sets with
the same number of synergies as the reference synergies (5 for S7).
These observations suggest that the identification of the synergies
from individual blocks is affected by noise and inter-trial vari-
ability more than the identification of synergies from the pulled
data of all three baseline blocks. Moreover, even if the data of
a specific block were best captured by a synergy that did not
match closely any synergies in a different block, such synergy
might only have captured a very small amount of variation in
the data.

Thus, we quantified the stability of the subspace spanned by
the reference synergies by assessing how well they could recon-
struct the muscle patterns of all other blocks. The similarity of
the reconstructed muscle patterns (obtained by multiplying syn-
ergies extracted from reference blocks and synergy coefficients
fitted onto the data of each block) with respect to the actual mus-
cle patterns of each block was quantified as a R2 value. The high
R2 values (range: 0.72-0.94, mean ± SD: 0.88 ± 0.04) indicate
that muscle patterns during adaptation to visuomotor rotation
are selected from a stable muscle subspace (Figure 5A). However,
there was a small but constant decrease of R2 values during the
experiment, possibly reflecting small changes in elbow position
or fatigue.

To exclude that the high R2 values were obtained by chance,
we attempted to reconstruct the data using random synergies. We
repeated the reconstruction with 30 sets of random synergies. In
all blocks the R2 value obtained with random synergies was signif-
icantly smaller (all p < 0.001, two-tailed paired t-tests, gray bars
in Figure 5B) than the reconstruction using synergies extracted
from the reference blocks (Figure 5B, black bars).

We also assessed the similarity of the synergies extracted from
the reference blocks and those extracted from all blocks. In all
subjects and blocks, the mean normalized scalar product between
the best matched pairs of synergies was close to one (Figure 5C),
indicating a high similarity. Across subjects, in all block the simi-
larity (Figure 5D black bars, range: 0.69–0.99, mean ± SD: 0.92 ±
0.07) was significantly higher that between random synergies
(gray bars, p < 0.01).

ADAPTATION BY ROTATION OF SYNERGY PREFERRED DIRECTION
Given the stability of muscle synergies during visuomotor adap-
tation, we expected the change of PDs of the synergy coefficients
to closely match the change of directional error of the initial
force and the change of PDs of the muscles. Figure 6A shows an
example of the directional tuning and the PDs of the synergy coef-
ficients for subject 3 (blue tuning curves) with respect to the tuning
and PDs in the reference blocks (gray, Blocks 2–4). The change of
synergy coefficient PDs from subject 3 is shown across all blocks.
The PD change was similar across synergies with −1.43 ± 2.51◦
(mean ± SD) deviation in the last baseline block (Block 4), an
initial deviation of −34.91 ± 0.85◦ at the beginning of the visuo-
motor rotation (Block 5), a gradual reduction of PD change
(−9.67 ± 4.03◦, Block 10), aftereffects at the beginning of the
washout phase (19.79 ± 11.43◦, Block 11) and a gradual return
to baseline (7.52 ± 6.49◦, Block 13) at the end of the experiment
(Figure 6B). Across subjects the mean PD change of synergy coef-
ficients (Figure 6C, blue traces) was: Block 4: 1.06 ± 4.53, Block
5: −26.95 ± 5.54, Block 10: −9.97 ± 6.02, Block 13: 6.16 ± 7.57,
similar to the change of PDs of muscles.

FIGURE 5 | Robustness of synergies during adaptation. (A) Quality of the
reconstruction of EMGs recorded from different blocks throughout the
experiment (columns) for each subject (rows) by synergies extracted from
the reference blocks. (B) Mean reconstruction R2 for each block over subject
(black bars) compared with the mean reconstruction R2 for random synergies

(gray bars). (C) Similarity (mean normalized scalar product over best matching
pairs) between the synergies extracted from the reference blocks and those
extracted from each individual block. (D) Mean similarity for each block over
subjects (black bars) compared with the mean similarity for random
synergies.
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FIGURE 6 | Tuning curves and preferred directions of synergy

coefficients. (A) Example of tuning curves for the four synergies of subject
3 estimated from different blocks (blue markers and lines) compared to the
tuning curves calculated from the pooled data of all baseline blocks
(reference blocks, gray markers and lines). (B) Mean PD-change of synergy
coefficients for subject 3 for all blocks. (C) Grand mean of the PD-change
across synergies and subjects (blue) and initial direction angle error (red) for
all blocks. The PD change of the synergy coefficients was not statistically
different from the initial direction angle error.

DISCUSSION
We investigated the changes in the muscle patterns underlying
visuomotor adaptation in a virtual reaching task requiring the
generation of multidirectional isometric forces with the arm.
We found that the changes in the PDs of most of the mus-
cles closely followed the change in force direction required to
compensate for the perturbation, suggesting that the adaptive
process relies on remapping target directions into new planned
force output directions. We then tested whether a given force
output is generated, during adaptation to a novel rotation of
the force-to-cursor mapping and after re-adaptation to the nor-
mal mapping, by the same set of muscle synergies which cap-
ture the muscle patterns in the baseline condition. We found
that the number and the structure of the synergies was robust
throughout adaptation and re-adaptation. In each subject, four
or five synergies extracted in the baseline condition could recon-
struct with a comparable level of accuracy the muscle pat-
terns recorded before, during, and after the visuomotor rotation
and they had a mean similarity with the synergies extracted
from individual blocks throughout the experiment significantly
higher than the mean similarity between random synergies. We
also found that the change in the PDs of the synergy recruit-
ment closely matched the change in the PDs of the individual
muscles.

Many studies of motor adaptation after dynamic or visuomo-
tor perturbation have used center-out reaching tasks in which the
motion of the hand is either directly perturbed, by viscous force
fields generated by a robotic device (Shadmehr and Mussa-Ivaldi,
1994) and by Coriolis forces arising in a rotating room (Lackner
and Dizio, 1994), or mapped into a virtual end-effector, as with
visuomotor rotation of a cursor on a computer screen (Ghilardi
et al., 1995; Imamizu et al., 1995; Krakauer et al., 2000). Only in
a few cases isometric force at the hand has been used as motor
output instead of hand motion to investigate visuomotor adap-
tation (Hinder et al., 2007; de Rugy et al., 2009; de Rugy and
Carroll, 2010). By using isometric force, as the posture of the
arm is fixed, there is no need for visual-proprioceptive recalibra-
tion after the perturbation. In contrast, the adaptive response to
a visuomotor rotation of the movement of a cursor associated
with actual hand movement involves both sensorimotor remap-
ping and sensory recalibration, i.e., alignment of the felt and
seen position of the hand at the end of the movement (Simani
et al., 2007). Moreover, with isometric force as motor output
there is no need for increasing limb impedance by increasing
muscle co-contraction to stabilize the hand trajectory immedi-
ately after the perturbation, i.e., before it is compensated in the
feed-forward motor command. Increase in muscle activation has
been reported after dynamic perturbations (Thoroughman and
Shadmehr, 1999; Franklin et al., 2003) but also after visuomotor
rotation (Paz et al., 2003). In contrast, we did not observe a signif-
icant increase in muscle activation, in accordance with a previous
study of visuomotor rotation in an isometric reaching task (de
Rugy and Carroll, 2010).

Stability of the relationship between directional tuning of the
muscles and force has been observed before in macaque mon-
keys and human subjects after both visuomotor and dynamic
perturbations. In monkeys performing a reaching task by mov-
ing a joystick that controlled a cursor on a video screen, most
muscles recorded in the shoulder, neck and trunk showed clear
PDs which were stable in motor coordinates during adapta-
tion to visuomotor rotations (Wise et al., 1998). In humans
adapting to viscous force fields, i.e., to velocity dependent forces
applied perpendicularly to the hand movement direction, the
peak of EMG activity of two pairs of shoulder and elbow mus-
cles counteracting the perturbation gradually shifted earlier in
the reaching movement, becoming a feed-forward command,
and the EMG tuning curves gradually rotated by an amount
specific to the force field (Thoroughman and Shadmehr, 1999).
Similarly in monkeys, during adaptation to force fields the PDs
of shoulder and elbow muscles rotated in the direction of the
external force and returned to baseline when the perturbation
was removed (Li et al., 2001), indicating a stable relationship
between muscle directional tuning and generated force. In an
isometric virtual reaching task in which wrist flexion/extension
and radial/ulnar deviation forces generated by human subjects
were mapped, respectively, into horizontal and vertical move-
ments of a cursor on a vertically mounted computer screen, the
changes in the directional tuning of four wrist muscles closely
matched the rotation of the directional error in force after a 45◦
visuomotor rotation, indicating that the functional contribution
of muscles remained consistent during adaptation (de Rugy and
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Carroll, 2010). Thus, our observations on the stability of the
relationship between muscle directional tuning of cosine tuned
muscles and force are in accordance with previous observations
but they are reported for the first time for adaptation to visuomo-
tor rotation of the isometric force generated by a large number of
arm muscles.

Importantly, subjects were not informed on what kind of per-
turbation (consistent rotation of the force by a fixed angle) they
will experience in the experiment. This kind of adaptation is
likely to occur implicitly when the desired hand trajectory and
the executed trajectory in visual space do not match (Mazzoni
and Krakauer, 2006; Krakauer, 2009), possibly by reducing a pre-
diction error computed by a forward model (Shadmehr et al.,
2010). A question that arises in this context is why the ner-
vous system does not exploit the redundancy inherent in the
neuro-muscular system to compensate the perturbation by reduc-
ing the force error at the level of force components generated
by individual muscles. Indeed, it would have been possible to
compensate for the perturbation by adapting the activation of
each muscle reducing the error between force target and mus-
cle force, possibly ending with a muscle pattern in the adapted
state different from the muscle pattern selected to generate the
rotated force before the perturbation. Despite the theoretical
flexibility of the mapping from muscles to forces, i.e., many
different muscle patterns can generate the same forces (Kutch
and Valero-Cuevas, 2012), adaptation of individual muscles did
not appear to be used for compensating the distorted visuo-
motor mapping. In contrast, the relationship between muscles
and forces remained fixed indicating that subjects tried to adapt
to the perturbation by rotating the forces (“aiming in a differ-
ent direction”) from the beginning on. An explanation could
be that adaptation to this kind of perturbations occurs early in
the sensorimotor transformations mapping visual targets into
muscle patterns by adapting a single learning parameter (force
direction) resulting in a coordinated rotation of all the muscle
PDs. However, adapting only a few high level parameters may
be computationally advantageous but it might also be required
if the generation of muscle patterns is not as flexible as theo-
retically possible. The characteristics of the connectivity between
different areas in the motor systems might prevent the nervous
system from adapting the recruitment of individual muscles to
compensate for visuomotor perturbations. Divergence from pre-
motor neurons to many muscles and convergence to a single
muscle from many premotor neurons (Graziano, 2006; Rathelot
and Strick, 2006) might underlie the organization of muscle
synergies in the primary motor cortex (Gentner et al., 2010;
Overduin et al., 2012) and in the spinal cord (Hart and Giszter,
2010).

We therefore considered whether the visuomotor adaptation
process is compatible with muscle synergies. Muscle synergies has
been recently identified during isometric force production (Roh
et al., 2012). However, to our knowledge, a direct test of robust-
ness of muscle synergies during visuomotor adaptation has never
been conducted. The structure of the synergies and their num-
ber appeared to be similar across subjects and blocks. During
the adaptation the coefficients of cosine tuned synergies rotated
almost identically as the PDs of individual tuned muscles, albeit

some synergies contained contributions of non-cosine tuned
muscles. Therefore, isometric visuomotor adaptation can be
equally well described by rotation of forces, muscle-PD changes,
and PD changes of synergy coefficients. Moreover, as adapta-
tion may involve components with different learning rates (Smith
et al., 2006) the analysis of muscle synergies may allow to dis-
sociate different components of the adaptive process. A rapidly
adapting component may be related to the adjustment of syn-
ergy coefficients, e.g., rotating their recruitment to compensate
for a visuomotor rotation. A slower component may be involved
in the acquisition of new synergies or in changing the structure of
existing ones. In isometric visuomotor adaptation we found that
only a fast learning component as there is no need for altering
the synergies. In contrast, we recently found that adaptation to
novel perturbations that cannot be compensated by adapting the
recruitment of existing synergies but require new or altered syner-
gies is slower than adaptation to similar perturbations compatible
with the synergies (Berger et al., 2013). Testing such perturbations
has provided new direct evidence for a synergistic organization
(d’Avella and Pai, 2010).

To assess the robustness of the synergies during adaptation
we assessed the quality of reconstruction of the muscle patterns
recorded throughout the experiment by the synergies extracted
from the baseline condition (reference blocks) and their similar-
ity with the same number of synergies extracted from individual
blocks. For each subject, the number of synergies was selected as
the minimum number sufficient to explain at least 90% of the
data variation. While criteria based on a threshold on the varia-
tion accounted for (VAF) has been frequently used in the muscle
synergy literature (Tresch et al., 1999; Ting and Macpherson,
2005; Torres-Oviedo et al., 2006) other criteria based on the detec-
tion of a “knee” in the curve of the VAF as a function of the
number of synergies (d’Avella et al., 2003; Cheung et al., 2005;
Tresch et al., 2006), on a combination of VAF-threshold and knee
(Berger et al., 2013) have been proposed. All these criteria depend
on some threshold which must be chosen ad-hoc. Recently, a
new criterion based on decoding single-trial task parameters from
synergy coefficients has been proposed (Delis et al., 2013). Such
criterion does not depend on ad-hoc parameters but it can be only
applied to synergies extracted from a large number of repetitions
(>10) of the same experimental condition. Thus, selection crite-
ria for synergies extracted from averaged data or a limited number
of repetitions, as in our case, mainly guarantee that the number of
synergies can be meaningfully compared across different condi-
tions and subjects rather than ensuring that the “true” number of
synergies has been selected. Moreover, to simplify the assessment
of synergy similarity we compared the same number of synergies
extracted from the reference blocks and extracted from individual
blocks. An alternative approach would have been to select a differ-
ent number of synergies for each block according to the VAF cri-
terion and to assess both the similarity between the pairs formed
with the smallest of the two synergy sets and the dimensionality
of the set. However, as VAF criterion is affected by noise, we pre-
ferred to rely only on the number of synergies selected from three
baseline blocks (reference blocks) rather than on the number
selected from individual blocks. An incorrect identification of the
number of synergies in a single block might in fact significantly
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affect the mean similarity, as the set with an additional synergy
often contains two synergies resulting from the splitting of one of
the synergies in the original set (d’Avella et al., 2003) and both
synergies can have low similarity with the original one. In any
case, the R2 measure of synergy subspace robustness does not
depend on the number of synergies selected for the individual
blocks as it is based on the reconstruction of the actual data of
each block.

In summary our results indicate that muscle synergy struc-
ture is robust during visuomotor adaptation and that the required
changes in the muscle patterns are obtained by rotating the
directional tuning of the synergy recruitment. Visuomotor adap-
tation may occur by remapping desired end effector move-
ment into synergy coefficients. Further experiments are required

to identify synergies as a physiological correlate of motor
learning.
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