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Efficient neural codes can lead to spurious synchronization
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Experimental and computational evidence
shows that cognitive function requires
an optimal balance between global inte-
grative and local functionally specialized
processes (Tononi et al., 1998). This bal-
ance can be described in terms of tran-
sient short-lived episodes of synchronized
activity between different parts of the
brain (Friston, 2000; Breakspear, 2002).
Synchronization over multiple frequency
bands is thought to subserve fundamen-
tal operations of cortical computation
(Varela et al., 2001; Fries, 2009), and
to be one of the mechanisms mediating
the large-scale coordination of scattered
functionally specialized brain regions.
For instance, transient synchronization
of neuronal oscillatory activity in the
30-80 Hz range has been proposed to
act as an integrative mechanism, bind-
ing together spatially distributed neural
populations in parallel networks during
sensory perception and information pro-
cessing (Singer, 1995; Miltner et al., 1999;
Rodriguez et al., 1999). More generally,
synchrony may subserve an integrative
function in cognitive functions as diverse
as motor planning, working or associa-
tive memory, or emotional regulation
(Varela, 1995).

Over the past 15 years, cognitive neu-
roscientists have tried to capture and
quantify neural synchronies across dis-
tant brain regions both during sponta-
neous brain activity and in association
with the execution of a wide range of
cognitive tasks, using neuroimaging tech-
niques such as functional resonance imag-
ing, electro- or magneto-encephalography.
Theoretical advances in various fields
including non-linear dynamical systems
theory have allowed the study of various
types of synchronization from time series

(Pereda et al., 2005), and to address impor-
tant issues such as determining whether
observed couplings do not reflect a mere
correlation between activities recorded at
two different brain regions but rather
a causal relationship (Granger, 1969)
whereby a brain region would cause the
activity of the other one.

However, not all measured synchrony
may in fact represent neurophysiologically
and cognitively relevant computations:
various confounding effects may mis-
lead into identifying functional connectiv-
ity, defined as the temporal correlations
between spatially remote neurophysiolog-
ical events, with effective connectivity,
i.e,, the influence one neuronal system
exerts over another (Friston, 1994). For
instance, measured synchrony may stem
from common thalamo-cortical afferents
or neuromodulatory input from ascend-
ing neurotransmitter systems, or may be
the visible part of indirect effective con-
nectivity. Other technique-specific artifac-
tual sources of synchrony, for instance
induced by volume conduction, are also
well-known to cognitive neuroscientists
(Stam et al., 2007).

Here, we address a further (extra-
cranial) confounding source: the appear-
ance of simultaneous, yet uncorrelated
stimuli. We show how the activity of two
groups of binary neurons, whose output
code is optimized to represent rare events
with short codes, can exhibit a synchro-
nization when such rare events appear,
even in the absence of shared information
or common computational activities.

1. THE MODEL

We suppose that a neuron codifies an
external stimulus with a set of spikes, to
transmit information about the event to

other regions of the neural system. For the
sake of simplicity, let’s also suppose that
all stimuli are drawn from a finite set of
events E = {ey, ..., en}, N being the total
number of events. Each event i is charac-
terized by two strongly related features: the
frequency of appearance f; and the impor-
tance factor m;. Clearly, rare events are also
the most important ones. For instance,
the image of a group of trees is quite
common for an animal, and should not
attract his attention. On the other hand,
a predator appearing behind such trees is
far less frequent, and the importance of a
fast response to the event, high. Therefore,
for each event i, the relation m; = 1/f; is
defined.

Each neuron optimizes its code to rep-
resent such an environment, i.e., it assigns
a symbol s; drawn from an alphabet S to
each input event i. As the neuron natural
language is composed of spikes, each sym-
bol s; is defined as a sequence of spikes and
silences; this is represented by a sequence
of 0’s and 1s, of arbitrary length, form-
ing a Boolean code. In other words, and
from an information science perspective,
each symbol s; is a number in its Boolean
representation.

In the creation of the code, the neu-
rons use all their available knowledge con-
cerning their environment, given by f;
and m;, trying to fulfilling two condi-
tions. First, the cost associated with the
transmission of information should be
minimized, thus as few spikes as possi-
ble should be generated; this favors large
symbols with few 1’s and a large propor-
tion of 0’s. This condition is energy saving,
but increases the neuron’s response time.
Therefore, a second condition ensures
that the neuron minimizes symbol length,
particularly those associated with events or
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items of great importance, i.e., with low f;
and high m;.
A cost given by:

C=Xi:|:ubliﬁ

+1-w limi] (1)
1
accounts for the trade-off between these
conditions is associated to each code, and
minimized by the neuron in a training
phase representing a natural selection pro-
cess. The contribution of each symbol
i to the total is given by two terms—
see Equation 1. The first, involving the
number of spikes in the symbol (b;), its
expected frequency of appearance (f;) and
its length (I;), expresses the probability of
having the neuron spiking , at a given
time, and thus the expected energetic cost
of the code. The second term penalizes
the appearance of long symbols codifying
important messages. Finally, the param-
eter o defines the balance between both
contributions to the total cost: for a =~
0 (o=~ 1) the total cost is dominated by
the length of important symbols (by the
energetic cost).

Two additional requirements are added.
First, for different events no to be con-
fused, all symbols should be different, i.e.,
si # sj. Second, all symbols should start
with a spike (a 1) and have at least one
zero, in order to be recognizable and to
avoid codes composed only of silences or
spikes.

Due to the computational cost of opti-
mizing such codes when multiple events
are considered, the process is performed by
means of a greedy algorithm Cormen et al.
(2001), that is, by starting with an empty

set, and adding one symbol at the time,
making the locally optimal choice at each
iteration.

2. RESULTS

We now explore how a spurious synchro-
nization between different neurons (or
groups of them) can be achieved even in
the absence of any information transfer.

Neurons are supposed to work inde-
pendently, that is, they receive indepen-
dent inputs from the environment and
create their optimal code to process and
transmit such information. For instance,
two groups of neurons may receive two
different and uncorrelated stimuli, corre-
sponding to the image of a predator and
the sound of a thunder.

Following this idea, a large number of
neurons are modeled and their codes cre-
ated. Each neuron has its independent set
of stimuli, half of them highly probable
(and therefore, less important), and half of
them with low probability of appearance.

Using this information, all codes are
generated, and a time series for each neu-
ron is created, by presenting sequences of
stimuli at random, and recording the neu-
ron’s corresponding activity. Time series
are divided into two parts of equal length.
During the first half, neurons are stim-
ulated by high-probability events; the
opposite occurs during the second half.
Following the previous example, we sup-
pose that the organism is resting quietly
at the beginning, and then spots a preda-
tor and hears a thunder. Furthermore, we
suppose that neurons do not respond with
the same velocity to the external stim-
uli: each neuron receives its inputs with a

delay drawn from a uniform distribution
defined between 0 and 400 time steps.

Figure 1 Left depicts the evolution of
the time series generated by two groups of
neurons, each one composed of 500 neu-
rons, for a = 0.1, 40 stimuli, and a transi-
tion interval of 400. Each series is clearly
divided in two epochs, the first one cor-
responding to the time window [0, 5000],
in which no relevant event appears, and
a second window [5000, 10000] in which
neurons respond to rare external stimuli.
As previously described, an efficient code
requires important stimuli to be codified
with short symbols, which, in turns, are
associated with high spike densities. This
effect is clearly shown in Figurel Left,
where the proportion of spiking neurons
after time 5000 is roughly increased by
0.05.

As neural codes are independently gen-
erated for the 1000 neurons considered,
with different probability distributions,
and external stimuli are also triggered in
an independent way, no synchronization is
expected between both time series. Indeed,
if one computes the Pearson’s correlation
coefficient between both series within the
time window [0, 5000], the result is in the
order of 10~*. Nonetheless, an interest-
ing result is obtained when the correlation
is calculated by means of a sliding win-
dow; in other words, a time-varying cor-
relation is obtained, whose value at time
t represents the dynamics of both neu-
ral groups in the interval [t — 200, ¢+
200]. Intuitively, when analyzing the series
near time 5000, both series share the same
trend, i.e., an upward dynamics, thus lead-
ing to a positive synchronization. Such
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FIGURE 1 | (A,B) Time series of the proportion of spiking neurons generated
by two groups of 500 neurons (gray and red lines). In panel A (panel B), the
probability of finding rare events is changed at time 5000 (is continuously
changed). Time series of group 2 is represented with an offset of 0.25.
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The black solid line represents the evolution of the Pearson’s correlation
coefficient between both groups, calculated with a sliding window of size
400. (C) Average values for the four synchronization metrics, using the same
event sets of panel (A). All neural codes are optimized for a = 0.1.
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effect is shown in Figurel Left, black
line and right scale: around time 5000
the Pearson’s correlation coefficient jumps
to 0.6.

To confirm this result, Figure 1 Right
reports the average synchronization level
obtained in 100 realizations of the previ-
ously described process, as obtained by 4
commonly used metrics for the assessment
of synchronization in brain activity:

e Correlation: Pearson’s linear correla-
tion between the two time series.

e Granger causality: following the origi-
nal definition in Wiener (1956), a time
series is said to cause a second one if one
can improve the prediction of the evolu-
tion of the latter by incorporating infor-
mation about the past dynamics of the
former. Such relationship is tested by
means of bivariate autoregressive mod-
els (AR). The value here reported is the
value of 1 —a*, o* being the critical
level of significance for which the first
time series can be considered causal to
the second one.

e Mutual information: assesses the quan-
tity of information, measured in bits,
that two time series share. In other
words, it measures how much knowing
one of these time series reduces uncer-
tainty about the other.

e Synchronization Likelihood: arguably
one of the most popular index for
assessing the presence of generalized
synchronization, returns a normalized
estimate of the dynamical interdepen-
dencies between two or more time series
(Stam and Van Dijk, 2002). It relies on
the detection of simultaneously occur-
ring patterns, even when they are differ-
ent in the two signals.

As can be seen in Figure 1 Right, all four
metrics present a peak around time 5000,
indicating that they all detect this spurious
synchronization between the two groups
of neurons.

This spurious synchronization is
caused by the optimization of the neu-
ral code, in which the length of important
events is minimized, thus increasing the
proportion of spiking neurons when rare
events are presented to the system.

The example proposed in Figure 1 Left
is not very ecological as the set of events

presented in the two halfs of the con-
sidered period only included frequent
([0, 5000]) and infrequent ([5000, 10000])
events. Figure1 Center presents a more
realistic example, in which the probabil-
ity of finding rare events is continuously
varied between two intermediate values.
The resulting time series (gray and light
red lines) are highly noisy, while it is still
possible to detect some trends. The black
solid line represents the evolution of the
Pearson’s correlation coefficient calculated
over a sliding window of size 400. Even
in this noisy configuration, it is possi-
ble to detect regions in which the cor-
relation between the two time series is
strongly increased - similar results were
obtained with the three other considered
metrics.

3. DISCUSSION

In conclusion, we showed that synchro-
nization can appear when the response of
two groups of binary neurons is modu-
lated by the simultaneous appearance of
uncommon stimuli, even if both groups
do not share information and are not per-
forming a common computation. This is
due to the way neural codes are con-
structed, i.e., to the preference of short
symbols, with high spiking rates, repre-
senting uncommon events. The present
toy model is not intended to mirror actual
neural functioning, but rather to draw
attention to a possible source of spurious
synchronization occurring at the system
level of description of neural activity typi-
cal of standard neuroimaging techniques.
In particular, our results show that even
a measure such as the Granger causality
can be fooled into signaling causal rela-
tionships in the presence of mere coin-
cidences corresponding to no underlying
computation. This confirms that claims
of causality from (multiple) bivariate time
series should always be taken with cau-
tion (Pereda et al., 2005), as true causality
can only be assessed if the set of two time
series contains all possible relevant infor-
mation and sources of activities for the
problem (Granger, 1980), a condition that
a neurophysiological experiment can only
rarely comply with. Finally, it is impor-
tant to remark that our model’s main sug-
gestion that some of the correlations one
would observe in neural activity would
not correspond to genuine computation

holds true even for resting brain activ-
ity, which is operationally defined by
the absence of exogenous stimulation.
This is explained by the fact that resting
brain activity is characterized by unob-
servable, endogenous activity stemming
from numerous simultaneous sources ren-
dering spurious coincidences a plausible
occurrence.
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