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Recently in functional magnetic resonance imaging (fMRI) studies there has been
an increased interest in understanding the dynamic manner in which brain regions
communicate with one another, as subjects perform a set of experimental tasks or as
their psychological state changes. Dynamic Connectivity Regression (DCR) is a data-driven
technique used for detecting temporal change points in functional connectivity between
brain regions where the number and location of the change points are unknown a priori.
After finding the change points, DCR estimates a graph or set of relationships between
the brain regions for data that falls between pairs of change points. In previous work,
the method was predominantly validated using multi-subject data. In this paper, we
concentrate on single-subject data and introduce a new DCR algorithm. The new algorithm
increases accuracy for individual subject data with a small number of observations and
reduces the number of false positives in the estimated undirected graphs. We also
introduce a new Likelihood Ratio test for comparing sparse graphs across (or within)
subjects; thus allowing us to determine whether data should be combined across
subjects. We perform an extensive simulation analysis on vector autoregression (VAR)
data as well as to an fMRI data set from a study (n = 23) of a state anxiety induction
using a socially evaluative threat challenge. The focus on single-subject data allows us to
study the variation between individuals and may provide us with a deeper knowledge of
the workings of the brain.
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1. INTRODUCTION
Traditionally, functional magnetic resonance imaging (fMRI)
studies have concentrated on locating brain regions showing
task-related changes in neural activity, for example, greater activ-
ity during an experimental task than during a baseline state
(Lindquist, 2008). The voxel-wise general linear model (GLM)
(Worsley and Friston, 1998) has become the standard approach
for analyzing such data. However, in order to gain a deeper insight
into the neural processing of the brain as the subject performs a
set of experimental tasks or changes psychological state, there is
now an intense interest in the field to study the interactions or
connectivity between distinct brain regions.

A very active area of neuroimaging research involves exam-
ining the directed (effective connectivity) and undirected asso-
ciation (functional connectivity), between two or more spatially
remote brain regions (Friston et al., 1993; Biswal et al., 1995). For
example, the “Human Connectome” project is currently uncov-
ering the structural and functional determinants of brain activity
using information from anatomical, functional and effective con-
nectivity (Sporns et al., 2005). For fMRI data, the covariance or
correlation matrix as well as the precision matrix (inverse covari-
ance matrix) can be estimated and used to measure functional
connectivity between different regions based on their time series.

However, these techniques are only useful when estimating static
functional connectivity networks or when the experimental con-
dition does not change over time. The techniques do not consider
the possibility of changing functional connectivity or the dynam-
ical nature of interactions between brain regions. If the dynamic
connectivity (or dependencies) between brain regions are not
taken into account, the true dynamics are not captured and the
overall connectivity structure of the data will simply represent
an aggregate of all the changing connectivities between runs.
Specifically, the distinction between the different psychological
states would not be found, rather an average of the functional
connectivity would be estimated, which in many experiments
would lead to meaningless results.

The popular PPI (PsychoPhysiological Interactions; Friston
et al., 1997) method addresses the dynamic nature of functional
connectivity but it assumes the timing of the various contexts or
state changes is known. However, often, it is difficult to specify
the nature, timing and duration of the psychological processes
being studied a priori. Chang and Glover (2010) and Allen et al.
(2013) introduced methods for estimating time varying connec-
tivity between brain regions for resting state data using a moving
window. Hence, an important extension of these works is to
have methods that can detect changes in connectivity, regardless
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of the nature of the experimental design. In order to find evi-
dence of fluctuations in functional connectivity over the course
of the experiment, we previously introduced a technique called
Dynamic Connectivity Regression (DCR; Cribben, 2012; Cribben
et al., 2012). DCR is a data-driven method for detecting func-
tional connectivity change points between brain regions where
the number of change points and their location are not known
in advance. After finding the change points, the method estimates
a graph or series of relationships between the brain regions for
data in the temporal partition that falls between pairs of adja-
cent change points. It is assumed that the graph does not change
within each partition. The motivation behind the method stems
from the fact that under certain circumstances the dynamic man-
ner in which the brain regions interact with one another over time
is of primary interest. DCR utilizes the graphical lasso or glasso
(Friedman et al., 2007) and so it allows for change point and
graph estimation in a high-dimensional context by setting many
elements of the precision matrix to zero. DCR can be applied to
estimate the dynamic interaction between the brain regions as
well as the timing, duration and details of the interaction.

In Cribben et al. (2012), DCR was used to estimate change
points and undirected graphs for multi-subject data. In this paper,
we focus exclusively on single-subject data because group aver-
age analyses risk removing unique individual patterns of activity
and analyzing single-subject data allows us to understand the
sources of intersubject variability in brain activity. It is assumed
that by averaging across the group, the noise effects are removed
but by analyzing individual subjects and the variations between
them, the results may provide insight to the understanding of
the mind/brain relationship. In other words, while analyses of
multi-subject data are highly valuable for understanding general
cognitive processes, the study of variation between individu-
als may be able to provide us with a deeper knowledge of the
workings of the brain. Furthermore, by analyzing multi-subject
data we implicitly average connectivity patterns across the group,
which may lead to meaningless results. An example of this can
be found in section 5, where subjects with positive connectivity
is canceled out by subjects with negative connectivity. Evaluating
how functional brain networks change over time and relating this
information to brain dysfunction promises to be very important
for understanding the underlying mechanisms of brain disorders
such as depression and Alzheimer’s disease.

To this end, we introduce a new DCR algorithm that involves
the addition of extra steps to the old algorithm to increase accu-
racy for single-subject data with a small number of time points.
The extra steps prove vital in situations where there are small and
subtle connectivity changes. We show that the new DCR algo-
rithm is very adept at finding both major and minor changes
in the functional connectivity structure. A comparative study
between the old and new algorithm is carried out in the simu-
lation study. The stationary bootstrap inferential procedure for
detecting significant change points is also revised accordingly to
obtain more accurate estimates of the distribution of the BIC
reduction at each candidate change point. The glasso technique
for estimating sparse graphs can be severely impacted by the
inclusion of only a few contaminated values, such as spikes that
commonly occur in fMRI time series, and the resulting graph

has the potential to contain false positive edges (Finegold and
Drton, 2011). The second extension involves performing a boot-
strap inferential procedure on the edges or partial correlations in
the undirected graphs to remedy the issue of the false positive
edges.

By carrying out the analysis on individual subjects we do not
need to collapse information across subjects or assume that the
graph structure between each pair of change points is the same
across subjects. The subject’s change points and partition specific
undirected graphs are thereafter compared to determine whether
the change points and connectivity structures are common across
all subjects. We also introduce a new Likelihood Ratio test on
the similarity of the sparse precision matrices across subjects.
With this information we can make inferences about whether
the assumption of equal connectivity structure across subjects
is valid. The matter of whether to combine information across
subjects (to analyse group average results) or whether to look
at individual patterns of brain activity is critical for individual
treatment of brain disorders and very topical in the field of neu-
roscience (see Van Horn et al., 2008 for a discussion). As noted in
Varoquaux et al. (2010), the use of multiple datasets is very chal-
lenging due to the variability between subjects coupled with the
variability of functional signals between experimental runs.

This paper is organized as follows. In section 2 we begin by
briefly discussing the theoretical foundations of DCR. Next we
describe the new DCR algorithm for single-subject data with a
small number of time points and inferential procedures for deter-
mining statistically significant connectivity change points and
statistically significant edges in the undirected graphs. We also
discuss a Likelihood Ratio test for comparing precision matri-
ces across and within subjects. In sections 3 and 4 we outline the
simulations and the fMRI study that the new DCR is applied to
respectively. We describe the results of the simulations and exper-
imental data in section 5. The results display DCR’s capability to
find connectivity change points for single-subject data with only
a limited number of observations thus allowing for comparison
across subjects.

2. MATERIALS AND METHODS
2.1. DYNAMIC CONNECTIVITY REGRESSION (DCR)
A more detailed explanation of the theory behind DCR can be
found in Cribben et al. (2012) and in Cribben (2012). Suppose
Y (e.g., several brain regions) has n i.i.d data points sampled
from a zero mean p-dimensional multivariate Gaussian distri-
bution, N(0, �). In order to estimate the dependence structure
of Y we could use the sample covariance matrix, �̂ = (n −
1)−1 ∑n

i = 1(yi − ȳ)(yi − ȳ)T (estimate of �). Alternatively we
could use the precision matrix (inverse covariance matrix), � =
�−1. The natural estimator for � is �̂−1. However, we could
also consider regularization and sparse techniques which are espe-
cially needed when p > n. The most widely used precision matrix
estimation procedures are based on penalized likelihood maxi-
mization or constrained error minimization approaches which
are optimization algorithms with different objective functions.
All of these estimation procedures assume that the dependence
structure between the data remains constant. However, in many
applications, including neuroimaging, the dependency structure
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between the individual voxel or ROI time series varies over time.
If the dynamic dependencies are not properly accounted for,
the overall dependence structure will simply be an aggregate
of all the different dependency structures. DCR detects change
points in functional connectivity between brain regions, without
knowledge on the number or location of the change points, and
estimates a graph or set of relationships between the brain regions
for data between each pair of change points.

DCR builds upon the extensive literature on graphical mod-
els (Whittaker, 1990; Edwards, 1995; Cox and Wermuth, 1996).
Within this framework, graphical models display the depen-
dency structure of a random vector Y using a graph G. Graphs
are mathematical structures that can be used to model pair-
wise relationships between variables. They consist of a set of
vertices V and corresponding edges E connecting pairs of ver-
tices. Here, we focus exclusively on undirected graphs which do
not infer the directionality of dependence or functional con-
nectivity between the variables or brain regions. A graph of
Y can alternatively be represented using the precision matrix
(inverse covariance matrix) of Y, with the elements of the matrix
corresponding to edge weights. Here a missing edge between
two vertices in the graph indicates conditional independence
between brain regions, giving rise to a zero element in the preci-
sion matrix. Throughout this paper we will model dependencies
between brain regions using the precision matrix or undirected
graphs and we will use them interchangeably throughout the
paper.

2.2. THE NEW DCR ALGORITHM
In this work, we introduce a new DCR algorithm necessary for the
efficient and accurate analysis of single-subject fMRI data. The
step-by-step description of the new algorithm can be found in
section A.1. of the Appendix. The new steps involve recalculat-
ing the Bayesian Information Criterion (BIC: Equation 4) at each
candidate change point after the first pass of the algorithm, alter-
ing the stationary bootstrap inference procedure on the candidate
change points and including a new bootstrap inference proce-
dure on the undirected graphs within each partition in order to
remove the false postive edges prevalent in undirected graphs for
single-subject data.

The objective of the algorithm is to split the time course or the
time domain, X, into partitions χ1,. . . , χm. As before, our greedy
procedure begins by calculating the sample mean and sample
covariance matrix for the entire data set using Equations (1, 2),
respectively.

µ̂χj
= 1∑tj

i = 1 I
(
xi ∈ χj

) tj∑
i = 1

yiI
(
xi ∈ χj

)
(1)

�̂χj = 1∑tj

i = 1 I
(
xi ∈ χj

) tj∑
i = 1

(
yi − µ̂χj

) (
yi − µ̂χj

)T
I
(
xi ∈ χj

)
(2)

For the entire data set calculation χj is all the time points and tj is
the number of time points in the entire experiment. Estimates of
the precision matrix, �̂, for the entire data set are then obtained

using the graphical lasso or glasso (Friedman et al., 2007) for
a specified full path of λ values using Equation (3). The l1-
penalty in this equation induces sparsity and regularization on
the elements of the estimated precision matrix.

�̂ = argmin� � 0

{
tr
(
�̂�

)− log|�| + λ‖�‖1
}

(3)

The tuning parameter λ controls the sparsity of the precision
matrix, large values giving rise to a very sparse precision matrix
and small values giving rise to a very “full” precision matrix or
graph. An efficient algorithm has been developed (Friedman
et al., 2007) for finding �̂, an estimate of the precision matrix,
that estimates a single row (and column) of � in each iteration by
solving a lasso regression. We chose the value of λ that minimizes
the BIC

BIC=
tj∑

i = 1

[(
tr
[
�
(
yi − µ

) (
yi − µ

)T
]

− log|�|
)]

+ k · log
(
tj
)

(4)

where tj is the number of data points in the partition and k
is the number of off-diagonal elements in the precision matrix.
After estimating the precision matrix based on BIC minimization
and identifying non-zero edges, the model is refit without the l1-
constraint while keeping the zero elements in the matrix fixed to
reduce bias and improve the model selection performance (Liu
et al., 2010).

The minimum BIC score for the entire data set is recorded,
providing a baseline in which to evaluate subsequent splits. Note
that the estimated precision matrix for the entire data set is simply
an aggregate of all the changing connnections (or partial correla-
tions) assuming there exists a dynamic connectivity structure in
the data. The BIC is a model selection criterion based on combin-
ing the likelihood function with a penalty term that guards against
over-fitting. Hence, it balances the dual needs of adequate model
fit and model parsimony.

Upon completion of this step, the data is then partitioned into
two sets; a left subset consisting of time points {1:�} and a right
data set consisting of {� + 1:T}, where T represents the length of
the time course. The choice of � is of particular importance as
it also represents the minimum possible distance between adja-
cent change points and its value can be adjusted depending on
the existence of a priori knowledge about the spacing of changes
in functional connectivity. Unlike the multi-subject analysis pre-
sented in Cribben et al. (2012), where DCR could find change
points with close proximity (i.e., with � = 10), the single-subject
analysis in this paper requires � to be a minimum of 30–40
time points to ensure that there is enough data to provide stable
estimates of the sample means and sample covariance matrices
and hence the precision matrices. The sample mean and covari-
ance matrices for both subsets are calculated separately using
Equations (1, 2), respectively. Again the full regularization path
of λ values for the glasso is run and the values of λ, and corre-
sponding precision matrices, are chosen based on minimizing the
BIC. Each model is then refit, as above, keeping the zero elements
in each precision matrix fixed, and the combined BIC scores for
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the two subsets are recorded. This procedure is repeated along the
entire time path, with the data partitioned into two subsets with
split points ranging from {1:�+1} to {1:T − �}. The partition
with the smallest combined BIC score is chosen and, if its value
is less than the BIC score for the entire data set, the correspond-
ing time point is used to partition the data and the first candidate
change point is identified.

The DCR procedure continues by recursively applying the
same method to each individual partition element until they can
no longer be split any further. In other words, if the first candidate
change point occurs at time ρ, the procedure is repeated for both
the data set consisting of time points {1:ρ} and the one consist-
ing of time points {ρ + 1:T}. The procedure is repeated until no
further splits reduce the BIC score.

Once the candidate change points have been found, a new
extra refitting step is carried out to improve the estimation of
the BIC reduction at each split. In other words, the first candi-
date change point separates the entire data set into two similar
data sets based on their functional connectivity structure. But
if further candidate change points are found then the first can-
didate change point’s BIC reduction is inaccurate and requires
reestimation. This is particularly important for single-subject
experimental data sets with few time points. When the DCR algo-
rithm recursive procedure is finished, the candidate change points
are ordered in time. If the first candidate change point occurs at
time point ρ and the second candidate change point occurs at
time point ν, the BIC is calculated for data sets {1:ρ}, {ρ + 1:ν}
and {1:ν} by estimating the sample means, sample covariance
matrices and precision matrices along the full path of λ values
for each partition. The new BIC reduction at time point ρ is then

BIC{1 : ν} − [BIC{1 : ρ} + BIC{ρ + 1 : ν}] (5)

By sequencing through all the candidate change points in this
manner and recalculating the BIC reduction the model’s accuracy
is improved (compare Figures 4A,B as well as Figures 5A,B). This
extra set of calculations only marginally increases the algorithm’s
computation time. After completion of the algorithm, the new
DCR will have split the experimental time course into connected
partitions χ1, . . . , χm and within each partition χj, the glasso is

again used to estimate an undirected graph Ĝj.
The idea behind the DCR algorithm involves comparing the

BIC of the entire data set with the BIC of two subsets (right
and left) of the data. In the former case the model contains k
parameters while in the latter case the model contains k1 + k2

parameters, where k1 and k2 represent the number of param-
eters in the left and right subset, respectively. This allows for
more free parameters in the two subsets case. However, this
bias is balanced out by the fact that the full data model con-
tains T observations while the split data model contains some
combination of data that sums to T. It is evident that the BIC
penalizes the split data model more than the BIC of the entire
data set as the goal is to minimize the BIC. Hence, false pos-
itive BIC reductions or false positive change points are not of
great concern to the DCR algorithm. For more details see Cribben
(2012).

2.3. DETECTING SIGNIFICANT CHANGE POINTS
To determine whether significant change points exist, confi-
dence bounds for each non-zero BIC reduction at each splitting
time are created using a new stationary bootstrap procedure
(Politis and Romano, 1994). The stationary bootstrap, unlike
a permutation procedure, is mindful of the dependency struc-
ture inherent in the data where successive time points are
assumed to be correlated, but observations “far apart” uncor-
related. The stationary bootstrap is an adaptation of the block
bootstrap (Liu and Singh, 1992; resamples blocks of observa-
tions instead of individual observations) that allows for randomly
varying block sizes. The new stationary bootstrap procedure
is similar to the stationary bootstrap procedure introduced in
the original DCR paper (Cribben et al., 2012), however, it is
altered to reflect the changes in the DCR algorithm described
above.

The new stationary bootstrap procedure begins by running
the new DCR algorithm to determine all the ordered candidate
change points. Assume the first and second ordered candidate
change points are ρ and ν, respectively. To test whether the BIC
reduction at change point ρ is significant, data within the parti-
tion {1:ν} is repeatedly resampled across time using the stationary
bootstrap. For each resampling, the data is split into two parts,
one consisting of time points {1:ρ} and the other of {ρ + 1:ν}. The
combined BIC score from each subset is subtracted from the BIC
of the entire resampled data set {1:ν} using the stationary boot-
strap and the results are combined across replications to create
a stationary bootstrap distribution for the BIC reduction at the
candidate change point ρ. The procedure is repeated for each non-
zero BIC reduction or candidate change point. For example, in
order to check significance for the second candidate change point
ν, data within the partiton {ρ + 1:ε}, where ε is the third candi-
date change point, is repeatedly resampled across time using the
stationary bootstrap.

The (1 − α/2) and α/2 quantiles of the stationary bootstrap
distribution of each non-zero BIC reduction for each splitting
time can be plotted and interpreted as 100(1 − α)% confidence
bounds. For a candidate change point at time ρ, if the BIC
reduction for the original data is more extreme (either larger
or smaller) than the 100(1 − α)% confidence bounds computed
using repeated stationary bootstrap replicates, we conclude there
is a significant change point at ρ, indicating a change in con-
nectivity. This new stationary bootstrap procedure decreases the
computation time of the algorithm as the size of the resampled
data sets are now smaller.

2.4. CONSTRUCTING UNDIRECTED GRAPHS
Once the significant change points have been found, the data is
divided into partitions defined by the splits. For each partition,
the sample mean and sample covariance matrix are estimate using
Equations (1, 2), respectively. Using the full path of λ values in
Equation (3), the optimal λ value and precision matrix is chosen
based on minimizing the BIC. It is necessary to carry out these
extra calculations as the sample means, sample covariance matri-
ces, precision matrices, BIC reductions and λ values associated
with each partition calculated using the new refitting scheme in
the DCR algorithm assumes that all candidate change points are
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significant. If not, the estimated values associated with the par-
tition are no longer valid as the time points in certain partitions
change as a result.

In order to make the off-diagonal elements of the precision
matrix, P = �, more interpretable they are converted into partial
correlations, rij, using the following formula

rij = − pij√
piipjj

(6)

The undirected graphs in this work plot the partial correlations
between the brain regions.

2.5. TESTING EDGES
A shortcoming of the glasso is the excessive number of false posi-
tive edges present in the estimated undirected graphs. This fact is
highlighted for multi-subject data in Cribben et al. (2012), but it
is noteworthy that the false positive partial correlations tend to be
small. The number of false positive edges increases in the single-
subject setting, which is the emphasis here, with an excess of
edges also complicating interpretation of the undirected graphs.
Hence, we include an additional step in the new DCR algorithm
by performing inference on the edges using information from a
bootstrap procedure.

The procedure is carried out for each partition specific undi-
rected graph, computed as described in section 2.4. For a partition
χj, a bootstrap data matrix Y∗

χj
is formed by randomly selecting

with replacement rows of data from the original partition specific
data matrix Yχj . We estimate a precision matrix (or undirected
graph) for the new data set Y∗

χj
for the full path of λ values and

we choose λ and the undirected graph based on minimizing the
BIC. We record each partial correlation in the undirected graph.
A graph containing 20 vertices has 190 (0.5 × p × (p − 1)) pos-
sible edges or partial correlations. This procedure is repeated a
large number of times (say, 1000). We then count the number of
times glasso estimates the edge to be non-zero in the 1000 boot-
strap runs. These proportions represent the probability of edge
selection. For example, if glasso estimates the edge to be non-zero
in 990 bootstrap runs, the edge has an estimated selection prob-
ability of 0.99. For each edge, if its selection probability is greater
than some pre-defined threshold, say 0.95, then the edge or partial
correlation is significant and it remains in the undirected graph.
On the other hand, if its estimated selection probability is less
than the pre-defined threshold then the edge or partial correlation
is not significant and it is removed from the undirected graph.
This procedure solves the problem of false positive edges in the
undirected graphs estimated by the glasso and by extension DCR.

This bootstrap inferential procedure is similar to the subsam-
pling stability selection approach of Meinshausen and Bühlmann
(2010). The goal is to control the familywise type I multiple test-
ing error in a high dimensional setting by looking at the selection
probabilities of every variable (or edge) under subsampling. In
their framework, the data are subsampled many times and they
choose all variables that occur in a large fraction of the resulting
selection sets. They retain variables with a high selection proba-
bility and remove those with low selection probabilities. The exact

cutoff πthr is a tuning parameter but they notice that the results
do not vary much for sensible choices of it.

2.6. COMPARING GRAPHS
Usually in an fMRI study, several subjects are scanned. In the
multi-subject DCR (Cribben et al., 2012), we assumed the con-
nectivity between brain regions was similar for each subject. By
combining information across subjects, the multi-subject DCR
averages the connectivity patterns in the group of subjects as they
perform a set of tasks or change psychological state. However,
in many circumstances, this may not be wise as we risk losing
the unique patterns of activity in the individual subjects. This
paper shows that DCR can be run on all subjects individually
and the change points and partition specific undirected graphs
can be compared and tested across subjects. For example, in a
task based fMRI experiment such as an ABAB design, we could
check whether the connectivity in the first block is the same as
the connectivity in the third block.

Massa et al. (2010) introduced a Likelihood Ratio test for
testing the equality of two or more precision matrices or undi-
rected graphs. The test originates from the test of equal covariance
matrices for Gaussian graphical models (Anderson, 2003). It has
the following setup. Suppose that random samples are taken from
s multivariate normal (MVN) populations each with p variables
Y1, . . . , Ys and the ith population has the mean vectors µi and
the covariance matrix �i. Assuming that the µis vary from popu-
lation to population, the maximum likelihood estimators of these
are the sample mean vectors. Assume also that the mean vec-

tors are zero and we have (y
j
1), j = 1, . . . , n1 observations from

Np(0, �1), (y
j
2), j = 1, . . . , n2 observations from Np(0, �2),. . . ,

and (y
j
n), j = 1, . . . , ns observations from Np(0, �s). Let �−1

1 =
�1, . . . , �

−1
s = �s. Under the null hypothesis of equal precision

matrices, H0 : �1 = . . . = �s, the number of unknown parame-
ters in the common precision matrix �0 is 1

2 p(p + 1). It can be
shown that the maximum likelihood estimator of �0 is

�̂0 =
s∑

i = 1

ni�̂i/n (7)

where �i is the ith sample precision matrix, ni is the number of
observations in the ith sample and n (= n1 + . . . + ns) is the total
number of observations. The maximized log likelihood for this
model is then

l0 = K + 1

2
nlog

(|�̂0|
)

(8)

where K = − 1
2 nplog(2π) − 1

2 np and |�̂0| is the determinant of
matrix �̂0. Under the alternative hypothesis (unequal precision
matrices), the number of unknown parameters is 1

2 sp(p + 1). The
maximized log likelihood for this model is then

l1 = K +
s∑

i = 1

1

2
nilog

(|�̂i|
)

(9)
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Assuming the null hypothesis (equal precision matrices) is cor-
rect, the LR test statistic is

− 2log� = 2 (l1 − l0) = nlog
(|�̂0|

)−
s∑

i = 1

nilog
(|�̂0|

)

=
s∑

i = 1

nilog

(
|�̂0|
|�̂j|

)
(10)

This test statistic has a χ-squared distribution with degrees of
freedom equal to the number of estimated parameters under the
alternative hypothesis minus the number of estimated parameters
under the null hypothesis. However, the test statistics’s asymptotic
χ-squared distribution and its corresponding degrees of freedom
are not valid for sparse or regularized precision matrices which is
the emphasis of this paper. Hence, we introduce a new bootstrap
LR test. It is set up as follows; suppose we have s subjects each
with p variables Y1,. . . ,Ys. Under the null hypothesis of equal pre-
cision matrices for all s subjects, we can bootstrap rows of data
points across subjects. Thus, for each subject, we create a boot-
strap data matrix Y∗

i = Yi, 1∗ ,. . . ,Yi, t∗ by randomly selecting with
replacement rows of data from the original data matrices Y1 =
(Y1, 1,. . . ,Y1, t),. . . ,Ys = (Ys, 1,. . . ,Ys, t). For each subject we esti-
mate a precision matrix for its new bootstrap data set Y∗

i for the
full path of λ values. We choose λ and its corresponding preci-
sion matrix based on the minimum BIC. We then estimate the
test statistic in Equation (10). This procedure is repeated a large
number of times (say, 1000) to create a bootstrap LR distribution.

3. SIMULATIONS
In order to assess the performance of the new DCR algorithm
and new inference procedures, a number of simulations are
performed. In Cribben et al. (2012) the simulation study con-
centrated on multi-subject data but here we focus exclusively on
single-subject data.

The first simulation illustrates the application of the new DCR
algorithm to identically distributed data (i.e., null data). The next
simulations illustrate the application of the new DCR to vector
autoregression (VAR; Zellner, 1962; Hamilton, 1995) data. For
applications to simulated Multivariate Normal data, please refer
to Cribben (2012). VAR is an econometric model, generalizing
the univariate AR model, commonly used to capture the evo-
lution and the interdependencies between multiple time series.
More details on VAR models are included in section A.2. of the
Appendix. VAR data are representative of the properties underly-
ing fMRI data in that they have the property of autocorrelation
within the individual time series (brain regions) but can have
the possibility of non-zero cross correlation and lagged cross cor-
relation between the time series (brain regions). For each VAR
simulation, for regions not apart of the connected system, their
time series are made up of i.i.d Gaussian noise indicating a lack of
connectivity.

The objective of each simulation is to find the times of the
functional connectivity change points and to estimate the con-
nectivity structure within each partition assuming that the loca-
tion and number of change points are unknown. The stationary

bootstrap (section 2.3) and bootstrap (section 2.5) procedures are
used in order to perform meaningful inference procedures on the
change points and on the edges (connections) between the brain
regions, respectively.

4. EXPERIMENTAL DATA
We use the same data set here as in Cribben et al. (2012). The
data was taken from an anxiety-inducing experiment (Lindquist
and McKeague, 2009; Wager et al., 2009a,b). The experimen-
tal task was a variant of a well-studied laboratory paradigm for
eliciting social threat, in which subjects are instructed to deliver
a speech under evaluative pressure. The design was an off-on-
off design, with an anxiety-provoking speech preparation task
occurring between resting periods. Participants were informed
that they were to be given 2 min to prepare a 7 min speech,
and that the topic would be revealed to them during scanning.
They were informed that after the scanning session they would
deliver the speech to a panel of expert judges, though there was
“a small chance” they would be randomly selected not to give
the speech. After the start of fMRI acquisition, participants rested
for 2 min by viewing a fixation cross. At the end of this period,
participants viewed an instruction slide for 15 s that described
the speech topic, which was “why you are a good friend.” The
slide instructed participants to be sure to prepare enough for the
entire 7 min period. After 2 min of silent preparation, another
instruction screen appeared (a relief instruction, 15 s duration)
that informed participants that they would not have to give the
speech. An additional 2 min period of resting baseline completed
the functional run.

Data was acquired and preprocessed as described in previous
work (Wager et al., 2009a). During the course of the experiment
a series of 215 images were acquired (TR = 2 s). In order to cre-
ate ROIs, time series were averaged across the entire region. The
data analyzed here consists of four ROIs and heart rate for N = 23
subjects (Figure 8A). The regions in the data set were chosen due
to the fact that they showed a significant relationship to heart rate
in an independent data set. The temporal resolution of the heart
rate was 1 s compared to 2 s for the fMRI data. Hence, the heart
rate was down-sampled by taking every other measurement.

The new DCR approach was carried out on all 23 subjects
individually and we were interested in testing whether stressor
onset was associated with changes in the connectivity between
the brain regions and heart rate. Each subject’s change points
and partition-specific undirected graphs are compared in order
to observe whether the change points and connectivity structures
are common across subjects. We also perform the LR test on
the similarity of the precision matrices across subjects. With this
information we can make inferences about whether the assump-
tion of the same connectivity structure across subjects is valid and
helpful.

5. RESULTS
For each simulation, in order to guarantee reasonable estimates
of the sample mean vectors and sample covariance matrices, we
set δ = 35, that is, we set the minimum distance between change
points to be 35 data points. This length is necessary for the single-
subject data unlike the multi-subject data simulations in Cribben
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et al. (2012). If δ < 35 false positive change points occur due to
the instability of the mean and covariance estimates. For each
simulation we plot the BIC reduction against time in order to
find the significant change points. In these plots, the vertical black
lines represent the BIC reduction at the particular time point
and the red triangles in the simulated data sets represent the
0.975 and 0.025 empirical quantiles of the BIC reduction based
on 1000 stationary bootstrap relications of the data for each time
point with a non-zero BIC reduction. For the stationary boot-
strap, we use ψ = 1/0.05, that is, the average block length is equal
to 20 time points for a data set containing 100 time points. The
new DCR algorithm stationary bootstraps the data within each
partition after the candidate change point have been found so
the average length of the block changes depending on the size
of the partition. Also, for all simulations, the empirical quan-
tile threshold for the bootstrap distribution of the edge values
is 0.75 based on 1000 runs (stability selection; Meinshausen and
Bühlmann, 2010). This cutoff value provided the right balance
for including the correct edges and removing the false positive
edges in the undirected graphs. The correct undirected graphs are
also plotted for comparison purposes. The black and red edges
in the undirected graphs represent positive and negative partial
correlation, respectively. The thickness of the edges are directly
related to the strength of the connectivity between two brain
regions.

5.1. SIMULATION 1
As the data is i.i.d with no functional connectivity between the
brain regions, the new DCR correctly finds no BIC reduction
for any time point (Figure 1A) and so the functional connectiv-
ity between the brain regions remains constant throughout the
whole time series. As the data is white noise, the new DCR cor-
rectly finds no networks or functional connectivity between the
brain regions (Figure 1B). DCR was also applied to the same sim-
ulated i.i.d data but with 10 spikes of magnitude 4 randomly
added to the entire series. Again, it correctly finds no change
points and no edges or functional connectivity between the time
series (the figures are the same as Figures 1A,B and are not
included).

FIGURE 1 | (A) The splitting times plotted against BIC reduction for the i.i.d
data set (simulation 1) using the new DCR. (B) The corresponding
undirected graph for this data set.

5.2. SIMULATION 2
Figure 2A depicts the splitting times plotted against BIC reduc-
tion for a VAR simulation with four connectivity change points.
The new DCR correctly finds all four connectivity change points.
Figure 2B shows the true partial correlations for this VAR data
set for the correct change points. Figures 2C,D show the undi-
rected graphs for the partitions found in Figure 2A without and
with inference performed on the edges using the simple boot-
strap procedure, respectively. It is evident from the graphs that
by performing no inference on the edges, many false positive
edges are estimated. This simulation highlights the need for
carrying out the bootstrap inferential procedure on the edges
(section 2.5).

5.3. SIMULATION 3
This simulation is very similar to simulation 2 except in this case
the data was generated using a VAR model with seven change
points. Figure 3A depicts the splitting times plotted against BIC
reduction. The new DCR correctly finds all the seven con-
nectivity change points. Figure 3B depicts the true undirected
graphs. Figures 3C,D show the undirected graphs for the parti-
tions found in Figure 3A without and with inference performed
on the edges using the bootstrap procedure, respectively. Again
by not performing inference on the edges, false positive edges are
estimated.

5.4. SIMULATION 4
This simulation shows how the new DCR performs in a weaker
signal VAR environment. The true partial correlation structure
is shown in Figure 4C. The only difference between Partition 1
(1–100 time points) and Partition 2 (101–200 time points) is
that the magnitude of the partial correlation structure between
brain regions 3, 6, and 9 is reduced while the correlation struc-
ture between 1, 4, 8, 14 remains the same. For Partition 3
(201–300 time points), the magnitude of the partial correlation
structure between brain regions 1, 4, 8, 14 is reduced while the
partial correlation structure between brain regions 3, 6, and 9
reverts back to the same correlation structure as in Partition 1.
The connectivity structure in Partition 4 (301–400 time points)
is i.i.d noise while Partition 5 (401–500 time points) has the
exact same connectivity structure as Partition 1. This simula-
tion depicts how the new DCR performs when the changes in
connectivity are very small and in an ABA fMRI experimental
setup.

The new DCR correctly identifies the correct change points
but does not deem the change point at time point 100 to be sig-
nificant (Figure 4B). Figure 4A shows the BIC reduction plotted
against the splits using the old DCR algorithm. Notice the dif-
ference in magnitude of the BIC reduction and the stationary
bootstrap confidence bounds. By recalculating the BIC reduction
between change points a more accurate estimate is computed. The
new DCR finds three of the four connectivity change points while
the old DCR finds only two of the four. The new DCR method
does a very good job of estimating the correct undirected graphs
as well (Figure 4D). As the first change point is not deemed sig-
nificant, the first estimated undirected graph is simply an average
of the connectivity of the first two partitions.
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FIGURE 2 | (A) The splitting times plotted against BIC reduction for the VAR
data set with four connectivity change points (simulation 2) using the new
DCR algorithm. The vertical black lines represent the BIC reduction at the
particular time point and the red triangles represent the 0.975 and 0.025

empirical quantiles of the BIC reduction based on 1000 stationary bootstrap
relications of the data for each split. (B) The true undirected graphs for each
partition. The undirected graphs for this data set using the new DCR and (C)

no inference on the edges and (D) inference on the edges.

FIGURE 3 | (A) The splitting times plotted against BIC reduction for
the VAR data set with seven connectivity change points (simulation
3) using the new DCR algorithm. (B) The true undirected graphs for

each partition. The undirected graphs for this data set using the
new DCR and (C) no inference on the edges and (D) inference on
the edges.

5.5. SIMULATION 5
This simulation is similar to Simulation 4 in that the con-
nected brain regions are constant for the entire time course but
the magnitude and direction of the connectivity changes over
time. This simulation contains more change points and more
time points. Figure 5C shows the true undirected graphs for
each partition. The new DCR correctly identifies all the change
points (Figure 5B) and also performs very well in identifying the

connectivity structure for all partitions (Figure 5D). Figure 5A
shows the BIC reduction plotted against the splits using the old
DCR. Notice the difference in magnitude of the BIC reduction
and the stationary bootstrap confidence bounds. By recalculating
the BIC reduction between change points a more accurate esti-
mate is found. This simulation highlights the fact that the new
DCR is very adept at locating small differences in the connectivity
structure between two partitions for VAR data.
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FIGURE 4 | The splitting times plotted against BIC reduction for the VAR data set with four connectivity change points (simulation 4) using (A) the old DCR algorithm
and (B) the new DCR algorithm. (C) The true undirected graphs for this data set and (D) the estimated undirected graphs for this data set using the new DCR.

5.6. SIMULATION 6
This simulation is representative of the data in the real fMRI data
that follows in the next section. It contains five brain regions
and 215 time points and three connectivity change points. The
true connectivity structure for this simulation can be seen in
Figure 6B. The new DCR correctly identifies all the change points
(Figure 6A) and also performs very well in identifying the con-
nectivity structure for all partitions (Figure 6C). This simulation
demonstrates how well the new DCR algorithm performs when
the number of brain regions is small and the number of observa-
tions in the experimental time course is also small.

5.7. SIMULATION 7
Finally, in order to show the importance of the new single-
subject DCR methodology, we present an example where the
multi-subject DCR algorithm (Cribben et al., 2012) fails to find
the correct connectivity change points and the correct networks
between brain regions but the new single-subject DCR discussed
in this work performs very well. The setup of the simulation
is as follows—we simulate a VAR model with 500 time points
(T = 500) and 15 ROIs (p = 15) for 10 subjects, with the first five
subjects having positive connectivity (average correlation ∼0.67)
between ROI 8 and 15 for the first 250 time points and positive
connectivity (average correlation ∼0.7) between ROI 2 and 13 for

the final 250 time points. On the other hand, the second five sub-
jects having negative connectivity (average correlation ∼ −0.67)
between ROI 8 and 15 for the first 250 time points and nega-
tive connectivity (average correlation ∼ −0.7 ) between ROI 2
and 13 for the final 250 time points. The rest of the ROIs con-
sist of i.i.d Gaussian noise. By running the multi-subject DCR
algorithm (Cribben et al., 2012) on this data set and aggregat-
ing information across all 10 subjects, the two groups of subjects
cancel each other out and no connectivity change points are
found (Figure 7A) as well as no connectivity between ROI 8
and 15 or ROI 2 and 13 as well (Figure 7D). In this example,
it is not a good idea to average the information across all 10
subjects.

Figures 7B,C show the BIC reduction plotted against the split-
ting time points using the new single-subject DCR algorithm for
subject 1 (subject from group 1 which has positive connectivity
between ROI 8 and 15 for the first 250 time points and posi-
tive connectivity between ROI 2 and 13 for the final 250 time
points) and for subject 6 (subject from group 2 which has negative
connectivity between ROI 8 and 15 for the first 250 time points
and negative connectivity between ROI 2 and 13 for the final 250
time points), respectively. All subjects within group 1 and group
2 behave similarly. Note that by running the new DCR on the
individual subjects we find the correct connectivity change points
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FIGURE 5 | Thesplitting times plottedagainstBIC reduction for theVAR data setwithsevenconnectivity changepoints (simulation5)using (A) theoldDCR algorithm
and (B) the new DCR algorithm. (C) The true undirected graphs for this data set and (D) the estimated undirected graphs for this data set using the new DCR.

FIGURE 6 | (A) The splitting times plotted against BIC reduction for the VAR data set (simulation 6) using the new DCR. The corresponding (B) true undirected
graphs and (C) estimated undirected graphs for this data set.

and the correct undirected graphs (Figures 7E,F). This simula-
tion illustrates how vital it is to estimate connectivity changes for
the individual subjects and to carry out the estimation as accu-
rately as possible. After looking at the individual subjects, we can
then make an informed decision on whether we should com-
bine information across subjects and run the multi-subject DCR
algorithm.

5.8. EXPERIMENTAL DATA
For the fMRI data set, in order to guarantee reasonable estimates
of the sample mean vectors and sample covariance matrices, we
set δ = 40, that is, we set the minimum distance between change
points to be 40 data points. For the stationary bootstrap, we use
ψ = 1/0.05, that is, the average block length is equal to 20 time
points for a data set containing 100 time points. After conclusion

of the algorithm, we plot the BIC reduction against time in order
to find the significant change points. Figure 8B shows the signif-
icant change points for all subjects in the 4 ROIs and heart rate
data set. The y-axis depicts the subject number while the x-axis
shows the splitting times. Every subject has either two or three
significant change points with each subject having a change point
in the neighborhood of time point 60 (120 s), which corresponds
directly to the presentation of the first visual cue specifying the
topic of the speech and the removal of said cue at time point 67.5
(135 s). While all subjects have a significant splitting time in the
vicinity of the first cue, this pattern does not continue across all
subjects for the duration of the experiment. After this, the sub-
jects split into two groups; group 1 (subjects 1, 3, 9, 14, 15, 16,
18, 19, 20) have only one further significant splitting time near
time point 130 while group 2 (subjects 2, 4, 5, 6, 7, 8, 10, 11,
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FIGURE 7 | The splitting times plotted against BIC reduction for the
VAR data set with one connectivity change point (simulation 7) using
(A) the multi-subject DCR algorithm, (B) the new single-subject DCR

(on one subject from group 1), (C) the new single-subject DCR (on
one subject from group 2), and (D–F) their corresponding undirected
graphs.

12, 13, 17, 21, 22, 23) have two further significant change points
between the first cue and the end of the experiment. At time
point 130 (260 s), the second visual cue stating that the partici-
pants would in fact not have to give the presentation to the expert
panel of judges after the conclusion of the scanning session was
revealed.

As every subject has a significant change point in the vicinity
of the first visual cue, Figure 9 shows the undirected graphs for
the first partition for every subject corresponding to their individ-
ual change points in Figure 8B. The empirical quantile threshold
for the bootstrap distribution of the edge values is 0.75 based on
1000 runs following evidence of stability from the simulations.
The black and red edges in the undirected graphs represent pos-
itive and negative partial correlation, respectively. The thickness
of the edges are directly related to the strength of the connectivity
between two brain regions.

The connectivity structure in the undirected graphs for each
subject is very different (Figure 9). The new bootstrap LR test
discussed in section 2.6 was carried out in order to perform a
test on the similarity of the precision matrices. The test statistic,
� = 1860, results in a p-value of 0 rejecting the null hypothe-
sis of equal precision matrices. However, the individual partial
correlations shown in Figure 9 do have some overlap between
subjects.

For subjects in Group 1, we also compared their precision
matrices while the participants were silently preparing their
speeches (time points 67.5–130) and their precision matrices
while the subjects rested after they were informed that they would
not have to deliver the speech. In each case, we rejected the null
hypothesis (p-value = 0) of equal precision matrices implying
significant heterogeneity in connectivity across subjects.

6. DISCUSSION
DCR is an approach for splitting the experimental time course
in a functional neuroimaging experiment into partitions based
on functional connectivity changes between ROIs or voxels. In
this work, we focus exclusively on the analysis of single-subject

data, and extend the methodology in two ways: (1) we alter
the algorithm in order to make the change point estimation
more accurate with a small number of observations and (2) we
perform inference on the edges in the undirected graph or con-
nections between brain regions in order to reduce the number of
false positive edges in the graphs. The new algorithm could be
used for finding functional connectivity change points for multi-
subject data as well. However, in was shown in Cribben et al.
(2012) that the old DCR performed very well on multi-subject
data and did not suffer from the issue of false positive edges in
the undirected graphs to the same degree as the single-subject
analysis.

DCR can be applied directly to data from ROI studies or to
temporal components obtained from a PCA or ICA analysis. It
is very flexible in that it does not require prior knowledge of the
nature of the experimental design and may be particularly appro-
priate for studies when it is not possible to replicate experimental
manipulations within subjects. For this reason, on going collab-
orations include applying the method to data of A-ha! or Eureka
moments in order to observe the connectivity changes as the sub-
ject approaches the insight moment and where the state changes
occured. It is also being applied to resting state data, pain data
and data from hallucination experiments. We believe the intro-
duction of the new DCR methodology for single-subject analysis
as well as the new bootstrap Likelihood Ratio test for sparse pre-
cision matrices will be particularly beneficial to resting state data
analysis as it is well known that there exists large heterogeneity
in connectivity across subjects and between runs for the same
subject.

The simulation study carried out indicates that the new DCR
method is very capable of finding small and subtle changes in
the connectivity structure as well as robust to the inclusion of
spikes in that data. The simulations also show that the addition
of weaker signals do not adversely affect the results.

In the original DCR paper (Cribben et al., 2012), the method
was predominantly validated on multi-subject data by stacking
subjects on top of one another in the algorithm. By combining
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FIGURE 8 | (A) The four-ROI and heart rate data set—the regions are: (1) VMPFC, (2) anterior mPFC, (3) Striatum/pallidum, and (4) DLPFC/IFJ. (B) The splitting
times plotted against BIC reduction for the fMRI data set (four ROIs and heart rate) for all 23 subjects using the new DCR.

FIGURE 9 | The undirected graphs for the first partition of all subjects in the four ROIs and heart rate data using the new DCR. The heart rate has label 5 in the
undirected graphs.

information across subjects, we average the connectivity pat-
terns in the group of subjects as they perform a set of tasks
or change psychological state. Hence, we assume that they have
the same connectivity structure. However, group average results
may belie the unique activity patterns of individual subjects and
by analysing individual subjects we may be able to determine
if an individual scan is normative with respect to a reference
population or we may be able to understand the sources of
intersubject variability in brain activity (Van Horn et al., 2008).
Simulation 7 illustrates the importance of the new single-subject
DCR algorithm. By applying the multi-subject DCR algorithm
to this data set, the first group of subjects with positive connec-
tivity is negated by the second group of subjects with negative

connectivity resulting in no connectivity change points being
found and no significant networks being found in the undirected
graphs. The correct connectivity change points were found by
running the new single-subject DCR algorithm on the individ-
ual subjects. Hence, by looking at the individual subjects first
we can make an informed decision about whether it is wise
to run the multi-subject DCR algorithm and combine infor-
mation across the group. This new single-subject allows us to
perform this single-subject analysis accurately and reliably. Also,
after performing the new DCR algorithm on the individual sub-
jects from an fMRI study of state anxiety, we compared and
tested the precision matrices or graphs across the individuals
using a Likelihood Ratio test. Although the graph had some edges
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in common, we rejected the null hypothesis of equal precision
matrices.

The choice of � in DCR is of particular importance as it rep-
resents the minimum possible number of time points between
adjacent change points. Ideally, we want to make � as large as
possible to ensure that there is enough data to provide reliable
estimates of the sample means and sample covariance matri-
ces. However, the choice of � places an upper bound on the
number of change points that can be found using our method,
with small values allowing for more change points. Hence, we
want to make � as small as possible to ensure that we find
all possible change points. Ultimately, its value can be adjusted
depending on the existence of a priori knowledge about the spac-
ing of changes in functional connectivity. For the multi-subject
analyses we were able to choose a � of eight time points but
for the single-subject analyses in this paper the smallest pos-
sible � was 30 time points. Hence, the single-subject analyses
should only be applied to slowly changing state studies or where
the distance between state changes was greater than 30 time
points.

A common question asked about DCR is how long the com-
putation takes and how many ROIs it can handle. It is difficult
to estimate precisely given that the alogrithm depends on sev-
eral interconnected variables. The method’s computation time
depends on the number of time points in the data set, the num-
ber of change points, the number of ROIs, the permutation or
bootstrap procedures and the size of �. As the first four increase

in number the computation time increases while as � decreases
the computation time increases. Also, as the number of ROIs
increase, interpretation of the undirected graphs becomes more
difficult and the number of changes in the functional connectivity
increases as well. The code is currently being converted to Matlab
and paralellized in order to reduce the computational burden. We
plan to make it available on our websites.

The permutation and stationary bootstrap inferential pro-
cedures for determining whether or not a change point was
significant were reconfigured for use with the new single-subject
DCR. In addition to inference on the change points, we also
introduced a new bootstrap inference procedure for the edges
or connections between brain regions in order to remedy the
issue of excessive false positive edges in the estimation of undi-
rected graphs after the change points had been found. The
simulation study showed how vital this extra step is for the inter-
pretation of the undirected graphs between each pair of change
points.

In conclusion, the new single-subject DCR method, intro-
duced in this paper, will be especially helpful and informative to
people interested in functional connectivity changes in individ-
uals and to determine variability across subjects. We are hopeful
this is the beginning of further work in the identification of emo-
tion, stress or resting state transitions and aberrant connectivity
patterns and will help our understanding of the human brain
and neurological disorders such as depression and Alzheimer’s
disease, and the treatment of these disorders.
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A. APPENDIX
A.1. NEW DCR ALGORITHM
The algorithm for performing single-subject DCR is set up as
follows [(7–10) are the extra steps]:

1. Consider the full data set. Calculate the sample mean
and covariance matrix using Equations (1, 2), respectively.
Obtain an estimate of � = �−1 for each value of λ using
Equation (3).

2. Choose the value of λ and hence the estimate of �, that
minimizes the BIC (Equation 4).

3. Refit the model without the lasso penalty term (i.e., the l1-
constraint) keeping the zero elements in the matrix fixed and
record the minimum BIC.

4. Partition the data into two parts: a left subset consisting of
time points {1:γ} and a right subset consisting of {γ + 1:T}
where γ = �. Repeat Steps (1–3) for both data sets and sum
the BIC scores from the two partition elements. Repeat this
procedure for γ values from � + 1 to T − � + 1.

5. If the sum of the combined BIC scores for any two subsets
is less than the BIC of the entire data set computed in (2),
the time point with the largest decrease is selected as the
candidate change point, thus partitioning the data into two
segments.

6. Apply Steps (1–5) recursively to each partition until no
partition element can be further split into smaller elements.

7. Order the candidate change points once the algorithm is
exhausted.

8. For the first candidate change point ρ, partition the data into
two parts: a left subset consisting of time points {1:ρ} and
a right subset consisting of {ρ + 1:ν} where ν represents the
second candidate change point. Repeat Steps (1–3) for both
subsets and sum the BIC scores from the two.

9. If the sum of the combined BIC scores for both subsets is
less than the BIC of the entire data set consisting of time

points {1:ν}, the time point remains a candidate change
point.

10. Repeat steps (7–9) for all change points.

A.2. THE VECTOR AUTOREGRESSION (VAR) MODEL
The VAR model is one of the most used models for the analysis
of multivariate time series models. It is used predominantly in
the field of economics and finance to describe the dynamics
of prices and markets. For a (n × 1) vector of time series vari-
ables Yt = (y1t , y2t, . . . , ynt)

T , the p-lag vector autoregressive
(VAR(p)) model has the form

Yt =c + �1Yt − 1 + �2Yt − 2 + . . . + �pYt − p + εt, t = 1, . . . , T
(A1)

where �i are (n×n) coefficient matrices and εt is an (n × 1)
unobservable mean white noise vector process with time invari-
ant covariance matrix � (Zivot and Wang, 2003). For example,
the equation for a univariate VAR(2) model is(

y1t

y2t

)
=
(

c1

c2

)
+
(

π1
11 π1

12

π1
21 π1

22

)(
y1t − 1

y2t − 1

)

+
(

π2
11 π2

12

π2
21 π2

22

)(
y1t − 2

y2t − 2

)
+
(

ε1t

ε2t

)
(A2)

or

y1t = c1 + π1
11y1t − 1 + π1

12y2t − 1 + π2
11y1t − 2 + π2

12y2t − 2 + ε1t

y2t = c2 + π1
21y1t − 1 + π1

22y2t − 1 + π2
11y1t − 2 + π2

22y2t − 2 + ε2t

(A3)

where cov(ε1t, ε2t) = σ12 for t = s; 0 otherwise.
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