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A wide variety of neurons encode temporal information via phase-locked spikes. In the
avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send
phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris
(NL) that mediate sound localization. Previous modeling studies suggested that converging
phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane
potential of their target neuron. Recent physiological recordings in vivo revealed that owl
NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory
potential. The oscillatory potential was termed the sound analog potential, because of its
resemblance to the waveform of the stimulus tone. The amplitude of the sound analog
potential recorded in NL varied systematically with the interaural time difference (ITD),
which is one of the most important cues for sound localization. In order to investigate
the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed
theoretical descriptions of how phase-locked inputs form oscillating membrane potentials.
We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors
to the signal and noise components of the oscillation in both the synaptic conductance and
the membrane potential. Numerical simulations demonstrate the validity of the theoretical
formulations for the entire frequency ranges tested (1–8 kHz) and potential effects of
higher harmonics on NL neurons with low best frequencies (<2 kHz).
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INTRODUCTION
Synchronized neural activity underlies various types of infor-
mation processing in the brain. A diversity of sensory neurons
encode temporal information via phase-locked spiking (Carr
and Friedman, 1999). Phase-locking, or the generation of action
potentials at a certain phase of the reference signal, is preva-
lent in the auditory system (Oertel, 1999; Ashida et al., 2010;
Brette, 2012). In the auditory brainstems of mammals, reptiles,
and birds, neurons involved in sound localization convey precise
temporal information of sound using phase-locked spikes (cats:
Joris et al., 1994; gerbils: Dehmel et al., 2010; caimans: Carr et al.,
2009; owls: Sullivan and Konishi, 1984; Köppl, 1997; chickens:
Warchol and Dallos, 1990; Fukui et al., 2006; redwing blackbirds:
Sachs and Sinnott, 1978). Among various animal species tested,
auditory neurons in the barn owl show the highest temporal acu-
ity with a precision of less than 0.1 ms (Köppl, 1997). The degree
of phase-locking, measured as the vector strength (VS) (Goldberg
and Brown, 1969), is significant for frequencies up to about 8 kHz
in the owl’s nucleus magnocellularis (NM) (Sullivan and Konishi,
1984; Köppl, 1997).

Abbreviations: ITD, interaural time difference; NM, nucleus magnocellularis; NL,
nucleus laminaris; VS, vector strength; EPSG, excitatory post synaptic conductance;
KLVA, low voltage activated potassium.

Both mammals and birds have specialized neural circuits to
compute the interaural time difference (ITD), which is one of the
most important cues for sound localization (see Joris and Yin,
2007; Grothe et al., 2010; Ashida and Carr, 2011, for reviews).
In the avian brainstem, axons from the NM form delay lines and
provide phase-locked spike outputs while their target neurons
in the nucleus laminaris (NL) detect coincident synaptic inputs
and change their spike rates with ITD (Carr and Konishi, 1990;
Köppl and Carr, 2008). Previous modeling results suggested that
a convergence of phase-locked spikes creates an oscillatory synap-
tic input whose period is the same as that of the stimulus tone
(Figure 1A; Gerstner et al., 1996; Reyes et al., 1996; Kempter et al.,
1998; Ashida et al., 2007; Slee et al., 2010). Recent in vivo intracel-
lular recordings revealed that the barn owl’s NL neurons indeed
show oscillating membrane potentials (Funabiki et al., 2011). This
oscillation was termed the “sound analogue potential” because
its waveform resembled the waveform of the stimulus tone deliv-
ered to the owl’s ears. Both physiological (Funabiki et al., 2011)
and modeling (Ashida et al., 2007) results showed that the ampli-
tude of the sound analog potential changes periodically with
ITD, and that the NL neurons vary their spike rates almost lin-
early to this oscillation amplitude. In the following text, the main
oscillatory component is therefore referred to as the “signal” or
“AC,” whereas the average input level is called the “DC.” The DC
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FIGURE 1 | Schematic drawings of the synaptic input and the membrane

response of the NL neuron model. (A) Formation of the oscillatory synaptic
input. Tonal stimuli induce phase-locked spiking in NM fibers that converge
on an NL neuron, creating a periodic oscillation in the synaptic input to NL.
For clarity, higher harmonics and noise components are not included in this
schematic drawing. (B) Alpha-function as the model unitary synaptic input.

The half peak width W determines the speed of rise and decay, while H is
the peak height of the curve (see text for equations). (C) Single compartment
NL neuron model (Funabiki et al., 2011). Leak and low-voltage-activated
potassium (KLVA) conductances are included in the membrane. (D) Linear
membrane impedance of the model neuron. Introduction of the KLVA

conductance greatly reduces membrane impedance below 1–2 kHz.

component was shown to be irrelevant to the ITD computation
in NL (Funabiki et al., 2011). All the frequency components other
than the AC and DC are regarded as “noise” because they do not
encode ITDs (see Reyes et al., 1996; Ashida et al., 2007; Slee et al.,
2010 for related discussion).

Our previous simulations demonstrated that, if appropriate
parameters are chosen, sound analog potentials can be quanti-
tatively reproduced by the NM-NL model (Ashida et al., 2007;
Funabiki et al., 2011). In this model, phase-locked spikes of NM
fibers (Figure 1A) are described by an inhomogeneous Poisson
process (Gerstner et al., 1996; Kempter et al., 1998; Shimokawa
et al., 1999; Burkitt and Clark, 2001; Kuhlmann et al., 2002; Grau-
Serrat et al., 2003); unitary synaptic inputs (Figure 1B) are mod-
eled by an alpha-function (Gerstner and Kistler, 2003); and the
responses of the NM membrane are simulated by a conductance-
based single-compartment model (Figures 1C,D) (Ashida et al.,
2007; Funabiki et al., 2011) with leak and low threshold potas-
sium conductances (KLVA), which has been shown to benefit fine
temporal coding (e.g., Svirskis et al., 2002; Gai et al., 2009; Jercog
et al., 2010; Mathews et al., 2010). In this paper, we analyze the
model in detail and theoretically formulate how phase-locked NM
inputs lead to the sound analog potentials in NL. The primary
goals of this paper are two-fold: (1) to relate the model parameters
to the DC, AC, and noise components of the synaptic input and
membrane potential combining the Poisson process with linear
membrane impedance analysis techniques (e.g., Hutcheon and
Yarom, 2000); (2) to test the validity of the theoretical descrip-
tions using numerical simulation of the NM-NL model. In the
accompanying paper (Ashida et al., 2013), we apply our theo-
retical results obtained in the present paper to investigate how
presynaptic, synaptic, and postsynaptic factors may affect ITD
coding in the NL neuron.

MATERIALS AND METHODS
PHASE-LOCKED SPIKING OF PRESYNAPTIC FIBERS
Following previous studies, we use the inhomogeneous Poisson
process to model phase-locked spiking activity (Gerstner et al.,
1996; Kempter et al., 1998; Shimokawa et al., 1999; Burkitt
and Clark, 2001; Kuhlmann et al., 2002; Grau-Serrat et al.,

2003; Ashida et al., 2007; Kuokkanen et al., 2010). Output
spikes of each NM neuron are modeled as an inhomogeneous
Poisson sequence n(t) with a periodic intensity function λ(t) =
λ0
(
1 +∑∞

k = 1 ak cos(2πkνt + ηk)
)
, where λ0 is the mean inten-

sity, ak (k = 1, 2, . . .) is the strength of the k-th frequency
component, ν is the fundamental frequency (i.e., 1/ν is the
period), ηk is the phase of the k-th component. The spike
train n(t) is regarded as a sum of delta functions: n(t) =∑N

j = 1 δ(t − tj), where N is the total number of spikes in the
sequence, and tj is the timing of the j-th spike. The degree of
phase-locking of a spike sequence is measured as the vector
strength r (Goldberg and Brown, 1969), which is defined as r =
1
N

√(∑N
j = 1 cos(2πf tj)

)2 +
(∑N

j = 1 sin(2πf tj)
)2

, with f being

the reference frequency. In the following text, we assumed that
f = ν (i.e., we focus on the locking to the fundamental frequency)
unless otherwise mentioned. For the inhomogeneous Poisson
sequence introduced above, the VS is related to the intensity
function as r = a1/2.

The power spectral density (PSD) Pn(f ) of the sequence n(t)
can be calculated as

Pn(f ) = λ0 + λ2
0

(
δ(f ) +

∞∑
k = 1

a2
k

4

(
δ(f − kν) + δ(f + kν)

))
, (1)

with δ(f ) being the delta function (Wiesenfeld et al., 1994; Hohn
and Burkitt, 2001; Kuokkanen et al., 2010). The first term λ0

corresponds to the noise or the randomness of the sequence,
the second term λ2

0δ(f ) corresponds to the mean strength of
the sequence, and the remaining term corresponds to the funda-
mental frequency component and higher order harmonics. If the
sequence is not infinitely long but has a time length T, the PSD
becomes

Pn
T(f ) = λ0 + λ2

0

(
Tδf +

∞∑
k = 1

a2
kT

4

(
δf − kν + δf + kν

))
, (2)

where δf = 1 (for f = 0) and δf = 0 (otherwise).
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CIRCULAR DISTRIBUTIONS
For the periodic intensity function λ(t), the von Mises distri-
bution and the wrapped Gaussian distribution have been most
widely used (Fisher, 1993; Gerstner et al., 1996; Kempter et al.,
1998; Kuhlmann et al., 2002; Grau-Serrat et al., 2003; Ashida et al.,
2007).

The von Mises distribution (Figure 2A) is defined as pκ(x) =
1

2πI0(κ)
exp(κ cos(x − x0)), where κ is the concentration parame-

ter and x0 is the initial phase. I0(κ) is the modified Bessel function
of order zero assuring that

∫ π

−π
pκ(x)dx = 1. In the following text,

we set x0 = 0 for simplicity. Since pκ(x) is a 2π-periodic func-
tion, it can be expanded as a sum of cosine functions pκ(x) =
r0
2π

+ 1
π

∑∞
n = 1 rn cos(nx). The coefficient rn can be calculated as

rn = ∫ π

−π
pκ(x) cos(nx)dx = In(κ)

I0(κ)
, where In(κ) denotes the mod-

ified Bessel function of order n (Abramowitz and Stegun, 1972).
Note that r0 = I0(κ)/I0(κ) = 1. The VS at the n-th harmonic is
thus rn/r0 = In(κ)/I0(κ) (Figure 2B). The harmonic distortion,
defined as the ratio of the n-th harmonic to the fundamental
component, is rn/r1 = In(κ)/I1(κ) (Figure 2C).

The wrapped Gaussian distribution (Figure 2D) is defined

as gσ(x) = 1
σ
√

2π

∑∞
k = − ∞ exp

(
− (x − 2πk)2

2σ2

)
, where σ denotes

the dispersion of the distribution. Note that
∫ π

−π
gσ(x)dx = 1.

Since gσ(x) is a 2π-periodic function, it can be expanded as a
sum of cosine functions gσ(x) = R0

2π
+ 1

π

∑∞
n = 1 Rn cos(nx). The

coefficient Rn can be calculated as Rn = ∫ π

−π
gσ(x) cos(nx)dx =

exp
(
− n2σ2

2

)
(Anderson, 1973). Note that R0 = 1. The VS at

the n-th harmonics is Rn/R0 = exp(−n2σ2/2) (Figure 2E). The
harmonic distortion, defined as the ratio of the n-th harmonic

to the fundamental component, is Rn/R1 = exp(−n2σ2/2)/

exp(−σ2/2) = exp(−(n2 − 1)σ2/2) (Figure 2F).
The von Mises distribution and the wrapped Gaussian

distribution have, in general, very similar shaped curves
(Figures 2A,D). Their higher harmonics decrease rapidly for
VS < 0.7 (Figures 2B,E). If the VS is higher than 0.7, higher
harmonics need to be considered in estimating the noise com-
ponent (see also Discussion). Especially in the case of perfect
phase-locking (VS = 1.0), these distributions become a delta
function and all the higher harmonics have vector strengths of
1.0. The possible effects of higher harmonics will be discussed
later. Fisher (1993) points out that the above two distributions
are hard to distinguish in practical applications. Prior modeling
studies of phase-locking used either the von Mises distribution
(e.g., Grau-Serrat et al., 2003; Ashida et al., 2007) or the wrapped
Gaussian distribution (e.g., Gerstner et al., 1996; Kempter et al.,
1998; Kuhlmann et al., 2002). Nevertheless, comparison of these
models in terms of neuronal coding will be a subject of future
study. In this paper, we use the von Mises distribution for our
simulation.

SIMULATING PHASE-LOCKED SPIKE SEQUENCES
In our simulations, we modeled phase-locked input from each
NM fiber using an inhomogeneous Poisson process with a time-
dependent periodic intensity function λ(t) = 2πλ0 pκ(2πfst),
where fs is the frequency of the stimulus tone and λ0 is the mean
intensity (= mean spike rate). The degree of phase-locking mea-
sured by vector strength r can be related to the concentration
parameter κ as r = I1(κ)/I0(κ). We assumed that all the NM fibers
were mutually independent but locked to the same phase of the

FIGURE 2 | Periodic distributions and higher harmonics. (A) The von
Mises distribution. Curves with VS = 0.2, 0.4, 0.6, and 0.8 are shown (see
below for the values of the concentration parameter κ). (B) Strengths of the
first harmonic (fundamental frequency) and higher harmonics of the von
Mises distribution. Each curve shows the strength of the first harmonic (VS)
and corresponding higher harmonics. (C) Second and third harmonic
distortion of the von Mises distribution. (D) The wrapped Gaussian
distribution. Curves with VS = 0.2, 0.4, 0.6, and 0.8 are shown (see below for
the values of the dispersion σ. (E) Strengths of the first harmonic

(fundamental frequency) and higher harmonics of the wrapped Gaussian
distribution. Each curve shows the strength of the first harmonic (VS) and
corresponding higher harmonics. (F) Second and third harmonic distortion of
the wrapped Gaussian distribution. In (B,E), nine curves (VS = 0, κ = 0,
σ = ∞; VS = 0.2, κ = 0.408, σ = 1.794; VS = 0.4, κ = 0.874, σ = 1.353;
VS = 0.6, κ = 1.516, σ = 1.011; VS = 0.7, κ = 2.014, σ = 0.845; VS = 0.8,
κ = 2.871, σ = 0.668; VS = 0.9, κ = 5.305, σ = 0.459; VS = 0.95, κ = 10.27,
σ = 0.320; VS = 1; κ = ∞, σ = 0) are drawn to show the decaying patterns of
harmonics.
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stimulus tone with single VS (Kuokkanen et al., 2010). Note that
we considered only the “best ITD” situation where all the ipsi-
and contralateral NM inputs arrived perfectly in-phase because
ITD dependence of the phase-locked synaptic input has already
been examined in our previous study (Ashida et al., 2007). The
parameters used in the model are summarized in Table 1.

SYNAPTIC INPUT
The excitatory postsynaptic conductance (EPSG) in the NL neu-
ron induced by each presynaptic NM spike was modeled by
an alpha function α(t) = (Ht/τ) exp(1 − t/τ) (t ≥ 0), with H =
α(τ) being the peak height and τ being the time constant
(Figure 1B). The half peak width W of the alpha function can be
calculated by solving α(t) = H/2. The two solutions of this equa-
tion are t0 = −τW0(−1/2e) and t1 = −τW−1(−1/2e), where W0

is the principal real branch and W−1 is the other real branch of
the Lambert W function (Corless et al., 1996). Therefore, the half
peak width W of the alpha function is obtained as W = t1 − t0 =
τ(W0(−1/2e) − W−1(−1/2e)) = 2.446τ. Note that the half peak
width W is linear to the time constant τ (i.e., if the time constant
τ is doubled, then the half peak width W is also doubled). The
Fourier transform Fα(f ) of the alpha-function α(t) satisfies the
equation

∣∣Fα(f )
∣∣ =

∣∣∣∣
∫ ∞

0
α(t) exp(−2πift)dt

∣∣∣∣ = S

1 + (2πf τ)2
, (3)

where S = eHτ is the area between the alpha function and the
t-axis.

The compound synaptic input conductance gsyn(t) is the sum
of all the NM spikes filtered by the alpha function:

gsyn(t) =
M∑

m = 1

Im∑
i = 1

α(t − ti
m), (4)

where ti
m denotes the timing of the i-th spike of the m-th NM fiber,

M is the number of NM fibers, and Im is the number of spikes of
the m-th fiber.

Table 1 | Parameter values used in the simulation of synaptic inputs.

Parameter Value

Stimulus sound frequency 1000–8000 (Hz)

Mean spiking rate of each NM fiber 500 (Hz)

Number of NM fibers converging onto one NL cell 300

Vector strength of phase-locked NM spiking 0.6

Half peak width W of unitary EPSG 0.1 (ms)

Magnitude H of unitary EPSG (alpha function) 1.3 (nS)

These values, except for the stimulus frequency, are the same as those used in

our previous study (Funabiki et al., 2011) and fixed in this paper. The number and

the mean spike rate of the NM fiber are taken from previous anatomical (Carr

and Boudreau, 1993a) and physiological (Peña et al., 1996) studies. How each

of these parameters affects the formation of the oscillatory potential and ITD

coding will be examined in the accompanying paper (Ashida et al., 2013).

SIMULATING UNITARY SYNAPTIC INPUTS
In our simulations, the values of the half peak width W(= 2.446τ)

and height H (Table 1) were determined so as to reproduce the
sound analogue potentials observed in experiments (Funabiki
et al., 2011). With these parameter values, the average total con-
ductance is DG = SMλ0 = eHτMλ0 = 21.7 nS [see Equation (5)
in Results]. Note that, since we are focusing on the steady state
ITD computation in NL, transient effects such as short term
synaptic plasticity (Kuba et al., 2002; Cook et al., 2003) are not
explicitly included in the model; the value of H is assumed to be
at the corresponding steady state input level.

SIMULATING NL MEMBRANE
A Hodgkin-Huxley type conductance-based single compartment
model (Hodgkin and Huxley, 1952; Koch, 1999; Gerstner and
Kistler, 2003) was used to simulate the membrane potential
dynamics of the NL neuron (Figure 1C). The model equations
and parameters (Table 2) are the same as those we used in our
previous study (Funabiki et al., 2011). The single somatic com-
partment has leak and KLVA conductances. The amount of these
conductances were determined so that the membrane resistance
of the soma at −61 mV would be about 4.4 M� (membrane
time constant was about 0.1 ms), similar to the experimental
data (Funabiki et al., 2011). The membrane capacitance was
determined from the reported size and shape of the NL neu-
ron (Carr and Konishi, 1990; Carr and Boudreau, 1993a). The

Table 2 | Equations and parameters of the model NL neuron.

Variable/parameter Equation/value

Membrane potential V (t) C d
dt V (t) = IL + IKLVA + Isyn

Leak current IL = gL(EL − V )

KLVA current IKLVA = gK d(V , t)(EK − V )

Synaptic current Isyn = gsyn(Esyn − V )

KLVA channel activation d(V , t) τd
d
dt d(V , t) = −d(V , t) + d∞(V )

τd (V ) = Q(T−23)/10
10 /[αd (V ) + βd (V )]

d∞(V ) = αd (V )/[αd (V ) + βd (V )]
αd (V ) = 0.20 exp[(V + 60)/21.8]
βd (V ) = 0.17 exp[−(V + 60)/14]

Membrane capacitance C 24 pF

Leak conductance gL 48 nS

KLVA conductance gK 192 nS

Reversal potential of leak
current EL

−60 mV

Reversal potential of
potassium current EK

−75 mV

Reversal potential of synaptic
current Esyn

0 mV

Temperature coefficient Q10 2.5

Temperature T 40◦C

The model consists of membrane capacitance, leak conductance, and KLVA con-

ductance. The kinetics of the KLVA conductance was taken from a study of

chicken NM (Rathouz and Trussell, 1998). Parameter values are the same as

those used in our previous study (Funabiki et al., 2011) and fixed in this paper.

The membrane potential V is in millivolts. The units for αd (V) and βd (V) are 1/ms.
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slow GABAergic input (Funabiki et al., 1998; Kuo et al., 2009),
which does not lock to high frequency stimuli (Yang et al., 1999;
Coleman et al., 2011), and other slow conductances such as
Ih (Yamada et al., 2005; Khurana et al., 2011), were implicitly
included in the constant leak conductance. Sodium and high volt-
age activated potassium conductances, which are required for
spike generation, were not included in the model, because spikes
in the NL neuron are considered to be generated at the first node
of Ranvier (Funabiki et al., 2011) located about 60 μm away from
the soma (Carr and Boudreau, 1993b) and because spike genera-
tion at the node does not significantly affect the integration of the
synaptic input at the soma (Ashida et al., 2007). All the synaptic
input is considered to occur at the cell body because the dendrites
surrounding the soma of the owl’s NL are short and stubby (Carr
and Konishi, 1990; Carr and Boudreau, 1993a; Kuokkanen et al.,
2010). Numerical integration was performed by using the forward
Euler method with a time increment of 0.1 μs.

ANALYSIS OF SIMULATION DATA
We obtained 1100-ms-long simulated traces of conductance input
and membrane potential for each parameter set. Discarding the
first and the last 50 ms, we used 1000-ms traces for further anal-
yses. To extract the component which oscillates at the stimulus
frequency, a trace x(t) was fitted by a cosine function y(t) =
D0 + A0 cos(2πfst + φ), with fs being the stimulus frequency, t

being time, and φ being the phase shift. D0 and A0 of the fitting
function were, respectively, regarded as the “DC amplitude” and
the “AC amplitude” of the trace. By subtracting the fitting cosine
function y(t) from the original trace x(t), we obtained the “noise
trace” z(t) = x(t) − y(t). The time-averaged standard deviation
of the noise trace z(t) was regarded as the “noise amplitude” (see
Figures 3A,B for an example).

In the frequency analyses, the 1000-ms trace was broken into
ten 100-ms segments and resampled at 327,680 Hz. Each segment,
consisting of 32,768 (= 215) data points, was Fourier-transformed
with the frequency resolution being 10 Hz and the Nyquist fre-
quency being 160 kHz. To derive the PSD, the absolute values
of the Fourier transform were squared and averaged over the 10
segments to reduce jitter in the PSD curve (Bair et al., 1994).

RESULTS
Phase-locked spiking activity of converging presynaptic fibers
gives rise to oscillatory membrane potential to the target neu-
ron (Gerstner et al., 1996; Reyes et al., 1996; Kempter et al., 1998;
Ashida et al., 2007; Slee et al., 2010). In the following sections, we
derive analytical expressions that relate the model parameters to
the DC (average input), AC (signal at the locked frequency), and
noise (other frequency components) levels of the model synaptic
input and the membrane potential. Then we test our theoretical
results using simulations.

FIGURE 3 | Model synaptic input and model NL membrane potential.

(A) Simulated synaptic input conductance. The compound synaptic
input, its signal component, and its noise component are shown. (B)

Simulated membrane potential with its signal and noise components.
The synaptic input shown in (A) (top trace) was injected to the model
membrane (shown in Figure 1C). The AC components (center traces in
A,B) were obtained from cosine fitting. The noise component (bottom

traces in A,B) was obtained by subtracting AC (center traces in A,B)
from the total input (top traces in A,B) (see Materials and Methods for
detail). Input frequency = 4 kHz. (C) PSD of the input trace shown in
(A). A sharp peak appears at the stimulus frequency (4 kHz) and
smaller peaks appear at higher harmonics. (D) PSD of the potential
trace shown in (B). Gray lines and filled circles in (C,D) show
analytically predicted values.
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DC, AC, AND NOISE OF THE SYNAPTIC INPUT
We first consider the inhomogeneous Poisson spike sequence
filtered by the synaptic process modeled by an alpha function
(see Materials and Methods for definitions). The filtered synaptic
input x(t) of each input fiber spiking at an average rate of λ0 can
be written as the convolution of the spike sequence and the alpha
function, i.e., x(t) = n(t)∗α(t). The power spectrum Px(f ) of the
filtered sequence is Px(f ) = Pn(f )|Fα(f )|2. Using the Equations
(1) and (3), the integration of Px(f ) over the entire frequency
range (−∞, ∞) can be calculated as

∫ ∞

−∞
Px(f )df = λ0

S2

4τ
+ λ2

0S2 +
∞∑

k = 1

λ2
0a2

k

2

(
S

1 + (2πkντ)2

)2

.

Thus the standard deviation of the noise is S
2

√
λ0
τ

, the DC com-

ponent of the sequence is λ0S (see Equation (1) and following
text). The AC component (at the fundamental frequency ν) is

2rλ0S
1 + (2πντ)2 , with r being the VS (note that Peak = √

2 RMS). If

there are M independent sources of the inhomogeneous Poisson
spike sequences locked to the same phase, λ0 is replaced by Mλ0.

Therefore the average magnitude DG of the compound synap-
tic input conductance gsyn(t) (Equation 4) is

DG = SMλ0, (5)

where S = eHτ. The magnitude AG of the signal component of
the input conductance gsyn(t) is

AG = 2SMrλ0

1 + (2πfsτ)2
= 2rDG

1 + (2πfsτ)2
, (6)

with r being the VS of the input spike sequences which are phase-
locked to the stimulus frequency fs. Similarly, the magnitude Lk of
the k-th harmonic is

Lk = 2rkDG

1 + (2πkfsτ)2
, (7)

where rk is the VS at the k-th harmonic frequency (e.g.,
Figure 2B). Note that AG = L1. The magnitude NG of noise
measured by standard deviation is

NG = S

2

√
Mλ0

τ
= DG

2
√

Mλ0τ
. (8)

Equations 5, 6, and 8 relate the DC, AC, and noise components
of the synaptic input to the model parameters. Both AG and NG

are linear to the average input level DG. AG is also linear to the
VS denoted by r and decays with input frequency fs due to the
low-pass property of the synaptic input.

LINEARIZED RESPONSE OF THE SINGLE COMPARTMENT NL
MEMBRANE
Following Mauro et al. (1970), Koch (1999), and Richardson et al.
(2003), we derive the linear membrane impedance of the RC

membrane with KLVA conductance. The dynamics of the mem-
brane potential V(t) and the KLVA activation variable d(V, t) are,
respectively, written as:

C
d

dt
V(t) = gL(EL − V) + gK d(V, t)(EK − V) + Iext,

τd
d

dt
d(V, t) = −d(V, t) + d∞(V),

with Iext being the external input. We linearize these equa-
tions around the holding potential V = V∗. By denoting v(t) :=
V(t) − V∗ and δ(v, t) := d(V, t) − d∞(V∗), we have

C
dv

dt
= − (gL + gK d∞(V∗)

)
v + gK(EK − V∗)δ + δv + I0,

τd
dδ

dt
= −δ − d∞(V∗) + d∞(V),

where I0 := gL(EL − V∗) + gK d∞(V∗)(EK − V∗) + Iext. Assuming
that the displacement from the holding potential V∗ is small, we
fix τd at V∗, drop the second order term δv, and use the linear
approximation d∞(V) − d∞(V∗)

V − V∗ = d
dV d∞(V∗). Now we obtain

C
dv

dt
= − (gL + gK d∞(V∗)

)
v − gK(V∗ − EK)δ + I0,

τd
∗ dδ

dt
= d′∗v − δ,

where τ∗
d := τd(V∗) and d′∗ := d

dV d∞(V∗). Introducing a new
variable w := δ/d′∗, and new parameters gv := gL + gK d∞(V∗),
gw := gK d∗′(V∗ − EK), we have

dv

dt
= −gv v − gw w + I0

τd
∗ dw

dt
= v − w.

To obtain the linearized membrane impedance, we set I0 =
IDC + IAC cos(2πft) and solve the above linear equations to yield
V(t, f ) = VTR(t) + V∗ + VAC(f ) cos(2πft + η(f )), with VTR(t)
being the transient response and η(f ) being the phase lag. The
magnitude of the impedance can be calculated as

|Z(f )| = VAC(f )/IAC = 1/

√
g2

v + (2πCf )2 + ζ(f ), (9)

where ζ(f ) = gw

(
2gv + gw + 2C/τ∗

d
1 + (2πf τ∗

d)2 − 2C
τ∗

d

)
. For gK = 0, |Z(f )| is

equal to 1/

√
g2

L + (2πCf )2, which is the impedance of the sim-

ple RC membrane. For large f, the membrane impedance |Z(f )|
decays according to 1/2πCf (see Figure 1D).

AC AND NOISE OF THE MEMBRANE POTENTIAL
In the preceding sections, we obtained equations for phase-locked
synaptic inputs and the effects of the membrane filter. Using these
results, we next derive analytical expressions that relate the AC
and noise components of the membrane potential to the input
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parameters, such as the stimulus frequency (locking frequency)
fs, number M of presynaptic NM fibers, their mean spike rate
λ0, their vector strength r, the synaptic time constant τ, and the
membrane impedance Z(f ).

To calculate the magnitudes of the AC(AV ) and noise (NV ) in
the membrane potential, we incorporate the linear effects of the
driving voltage (Esyn − V∗) and the membrane impedance Z(f ).
Using Equations 1, 3, 6, and 9, we have

AV = AG|Esyn−V∗‖Z(fs)| = 2rDG

1 + (2πfsτ)2
|Esyn − V∗‖Z(fs)|,(10)

NV = |Esyn − V∗|
√

Mλ0

∫ ∞

−∞
|Fα(f )|2|Z(f )|2df

= DG|Esyn − V∗|√
Mλ0

√∫ ∞

−∞
|Z(f )|2

(1 + (2πf τ)2)2
df , (11)

The holding potential V∗ here satisfies the equation gL(EL −
V∗) + gK d∞(V∗)(EK − V∗) + DG(Esyn − V∗) = 0.

Equations 10 and 11 describe the AC and noise components of
the (sound analogue) membrane potential. Both AV and NV are
linear to the average input DG. The AC amplitude of the mem-
brane potential AV (i.e., the sound analogue potential) is also
linear to that of the synaptic input AG, because of the linear mem-
brane response. The validity of the linear approximation will be
examined in the next section. Although the membrane response
is assumed to be linear at each frequency, the noise ampli-
tude of the membrane potential NV is not linear to that of the
synaptic input NG because the effect of the membrane filter dif-
fers between frequencies (i.e., high frequency noise components
are more likely to be reduced than low frequency components;
see Figure 1D).

NUMERICAL SIMULATIONS
In order to test the validity of the theoretical results obtained
above, we carried out numerical simulations. The basic settings
of our simulation are the same as those in our previous study
(Funabiki et al., 2011). Our model consists of NM fibers and an
NL cell body, while the phase-locked spiking activity of each NM
fiber is modeled as the von Mises distribution. In the following
simulations and analyses, we assume that ipsi- and contralateral
NM inputs arrive perfectly in-phase. The NL neuron is mod-
eled as a non-excitable single compartment with leak and KLVA

conductances. The large KLVA conductance greatly reduces the
membrane impedance in the low frequency region (Figure 1D),
yielding a very short membrane time constant of about 0.1 ms.
Since the roles of the KLVA conductance have been studied and
discussed extensively (Manis and Marx, 1991; Reyes et al., 1994;
Svirskis et al., 2002; Rothman and Manis, 2003; Day et al., 2008;
Gai et al., 2009; Jercog et al., 2010; Mathews et al., 2010), we do
not investigate its effects further in this study. The kinetics of the
KLVA conductance was adopted from a study of the chick NM
(Rathouz and Trussell, 1998).

The simulated synaptic input (Figure 3A) is oscillatory and
can be decomposed into a signal (AC) component and a
noise component. The amplitudes of the DC, AC, and noise
components of the simulated synaptic conductance were 21.7,

12.7, and 4.6 nS, respectively. These simulation results agreed
well with the theoretical predictions of DG = 21.7, AG = 12.7,
and NG = 4.4 nS (Equations 5, 6, and 8). The periodic synap-
tic input induces an oscillatory membrane potential (Figure 3B).
The magnitudes of the AC and noise components of the simulated
potential traces were 1.25 and 0.94 mV, respectively. These values
matched the theoretical predictions of AV = 1.25 mV (Equation
10) and NV = 1.03 mV (Equation 11).

The power spectral densities of the simulated input
(Figure 3C) and the membrane potential (Figure 3D) show
large peaks at the signal frequency and smaller peaks at higher
harmonics. The peak height of the second harmonic of the
simulated membrane potential is over two orders of magnitude
smaller than the main peak (Figure 3D). The simulated power
spectral densities are in excellent agreement with the theoretical
prediction (gray curves and filled circles in Figures 3C,D). Due
to the low-pass property of the membrane (Figure 1D), noise
in the membrane potential consists mainly of the frequency
components below the signal frequency. In the accompanying
paper (Ashida et al., 2013), we systematically examine the roles
of the number of converging NM fiber on the NL neuron, their
average spike rate, their degree of phase-locking and the synaptic
time constant to investigate how these parameters affect the
formation of sound analogue potential in the NL neuron.

FREQUENCY DEPENDENCE
Simulated sound analogue potentials are frequency dependent
(Figure 4A), even when all the other parameters including VS,
the synaptic time constant and membrane properties are fixed.
Effects of these parameters are studied in the accompanying paper
(Ashida et al., 2013). For low frequencies (1–2 kHz), AC compo-
nents are generally large, while for high frequencies (6–8 kHz),
the simulated AC amplitudes are less than 1 mV (Figures 4A,D).
This dramatic decrease in the AC component is due to the fil-
tering properties of the synapse (Equation 3) and the membrane
(Equation 9, Figure 1D). The higher the signal frequency, the
more the AC component is diminished by the effect of these low-
pass filters (Figure 4B). To obtain a sound analogue potential
exceeding 1 mV at over 6 kHz, both the synaptic and membrane
time constants must be a few times smaller than the values used in
our simulation. Membrane time constants of mammalian outer
hair cells decrease with their characteristic frequency (Johnson
et al., 2011). Similar frequency dependence may exist in auditory
brainstem neurons.

Since all the simulation parameters except frequency are fixed,
the baseline noise level of the PSD curve does not change
with frequency (Equation 11, Figure 4B). For low frequencies
(1–2 kHz), however, the total amount of noise is slightly higher
than for other frequencies because of the second harmonic
(Figures 4C,D). At the level of synaptic conductance (Figure 4C),
the effect of the second harmonic is more prominent than at the
level of membrane potential (Figure 4D), where the membrane
filter (Figure 1D) further reduces high frequency components.
The overall contribution of the second harmonic to the mem-
brane potential noise is therefore limited to frequencies below
2 kHz (Figure 4D). It should also be noted that, for these low
frequencies (e.g., Figure 4A, 1 kHz), the simulated traces do not
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FIGURE 4 | Simulations of the synaptic input in NL with different

stimulus frequencies. All the parameters except the stimulus frequency
are fixed (see Table 2). (A) Simulated traces of the model membrane
potential. Stimulus frequencies are from 1000 to 8000 Hz, which
correspond to the owl’s best hearing frequencies. (B) PSDs of the five
traces shown in (A). Positions and heights of the peaks at the input
frequency and higher harmonics depend on the stimulus frequency,
while the other frequency components remain unchanged. (C)

Dependence of the DC, AC, and noise amplitudes of the simulated

synaptic input on the stimulus frequency. (D) Dependence of the AC
and noise components of the simulated membrane potential on the
stimulus frequency. The solid lines in (C,D) are obtained from analytical
calculations without higher harmonics included. The dotted black line in
(C) is obtained from analytical calculations with the second harmonic

included (i.e., N ′
G =

√
N2

G + L2
2; see Equations 7, 8). The effect of higher

harmonics is clear in the noise component of the synaptic input for
stimulus frequencies below 2 kHz (shown in C), whereas it is not
prominent in the membrane potential (shown in D).

resemble pure sinusoids, because higher harmonics skew the
waveform.

Our analytical calculations for the DC conductance (Equation
5), AC conductance (Equation 6) and AC potential (Equation
10) match the simulation results well (Figures 4C,D) for frequen-
cies of 2 kHz and above. For frequencies below 2 kHz, however,
there is a slight discrepancy between the theoretical prediction of
the membrane AC (7.43 mV) and its simulated value (6.67 mV).
Also, for low frequencies, the second harmonic needs to be
considered to predict conductance noise precisely (Figure 4C).
As mentioned above, the low-pass membrane filter effectively
reduces higher harmonics on the membrane potential, result-
ing in smaller disagreement between the theoretical prediction
and the simulation of the noise components (compare the noise
amplitudes in Figures 4C,D).

DISCUSSION
The sound analogue membrane potential, which is created by
a “volley” of phase-locked inputs (Wever and Bray, 1930; Joris
and Smith, 2008), underlies coincidence detection in the owl’s
NL neurons (Funabiki et al., 2011). In principle, phase-locked
input sequences from the NM axons are filtered by synaptic and
membrane processes, inducing oscillatory membrane potentials

in NL (Figure 1A). The NL neuron linearly converts the AC
signal component of the oscillatory potential into output spike
rates (Funabiki et al., 2011). In the present paper, we derive
theoretical equations that relate presynaptic, synaptic, and post-
synaptic factors with the DC, AC, and noise components of
the sound analogue potential, and test the agreement between
theoretical predictions and numerical simulations. In the accom-
panying paper (Ashida et al., 2013), we carry out further simu-
lations and analyses to examine how these factors affect the ITD
coding in NL.

THEORETICAL FORMULATIONS
The main aim of this paper is to provide a detailed theoretical
description of how phase-locked synaptic inputs lead to oscil-
latory membrane potentials. Phase-locked spiking activity was
modeled as an inhomogeneous Poisson process with a periodic
intensity function, and the PSD of the spike sequence was ana-
lytically calculated (Equations 1, 2). The presynaptic spikes were
summed and then filtered by the synaptic conductance (Equation
3) and the membrane (Equation 9), resulting in the oscilla-
tory membrane potential (Figure 3B). Our model parameters are
based on previous results on the owl’s auditory system, but the
analysis technique used here can be applied to other systems
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where phase-locking plays a role in information processing. These
systems may include the electrosensory lateral line lobe (Kawasaki
and Guo, 1996), olfactory system (Stopfer et al., 2003), barrel
cortex (Ewert et al., 2008), visual cortex (Gray and Singer, 1989),
and the hippocampus (Harris et al., 2002; Diba and Buzsáki, 2008;
Mizuseki et al., 2009).

AGREEMENT OF THEORY AND SIMULATION
The power spectral densities of the simulated waveforms
also showed excellent agreement with the theoretical predic-
tions, including the peak heights and the overall noise levels
(Figures 3C,D). In general, predictions for the membrane poten-
tial are worse than those for the synaptic conductance because
the effects of the membrane (Equation 9) are further included in
the calculation (compare Equations 6, 8 with 10, 11). Especially
for sound analogue potentials of over 5 mV (e.g., Figures 4A,D,
1000 Hz), the assumptions for the linear membrane approxi-
mation no longer hold, resulting in a discrepancy between the
analytical value and simulation results (see Koch, 1999, chapter 10
and references therein for related discussion on the validity of the
linear approximation). Thus, the theoretical formulation, which
can predict the property of the oscillatory membrane potential
without doing computationally-demanding simulations, is most
useful when the AC amplitude is within the range of a few mV.

The theoretical predictions for the DC and AC components
largely agreed well with the simulation results (Figures 4C,D).
The analytical predictions for the noise amplitudes were also
comparable to the simulated values but slightly worse than the
predictions for DC and AC, because not one but all frequency
components contributed to the calculation of the noise amplitude
(Equation 11). The prediction performance was also poorer for
low frequency AC (2 kHz or below; Figure 4D). These disagree-
ments stem from the fact that the effects of the KLVA conductance
are most prominent in low frequencies below 2 kHz (Figure 1D).
Violating the assumptions of the linear approximation is more
likely to affect low frequency parts of the analytical results.

FREQUENCY DEPENDENCE
The degree of phase-locking of the presynaptic NM fibers gener-
ally decreases with frequency (Köppl, 1997). In order to facilitate
comparisons between different frequencies, however, we fixed
this parameter to a typical value of 2–4 kHz NM neurons (VS =
0.6) in our simulation (Figure 4). Therefore, the amplitude of
the AC component in NL neurons from the high best fre-
quency (>6 kHz) regions could be much smaller than a few mV
(Figure 4D), implying that high frequency NL neurons should
be extremely sensitive to small AC signals. Simulations suggest
that axonal Na conductance may amplify high frequency sig-
nals (Ashida et al., 2007). However, how and what cellular and
synaptic properties of these neurons enable high frequency ITD
computation in vivo remains to be investigated. In the accompa-
nying paper (Ashida et al., 2013), effects of changing VS on ITD
coding are examined in more detail.

HIGHER HARMONICS AND NOISE
In our definition, all the higher harmonics are considered noise,
because their ITD dependence is different from that of the main

AC signal (Ashida et al., 2007; Slee et al., 2010). Previous studies
of the chicken NL in vitro pointed out that these higher har-
monics could hinder ITD coding in NL neurons (Reyes et al.,
1996; Slee et al., 2010). Our simulation results suggest that higher
harmonics should be considered for frequencies below 2 kHz
(Figures 4C,D). For higher frequency NL neurons, the low-pass
filter properties of the synaptic and membrane processes effec-
tively cut off the higher harmonics, minimizing their effects on
ITD computation. Furthermore, owls’ NL neurons with mid-to-
high best frequencies (over 3 kHz) recorded in vivo do not show
a clear second harmonic (Funabiki et al., 2011), suggesting that
higher harmonics play little or no role in the owl’s computation
of ITD at these frequencies. The best frequency of NL neurons in
owls ranges up to 7.5–8 kHz (Carr and Konishi, 1990; Peña et al.,
2001), whereas the frequency limit of the chicken NL is 3.5–4 kHz
(Rubel and Parks, 1975). Thus, the effects of higher harmon-
ics on ITD coding would be more salient in the chicken than
in the owl.

The amplitudes of higher harmonics increase non-linearly to
the amplitude of the fundamental frequency (Figures 2C,F). For
large VS values (e.g., VS > 0.7), higher harmonics increase more
rapidly than the signal, resulting in a faster increase in noise. In
our simulation settings, the amplitude of the second harmonic of
1.3 mV at 2 kHz for VS = 0.6 increases up to 6.4 mV for VS = 1.0,
showing a three times faster increase than the AC component
at 1 kHz. These results suggest that perfect phase-locking may
not always be beneficial to ITD coding. The owl’s auditory nerve
recordings show a prominent plateau of VS about 0.7 at 1.5–3 kHz
(Köppl, 1997). This plateau might thus be related to the opti-
mization strategy of the noise level in ITD computation. Noise
may affect frequency tuning, temporal coding, and information
capacity (e.g., Brunel et al., 2001; Richardson et al., 2003; Butts
and Goldman, 2006; Gai et al., 2009; Rossant et al., 2011; See
also Faisal et al., 2008; and McDonnell and Abbott, 2009; for
recent reviews). Further investigation is necessary to conclude
how higher harmonics and other neuronal noise positively or
negatively contribute to high frequency ITD detection through
oscillatory synaptic inputs.
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