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We describe a novel method for calculating the quasi-static electrical potential on
tetrahedral meshes, which we call E-Field. The E-Field method is implemented in STEPS,
which performs stochastic spatial reaction-diffusion computations in tetrahedral-based
cellular geometry reconstructions. This provides a level of integration between electrical
excitability and spatial molecular dynamics in realistic cellular morphology not previously
achievable. Deterministic solutions are also possible. By performing the Rallpack tests we
demonstrate the accuracy of the E-Field method. Efficient node ordering is an important
practical consideration, and we find that a breadth-first search provides the best solutions,
although principal axis ordering suffices for some geometries. We discuss potential
applications and possible future directions, and predict that the E-Field implementation
in STEPS will play an important role in the future of multiscale neural simulations.
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1. INTRODUCTION
In computational neuroscience, up until now studies of the elec-
trical behavior of cells and networks have not often included
detailed biochemical signaling network components. Vice-versa,
studies of molecular systems have usually not taken into account
the electrical excitablity of the cellular membranes that surround
them. While many important advances in our understanding of
neural systems have been made by this approach, future studies
are expected to focus more and more on the interaction across
different spatial and temporal scales exploring the impact that
different systems have on each other, an approach often termed
multiscale modeling. Although adding a new level of complex-
ity to simulations, multiscale modeling is expected to play a vital
role in the future of computational neuroscience (Djurfeldt et al.,
2010; Bhalla, 2011; Anwar et al., 2013).

Developing tools that can perform seamless integration across
different spatial and temporal scales is a challenging task. In
cellular simulations this amounts to connecting the electrical
excitability of the cell with reaction-diffusion models of biochem-
ical networks. Furthermore, computations must be as efficient
as possible so that no component forms a bottleneck, yet must
not over-simplify any component so as to ensure no significant
loss of accuracy. An increasing number of simulators have been
making strides toward this goal, including MOOSE (Ray and
Bhalla, 2008) and GENESIS 3 (Cornelis et al., 2012). Present
approaches often involve integrating two or more simulators:
for example, one to perform the whole-cell electrical calcula-
tions and another carrying out reaction-diffusion calculations
(Brandi et al., 2011), which already open up a wealth of potential
applications. However, many simulators offer only limited mor-
phological resolution often based on connected cylinders. There
may be occasions where accurate morphological representation of

complex cellular geometry below the μm scale is necessary along-
side a tighter integration between the electrical and molecular
systems, which is the motivation for this work. One clear example
where such simulations are potentially advantageous is where a
molecular species carrying a significant current across the mem-
brane also acts as an important signaling molecule, of which one
important example is calcium. When such signals are highly local-
ized [which can often be the case (Fakler and Adelman, 2008)]
and are strongly influenced by morphology (Santamaria et al.,
2006; Anwar et al., 2013) a detailed spatial description of the
components that are important within both the electrical and the
molecular scales, namely voltage-dependent channels and signal-
ing ions, may be vital. Furthermore, ionic channel currents are
often better described by the GHK equation (Goldman, 1943;
Hodgkin and Katz, 1949), and may be best modeled also as a
stochastic process (Mak and Webb, 1997). These considerations
together point to the need for software capable of accurate com-
putation of electrical potential in realistic morphologies tightly
coupled with a detailed spatial description of voltage-dependent
channels, their transported ions and other important signaling
molecules, with a full stochastic account of the interactions.

We describe a novel method we term E-Field, which performs
electrical potential calculation in complex 3D morphologies rep-
resented by tetrahedral meshes, which are far more suitable for
describing complex morphology than cubic meshes (Hepburn
et al., 2012). E-Field is integrated in STEPS (Hepburn et al.,
2012) alongside complementary components such as voltage-
dependent transitions and channel currents, and tightly inte-
grated with spatial reaction-diffusion computations based on
Gillespie’s SSA (Gillespie, 1977). We demonstrate accuracy and
optimization efforts, describe potential applications and discuss
future expansions on this groundwork.
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2. MATERIALS AND METHODS
2.1. E-FIELD: THE TETRAHEDRAL MESH POTENTIAL CALCULATION IN

STEPS
The evolution of the electric field on the tetrahedral mesh is
solved as a set of simultaneous difference equations for internal
points and differential equations for capacitative surface ele-
ments. Each edge in the mesh gives rise to one equation and a
sparse matrix method is used to compute the changes in poten-
tial over a timestep. We first show how the difference equations
on the mesh are derived from the quasi-static Maxwell equations
and then briefly describe the matrix method used to solve them.

2.1.1. Reduction of Maxwell’s equations for neural tissue
For fixed and moving charges as are present in small sections of
a neuron, the evolution of the electric and magnetic field is gov-
erned by the Maxwell equations. However, on the timescales of
interest here, where the frequency of changes is well below the
MHz range, the coupling of the magnetic field to the electrical
field, which gives rise to electromagnetic waves, can be neglected
(Plonsey, 1969; Nunez and Srinivasan, 2006).

Under these conditions, the system is governed by the quasi-
static Maxwell equations which can be written as:

∇ · J + ∂ρ

∂t
= 0 (1)

∇ · D = ρ (2)

where J is the current density, ρ is the charge density, t is time and
D is the electrical displacement. Experimentally, for most materi-
als the quantities J and D are related to the electric field by the
constitutive relations:

J = σE (3)

and

D = εE (4)

where σ is the conductivity, and ε is the permittivity.
The combination of Equations (1) and (3) expresses the con-

servation of charge, and Equations (2) and (4) form Gauss’ law
which implies that the electric field can be expressed as the
gradient of the electrical potential, �:

E = ∇�. (5)

From an electrical perspective, neural tissue is composed of two
main materials: the cytoplasm which contains many freely mov-
ing charges and hence a relatively high conductivity, σ, and the
membrane which is effectively an insulator with a very low con-
ductivity. The cytoplasmic conductivity prevents the build-up of
static charge, so, from Equations (1), (3), and (5), the potential
there satisfies

∇2� = 0. (6)

In principle, Equations (1) to (5) could also be used to compute
the field within the membrane in terms of ε, σ and the membrane

dimensions. In practice, this is not a useful approach because the
quantities required are not well-determined. These equations do,
however, give the form of the equation that governs the mem-
brane through the standard analysis of a thin plate capacitor. This
introduces a new quantity, Cspec, the specific capacitance, such
that � satisfies

CspecA
∂�

∂t
+ I = 0 (7)

where I is the current flowing perpendicular to a section of mem-
brane of area A. Experiments yield a value of Cspec ≈ 1μFcm−2.

Assuming that the segment of neurite under study is located
in an earthed bath, we can take � = 0 outside the structure. The
governing equations for the system are then Equation (6) inside
the structure and (7) on the surface.

2.1.2. Formulation of difference equations on a tetrahedral mesh
In order to compute the electric field numerically, the structure
under study can be represented by a mesh with the potential, �, to
be determined at the vertices of the mesh. Assuming that � varies
linearly within each tetrahedron, the value at any point inside can
be determined by linear interpolation. The first step is to divide
each tetrahedron up and associate the charge inside it with one of
its vertices. In effect, this creates a new set of elements centered
around a vertex which will form the set of solution volumes with
a one-to-one correspondence to the vertices. Equal areas of a tri-
angle can be obtained by cuts joining the center of mass to the
midpoint of each side and a similar result holds for splitting up a
tetrahedron. The charge associated with a vertex is then the inte-
gral of the charge density over the associated volume. Following
from (2), by Gauss’ law this integral can be replaced by the integral
of the normal component of the gradient of the charge density, E,
over the surface of the volume:

∫
element

ρdV =
∫

surface

E · ndS (8)

where n is the unit vector perpendicular to the surface S.
Consider a point p in the mesh surrounded by tetrahedra and

one such tetrahedron with corners at p, a, b, and c where a, b and
c form a right-handed set. Let a, b, and c be the vectors from p to
a, b, and c, respectively.

The potential at a point (x, y, z) within the tetrahedron can be
written as

� = �p + (α, β, γ)

⎛
⎝x

y
z

⎞
⎠ (9)

for unknowns α, β, and γ. By coordinate transformation, the
potentials at the vertices, �a, �b, and �c satisfy:

⎛
⎝�a

�b

�c

⎞
⎠ = (α, β, γ)

⎡
⎣ax bx cx

ay by cy

az bz cz

⎤
⎦ (10)
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where ax etc are the components of the vectors a etc.
This can be written as a matrix equation:

⎛
⎝�a

�b

�c

⎞
⎠ = M

⎛
⎝α

β

γ

⎞
⎠

where M is the transpose of the matrix in Equation (10). The
inverse of M then gives α, β, and γ in terms of the potentials:

⎛
⎝α

β

γ

⎞
⎠ = M−1

⎛
⎝�a

�b

�c

⎞
⎠ . (11)

The combination of Equations (9) and (11) now gives the poten-
tial anywhere in the tetrahedron in terms of the geometrical
constants and the potentials at the vertices.

The next step is to derive an expression for the charge asso-
ciated with a particular vertex in terms of the potentials of the
neighboring vertices. The part of the surface of the element cen-
tered on p that intersects tetrahedron a − b − c is composed of six
triangles as shown in Figure 1. The vertices of these triangles are
the midpoints of a, b and c, the centroids of surfaces p − a − b,
p − b − c and p − c − a, and the centroid of the tetrahedron at
1/4(a + b + c).

Consider the pair of triangles, one joining the midpoint of a
with the centroids of the adjacent sides, and the second connect-
ing these two centroids to the centroid of the tetrahedron (shown
in blue on Figure 1). Such a pair of triangles will be in the same
plane.

The cross product, x, of the vectors along two sides of the tri-
angle gives a vector normal to the surface with magnitude twice
the area of the triangle. For the first triangle:

x1 =
(

1

3
(b + a) − 1

2
a

)
×

(
1

3
(c + a) − 1

2
a

)
, (12)

FIGURE 1 | Derivation of vertex coupling constants in tetrahedral

mesh. A tetrahedron is comprised of vertices p, a, b, and c. The surface of
the element centered on p that intersects tetrahedron formed by a, b, and c
consists of six triangles (shaded). The triangles described by Equations (12)
and (13) in the text are highlighted in blue. Dashed lines separate triangles
that are in the same plane.

and for the second,

x2 =
(

1

3
(c + a) − 1

4
(a + b + c)

)
×

(
1

3
(b + a) − 1

4
(a + b + c)

)
.

(13)

Expanding these out and collecting terms yields

x1 + x2 = 1

12
a × b + 2

12
b × c + 1

12
c × a. (14)

By symmetry, the other two pairs of triangles give similar expres-
sions in which the roles of a, b, and c are rotated, so the sum of
cross products for all six triangles,

x = 1

3
a × b + 1

3
b × c + 1

3
c × a. (15)

The contribution of this element, ρtet , to the surface integral
in Equation (8) is 1

2 E · x so the total contribution from this
tetrahedron is

ρtet = 1

6

(
E · (a × b + b × c + c × a)

)
. (16)

Substituting E = ∇� allows ρ to be calculated in terms of the
potentials at the vertices. For surface elements that have a capac-
itative boundary, the capacitance Cp is just the sum of contribu-
tions from surface triangles with a vertex at p. The rate of change
of the potential satisfies

Cp
∂�p

∂t
=

∫
surface

σE · n

=
∑

triangles

σE · ntr

(17)

where the sum is taken over the triangles forming the surface to
element p as above.

For each vertex this yields an equation of the form

Cp
∂�p

∂t
=

∑
q

Gp, q(�q − �p) (18)

where the sum is over the neighbors, q, of p and the quantities
Gi, j are constants representing the geometry of the mesh. They
can be computed programatically by gathering together the terms
involving each neighboring vertex in Equation (17).

2.1.3. Solution method
The unknowns are the potentials at vertices of the grid mesh and
the equations are of the form:

C
dV

dt
=

∑
i

Gi(Vi − V) + I (19)

where I is the imposed current and C is zero for internal elements.
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Over a time interval δt during which dV/dt can be treated as
constant, this gives algebraic equations connecting the potential
at time t + 1 with the potentials at time t:

C(Vt + 1 − Vt) =
∑

i

Gi(Vi, t + 1 − Vt + 1) + Iδt. (20)

Collecting the time terms together:

(
C + δt

∑
Gi

)
Vt + 1 − δt

∑
i

Vi, t + 1 = CVt + Iδt. (21)

Equation (21) is of the form

∑
j

Mi, jVj, t + 1 = Ri

in which the matrix M is constant over a timestep and the right
hand side contains terms from any applied currents.

At each step, the solution process involves iterating over the
mesh to populate M and R, and then solving the matrix equa-
tion to compute the potentials. The matrix element mi, j of M
is only non-zero if the vertices i and j are neighbors. However,
although the matrix is initially sparse, direct solution methods
such as Gauss–Jordan elimination involve populating more ele-
ments that were originally zero. The extent to which this occurs
depends how the elements are ordered. For a computationally
efficient solution it is therefore important to find an ordering
of the mesh points that minimizes infill during the matrix solu-
tion. In the present study two approaches have been explored.
In the first, the mesh points are ordered according to their posi-
tion along the principal axis of the structure being modeled. As
long as the structure has one axis which is significantly longer
than the other, this keeps the non-zero elements of M close to
the diagonal (see Results). An upper bound can be placed on
the number of elements each side of the diagonal that must be
stored thereby reducing total memory requirements compared
to a full matrix solution. For more complex shapes a breadth-
first tree iteration over the mesh visiting each point only once,
with a search for the best starting point included, gives better
results in terms of memory bounds and total operation count
(see Results).

2.2. INTEGRATION WITH STOCHASTIC REACTION-DIFFUSION
SIMULATION IN STEPS

An E-Field implementation is included in STEPS 2 and integrated
with spatial reaction-diffusion simulations on unstructured tetra-
hedral meshes that accurately represent cellular morphology. A
model that is built in STEPS, in which tetrahedral subvolumes are
linked with diffusive molecular flux, may be simulated stochas-
tically, or converted to a set of ordinary differential equations
that are then solved deterministically in CVODE (Cohen and
Hindmarsh, 1996). The addition of the E-Field object brings
with it several new components to STEPS models. These objects
allow simulation of effects that occur in excitable membranes,
such as voltage-dependent channel transitions and ligand bind-
ing, along with channel currents. The objects that have been

added in version 2 of STEPS since version 1.3 (Hepburn et al.,
2012) are:

• Membrane (class steps.geom.Memb): Represents the mem-
brane across which the electrical potential will be solved. It is
comprised of a collection of triangles specified by one or more
patches (class steps.geom.TmPatch), which must form a single
surface that can, however, be open (i.e. it may contain holes) or
closed. The support of closed loops and therefore torus topolo-
gies is relevant for many cell biological cases. The Membrane
can be on the surface of the tetrahedral mesh, or may be an
internal surface so as to allow outer compartments. Currently
only one Membrane may exist in a STEPS simulation (though
see Future improvements to simulation realism).

• Channel (class steps.model.Chan): Used to represent a specific
type of chemical species: one that can undergo conforma-
tional changes, which may be voltage-dependent. In practice,
in STEPS models a Channel object exists only to group a set of
Channel States.

• Channel State (class steps.model.ChanState): Used to model
one specific configuration of a Channel. Channel States are
similar to Species objects in STEPS in that they may diffuse
in volumes, or be bound to surfaces, but with the impor-
tant difference that a Channel State may be defined as a
conducting state with the mapping of currents (presently
of class steps.model.GHKcurr or steps.model.OhmicCurr)
to that state. A Channel State may only undergo voltage-
dependent transitions and conduct currents when embed-
ded in a Membrane and not when diffusing in a volume
(though they may undergo ordinary reactions when in any
location). Channel States are used as the basis of Markov-
schemes in STEPS, and may interact with surrounding intra-
and extra-cellular compartments, allowing for features such as
phosphorylation-dependent modulation of channel conduc-
tance.

• GHK Current (class steps.model.GHKcurr): Describes a cur-
rent passing through a given Channel State which is approx-
imated by the Goldman-Hodgkin-Katz flux solution to elec-
trodiffusion (Goldman, 1943; Hodgkin and Katz, 1949). The
GHK equation has been shown to be an accurate approxima-
tion to full electrodiffusion under a wide range of physiological
conditions, only breaking down when channel pore occupa-
tion saturates or competition occurs between different ionic
species [see Hille (2001a) for further detail on the simplify-
ing assumptions and discussion of the accuracy of the GHK
equation]. Fluctuations in ionic concentrations both around
and within a channel pore can result in significant noise in
single-channel current (Mak and Webb, 1997), indicating the
need for stochastic currents and sampling of local concen-
trations around each individual channel. The ionic flux in
STEPS is calculated stochastically and discretely within the
reaction-diffusion computations, with a rate derived from local
concentrations around each channel, and this flux (optionally)
results in transport of ions between compartments (see GHK
Current calculation). This is particularly useful when comput-
ing the flux of important signaling ions, such as calcium, to a
good degree of accuracy.
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• Ohmic Current (class steps.model.OhmicCurr): Represent a
channel current as an Ohmic current, and are therefore defined
by a single-channel conductance and reversal potential. This
current does not relate to a transport of ions between com-
partments in a STEPS simulation. Ohmic Current objects are
included due to their prevalence in many models (for example
in Hodgkin–Huxley models) and for considerations of effi-
ciency, but for many channels the GHK Current should give
a more accurate representation of the true biophysical current
(see GHK flux as a more accurate representation of single-
channel currents compared to the Ohmic approximation).

• Voltage-Dependent Surface Reaction (class
steps.model.VDepSreac): Used to model processes that
take place on a Membrane where the reaction propensity
depends on the local potential across that surface. Such
processes are used for modeling channels that undergo
voltage-dependent conformational changes [e.g., sodium and
potassium channels in Hodgkin-Huxley models, calcium-
activated potassium channels (Anwar et al., 2013)] and/or
voltage-dependent ligand binding [e.g., models of NMDA
receptor voltage-dependent channel block by magnesium
(Vargas-Caballero and Robinson, 2004)]. A channel may of
course undergo both voltage-dependent interactions as well as
non-voltage-dependent ones such as in Vargas-Caballero and
Robinson (2004) and the mslo/BK-type channel in Anwar et al.
(2013), which undergoes voltage-dependent conformational
changes and non-voltage-dependent calcium-activation.

2.3. STEPS SIMULATION ALGORITHM
Figure 2 shows the simplified algorithm for the E-Field imple-
mentation in STEPS. The reaction-diffusion calculation and the
E-Field calculation run in series, but communicate often by a
user-defined time-step. The SSA simulates the exact time of each
reaction, updating its internal clock every time a reaction is exe-
cuted, and so time-steps are not regular. The communication time
is adapted to occur exactly in line with the SSA time-clock, so the
E-Field calculation will usually be performed at a slightly lower
time-step than was specified, and never longer. This approach
leaves the SSA clock independent and so does not affect the accu-
racy of the reaction-diffusion computation. The intention is that
the model will provide an SSA mean time-step that is much
smaller than the E-Field time-step to give many SSA updates
between each communication, but the implementation will still
work even if this is not the case.

2.4. GHK CURRENT CALCULATION
The GHK Current object in STEPS 2 calculates ionic channel flux
by the GHK flux equation (Hille, 2001a) in single-channel form:

Is = Psz
2
s

VmF2

RT

[S]i − [S]oexp(−zsVmF/RT)

1 − exp(−zsVmF/RT)
(22)

where Is is the single-channel current of ion S (amps), Ps is the
single-channel permeability of ion S (m3.s−1), zs is the valence
of ion S, Vm is the membrane voltage (volts), F is the Faraday
constant, R is the gas constant, T is temperature (kelvin), [S]i is

FIGURE 2 | STEPS simplified algorithm of spatial stochastic simulation

including an excitable membrane. The reaction-diffusion calculations in
Tetexact and the E-Field membrane potential updates are performed
separately, but are integrated frequently (typically every 0.01 ms of
simulation time). This time-step for the integration allows several SSA steps
to occur between communications, and is adaptive to align exactly with the
SSA clock. The communication consists of membrane currents stored by
Tetexact being input to the E-Field calculation, which computes the new
mesh potentials that are input to Tetexact to update voltage-dependent
processes. (1) SSA queue includes voltage-dependent surface reactions
and GHK current single-ion events. (2) If the event is a GHK current
single-ion event, the charge of the ion that passes through the channel is
added to the total charge of all ions for that membrane triangle since the
last E-Field update. Every membrane triangle stores a total charge. (3) The
total charge from GHK single-ion events is divided by the E-Field timestep
and combined with Ohmic currents to calculate total current for each
membrane triangle per timestep.

the intracellular concentration of ion S (mol.m−3) and [S]o is the
extracellular concentration of ion S (mol.m−3).

To simulate a GHK current in STEPS, a GHK current object
is created internally for every mesh triangle that represents a sec-
tion of the Membrane. Each triangle calculates the single-channel
current based on Equation (22) by the fixed user-supplied simu-
lation parameters of single-channel permeability, ion valence and
temperature, the variables [S]i and [S]o, which are sampled from
the inner and outer tetrahedrons to that triangle, respectively, and
the local membrane potential. Since the value of these variables
can be different for every membrane triangle each triangle can
store a unique local value for this flux. The calculated current
is then divided by the amount of elementary charge for one ion
(e.g., 2e for Ca2+) to give the flux as a number of molecules to
pass through the channel per second. GHK currents are mapped
to a Channel State and so the transport rate is multiplied by the
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population of the Channel State to give a total rate for this “reac-
tion.” This is then treated as an ordinary “reaction rate” in STEPS
and is solved within the SSA for one reaction-diffusion time-step
(Figure 2). When this “reaction” executes it results in transport of
ions between compartments (e.g., from an extracellular tetrahe-
dron to an intracellular tetrahedron or vice-versa) and the rate is
re-calculated due to the changes in concentration around the local
membrane surface. A simplified GHK current object is also avail-
able, which is a pure current that does not model ion transport.
Per reaction-diffusion time-step STEPS stores, triangle by trian-
gle, the total charge that crossed the membrane triangle. At the
end of a time-step these numbers are converted to currents, added
to any other GHK currents and Ohmic currents, and passed to
the E-Field object to update potential. Single-channel currents are
then recalculated with the new V, transported charges reset to zero
and the process begins again.

3. RESULTS
3.1. VALIDATIONS
To demonstrate the accuracy of the E-Field method, we per-
formed the Rallpack tests (Bhalla and Bower, 1992) using tetra-
hedral meshes to represent the cable compartments. The Rallpack
tests are a set of benchmarks that were designed to evaluate
the accuracy of neuronal simulators. Although the Rallpacks are
based on somewhat larger compartments than those to which
the E-Field method was intended to be applied, these compart-
ments can be supported in tetrahedral meshes and are useful for
accuracy studies.

3.1.1. Rallpack1: Uniform unbranched passive cable
A mesh of 220,615 tetrahedrons was generated to represent a
cylinder of length 1 mm and diameter 1 μm. The mesh was con-
trolled to give an almost perfect match in volume to a true
cylinder, but contained an unavoidable error of 1.0% in surface
area. Membrane resistance and capacitance were controlled to
match the values for cylindrical geometry perfectly.

The current of 0.1nA was injected over the nodes at one
end of the cylinder, and potential recorded at both ends (0 and
1000 μm). The E-Field calculation was performed every 0.01 ms
up to total simulated time of 0.25 s.

STEPS output is highly accurate with respect to the correct
solution. Figure 3 compares the output from STEPS to the cor-
rect solution at 0 μm (Figure 3A) and 1000 μm (Figure 3B).
The RMS difference was 0.0102 mV at 0 μm and 0.0095 mV at
1000 μm, the small error likely to originate from the fact that
the curved cylindrical surface cannot be represented perfectly
with a tetrahedral mesh or from discrepancies between the 1D
approximation and the 3D solution.

Three further meshes were tested representing the same geom-
etry but with 38,819, 78,778, and 115,979 tetrahedrons. All
meshes were generated with a near-perfect match in volume to
a true cylinder, with unavoidable errors of 3.6%, 2.6% and 2.0%,
respectively, in surface area. Figure 4 shows a plot of mesh size
(number of tetrahedrons) vs. RMS accuracy. Despite decreasing
accuracy of true cylindrical geometry representation with fewer
tetrahedrons, all meshes produced highly accurate results with
respect to the correct solution. This demonstrates that, in this

FIGURE 3 | Rallpack 1 results. Output from the E-Field method
implementation in STEPS on the mesh of 220,615 tetrahedrons is
compared to the correct solution at both ends of the cylinder (A: 0 μm and
B: 1000 μm).

FIGURE 4 | Rallpack 1 simulation accuracy as a function of mesh size.

The RMS voltage difference between output from the E-Field method
implementation in STEPS and the correct solution at both ends of the
cylinder (0 and 1000 μm) at 4 different mesh sizes of 38,819, 78,778,
115,979, and 220,615 tetrahedrons.

case, the coarser meshes can reliably be used for simulations, an
important consideration for runtime (see Efficiency).

3.1.2. Rallpack2: Branched passive cable
The full geometry description for Rallpack2 is 10 levels of sym-
metric branching following the 3/2 power law (Rall, 1959) to test
the ability of simulator to handle branching. While this geometry
is easy to represent mathematically, it was not possible to generate
a suitable tetrahedral mesh. This is due to the very large difference
in length and diameter for the first level (1 compartment of length
32 μm diameter 16 μm) compared to the tenth level (512 com-
partments of length 4 μm and diameter 0.25 μm). The 3/2 power
law, which means the two daughter branches have a total diameter
approximately 26% larger than the parent branch, also introduces
complications. However, it was possible to generate a mesh of 8
levels (drawing shown in Figure 8), with daughter branch faces
attached to as large an area of the parent branch faces as possible.
This mesh contained 60,066 tetrahedrons and was controlled to
give a perfect match in volume to the ideal geometry, with a 4%
error in surface area.

The current of 0.1 nA was injected over the nodes at one end
of the structure, and potential recorded at both ends (0 μm and
approximately 130 μm). The E-Field calculation was performed
every 0.01 ms up to total simulated time of 0.25 s.
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FIGURE 5 | Rallpack 2 results. Output from the E-Field method
implementation in STEPS on the mesh of a branched dendritic structure of
8 levels is compared to the correct solution at both ends of the cable (A:
level1, 0 μm and B: level8, 130 μm).

Figure 5 compares the output from STEPS to the correct solu-
tion at 0 μm (Figure 5A) and 130 μm (Figure 5B). The RMS
difference is 0.044 mV at 0 μm and 0.002 mV at 130 μm. Due
to mesh-generation constraints it was not possible to test other
meshes with different numbers of tetrahedrons.

3.1.3. Rallpack3: Hodgkin-Huxley model
Since there is no analytical solution for Rallpack3, tests involved
comparison to benchmark simulations in the deterministic cable-
equation solver NEURON (Hines and Carnevale, 2001), version
7.3. All simulations in both STEPS and NEURON were run
on a Mac Pro with 2.66 GHz Intel Xeon processor and 16 GB
1066 MHz memory under similar conditions.

Comparison to another simulator raises the opportunity not
only to benchmark accuracy, but also performance. Such com-
parisons are complicated by the fact that there are many factors
affecting performance over orders of magnitude in both simu-
lators. For NEURON this includes the number of segments, the
solution method (backward Euler or CVODE), time-step (back-
ward Euler solution) or tolerance (CVODE solution). For STEPS
in solver TetODE this includes the mesh size, CVODE tolerance
and integration time step. Furthermore, the Rallpack3 test must
be run in deterministic solver TetODE, yet STEPS is intended
to be mostly applied to stochastic simulations which have dif-
ferent runtime considerations (Hepburn et al., 2012). However,
in an attempt to benchmark performance in deterministic mode,
through rigorous tests we chose as a benchmark in each simu-
lator the approximate point at which both simulators reach very
high accuracy with close agreement between the two simulators,
and less than a 1 mV RMS difference with any order of mag-
nitude increase in factors that improve accuracy (smaller time
step, more segments, more detailed meshes etc). For NEURON
these conditions were with a backwards-Euler time-step of 1 μs
and 1000 segments. For STEPS the conditions were an equivalent
cubic mesh of 1135 tetrahedrons, CVODE tolerances of 10−6 and
integration time-step of 5 μs. The runtimes under these highly-
accurate conditions were 703 s in NEURON and 847 s in STEPS. It
is possible to improve performance in both simulators compared
to the benchmark conditions, although this will come at some
cost to accuracy. Figure 6 compares the benchmark simulations
in STEPS and NEURON. Accuracy was measured by comparing
RMS voltage over the entire time range of 250 ms and the mean

FIGURE 6 | Rallpack 3 results. The benchmark in STEPS described in the
text is compared to the benchmark solution from NEURON at both ends of
the cable (A: 0 μm and B: 1000 μm).

time difference between the spike peaks, at both ends of the cable
(0 and 1000 μm). The RMS differences were 0.17 and 0.90 mV
and spike timing differences were 2.5 μs and 23 μs, at the 0 and
1000 μm ends, respectively. To put this accuracy into context the
differences between this benchmark with a 1 μs time-step and a
5 μs time-step using the NEURON simulator are 3.0 mV, 5.4 mV,
and 100 μs, 100 μs at the 0 μm and 1000 μm ends, respectively.

For most applications in STEPS, particularly stochastic mod-
els, mesh generation is the most important consideration for
accuracy. Accuracy can suffer if tetrahedrons are too large, and
in addition mesh quality affects accuracy particularly when there
are discrepancies compared to ideal surface area and volume.
Figure 7 demonstrates when there is a loss of accuracy relative
to the Rallpack3 benchmark due to these effects. Reducing the
number of tetrahedrons to 600 from 1135 (i.e., increasing mean
volume from 0.7 μm3 to 1.3 μm3) results in small loss of accuracy
(Figure 7: left bar). All meshes with more than 1135 tetrahedrons
were accurate. In comparison to the error from large tetrahe-
drons, an introduced increase in surface area of just 1% gives a
much larger loss of accuracy (Figure 7: right bar) demonstrating
that it is essential to compensate for errors in membrane surface
area in generated meshes.

In general for applications, it is important that the many fac-
tors affecting accuracy are taken into account in both stochastic
or deterministic simulations, and that an acceptable accuracy is
chosen relative to runtime considerations. In addition a few per-
cent error in surface area compared to perfect cylinders, often
unavoidable in tetrahedral meshes, can result in a significant loss
of accuracy, and so it is desirable to account for this error by
applying corrections to membrane properties.

3.2. EFFICIENCY
In Figure 8 we present three example tetrahedral meshes, and
discuss how these meshes can be optimized for computations.
As mentioned in E-Field: the tetrahedral mesh potential calcu-
lation in STEPS, re-ordering of mesh nodes (vertices) is essential
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FIGURE 7 | Tetrahedral mesh effects on accuracy of the Rallpack3 test.

Measurements taken relative to the benchmark at the 1000 μm end of the
cable. Reduction in accuracy relative to the benchmark measured by RMS
voltage difference (blue) and mean spike-time resolution (red) for a coarse
mesh of 600 tetrahedrons (left bar) and error of 1% in surface area (right
bar).

to achieve an efficient solution. This amounts to minimizing the
largest index difference between connected nodes, and because
meshes in raw form are usually not sorted in this way (Figure 8A)
it is essential that a sorting method is applied. We tested two
sorting methods, which are available in STEPS 2: principal axis
ordering (Figure 8B) and a breadth-first search (Figure 8C). The
important number to measure in order to determine the per-
formance of the solution for any applied sorting method is the
resulting maximum difference between node indices of all con-
nected nodes in the mesh, because a larger number gives a slower
computation (Figure 9). Mesh 1, a long cylindrical structure,
shows the most startling benefit to performance by application
of a sorting method, resulting in a decrease in node index sep-
aration from 16,105 in the unsorted case (which is close to the
total number of nodes: 16,177) to 14 with principal axis ordering
and 11 with breadth-first search, a 3-order of magnitude decrease,
which reduces the period for E-Field iteration from several thou-
sands seconds to 0.14 and 0.11 s, respectively (Figure 8D). This
also demonstrates that the principal axis ordering method is suit-
able for structures with one long axis with only a small difference
between that and the breadth-first search for this mesh. Mesh 2
contains more complex realistic geometry: a reconstruction of
a spiny dendrite from CA1 stratum radiatum (http://synapses.
clm.utexas.edu/anatomy/ca1pyrmd/radiatum/k24/k24.stm). For
this mesh the ordering methods produce a 2-order of magnitude
maximum node separation reduction, though there is a signifi-
cant benefit in choosing the breadth-first search, which produces
an E-Field period of 1.76 s compared to 6.65 s for principal axis
ordering. Mesh 3, which represents the branched dendrite used
for Rallpack2, shows the greatest benefit for the breadth-first
search over principal axis ordering. With an unordered maxi-
mum node index separation of 21,151, principal axis ordering
only reduces this to 2688 compared to 423 for the breadth-first
search, resulting in an unacceptably high E-Field period of 465 s
for principal axis ordering, but a manageable 8 s for the breadth-
first search. The breadth-first search is a slower search compared
to principal axis ordering, so for morphologies where the result is
similar it is favorable to apply principal axis ordering. For example

FIGURE 8 | Node connectivity and its effect on E-Field calculation

period. Connectivity matrices are displayed for three tetrahedral meshes of
different geometries, with (A): no ordering (mesh generator output), (B):
principal axis ordering, (C): breadth-first search ordering. The maximum
node separation is displayed for each connectivity matrix as a number and,
where visible, a black line showing the maximally separated node
connection. (D): The E-Field calculation performance shows a strong
dependency on the ordering method, with the application of one of the two
ordering methods always producing a strong reduction in calculation period
compared to the unordered case (green). The benefit of the breadth-first
search (blue) compared to principal axis ordering (magenta) depends on the
mesh geometry, with a significant improvement for Mesh 2 and a stronger
benefit for Mesh 3.

the 100 % breadth-first search (testing all starting nodes) took
146 s for Mesh 2 and 736 s for Mesh 3 whereas principal axis
ordering typically only takes a few seconds. However, for these
meshes, the gains to performance with a breadth-first search out-
weigh the cost of the initial search, and in addition vertex ordering
may be saved to file in STEPS so that the sorting method need
only be applied once. Practically, version 2.1 of STEPS allows
fewer than 100% of starting points to be visited benefitting search
time with only a small cost to performance, and includes the
Cuthill-McKee improvement to the standard breadth-first search
(Cuthill and McKee, 1969). All simulations were run on a Mac
Pro with 2.66 GHz Intel Xeon processor and 16 GB 1066 MHz
memory.

Figure 9 shows how the performance of the E-Field calcula-
tion depends on the calculation complexity, which is represented
by the product of the maximum node index separation with the
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FIGURE 9 | The E-Field iteration period vs. calculation complexity. The
E-Field iteration period results for the 3 meshes shown in this figure are
plotted as a function of the calculation complexity, which is estimated as
the maximum node separation multiplied by the total number of vertices.
This relationship appears to approximately follow a power law, and the
function y = 2∗10−10.x1.6 is shown by a dashed line. The calculation period
for breadth-first ordering (blue) gives a small maximum node separation
that gives sub 10 s performance for all the tested meshes, and the principal
axis ordering (magenta) performs comparably for Mesh 1 and 2, but gives a
large maximum node separation for Mesh 3 resulting in a large iteration
period (magenta square). Raw ordering (green) always gives large node
separations that result in unworkably long E-Field iteration periods.

total number of nodes since this defines the size of the band diag-
onal matrix at the core of the E-Field calculation (see Solution
method). The relationship appears to approximately follow a
power law: Period ∝ Complexity1.6. This power law can be used
to estimate the E-Field period when running a STEPS simulation,
and demonstrates the need to find the smallest maximum node
separation.

4. DISCUSSION
The E-Field method implemented in STEPS 2, while validated
against 1D cable-like solutions and benchmarks, automatically
allows membrane potential to be solved in any geometry that
can be represented by a tetrahedral mesh, which allows very
close 3D morphological precision (Hepburn et al., 2012). This
can be very important when considering the complex neuronal
morphology in which key signaling systems occur where a 3D
solution is required. Although 1D cable-like solutions give rea-
sonable accuracy in whole-cell simulators, for the detailed level
of cellular geometry surrounding typical reaction-diffusion sys-
tems the errors introduced by simplifying complex morphology
into a 1D cable-like solution can be non-negligible (Lindsay
et al., 2004). Closely tied to this consideration is also the need
for close coupling between local membrane potential and local
excitable membrane effects such as voltage-dependent gating and
stochastic channel currents (Mak and Webb, 1997), all of which
are supported by our approach but are difficult to achieve by
mapping separate solvers together.

Our method, while offering significant gains in simula-
tion accuracy of the reaction-diffusion systems in and around
excitable membranes, is itself an approximation to full elec-
trodiffusion. The obvious benefits of using the E-Field method
compared to full electrodiffusion are of efficiency, where full
electrodiffusion would be unworkably slow. Inclusion of the

GHK equation incorporates the most significant electrodiffusion
effects, although our approach ignores the Lorentz force act-
ing on charged ions in the presence of an electric field, as well
as the component of the axial current that is carried by sim-
ulated ions. However, these effects are expected to be small
because under realistic physiological conditions thermal veloc-
ities are orders of magnitude larger than drift velocities in
an electric field (Hille, 2001b), and therefore this simplifica-
tion will not appreciably affect simulation results (De Schutter,
2010).

4.1. ACCURACY
The accuracy of the E-Field method has been demonstrated
with established cable-equation models, importantly showing
some dependence of accuracy on tetrahedron size. Tetrahedron
size can be an even more important consideration in realistic
reaction-diffusion applications. As well as falling within a cer-
tain size window for sufficient accuracy (Hepburn et al., 2012),
there may be other important model-dependent considerations,
such as localization in microdomains that exist in a narrow
concentration range that will be influenced in simulations by
tetrahedron size (Anwar et al., 2013). Therefore, accurate mesh
generation is an important consideration for complex models.
Accuracy can usually be ensured with a careful, methodolog-
ical approach, which may involve benchmarking deterministic
tests in a range of meshes that are close to acceptable resolu-
tion against another solver (Anwar et al., 2013). In addition,
the method currently doesn’t allow extracellular fields (Buzsáki
et al., 2012), and so is suitable for systems where the earthed-
bath assumption is a good approximation, losing some accuracy
when this is not the case. It would be possible to allow for explicit
solution of the extracellular space by the same method with
appropriate boundary conditions, and this is a possible future
addition.

4.2. EFFICIENCY
Application of an ordering method is essential to achieve efficient
calculations. We conclude that principal axis ordering, which has
the benefit of being a quick search, is sufficient for simple shapes
where one axis is much longer than the others. For complex
shapes the breadth-first search should be applied. Although this
is a slower search, for every mesh this search only needs to be
applied once because, in STEPS, optimal indexing may be saved
to a file which can be used to load the optimal indexing from for
all future simulations using that mesh.

4.3. GHK FLUX AS A MORE ACCURATE REPRESENTATION OF
SINGLE-CHANNEL CURRENTS COMPARED TO THE OHMIC
APPROXIMATION

Ohmic currents are commonly used in computation models of
neural systems, yet Ohmic currents are only a good approxima-
tion when the ionic concentrations in the two compartments
separated by a membrane are quite similar, and only then is the
single-channel conductance approximately constant over the rel-
evant voltage range. When there is a significant concentration
gradient this effectively means that the single-channel conduc-
tance has a voltage-dependence that is usually better described
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by the GHK flux equation (Hille, 2001a; Clay, 2009). There are
occasions when an Ohmic current is a good approximation even
when a significant concentration gradient exists, which is caused
by some external effect, such as the squid giant axon sodium
current which is linearized in the physiological range by partial
block of the current by calcium and magnesium ions (Vandenberg
and Bezanilla, 1991). However, the GHK equation is usually the
more accurate representation, and this accuracy is particularly
important when calculating the flux of ions that then undergo
important intracellular processes, such as calcium (De Schutter,
2010).

4.4. FUTURE INTEGRATION WITH WHOLE-CELL SOLVERS
The E-Field implementation in STEPS was developed with the
intention of being applied to the complex morphologies sur-
rounding micrometer cellular signaling regions. Although it is
capable of solving membrane potential in anything that can be
represented by a tetrahedral mesh and therefore could, in theory,
be used in whole-cell models, often such a level of detail is not
necessary and would introduce runtime concerns at such scales,
and the whole-cell calculations would be much better solved
by cable-theory based simulators such as PSICS (http://www.

psics.org), NEURON (http://www.neuron.yale.edu) or GENESIS
(http://www.genesis-sim.org). Therefore, important future work
will involve integrating STEPS with one or more whole-cell
and network simulators, where STEPS simulates a section of
the morphology completely and the rest of the cell is solved
by a whole-cell simulator, with coupling consisting ideally of
a single axial current. This could be achieved in a number
of ways. For example, the tools are already in place to form
a connection through Python of STEPS to other simulators
with a Python interface, which are many. However, this would
most likely be the least efficient approach. More efficient cou-
pling could be achieved through software designed for this goal,
such as MUSIC (Djurfeldt et al., 2010), or through a more
direct approach. With successful integration between simula-
tors achieved many more applications will open up in which
STEPS could potentially form a component in full multi-scale
models.

4.5. FUTURE IMPROVEMENTS TO SIMULATION REALISM
While the introduction of accurate calculation of the time-
varying electrical potential in complex 3D geometries is an
important advance in multiscale simulation by making it pos-
sible to tightly integrate local membrane potential and currents
with reaction-diffusion calculations, there is the possibility for
further additions to this in the future. Small deviations from
the GHK flux are possible in some biological channel currents;
for example competition may exist in the pore which results in
some weak voltage and/or concentration dependence to perme-
ability (Jatzke et al., 2002). Improvements to calculation accuracy
for such channel currents could be possible by simulating the
current through pores as particles “hopping over” energy barri-
ers (Hille, 2001a), though this could come at a significant cost
to simulation runtime. In addition, the present implementation
is restricted to simulating the potential across only one cellular
membrane for which the outer potential is assumed fixed, yet cells
can contain internal membranes (such as the endoplasmic reticu-
lum) that are capable of charge separation and therefore contain
a potential across them (Shemer et al., 2008), and can themselves
contain channels and pumps that transport ions from intracel-
lular stores (Szewczyk, 1998; Hille, 2001c) by processes that can
also be voltage-dependent (Sepehri et al., 2007). Therefore, there
could be many useful applications of an extension that allows sim-
ulation of the potential across such internal membranes, which
will involve a modification to the present implementation to allow
a varying outer compartment potential.

AVAILABILITY
STEPS is available at: http://steps.sourceforge.net
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