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This paper addresses the question of how the brain maintains a probabilistic body state
estimate over time from a modeling perspective. The neural Modular Modality Frame
(nMMF) model simulates such a body state estimation process by continuously integrating
redundant, multimodal body state information sources. The body state estimate itself is
distributed over separate, but bidirectionally interacting modules. nMMF compares the
incoming sensory and present body state information across the interacting modules
and fuses the information sources accordingly. At the same time, nMMF enforces body
state estimation consistency across the modules. nMMF is able to detect conflicting
sensory information and to consequently decrease the influence of implausible sensor
sources on the fly. In contrast to the previously published Modular Modality Frame
(MMF) model, nMMF offers a biologically plausible neural implementation based on
distributed, probabilistic population codes. Besides its neural plausibility, the neural
encoding has the advantage of enabling (a) additional probabilistic information flow across
the separate body state estimation modules and (b) the representation of arbitrary
probability distributions of a body state. The results show that the neural estimates can
detect and decrease the impact of false sensory information, can propagate conflicting
information across modules, and can improve overall estimation accuracy due to additional
module interactions. Even bodily illusions, such as the rubber hand illusion, can be
simulated with nMMF. We conclude with an outlook on the potential of modeling human
data and of invoking goal-directed behavioral control.
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1. INTRODUCTION
Humans and other animals appear to learn and maintain a body
schema 1 (Graziano and Botvinick, 1999; Haggard and Wolpert,
2005), which is used to realize goal-directed behavior control.
Evidence for having knowledge about the own body schema and
associated body image is already found in 2-month old chil-
dren, indicating that this knowledge is acquired very early in
life (von Hofsten, 2004; Rochat, 2010). The more accurate the
own body schema is, the more the infant is able to separate
the external world (von Holst and Mittelstaedt, 1950) from its
own body and, consequently, the more the infant is able to
actively and goal-directedly explore the world (Konczak et al.,
1995; Butz and Pezzulo, 2008). Developmental as well as neu-
roscientific evidence indicates that developing a body schema is
critical for developing flexible, goal-directed behavioral control.
In this paper we propose a computational neural model of how
knowledge about the body can be represented, processed, and
learned.

1Note that Table 1 lists the terminology utilized in this paper.

When learning such a body schema, specific challenges must
be met. First, sensory information about the body is available
in different modalities and frames of reference. Thus, mappings
between these modalities need to be established. Second, uncer-
tainty due to noise, external forces, and changes of the body and
the environment has to be handled effectively. Third, different
information signals about the body may contradict each other,
so that the maintenance of the present body state estimate is
non-trivial.

The human brain has solved these challenges. In particular, the
brain appears to be able to flexibly integrate multimodal sensory
information about the body into a current estimate of its body
state. This body state estimate seems to be modularized in two
fashions: sensory modality-respective modularizations and body
part-respective modularizations.

Evidence for sensor-specific modularizations can be found
in brain imaging studies, which suggest that cross-modal sen-
sory information fusion is common when perceiving the own
body (Shams et al., 2000; Shimojo and Shams, 2001; Beauchamp,
2005). Related research suggests that body state representations
are separated into body parts to certain degrees (Andersen et al.,
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Table 1 | MMF-terminology.

Body image A usually conscious representation of the way the body appears from the outside (Haggard and Wolpert, 2005)

Body model Static knowledge about the body: segmentation into body parts, metrics, and mappings between modules

Body schema A group of body representations relevant for action (Haggard and Wolpert, 2005). This includes body state, body space,
and body model. It allows for updates of the body state. The term body schema has been used across disciplines and
with varying degrees of precision (Sekiyama et al., 2000; Buneo et al., 2002; Battaglia-Mayer et al., 2003; Maravita
et al., 2003; Makin et al., 2008; Burns and Blohm, 2010; Hoffmann et al., 2010; Sober and Körding, 2012)

Body space Teachable space of a particular body part in a particular modality

Body state An estimate of the current body configuration. May refer to the body state encoded in a single module or spread over
multiple modules

Distal-to-proximal Mapping direction: fingertip→ wrist→ elbow→ shoulder

Forward Mapping direction: joint angles→ local orientation→ global orientation→ location

Frame of reference The coordinate system of a module: “global” (shoulder centered) or local (respective the next proximal body part)

Information fusion Bayes optimal fusion of multiple probability distributions. These may include multiple sensors, multiple body states in
different modules, or both

Inverse Mapping direction: location→ global orientation→ local orientation→ joint angles

Mappings The set of connections between neurons in one or two input modules and neurons in one output module. There are
three “types” of mappings: forward kinematics, inverse kinematics, and distal-to-proximal kinematics. They are used to
propagate neuronal activity to other modules

Modality Which information is encoded in which frame of reference: nMMF uses position-vectors, orientation-vectors in a
“global” (i.e., respective the shoulder) or “local” (i.e., respective the next proximal body part) frame of reference, or
joint-angles

Module A state space of the body, such as the wrist location in space. Modules may differ with respect to modalities, frames of
reference, and body parts

Neural population A set of neurons that encode the spatial distribution in a particular module. The population as a whole encodes a
probability distribution

nMMF neural Modular Modality Frame model: the model presented in this work

Proximal-to-distal Mapping direction: shoulder→ elbow→ wrist→ fingertip (cf. Figure 4)

qi
l Probability mass of the l-th neuron in module i’s population. The probability mass is the same as the Voronoi volume Vl

(cf. Appendix A.2) times neuron l’s probability density, normalized to 1

Sensor integration The special case where sensory information is fused with the body state. Also, the result becomes the new body state

Transformation step Projects input information from one or two modules to a neighboring module

1997; Gentner and Classen, 2006; Latash et al., 2007; Shadmehr
and Krakauer, 2008; de Vignemont et al., 2009). Thus, a highly
modularized body state estimate is maintained by our brain.

For maintaining such a modularized but consistent body
state estimate, information is effectively interchanged and fused
across the modularizations (Tononi et al., 1998; Ernst and
Bülthoff, 2004; Stein and Stanford, 2008). Hereby, the informa-
tion exchange typically depends on how the body is currently
positioned and oriented in space (Holmes and Spence, 2004; Butz
et al., 2010). Neurological disorders further indicate that both
sensory input and body state estimates are fused across modules
(Giummarra et al., 2008). To combine incoming sensory infor-
mation with the most accurate body state estimate, the brain

also anticipates body state changes and consequent sensory feed-
back during movement execution (von Holst and Mittelstaedt,
1950; Blakemore et al., 2000; Sommer and Wurtz, 2006). Many
of these interactions seem to take place in early stages of the
cortical processing hierarchy (Stein and Stanford, 2008), prob-
ably before the sensory information is fully integrated into the
own body state estimate. Further evidence for sensory informa-
tion comparisons and the flexible fusion of this information for
maintaining body state estimates is given by multimodal illusions
like the rubber hand illusion (Botvinick et al., 1998; Haggard
and Wolpert, 2005; Makin et al., 2008) and the Pinocchio illu-
sion (Lackner, 1988). Thus, it appears that while the brain’s body
state estimate is highly modularized, many interactions ensure
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an effective estimate maintenance and sensory information inte-
gration. However, it remains unclear how, when, and which
information is compared and selectively fused.

We recently proposed the Modular Modality Frame (MMF)
model (Ehrenfeld and Butz, 2011, 2012, 2013), which models the
maintenance of a body state estimate given noisy, multimodal
sensory information sources. The MMF model fully relies on
hard-coded kinematic knowledge of the simulated body and esti-
mates body states by means of Gaussian probability densities.
Here we present a neural extension of MMF—the neural Modular
Modality Frame (nMMF) model. The novel contributions of
nMMF are as follows:

First, body spaces, current body state estimation modules,
and mappings between body modules are now implemented
neurally. As a result, nMMF is able to encode arbitrary, even mul-
timodal body state estimations. Moreover, the neural population
encodings for body state estimates are plausible from a com-
putational neuroscience perspective (Deneve and Pouget, 2004;
Knill and Pouget, 2004; Denève et al., 2007; Doya et al., 2007).
Second, we now ensure that the Shannon entropy of a distri-
bution remains unchanged during multi-body state fusion, in
order to avoid excessive information gain when fusing depen-
dent sources of information. Third, information exchange is
no longer restricted to forward and inverse kinematic map-
pings. Distal-to-proximal mappings are also included. This means
that information about the hand in space can, for exam-
ple, influence the estimate of the elbow location, of the ori-
entation of the upper arm, or even of the shoulder joint
angles.

The remainder of this paper is structured as follows. First, the
nMMF model is detailed. Next, nMMF is evaluated on a sim-
ulated two degree of freedom arm in a two-dimensional setup.
The evaluations show that nMMF is able to detect faulty sensory
information on the fly and is able to propagate information
appropriately distal-to-proximal, i.e., from hand to upper arm.
In the final discussion, we compare nMMF to related models and
sketch-out future research directions.

2. MATERIALS AND METHODS
nMMF is inspired by those processes of human body state esti-
mation which are detailed above. In a computational framework,
these processes can be approximated by five key assumptions:
(1) the body state is continuously estimated probabilistically over
time; (2) multimodal, redundant sensory information sources
are integrated based on Bayesian principles; (3) the body state
representation is modularized along body parts as well as along
modalities and their corresponding frames-of-reference; (4) the
body modules are locally interactive in that information about the
body state is compared and fused locally; (5) the redundant, mod-
ularized representation of the body is exploited for autonomous
sensor failure detection and subsequent avoidance of the failing
sensor’s influence.

We now detail how these key aspects are realized in nMMF.
First, we describe which modules are used, second, how neurons
encode the sensory inputs and the body state, third, how informa-
tion is fused, fourth, how information is projected across mod-
ules, fifth, how conflicting information is detected and blocked

out, and, finally, how the overall information flow unfolds
over time. In the subsequent evaluation section we show how
nMMF processes sensory information, how faulty sensory infor-
mation can be ignored to a certain degree, but also how such
faulty sensory information can influence the complete body state
estimation.

2.1. MODULES
nMMF represents a body state by a collection of modules, where
each module represents an aspect of the overall body state. In par-
ticular, nMMF’s modules differ with respect to (1) the encoded
joint (or the next distal limb) and (2) the modality frame in
which the joint or limb is encoded. The term modality frame
defines which modality is perceived (location, orientation, or
joint angle) and in which frame of reference the modality is
encoded (shoulder-centered or “local” with respect to the next
proximal limb).

In the following, we focus on a general description of a
humanoid arm, although the same principle may apply for a com-
plete body description. First, we specify the state of an arm in
general. Next, we detail how nMMF encodes the arm state in its
respective modules.

2.1.1. Arm specification
An arm state may be encoded by the arm’s location in space,
its limb orientations, or the joint angles. With respect to the
arm’s location, we denote the shoulder (elbow, wrist, fingertips)
location by λ0 (λ1, λ2, λ3) (cf. Figure 1 for an illustration). To
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FIGURE 1 | Schematic of the four “hand”-limb-encoding modules.

Three coordinate systems (solid axes) are shown, together with the
components (dashed lines) of the respective encoded vector. Dark gray
(Global Location module): the coordinate system is centered around the
shoulder with fixed orientation. Encoded is the global location vector, which
goes from shoulder to the end-effector. Yellow (Global Orientation module):
the coordinate system has the same orientation as the gray one but in this
case the limb orientation is encoded by the means of two vectors: a unit
vector parallel to the “hand” limb (shown, dashed lines), and a
perpendicular vector (not shown). Red (Local Orientation module): the local
coordinate system is oriented along the forearm. Relative to this forearm
orientation, the orientation of the “hand” limb is encoded—by a unit vector
parallel to the “hand” limb (shown), and a perpendicular vector (not
shown). Green (Local Angle module): the fourth module encodes angles.
The same four modules and respective coordinate systems exist for the
forearm and the upper arm (not shown). Modified based on Ehrenfeld and
Butz (2012, 2013).
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derive the arm limb orientations we simply subtract successive
limb locations. To additionally encode the inner rotations of
the respective limbs, we define a point κi for each limb i,
where κi is locked relative to the limb. Essentially, κi always lies
somewhere on the unit circle around λi, where the unit cir-
cle’s plane is perpendicular to the orientation of limb i. Finally,
the joint angles of each arm joint i are denoted by the Tait-
Bryan angles

(
φi,1,φi,2,φi,3

)
, which rotate about the intrinsic

rotation axes i−1x, i−1y′, i−1z′′, where one (two) apostrophes
denote that the rotation axis has been rotated by the angles φi,1

(and φi,2).

2.1.2. nMMF’s arm encoding
nMMF encodes probabilistic arm states by means of dis-
tributed population codes in redundant modules. In partic-
ular, each limb is encoded in four modality frames: global
location (GL), global orientation (GO), local orientation (LO),
and local (joint) angles (LA). Note that other modalities could
be used in addition and other combinations of modalities
and frames of reference are possible—such as a local loca-
tion. It is crucial, however, that the chosen combinations
form a redundant estimate of the overall body state. nMMF’s
implemented modules and their interactions are shown in
Figure 4; Figure 1 shows the employed modality frames for an
exemplar arm.

To encode each modality frame, respective coordinate systems
need to be defined. In order to provide a consistent notation for
all nMMF modules, we introduce xZi as the estimated arm state
of limb i in modality frame Z, where Z ∈ {GL, GO, LO, LA}2.

The first modality frame encodes the global location (GL) of
an arm limb. Limb i’s end point λi in the GL modality frame is
the 3D vector from the shoulder to the end-point of limb i:

xGLi ≡ λi − λ0. (1)

The global orientation (GO) is a 6D vector. It concatenates both
a 3D unit-vector in the direction of the arm limb, and a 3D
unit-vector perpendicular to the arm limb dependent on its inner
rotation:

xGOi ≡
(

unit (λi − λi−1)

unit (κi − λi−1)

)
, (2)

As both vectors are unit vectors and are perpendicular to each
other, three degrees of freedom are canceled out and all remaining
orientation vectors form a 3D manifold in 6D space.

The local orientation (LO) is analogous, but expresses both
subvectors in a local coordinate system (e.g., LO2 is expressed in

2Without any additional specification, arm states are encoded in a
“global”, i.e., shoulder-respective coordinate system. In the case of the
local orientation (LO) modality frame, however, the coordinate sys-
tem used to encode the state is relative to the next proximal arm
limb. We use the pre-superscript to denote the encoding of a loca-
tion in a limb-relative coordinate system. For example, i−1λi denotes
the location of limb i relative to the location λi−1 and orientation of
limb i− 1.

a coordinate system whose axes are defined by GO1). Again, only
a 3D manifold remains:

xLOi ≡
(

unit
(

i−1λi − i−1λi−1
)

unit
(

i−1κi − i−1λi−1
)) . (3)

Note that we use the pre-superscript to denote a particular, rela-
tive coordinate system, whereas we use the subscript to denote a
particular limb. Furthermore, note that i−1λi−1 ≡ (0, 0, 0)T due
to the definition of the coordinate system relative to limb i− 1.

Finally, the local angles (LA) are encoded as Tait-Bryan angles

xLAi ≡ (
φi,1, φi,2, φi,3

)T
, (4)

which is identical to the arm encoding itself.
Note that all modality frames are maximally 3D. Thus, the

locality of the modular architecture ensures that the amount of
neurons needed to represent a particular modality frame with
a neural population code of n neurons per dimension scales in
O

(
n3

)
.

2.2. PROBABILISTIC REPRESENTATION
In complex tasks, uncertainty is ubiquitous due to sensory and
motor noise, external forces, changes in the environment, and
changes of the body schema. To deal with this uncertainty,
humans apply probabilistic body state estimations (Ernst and
Banks, 2002; Körding and Wolpert, 2004). In computational
models (e.g., Ma et al., 2006), state estimates are often simplified
by confining probability density estimates to one type of distri-
bution (such as the Gaussian, Gamma or Poisson distributions).
However, shapes may vary greatly due to non-linear influences of
mappings across modules, constraints (like joint restrictions or
obstacles), varying shapes of sensory input to begin with, or even
neural disorders. Moreover, in certain circumstances the brain
may actually maintain multimodal alternatives about the current
body state.

In contrast to MMF, nMMF approximates probability distri-
butions with neural population codes (Deneve et al., 1999) to
enable the representation of probability distributions with arbi-
trary shapes. Each neuron in such a code is responsive to specific
values of the input data (preferred value) and thus has a local
receptive field of a particular size. Note that by using population
codes, the shapes of the encoded probability distributions become
unconstrained. The modularity of nMMF ensures a scalable neu-
ral encoding of the arm or even the full body. In the following, we
describe how the receptive fields and the preferred values of the
population neurons are determined.

2.2.1. Sampling of neural populations
In order to create neurons only within the reachable manifolds,
we let the populations of neurons grow while observing simulated
arm states. This is done in the following way: A simulated arm is
set to a random arm position, which is uniformly distributed in
angular space. Then, noiseless measurements zj are obtained in
each module j. If

||zj − x
j
l|| > dmin ∀ l ∈ {1, . . . , Nj}, (5)
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a new neuron is added at zj, where x
j
l denotes the preferred value

of neuron l and Nj the current number of neurons that exist in
module j. Next, the arm is set to a new random position. Thus,
all sampling positions are independent of each other and the
resulting neurons in each module are approximately uniformly
distributed, covering the reachable manifold.

2.2.2. Tuning function
Each neuron has an associated tuning function (Deneve et al.,
1999), which specifies how the neuron responds to a signal. We
use Gaussian tuning functions with mean xl and covariance R.
For instance, if a measurement signal occurs at position z, the
probability density function (PDF) at xl is:

pl = N (z, R) (xl) . (6)

In effect, a Gaussian PDF is activated over the whole neural
population (cf. Figure 2, yellow bars for an illustration). If the
covariance R of all tuning functions is equal to the sensor covari-
ance, then Equation (6) is the same as the inverse measurement
model (Thrun et al., 2005).

Since probability mass has to be conserved when informa-
tion flows from one module to another in nMMF, we derive
the probability mass function (PMF) from the PDF. Note that
the neural PMF encoding will typically slightly differ from
the PDF encoding in nMMF, because the population codes in
nMMF may not be uniformly distributed. This is illustrated in
Figure 2.

2.2.3. Probability mass
Let X be a multivariate random variable, and ω a subset of a
sample space �. The probability mass q in ω corresponds to the

FIGURE 2 | Each neuron has a tuning function (Deneve et al., 1999)

that defines how the neuron responds to a signal. Generally, these
tuning functions are considered to be bell-shaped, such as the shown
Gaussian kernels. As a consequence of this encoding, the PDF encoded by
the neural population becomes Gaussian as well (yellow bars), while the
probability mass (blue) is somewhat distorted because it accounts for the
local neural density.

probability that X lies in ω:

qω ≡ Pr [X ∈ ω] =
∫

ω

p (x) dx (7)

Just as N neurons are spread over �, � is discretized into N sub-
sets ωl, l∈(1..N), which are simply the Voronoi cells Rl of those
neurons (cf. Appendix A.2). The probability mass of a neuron
can then be approximated by the Volume V of the cell times the
density (Equation 6) at the neuron’s position

ql =
∫

Rl

p (x) dx ≈ Vl · p (xl)∑N
l∗ = 1 Vl∗ · p (xl∗)

, (8)

where the denominator normalizes the probability mass to 1. An
illustration of a probability mass is shown in Figure 2, blue bars.
To handle potential approximation errors, we ensure that the sum
of the probability mass over all neurons N in a module is always
normalized to 1, by

ql ← ql∑
l∗ ql∗

, (9)

where the symbol “←” is used as a value update assignment.

2.3. INFORMATION FUSION
With a neural, modularized, probabilistic body state represen-
tation in hand, we now focus on information processing and
information exchange. In this section, we first detail the fusion
of different neurally-represented PDFs, and consecutively derive
the fusion of different PMFs. Two cases are considered: that
the information carried by the different PMFs is dependent or
independent.

The Bayesian fusion (Bloch, 1996) of multiple independent
neurally-encoded probability distributions is the neuron-wise
product of the respective PDFs. Thus, the fusion yields:

pfused,l ∝
M∏

j= 1

pj,l, (10)

where M specifies the number of modality frames that are fused,
l is the index of a specific neuron, and pj,l encodes the probability
density that stems from modality frame j and that is covered by
neuron l. As the density can be converted to a mass by pl = ql ·
V−1

l , applying this identity to both sides of Equation (10) yields
the fusion of PMFs

qfused,l =
(Vl)
−(M− 1)

∏M
j= 1 qj,l∑

l∗ (Vl∗)−(M− 1)
∏M

j= 1 qj,l∗
. (11)

When Equations (10) or (11) is used to fuse partly or fully depen-
dent information, the resulting distribution is overconfident (i.e.,
too narrow).

To correct for this overconfidence, the PDF can be raised
to the power of an exponent α < 1. However, since we
encode PMFs, additional conversions are again neces-
sary to account for the Voronoi volumes covered by the
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respective neurons. The correction for overconfidence is thus
accomplished by:

qfused,l ← V1− α
l

(
qfused,l

)α∑
l∗ V1− α

l∗
(
qfused,l∗

)α ; (12)

where the denominator normalizes the mass to 1. The effect
is a widening of the encoded PMF, which is illustrated in
Figure 3.

To infer the exponent α, a measure of information content is
required. We use the Shannon entropy h to estimate the amount
of information in a PMF:

h ≡ −
∑

l

ql · ln
(
ql

)
, (13)

where ql may denote the fused distribution as in Equation (11)
or any other arbitrary distribution. If all distributions were
Gaussian, the exponent could be derived from Equation (12) by
requiring that the Shannon entropy in a module before fusion
should be equal to the Shannon entropy after fusion:

α = e−2(minj hj − hfused). (14)

Due to the lack of a rigorous derivation of α in the general case,
we utilize this approximation to determine α for our population-
encoded probability masses in each module.

2.4. CROSS-MODULE CONNECTIONS
With notations for modules in nMMF, neurally-encoded prob-
ability masses, and information fusion of redundant sources of
information at hand, we now specify how the neural, cross-
module connections are implemented in nMMF.

Modules may differ along two axes: the limb-axis (proximal-
to-distal, shown horizontally in Figure 4), and the modality

FIGURE 3 | The solid blue curve is modified by raising the PDF to the

power of 1
2

neuron-wise, resulting in the dashed yellow curve. As the
exponent is <1, the distribution is widened, i.e., information is diffused.
This effect is used in two cases: (1) to correct for overconfidence due to the
combination of dependent information sources and (2) to reduce the
influence of a module that is in conflict with other modules.

frame axis (forward and inverse, shown vertically in Figure 4).
Information may flow from one or two input modules to a
neighboring output module. This may happen diagonally: Out
of the four diagonal directions, only three are single trans-
formation steps: proximal-to-distal-forward, proximal-to-distal-
inverse, and distal-to-proximal-forward. 3 Together, all three
form a triangle in Figure 4—e.g., (GL2, GL3, GO3). In robotics,
proximal-to-distal-forward and proximal-to-distal-inverse are
typically termed forward and inverse kinematics, respectively,
while distal-to-proximal mappings are often ignored.

2.4.1. Single transformation steps
Rather than learning the neural connections, here we use hard-
coded kinematic mappings

xj,k→i (m, n) = f j,k→i
(

x
j
m, xk

n

)
, (15)

where i, j, k are neighboring modules of nMMF. A derivation of
the closed form of f j,k→i can be found in Ehrenfeld and Butz
(2013).

For all pairs of input neurons m and n, connections are built
to those neurons l in the output module, which are sufficiently
close to the transformation result xj,k→i (m, n). The Gaussian

3In contrast, the fourth diagonal direction, distal-to-proximal-inverse, is not
a single transformation step: the fingertip location and the hand orientation
simply do not influence the proximal arm’s orientation directly.

FIGURE 4 | Transformation steps between different modules: The

modules (shown as circles) differ with respect to limbs (horizontal

axis) and with respect to modalities and frames of reference (vertical

axis). Every transformation step consists of one or two input modules and
one output module. An example is the two solid lines on the top right:
together, they encode how the wrist location GL2 depends on both the
fingertip location GL3 and the global hand orientation GO3. Yellow
dash-dotted lines are the forward kinematics, dark gray dotted lines the
inverse kinematics, and red solid lines the distal-to-proximal kinematics.
Modified based on Ehrenfeld and Butz (2012, 2013).
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(Equation 30) value for the Euclidean distance of each neuron l
in the output module i to the transformation result xj,k→i (m, n)

is used as connection strength w:

w
j,k→i
m,n→l = Vl · N

(
xj,k→i (m, n) , Ri

Map

)
(xi

l), (16)

where the receptive field covariance Ri
Map regulates how much

the mapping itself widens the encoded probability distribution. It
models an information loss during a transformation, either due
to inaccurate mappings or due to discretization errors. Since we
use accurate mappings, we only need to consider the latter and
therefore base Ri

Map on the neuron distance in the output module.
If the transformation step has two inputs from the location

modality GL (e.g., an elbow location GL1 and a wrist location

GL2) the distance of both neurons’ preferred values
∣∣∣xGL2

m − xGL1
n

∣∣∣
must be approximately equal to the length of the forearm. We
introduce a modifying factor F with respect to neurons m and n,
which reflects how well the constraint is met:

Fmn = e
− 1

2
�xT

mn|�xmn |
(

Ri
Map

)−1
�xmn|�xmn | ·(|�xmn|−dlimb)2

, (17)

where dlimb is the length of the respective arm limb, and

�xmn ≡ xGL2
m − xGL1

n the relative position of both input neurons.
Intuitively, (|�xmn|−dlimb)

2 results in a penalization of larger
deviations from the limb length, and the first factors scale this
penalization dependent on the covariance in the mapping. For
all other transformation steps, no constraints are necessary, and
Fmn = 1 in these cases. In consequence, the connection weights w
are normalized by

w
j,k→i
m,n→l ←

Fmn · wj,k→i
m,n→l∑

l∗ w
j,k→i
m,n→l∗

∀m, n, (18)

where the modifying factor Fmn blocks the influence of pairs of
location neurons that do not correspond with the arm length
sufficiently well.

Finally, the projection of two probability distributions qj, qk

along the connections f j,k→i into module i yields

qi
l =

∑
m

∑
n q

j
m qk

n w
j,k→i
m,n→l∑

l∗
∑

m

∑
n q

j
m qk

n w
j,k→i
m,n→l∗

, (19)

where the denominator normalizes the overall activity again to 1.

2.4.2. Chain of transformation steps
As nMMF’s modules are strongly interconnected, information
flows from any module to all other modules. This requires that
multiple information transformation steps be done successively.

In nMMF, information is projected into other modules by
means of two different approaches. The first approach is used
when information needs to stay independent for determining
plausibility estimates (cf. section 2.5). In this case, the forward

or inverse kinematic mappings are used without fusing other
information on the way. Thus, information is not mixed and
projections of independent information sources into a com-
mon module stay independent. For example, sensory input
from a local angle module may be projected to the corre-
sponding global location module by the forward kinematics
chain LA→ LO→ GO→ GL. Meanwhile, sensory information
from the global orientation may also be projected into GL by
GO→ GL. These two information sources remain independent
of each other but are now represented in a common module and
can thus be directly compared.

The second approach is used when information is fused across
modules (cf. section 2.6). In this case, the information is projected
across the modules of nMMF by alternating between local projec-
tion and information fusion steps. For example, the LA informa-
tion is projected to LO, where the result is fused with the LO input.
The fused result is then projected further to GO, where the result
is fused again, and so on. This method enables the integration of
even incomplete information 4 and it reduces computation time
because fewer transformation steps are required.

2.5. CONFLICT RESOLUTION
The information, which is exchanged via the specified cross-
module connections, has a specific certainty to it. This cer-
tainty is encoded implicitly in the neural population codes
in each module. Sensory signals are encoded in a population
code by making assumptions about the noise in the signal,
typically using a measurement model (Thrun et al., 2005).
However, those assumptions can be violated by, for exam-
ple, sudden occurrences of systematic sensor errors, unac-
quainted environmental conditions, or changes in the body
schema due to growth or injury. To be able to account for
such potentially unknown signal disturbances, nMMF estimates
plausibilities for each signal. If a signal has low plausibility,
it is mistrusted and its information content is consequently
decreased.

Because the true state of the body is unknown, nMMF
estimates signal plausibilities by comparing different, redun-
dant information sources. The modular encoding of the body
in nMMF is highly suitable for conducting such comparisons.
Given several redundant distributions about a body state, a
failing distribution can be detected when it systematically and
strongly differs from the complementary, redundant sources of
information.

2.5.1. Acquisition of plausibilities
Let m12 be a measure of how well two sources (or dis-
tributions) 1 and 2 match each other. Zhang and Eggert
(2009) provide an overview of different potential mea-
sures for m12. In nMMF, we use the scalar product as a
matching measure. Given any neural module i, in which

4Incomplete information: If e.g., a location input GL is transformed
into the global orientation module GO, the result specifies only
one subvector in the direction of the arm, while the other, per-
pendicular subvector remains unspecified. The second approach
can then easily fuse a complete GO input onto this incomplete
information.
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two PMFs (1 and 2) are encoded, their relative match is
determined by:

mi
12 =

qi
1

(
xi

) · qi
2

(
xi

)
∣∣∣∣qi

1

(
xi

)∣∣∣∣ · ∣∣∣∣qi
2

(
xi

)∣∣∣∣
=

∑
l qi

1,l · qi
2,l√∑

l qi
1,l · qi

1,l ·
√∑

l qi
2,l · qi

2,l

, (20)

where the dot · in the first line’s numerator is the inner product of
the two functions qi

1

(
xi

)
and qi

2

(
xi

)
. The measure mi

12 is sym-

metric, i.e., mi
12 ≡ mi

21. Thus, if one source has an offset, the
matching measure can not determine which of the two sources
has that offset. This can be solved by comparing multiple pair
matches given at least three redundant sources of information.

To identify faulty sensory information, nMMF computes a
plausibility value mi for each information source i by compar-
ing it to multiple other redundant information sources j. The
most direct comparison is done by determining the mean of the
matches of channel i with all other channels j, whose information
was transferred to module i:

(
mi

)∗ = 1

N − 1

N∑
j= 1,j 
=i

mi
ij. (21)

The measure may be termed an absolute plausibility measure of
information source i. To obtain the final plausibility value, the
relative matching quality is determined by dividing

(
mi

)∗
by the

highest absolute plausibility measure
(
mj

)∗
of all related sources:

mi =
(
mi

)∗
maxj

(
mj

)∗ . (22)

The whole process is illustrated in Figure 5. In the illustration,
sensor S4

4 is assumed to have a systematic error. As the sensor is

FIGURE 5 | Matches mi
ij

for pairs of two sources are obtained, then an

arithmetic mean over all j yields
(

mi
)∗

. Finally, a normalization by the

maximum of all
(
mj

)∗
yields the final plausibility mi .

always included for comparisons in its own module m4, but only
once in each other module, the arithmetic mean of its match-
ing value is lower than that of the others. In our experience,
this approach of comparing pairs of information sources is more
robust than, for example, comparing one sensor to the combined
information of all other sensors.

In summary, if a channel i is in accordance with most of the
other channels, the plausibility estimate mi will be relatively high.
In contrast, if a specific channel i systematically deviates from all
other channels, its plausibility estimate will be relatively low.

2.5.2. Usage of plausibilities
To incorporate the plausibility estimates into the sensor fusion
process, the contribution of each information source i is weighted
by its plausibility estimate mi. This is done by Equation (12),
where the exponent αi needs to depend on the plausibility mi.
Boundary constraints are αi (0) = 0, αi (1) = 1 and the mapping
should strictly increase monotonically. We simply set αi ≡ mi,
which meets these constraints.

2.6. INTERACTIVE INFORMATION FLOW
With all options for information fusion at hand, we can finally
specify the iterative information flow in nMMF. nMMF main-
tains an arm state estimate over time by executing four processing
steps in each time step: a prediction step (A), a sensor fusion step
(B), an update step (C), and a crosstalk step (D) (cf. Figure 6).
The prediction step includes the impact of the movement on the
estimates. The sensor fusion step first increases the dispersion
of those sensory distributions that badly match other sensors.
After that, the modified sensory distributions are fused. The next
step integrates the sensor fusion result into the estimate of the
body state. The last step enforces synchronization between the
individual modules of the body state.

2.6.1. Prediction step
In order to be able to use the information from previous time
steps, the impact of any movement of the arm on the state esti-
mates qi (x) is predicted. First, the arm movement �y and motor
noise P�y are projected from motor space to all nMMF modules

by linear approximations, resulting in �yi and Pi
�y. The involved

Jacobians can be found in Ehrenfeld and Butz (2013).
Second, the impact of the movement is predicted by convolv-

ing the probability distribution of the last time step qi
t−1|t−1

(
xi

)
with the Gaussian N

(
�yi, Pi

�y

)
. This convolution can be

understood as a translation of qi
t−1|t−1

(
xi

)
along the vector �yi

and a blurring with the covariance Pi
�y. Thus the activity qi

n of
some source neuron n in module i flows to all target neurons l
in the same module. The consequent a priori activity of target
neuron l after movement but before any sensor consideration can
be determined by:

qi
l,t|t−1 ←

∑
n

(
qi

n,t−1|t−1

·
Vl N

(
xi

n +�yi, Pi
�y

)
(xl)∑

l∗ Vl∗ N
(

xi
n +�yi, Pi

�y

)
(xl∗)

⎞
⎠ , (23)
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FIGURE 6 | Data flow for one limb: for simplicity, the inter-limb

dependencies are not shown. First, the forward model predicts the
state estimate after the movement (A). Second, the measurements
are transformed from all modality frames to all other frames (dashed
lines), where their respective qualities are calculated (B.1). Third,
copies of the original measurements are fused weighted with both

the quality and the quantity of their information (B.2). These fused
measurements are then integrated in their respective modality frame
(C). Lastly, the crosstalk shifts all state estimates toward all other
estimates, synchronizing them (D). (A–D) are then repeated for other
limbs and other time steps. Modified based on Ehrenfeld and Butz
(2012, 2013).

where the derivation is specified in the Appendix, cf.
Equation (31). The equation sums up the activities from all
source neurons n, where N is the Gaussian, which does the
translation and blurring. The normalization in the denominator
ensures that the activity that flows from each source neuron n is
preserved.

2.6.2. Multi-sensor fusion
During multi-sensor fusion, conflicting information content
is reduced by deriving sensory plausibilities for each mod-
ule (Equation 22) and modifying the sensory inputs using
(Equation 12). Second, the modified distributions are projected
across modules (Equation 19) in order to provide each module
with all the sensory input. During this projection, chains of
transformation steps accumulate information from more and
more modules along the way. Finally, in each module i, the
underlying distribution is fused with the outputs from all
three chains (forward, inverse, and distal-to-proximal). With
Equation (11) the fusion is:

si,fused
l,t =

V−3
l si

l,t · si
l,t |for · si

l,t |inv · si
l,t |dis∑

l∗V
−3
l∗ si

l∗,t ·si
l∗,t |for·si

l∗,t |inv·si
l∗,t |dis

, (24)

where the notation |xyz is used to indicate the particular sen-
sory information source that is projected into module i and si

l,t
denotes neuron l’s share of this information 5. The denominator
normalizes the result.

2.6.3. Sensor integration
After sensor fusion, the fused sensor distributions si,fused

l,t
(Equation 24) are fused again, but this time with the a priori state
estimate distributions qi

l,t|t−1 resulting from the prediction step
(Equation 23). The resulting posterior distribution before the
final crosstalk step (denoted by∼) thus equates to:

q̃i
l,t|t =

V−1
l qi

l,t|t−1 · si,fused
l,t∑

l∗ V−1
l∗ qi

l∗,t|t−1 · si,fused
l∗,t

. (25)

2.6.4. Multi-body state fusion
Finally, the module interaction in nMMF is applied to ensure
that the state estimates stay consistent across the modules. This
is done the same way as in multi-sensor fusion, except that after-
wards the resulting distributions are modified such that each one
has the same entropy as it had before (using Equations 12–14).

5While q denotes the probability mass of a body state estimate, s denotes the
probability mass of a neurons response to sensory input.
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Thus, during multi-body state fusion, information is first erro-
neously gained, and then corrected for by artificial information
loss. The crosstalk step essentially shifts the means and shapes
of each distribution toward other modules, ensuring consistency
over modules. It does so without changing the distribution width.
As a result, we have determined the final posterior distribution
encoded by the probability masses in all neurons l for all modules
i, denoted by qi

l,t|t .
This step concludes the iterative information processing in

nMMF, which continuously cycles over these processing (cf.
Figure 6) steps over time. In the following, we validate the func-
tionalities and capabilities of nMMF.

3. RESULTS
To test if nMMF is capable of maintaining a coherent body
state estimate, we evaluated nMMF in a simple arm model
setup, in which a simulated sensor failure occurs temporarily. We
then analyzed whether the sensor failure can be detected (sec-
tion 3.2); whether the sensor failure can be compensated for
(section 3.3); how the available, partially conflicting information
is propagated across modality frames (section 3.4); and if the
distal-to-proximal mappings improve nMMF’s state estimation
(section 3.5).

3.1. ARM SETUP
To keep it simple, we use a minimally complex arm, which
still shows all essential characteristics (i.e., modules that differ
with respect to modalities, frames of reference and limbs, and
cross-module interactions as in section 2.6). Specifically, a simu-
lated planar arm with two limbs is used. The arm is controlled
by a kinematic simulator, disregarding angular momentum or
gravity. The simulator executes noisy movements with mean
zero in the (x,y)-plane. The motor noise in the angular modules is

σ
LA1
movement = σ

LA2
movement =

(
0 0 0.1 rad

)T
. (26)

Each limb has one degree of freedom and a length equal to 1.
Results are averaged over 200 runs. In each run, the arm is ini-
tially set to a new random position, while the state estimates start
with uniform distributions (i.e., no knowledge).

3.1.1. Distribution of neurons
Both neurons and mappings are built once before starting all 200
runs. The angles xLA1 and xLA2 can take on values in the interval
(−π, π) on the z-axis. The direction parts of the global (local)
orientation xGD1 (xLD1 ) and xGD2 (xLD2 ), as well as the location
of the elbow, are on the unit circle. Thus, the populations in the
modules LA1, LO1, GO1, GL1, LA2, LO2, and GO2 all need to cover
lines with the length 2π. Only the wrist location deviates from
this: it must cover a whole disk with radius 2.

Two hundred Neurons are sampled in each of the former
modules. Thus the average Euclidean distance between two neigh-
boring neurons equals to

davg = 2π

200
≈ 0.031 (27)

The minimum allowed distance between two neurons (cf. section
2.2.1) is set to dmin = 0.7 · davg. In order to achieve the same aver-
age distance in GL2, the number NGL2 of neurons which need to
be sampled is defined by

√
πr2

NGL2
= 2π

200
. (28)

The GL2 neurons are distributed on a disc with radius
r = 2+ 3σ

GL2
Map = 2.09. The summand 2 accounts for the two limb

lengths from shoulder to wrist, while 3σ
GL2
Map (cf. section 3.1.2)

guarantees that some neurons have receptive fields outside but
close to the arm’s reach. This slightly enlarged neural coverage
avoids that boundary effects distort a probability distribution.
The enforced equality (Equation 28) yields NGL2 = 14.0 · 103

neurons.

3.1.2. Mappings
We chose the standard deviation for the mapping’s spreading
(cf. Equation 16) so that it is equal to the average neuron dis-
tance, i.e., σi

Map = di
avg ≈ 0.031. The mappings spread radially,

i.e., Ri
Map = diag

(
σMap

)
, where diag refers to a diagonal matrix.

We discarded any mappings that fall outside a 3σMap-range.

3.1.3. Tracking of information
In order to track the information influence stemming from one
module (here GL2), we (1) introduced an offset to GL2 and (2) set
its noise very low when compared to the other modules. The offset
is introduced for two reasons: to distinguish the information that
originates in GL2 from all other information, and to observe how
nMMF reacts to the sudden failure of a sensor. The offset has a
magnitude of 0.5 limb length. It is switched on at time t = 4 and
switched off again at t = 7. The offset is in a counterclockwise
direction (i.e., from the arm’s perspective, the offset is to the left).
GL2’s noise is low compared to other modules, in order to increase
GL2’s impact. We chose radial Gaussians for the sensor noise:

σi =
{

0.05 limb length if i = GL2

0.5 (in rad, limb length, . . . ) otherwise
, (29)

where σ is the standard deviation.
Evaluating nMMF when conflict resolution is applied allows

us to determine whether the sensor failure can be detected and
how well nMMF compensates for it. When conflict resolution is
turned off, the setup shows how information starting in GL2 is
generally propagated across modalities, frames of reference, and
limbs.

3.2. DETECTION OF SENSOR FAILURE
A sensor failure is modeled by the GL2-sensor offset dur-
ing the interval t ∈ [4, 6]. By comparing all sensors, nMMF
autonomously infers plausibility measures (Equation 22), which
are displayed in Figure 7.

Even outside the offset-interval, GL2 (top right) shows a low
plausibility m as compared to other modules. This is because,
in general, three aspects characterize a distribution: its mean, its
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shape, and its dispersion. However, deciding which of these char-
acteristics should be tested by a matching-measure m depends
on the application. For instance, Equation (22) compares all
three characteristics. As Gl2’s receptive field (Equation 29) is nar-
rower than all other receptive fields, its dispersion is lower, and
mGL2 mainly detects the different dispersions, while it might
be more interesting to instead detect systematic errors of the
mean. Thus, for this application, a dispersion-independent mea-
sure (Ehrenfeld and Butz, 2012, 2013) might be more appropriate.
This would yield much higher measures mGL2 than shown in
Figure 7, top-right.

Nevertheless, the measure is still able to detect sensor failure:
while the offset is present (t ∈ [4, 6]), the plausibility measure
drops in the setup with offset (red), as compared to the setup
without offset (yellow) (Figure 7, top-right).

3.3. COMPENSATION OF SENSOR FAILURE
Plausibilities were introduced as a measure of quality of an infor-
mation source. If all sources provide correct data, plausibilities
introduce a random change on otherwise Bayesian fusion. Such
a change can only worsen the state estimate. The results confirm
this: With plausibilities switched on, state estimates get worse (cf.
red vs. yellow, blue vs. green in Figure 8). If, however, a sensory
source is conflicting the others (red and yellow in the interval

FIGURE 7 | Sensor failure is detected: in the GL2 module, where the

sensor offset is introduced in time steps t ∈ [4,6], the plausibility

drops. Error bars are standard errors.

t ∈ [4, 6]), plausibilities can suppress the influence of the false
sensor information and improve the overall state estimate (red
vs. yellow in Figure 8). This improvement is even visible under
strong noise (red vs. yellow in Figure 8). Again, a dispersion-
independent measure (Ehrenfeld and Butz, 2012, 2013) could
improve the performance.

3.4. PROPAGATION OF INFORMATION ACROSS MODALITIES, FRAMES
OF REFERENCE AND LIMBS

The setup without conflict resolution (Figure 8, yellow and
green) shows how information is propagated across modality
frames and limbs in general. The yellow peak, which starts in GL2

(top right), is successfully propagated to all other modality frames
(from top to bottom) and to the next proximal limb (from right to
left). Shown is the estimation error (Euclidean distance between
the real arm state and the estimated arm state).

3.5. PERFORMANCE IMPROVEMENT DUE TO DISTAL-TO-PROXIMAL
MAPPINGS

In order to see if distal-to-proximal mappings improve or worsen
the state estimation, two setups, one with mappings and one
without are compared. Figure 9 shows that the proximal limb’s
state estimate improves (yellow vs. blue, red vs. purple) because
additional information flows to it from the distal limb. A

FIGURE 8 | An offset is propagated from GL2 to other modality frames

and toward the upper arm (dashed yellow). The usage of plausibilities
reduces the offset’s influence (the solid red curve is lower than the dashed
yellow curve).

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 148 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ehrenfeld et al. Modular neuron-based body estimation

FIGURE 9 | (1) Distal-to-proximal mappings improve the state estimate

(dashed yellow is lower than dash-dotted cyan, solid red is lower than

dotted magenta). (2) Plausibilities worsen the state estimate if no

failures exist and improve the state estimate if failures exist (red vs.

yellow, magenta vs. cyan). Both effects (1) and (2) are found—though

weaker—in other modules (not shown).

slight improvement can even be seen in the distal limb. This
is the case because the distal limb profits from more accu-
rate forward and inverse kinematic estimates in the proximal
limb.

4. DISCUSSION
We introduced the neurally-encoded modular modality frame
(nMMF) model, which maintains a consistent and robust but
also highly distributed body state estimate over time. As in
the previously published Gaussian MMF model (Ehrenfeld and
Butz, 2011, 2012, 2013), nMMF represents the body (an arm
in the current implementation) modularized into body parts
and sensor-respective frames of reference. Local, body-state-
dependent mappings allow for continuous interactions between
modules, ensuring consistency. Bayesian information fusion prin-
ciples are applied to fuse sensory information in the respective
modules, to compare redundant information across modules,
and to adjust the modular body state estimate for main-
taining estimation consistency. Forward models are used to
anticipate the sensory consequences of own movements and
thus to fuse the consequent sensory information even more
effectively.

In contrast to the MMF model, we showed that the same
principles can be realized by means of a neural implementation,
adding to the plausibility of the model. To succeed, popula-
tion encodings principles of state estimates had to be employed.
To establish a population code in one nMMF module, arm
states were sampled randomly. To establish the neural mappings
between the population codes, weight matrices were set based on
the distances of the connected neurons, where the distances were
currently determined by an informed kinematic model of the
arm. To determine plausibility values, we used the scalar product
to compare two neurally-encoded distributions. To avoid over-
confidences in body states and to effectively realize information
fusion, we normalized the resulting distributions maintaining
respective Shannon entropies in the neural encodings.

In further contrast to the MMF model, nMMF also includes
information exchanges from distal to proximal limbs and joints.
This addition enables further-reaching information exchange. For
example, information about the hand location can also influence
estimates of the lower and upper arm, which was not the case in
the MMF model (Ehrenfeld and Butz, 2013).

The evaluations confirmed that information from the wrist
location influenced the whole arm estimate. First, we showed
that due to the addition of the distal-to-proximal mappings, the
location of the elbow or angles in the shoulder were adjusted by
nMMF to generate an overall representation that is more consis-
tent with the wrist estimate. We also showed that the additional
mappings improve the state estimate due to the additional infor-
mation exchange. Second, we showed that a systematic sensor
error can be detected with the neural encoding. Third, although
the inclusion of plausibilities slightly decreases the quality of
the state estimate when all information sources are valid, if a
sufficiently strong systematic error occurs in a sensor then the
plausibility estimate can block this inconsistent information. Such
sensor errors can be compared with situations in which visual
information about the location of the hand is inaccurate, as is
the case in the rubber hand illusion, thus leading to a misjudg-
ment of the hand’s location. The distal-to-proximal mappings
in nMMF suggest, in addition to a misplacement of the hand,
that the internal estimates of the elbow angles and lower arm
orientations should be affected by the illusion.

4.1. RELATED MODELS
The original motivation to develop the nMMF model came from
SURE_REACH (Butz et al., 2007), a neural, sensorimotor redun-
dancy resolving architecture, which models human arm reaching.
SURE_REACH and the strongly related posture-based motion
planning approaches (Rosenbaum et al., 2001; Vaughan et al.,
2006) focused on flexible goal reaching capabilities and on antic-
ipatory behavior capabilities, such as modeling the end state
comfort effect (Rosenbaum et al., 1990). The current state of the
body, although incorporated during action decision making, was
not explicitly represented. In contrast, nMMF primarily focuses
on the probabilistic, distributed representation of the body and
effective information exchange. However, we believe that the
nMMF model is ready to be combined with goal-oriented behav-
ioral decision making, planning, and control routines. Moreover,
while the SURE_REACH model was also implemented by neural
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grids, it represented the angular space of the arm in one module.
Such a representation, however, is unfeasible for a seven degree of
freedom, humanoid arm. nMMF’s modularizations yield spatial
encodings that are maximally three dimensional. Thus, nMMF is
applicable to a seven degree of freedom arm. In particular, while
SURE_REACH needs O(x7) neurons to cover the angular space
of a humanoid arm with a density of 1/x neurons per dimen-
sion, nMMF only needs O(3x3) neurons to encode a comparable
density.

The locality and modularity of nMMF relate the model
to the mean of multiple computations (MMC) model (Cruse
and Steinkühler, 1993; Schilling, 2011). However, nMMF
additionally provides a probabilistic state representation,
rigorous Bayesian-based information exchange, and plausibility-
enhanced sensory information integration mechanisms. While
the MMC model focuses on motor control, the nMMF model
focuses on an effective, probabilistic body state represen-
tation. Nonetheless, the similarity to MMC suggests that
similar motor control routines are implementable on a neural
level in nMMF. Moreover, the fact that distributed, multi-
sensory bodily representations serve well for goal-directed
motor control (Andersen and Buneo, 2002) suggests that
nMMF should be extended with adaptive motor control
capabilities.

Various models use population codes for encoding proba-
bility distributions and exchange information in a comparable
Bayesian fashion (Deneve and Pouget, 2004; Knill and Pouget,
2004; Doya et al., 2007). Information exchange across modali-
ties and frames of reference take place in the brain. Gain fields
are good candidates for realizing frame-of-reference conversions
neurally (Andersen et al., 1985; Salinas and Abbott, 1995; Hwang
et al., 2003; Deneve and Pouget, 2004). In the current nMMF
implementation we used fully connected, direct transformations,
which will need to be adjusted to gain-field transformations
in order to map two three dimensional spaces into a third
space. Nonetheless, in contrast to the related models, nMMF
realizes a fully modularized, distributed probabilistic arm rep-
resentation, which, to the best of our knowledge, has not been
accomplished before. For example, Deneve and Pouget (2004)
reviewed a multimodal gain field model that exchanged audi-
tory, visual, and eye position information, enforcing consistency
via population encodings. While nMMF has not considered audi-
tory information so far, it goes beyond previous models in that
it also incorporates a kinematic chain, relating body parts to
each other along the chain. Thus, besides exchanging informa-
tion across different frames of references, nMMF also exchanges
information from distal-to-proximal body parts and vice
versa.

In sum, nMMF focuses on estimating the own body state,
incorporating multiple sources of information across sensory
modalities and their respective frames of reference, as well
as across neighboring body parts. While flexible goal-oriented
behavior cannot be generated by nMMF at this point, the
relations to the MMC model, the SURE_REACH model, and
the posture-based motion planning theory suggest that behav-
ioral decision making, planning, and control techniques can be
incorporated.

4.2. FUTURE WORK
Although the plausibility measure used in this work is generally
well-suited, our previous work showed that a more rigorous nor-
malization can yield very little information loss but the same gain
in robustness when plausibilities are applied (Ehrenfeld and Butz,
2012, 2013). A similar normalization in the neural implementa-
tion seems to be possible only by means of heuristics, lacking the
computational rigor. We are currently investigating alternatives.

In the current nMMF implementation several choices had to
be made about which information should be exchanged, how
plausibilities should be computed, and which reference frames
should be represented. Additional frames-of-reference could be
represented, such as a local location frame. Synergistic body
spaces may also be represented, potentially accounting for the
synergistic properties of the human body, the muscle arrange-
ments, and the neural control networks involved (Latash, 2008).
Also, plausibilities may be determined by considering the internal
state estimations in addition to the redundant sensory infor-
mation sources. Finally, the transformations between limbs and
frames-of-reference may also be endowed with uncertainties. In
this way, the body model itself would become adjustable, poten-
tially accounting for illusions such as the Pinocchio illusion
(Lackner, 1988), where a body part (e.g., the nose) elongates
phenomenally.

Due to its modularity and focus on bodily representations, we
believe that nMMF can be easily integrated into a layered con-
trol architecture. In such an architecture, other layers may encode
extended bodily motion primitives, plan the desired kinematics
of bodily motions, or control the dynamics of the body. In partic-
ular, extended motion primitives may be incorporated in order
to execute a motion sequence, potentially selectively with any
limb or joint currently available, similar to us being able to push
down a door handle by means of our hands but also potentially
with one of our elbows. Meanwhile, kinematic planning mecha-
nisms may utilize the nMMF representation to generate motion
plans online. Finally, lower-level dynamic control layers may be
included.

5. CONCLUSION
In conclusion, this paper has shown that a distributed, probabilis-
tic bodily representation can be encoded by modularized neural
population codes based on Bayesian principles. The presented
nMMF architecture is able to mimic the capability of humans to
integrate different sources of information about the body on the
fly, weighted by the respective information content. Bodily illu-
sions can also be mimicked. Besides the more rigorous modeling
of human data with nMMF beyond qualitative comparisons, we
believe that nMMF should be embedded in a layered representa-
tion and adaptive control architecture in order to generate flexible
and adaptive goal-oriented behavior.
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A APPENDIX
A.1 PSEUDOINVERSE AND ACTIVATION OF A GAUSSIAN
A multivariate Gaussian with mean μ and Covariance-matrix P is
given by:

N(μ, P) (x) ≡ 1√
(2π)k |P|

e−
1
2 (x−μ)T P−1(x−μ), (30)

where k is the number of dimensions in the manifold.
In nMMF, three cases occur where activity is spread

over neighboring neurons: when sensory inputs are encoded
(Equation 6), when neural activity is propagated to other mod-
ules (Equation 16), and when the body estimate is updated with
the movement (Equation 23). If the involved tuning functions
are Gaussian, the activity mass spreads to all individual neurons l
according to

ql (μ, P) = f · Vl N(μ, P) (xl)∑
l∗ Vl∗ N(μ, P) (xl∗)

, (31)

where μ is the new mean, P the tuning functions covariance,
and f the activity mass, which is spread. For instance, if a sensory
input is activated, μ is equal to the sensory reading and f is 1. If,
on the other hand, the activity of a single neuron xn is updated
with a movement �x, μ is equal to xn +�x, and f is equal to the
neuron’s probability mass qn.

If no inverse P−1 exists, it is approximated with the pseudoin-
verse P+. The pseudoinverse is computed via a singular value
decomposition, which factorizes the (real) m×m covariance P
into

P = U�VT, (32)

where U and V are unitary and � diagonal. U and V can be under-
stood as rotation matrices while � is responsible for the scaling.
Then the pseudoinverse P+ is

P+ = V�+U
T
, (33)

where the pseudoinverse �+ of the diagonal matrix � is obtained
by taking the reciprocal of every non-zero element. If a diag-
onal element of � is equal to zero, this has to be interpreted

as the probability distribution not depending on that element.
Consistent with that interpretation is �+: the corresponding
diagonal element remains zero and deviations (xl − μ) of the
mean in the direction of that element are multiplied with zero,
i.e., they do not lower the result of the Gaussian (Equation 31).
Unfortunately, this is a singularity. For diagonal elements close
but unequal to zero, �+ and consequently P+ explode. This
occurs especially if a sub-manifold in a higher dimensional space
needs to be activated (e.g., a sphere of elbow positions).

Thresholds are introduced to prevent discretization errors
and small numerical errors from destabilizing the model. Matrix
elements

(
P−1

)
ij larger than the threshold 1012 are set to zero:

(�)ij = �
(

1012 − (
P−1)

ij

) (
P−1)

ij , (34)

where � is the heavyside function. Following, the distance vectors
αl and βl are introduced as xl − μ and � (xl − μ) and bound by
the threshold 10−10:

(αl)i = �
(
[xl − μ]i − 10−10) · [xl − μ]i (35)

(βl)i = �
(
[� (xl − μ)]i − 10−10) · [� (xl − μ)]i (36)

Thus, Equation (31) becomes

ql (μ, P) = f · Vl e−
1
2 αT

l βl∑
l∗ Vl∗ e−

1
2 αT

l∗βl∗
, (37)

A.2 VORONOI CELL AND VORONOI VOLUME
When N neurons are spread over a sample space � at positions
xl, l∈(1..N), the Voronoi-cell Rl of a neuron l is defined as the
set of all points x that are closer to the neuron position xl than to
any other neurons, i.e.,

Rl ≡ {x | ∀m : ||x− xl|| ≤ ||x− xm||} (38)

where ||·|| is the Euclidean norm. Intuitively, it is the subspace to
which the neuron responds stronger than any other neurons. The
Voronoi volume is defined as the volume of that cell. As only rel-
ative values are required, any normalization of the Volumes Vl is
arbitrary.
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