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The Uncontrolled Manifold (UCM) hypothesis and Minimal Intervention principle propose
that the observed differential variability across task relevant (i.e., task goals) vs. irrelevant
(i.e., in the null space of those goals) variables is evidence of a separation of task
variables for efficient neural control, ranked by their respective variabilities (sometimes
referred to as hierarchy of control). Support for this comes from spatial domain analyses
(i.e., structure of) of kinematic, kinetic, and EMG variability. While proponents admit the
possibility of preferential as opposed to strictly uncontrolled variables, such distinctions
have only begun to be quantified or considered in the temporal domain when inferring
control action. Here we extend the study of task variability during tripod static grasp to
the temporal domain by applying diffusion analysis. We show that both task-relevant and
task-irrelevant parameters show corrective action at some time scales; and conversely,
that task-relevant parameters do not show corrective action at other time scales. That
is, the spatial fluctuations of fingertip forces show, as expected, greater ranges of
variability in task-irrelevant variables (>98% associated with changes in total grasp force;
vs. only <2% in task-relevant changes associated with acceleration of the object). But
at some time scales, however, temporal fluctuations of task-irrelevant variables exhibit
negative correlations clearly indicative of corrective action (scaling exponents <0.5); and
temporal fluctuations of task-relevant variables exhibit neutral and positive correlations
clearly indicative of absence of corrective action (scaling exponents ≥0.5). In agreement
with recent work in other behavioral contexts, these results propose we revise our
understanding of variability vis-á-vis task relevance by considering both spatial and
temporal features of all task variables when inferring control action and understanding
how the CNS confronts task redundancy. Instead of a dichotomy of presence vs. absence
of control, we should speak of a continuum of weaker to stronger—and potentially
different—control strategies in specific spatiotemporal domains, indicated here by the
magnitude of deviation from the 0.5 scaling exponent. Moreover, these results are counter
examples to the UCM hypothesis and the Minimal Intervention principle, and the similar
nature of control actions across time scales in both task-relevant and task-irrelevant spaces
points to a level of modularity not previously recognized.
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INTRODUCTION
Redundancy, and the variability it allows, has tradition-
ally been viewed as the central problem of motor control
research (Bernstein, 1967), which can be studied at a variety of
levels (e.g., task, muscle, or goal redundancy). Here, we under-
stand the term task redundancy to be the availability of infinitely
many different mechanical actions by the neuromuscular system
that can accomplish a given motor task. The totality of these
mechanical actions form the goal equivalent manifold, a term
coined in John and Cusumano (2007). This differs from muscle
redundancy, which refers to the multitude of muscle coordination
patterns producing a same mechanical action (Kutch and Valero-
Cuevas, 2011). Multifinger static grasp has been studied exten-
sively because it is a good example of task redundancy (Santello
and Soechting, 2000; Latash and Zatsiorsky, 2009; Park et al.,

2010; Rácz et al., 2012) since using n fingertips to satisfy static
force and torque equilibrium of the object grasped is undercon-
strained (i.e., one can, for instance, squeeze an object harder
without translating or rotating it). For multifinger grasp, the
redundant task space of all applicable forces for static grasp can
be mathematically separated into the mutually orthogonal sub-
spaces of force variability that have no effect on static equilibrium
(e.g., squeezing the object in static grasp) on the one hand, and
on the other hand, force variability that disrupts static equilib-
rium (i.e., violates the task constraints). Others and we refer to
the former and latter subspaces as task-irrelevant (or null space)
and task-relevant, respectively, as they indicate a distinction about
where the controller is thought to place emphasis.

Proponents of the Uncontrolled Manifold (UCM) and
Principle of Minimal Intervention hypotheses have suggested

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 155 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2013.00155/abstract
http://community.frontiersin.org/people/KorneliusR%C3%A1cz/120649
http://www.frontiersin.org/people/u/76815
mailto:valero@usc.edu
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rácz and Valero-Cuevas Control continuum across task relevance

that, to simplify the control task, the nervous system only needs
to identify and control the task-relevant subspace, and can dis-
regard the task-irrelevant subspace (Scholz and Schoener, 1999;
Scholz et al., 2002; Jordan, 2003; Valero-Cuevas et al., 2009; Latash
et al., 2010). Compelling evidence for this comes from spatial
domain analyses showing clear structure in the spatial variability
of task variables. By spatial variability we mean the amplitude and
range of the multidimensional task variables of fingertip or resul-
tant forces. Researchers, including our group, have repeatedly
shown that the spatial variability in task-irrelevant dimensions
is relatively larger than in task-relevant dimensions (Scholz and
Schoener, 1999) in analyses of kinematic (Tseng and Scholz,
2005), kinetic (Santello and Soechting, 2000), and EMG vari-
ability (Valero-Cuevas et al., 2009). In this context, larger spatial
variability in a task dimension is assumed to imply less control
effort (i.e., intervention) of those task variables that do not affect
the successful performance of the task. In practice, however, even
task-relevant dimensions will exhibit some variability because a
certain amount is acceptable given, say, high contact friction, or
unavoidable, given, say, sensory or motor noise, or neural delays.
Conversely, task-irrelevant dimensions will also show some con-
trol action when, for instance, noise, delays or stochasticity drive
the system across some boundary that requires intervention
(e.g., Insperger, 2006; Milton et al., 2009b). Therefore, the relative
magnitude of variability across task variables is not necessarily
a robust predictor of task-relevance, control action or strategy
(Valero-Cuevas et al., 2009; Dingwell et al., 2010). In fact, even
proponents of the UCM hypothesis admit the possibility of prefer-
ential as opposed to a strict separation into clearly controlled and
uncontrolled variables (Latash et al., 2010). Despite this qualifica-
tion, we lack specific quantification and description of controlled
intervention in both task-relevant and task-irrelevant spaces that
would allow us to understand neural control strategies better.

SPATIAL VERSUS TEMPORAL VARIABILITY
There is a growing emphasis to infer neural control strategies
by supplementing spatial quantification of variance with tem-
poral analyses. As described above, much more attention has
been given to spatial variability. However, relatively little atten-
tion has been directed at the temporal structure of variability in
task variables in the context of task redundancy (Valero-Cuevas
et al., 2009; Dingwell et al., 2010; van Beers et al., 2013). By
temporal variability we mean the time-varying features of the
multidimensional task variables, e.g., fingertip or resultant forces
in this case. Lest the reader think that time-varying actions dur-
ing static force production or grasp is an oxymoron, others and
we have shown that finger muscles and fingertip forces exhibit
rich dynamics during static grasp (Santello and Soechting, 2000;
Valero-Cuevas et al., 2009; Rácz et al., 2012). Being considered
and called uncontrolled, the implicit and explicit assumption is
that task-irrelevant variability exhibits the spatial and temporal
properties of uncontrolled dynamical processes. In the anoma-
lous diffusion literature, this is considered either a white noise
process, consisting of uncorrelated samples, or Brownian motion,
formed by the integration of the former (Ben-Avraham and
Havlin, 2000; Kantz and Schreiber, 2004). In the context of neu-
ral control, we take it to mean the state of least control (i.e., truly

uncontrolled where the dynamics of the plant is not influenced
by the controller). Conversely, a controlled process, continuously
or intermittently (Collins and De Luca, 1994; Guckenheimer,
1995; Milton et al., 2009a; Suzuki et al., 2012), will exhibit the
temporal properties of controlled dynamical processes such as
negative correlations between time samples (i.e., if a task vari-
able moves in one direction, at some future time it will require
a corrective action in the opposite direction). Please also note
that the mechanical properties of the musculoskeletal plant act
as filters on the neural input, and can give to correlations in
the output. This is a limitation common to all studies of neural
commands. Therefore, studying the force variability that nat-
urally occurs in static grasp provides unique opportunities to
reveal the time-varying nature of control actions without having
the confounding, or at least superimposed, effects of additional
dynamics coming from other features of more dynamical tasks
such as gait (Dingwell et al., 2010). By applying a combination
of temporal and spatial analysis techniques to multifinger static
grasp, we find that task-relevant and task-irrelevant variables are
both subject to strong and weak control actions at different time
scales. Therefore, these results provide evidence against the UCM
hypothesis and the Minimal Intervention principle. We conclude
that it is necessary to revisit and revise our understanding of vari-
ability vis-á-vis task relevance when inferring control action and
understanding how the CNS confronts task redundancy.

METHODS
We combine linear spatial approaches and non-linear temporal
approaches to (1) quantify the spatio-temporal nature of the vari-
ability in both the task-relevant and task-irrelevant subspaces; (2)
compare them to the mechanical predictions of necessary control
actions for the task; and (3) evaluate them in light of the UCM
hypothesis and Minimal Intervention principle. We selected the
task of static tripod grasp because it is a common and use-
ful redundant motor task, and a fundamental aspect of human
manipulation (Yoshikawa and Nagai, 1991; Flanagan et al., 1999;
Rácz et al., 2012).

DATA COLLECTION
We asked 12 young, healthy and consenting subjects (ages 20–36,
6 males, 9 right-handed) to perform a static tripod grasp of
an instrumented rigid object designed and built in our lab
(Figure 1), whose use has been reported in Rácz et al. (2012).
While performing the grasp, the thumb, index and middle finger
were in contact with three ATI Nano17 6-axis force transducers
(Apex, NC, USA) locked in a configuration comfortable for each
subject. The angle between index and middle finger was approx-
imately 30◦, while the angles formed with the thumb by each
finger were approximately 165◦. Each force transducer was coated
with a Teflon surface to reduce reliance on friction by the subjects
to achieve a stable grasp. The force transducers were connected
to a 16-bit National Instruments 6225 M-series data acquisition
card (National Instruments, Austin, TX, USA). Attached to the
object were three markers for motion capture, forming an equi-
lateral triangle, whose plane was parallel to the grasp plane of the
three fingertips. Seven motion capture cameras (Vicon, Oxford,
UK) allowed us to measure the object’s position and orientation
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to quantify how well the subject met the task goal of maintaining
a simple static grasp.

Furthermore, three different weights (50, 100, and 200 g) were
attached from below to the object (Figure 1C). Additionally, the
latter half the trials were performed with visual feedback pre-
sented to the subjects approximately 1 m away on a 23 inch
computer screen. The visual feedback consisted of a horizon-
tal target line representing the target sum of normal forces (in
Newtons) applied by three fingers, and a crosshair representing
the actually applied sum of normal forces (Figure 1D). The goal
in those trials with visual feedback was to align the horizontal
component of the crosshair with the target line and keep the
variability of force application minimal. The target force was the
average sum of normal forces applied by subjects across all tri-
als without visual feedback. In effect, the visual feedback added
another task-relevant dimension to the task, besides keeping the
grasp as static as possible.

Subjects performed all trials with their dominant hand deter-
mined as per Oldfield (1971), as shown in Rácz et al. (2012).
Subjects were seated in a chair, with the grasping hand resting
on the chair’s armrest (Figure 1). Moreover, we asked subjects to
immobilize the wrist of their grasping hand by gripping the wrist
with their non-dominant hand to minimize wrist rotation and

A B

C D

FIGURE 1 | The apparatus for tripod grasp designed and built in our

lab. It consists of three arms rotating about a common hinge to adjust to
the most comfortable configuration for each subject. The arms are then
fixed to create a rigid object. Each arm is instrumented with a 6-axis force
transducer that forms the contact surfaces for tripod grasp. (A)

Representative illustration of the instrumented device being held. (B) View
from above onto the instrumented device, showing the three load cells
mounted on arms that rotate about a common hinge, and the forces used
in the analysis, computed from the load cell surface measured forces. (C)

The holding posture during the trials, also showing a weight attached from
below to the instrumented device. (D) Visual feedback presented to the
subjects: a crosshair representing the instantaneous sum of normal forces,
to be aligned with a target line.

hand translation, since we were interested in the coordination of
fingertip forces for steady-state static grasp with as little motion
as possible.

Subjects performed three repetitions of static grasp trials of
68 s duration for each weight and each visual condition, for a
total of 18 trials per subject (3 × 3 × 2). The instructions to the
subjects were to simply hold the object in a static tripod grasp
with as little motion as possible, as in Figure 1. Even though the
object was light (max. 260 g), we provided subjects with 1 min
of rest to avoid fatigue or discomfort. Trials were block random-
ized: the different weights were attached in random order for each
condition, but the nine trials with visual feedback were always
performed after the ones without. This was because the target
total grasp force line height was based on the self-selected average
sum of normal forces for each weight in the non-visual condition.
The individual experimental conditions are described in Table 1.

DATA PREPROCESSING
The three-dimensional force data recorded by each transducer
were sampled at 400 Hz, while the motion-capture marker posi-
tions were sampled at 200 Hz (both force and motion data collec-
tion were triggered synchronously). We removed the first seven
and last 1 second(s) from each trial’s time series to avoid tran-
sients. Next, we downsampled both the force and motion capture
time series to 100 Hz, to balance the need for temporal resolution
and computational cost. Having performed the same analysis on
a subset of the trial at the original sample rate, we subsequently
found that results were unaffected, when repeating the analysis at
lower sample rates. Hence, 100 Hz was found to be a useful com-
promise as it still allows for a physiologically meaningful temporal
resolution on the order of 10−1 s.

As is required by our temporal analysis, see below, we did not
filter the data to avoid creating artifactual correlations.

DATA ANALYSIS—SPATIAL
To analyze the spatial coordinated action among the three fin-
gertip forces, we first performed principal component analysis
(PCA) on the time series of each sensor’s normal forces for each
trial. PCA is a popular linear method for the estimation of spatial
correlation structures in data (Clewley et al., 2008). Specifically,
we computed the three principal components (PCs) of the 3 × 3

Table 1 | Overview of the experimental conditions (number of trials in

parentheses).

Presented on screen (50 Hz, Weight attached to object

1.5 m away) from below

No visual feedback (9) 50 g (3)

100 g (3)

200 g (3)

Force target tracked by 50 g (3)

crosshair (9) 100 g (3)

200 g (3)

The instructions to the subjects were to simply hold the object in a static tripod

grasp with as little motion as possible, as in Figure 1
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normal force covariance matrix (q-PCA). Each PC is a unit vec-
tor whose elements, called loadings, specify the multidimensional
correlation among variables; and a combination of PCs forms
a basis defining a vector subspace that is a linear approxima-
tion to the spatial correlation structure in the data (Clewley
et al., 2008). PCA has been commonly used to estimate effec-
tive degrees of freedom in motor systems, and in the context of
the UCM hypothesis to compute task-relevant and -irrelevant
latent variable spaces, which are represented by the orthogonal
PC vectors (e.g., Santello and Soechting, 2000). We then pro-
jected the 3-dimensional normal forces (one normal force per
force sensor) time series data onto the three principal compo-
nents. Following Rácz et al. (2012), we call the first, second, and
third principal components the Grasp, Compensation and Hinge
Modes of this task (Figure 2), respectively. We also tested doing
this same analysis on the full 3D force data (normal and two tan-
gential force components per force sensor, see Discussion and
Figures 10–13) but the results are unchanged from when using

only the normal force component from each sensor, in particular
since the magnitude of the tangential force fluctuations were sev-
eral orders of magnitude smaller than those of the normal forces,
but not their mean levels, since vertical tangential components
are required to sustain the weight of the object against gravity.
Importantly, adding tangential forces to the analysis adds several
task-relevant or task-irrelevant dimensions, which however, does
not affect the fundamental question or findings of this study, i.e.,
the implications of certain temporal dynamics for the study of
control of task-relevant and -irrelevant dimensions.

DATA ANALYSIS—TEMPORAL
Next, we applied Detrended Fluctuation Analysis (DFA) to each
projected time series (Kantelhardt et al., 2001) to detect temporal
correlations in non-stationary time series. It has the advantage,
in particular over the classical time-lagged autocorrelation
function, that it can distinguish unwanted trends of arbitrary
order that can give rise to spurious non-zero correlations, from

FIGURE 2 | Illustration of the three Modes of normal forces

associated with the principal components computed from the data

and the simulations, across all subjects, and conditions [adapted

from Rácz et al. (2012)]. Please note that the loadings are the unit
vectors describing the multidimensional correlation defining each PC.
Therefore the loadings for this PC show that the thumb, index and
middle finger forces all co-vary in this Mode. We refer to these three
PCs as: (i) the task-irrelevant Grasp Mode, along [0.81 0.41 0.41]T , as
it reflects synchronous increases and decreases in the three normal
forces, which are also known as grasp forces, (ii) the Compensation

Mode, along [0.0 −0.71 0.71]T , reflecting the out-of-phase opposition,
or compensation, of thumb normal force by either the index or middle
finger normal force, and (iii) the task-relevant Hinge Mode, along
[0.6 −0.5 −0.5]T , reflecting an increase (decrease) in thumb normal
force accompanied by a simultaneous decrease (increase) in the index
and middle finger normal forces, which would typically occur if the
object was accelerated by the thumb, thus violating the mechanical
task requirements of static grasp (without loss of generality, the
violation of static grasp by purely rotating the object using tangential
forces is not considered here, see Discussion).
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actual long-range correlations in non-stationary data. Examples
of non-stationary data are time-series with trends that are
long relative to the length of the time series or which exhibit
clustering—mathematically speaking, data whose two-point
autocorrelation is time-variant. DFA has been used extensively
for the analysis of behavioral and physiological data (Hausdorff
et al., 1996; Peng et al., 1998; Penzel et al., 2003). Mathematically,
it quantifies the power-law increase of the root-mean square
deviations from a trend in the time series fluctuations, once
segments of increasing length n have been subtracted from it to
remove trends of that length:

F(n) =
⎡
⎣ 1

L

L∑
j = 1

(
Xj − (aj + b)

)2

⎤
⎦

1
2

Where Xj − (aj + b) represents the residuals of the linear fit
aj + b to the time series segments Xj of length n. For a given
segment length n, there are L overlapping segments in the
process. The complete expression for F(n) represents the average
root mean square deviation at segment length, or time scale, n.
In a non-stationary process, this time scale is related to F(n) by
the relationship

F(n) ∝ nα

This power-law increase in root-mean square deviation is
mathematically linked to long-range temporal correlations in
the data: negative correlations will, over time, lead to a smaller
rate of increase than positive correlations. The scaling exponent
α indicates the type of correlation, as well as the strength of the
relationship between data increments separated by a time scale
n. DFA reveals empirically (i.e., in a model-free way with min-
imal assumptions) the inherent time scales for which different
temporal correlations exist in the data by showing if the scaling
exponent α [i.e., the slope of the logarithmic plots of n vs. F(n)]
differs at different time scales. These time scales are found based
on regions of slope linearity in the logarithmic plots of n vs. F(n),
and thus regions of actual power-law scaling.

In particular, the scaling exponents α can be fit to the logarith-
mic plots of the time scales n vs. the F(n) (for an interpretation of
these scaling exponents, see Table 2).

Because long-range negative correlations reflect corrective
actions that prevent dissipation, they are interpreted as evidence
for the workings of corrective and stabilizing (i.e., negative feed-
back) control, while positive correlations can be interpreted as
evidence of lack of corrections and thus lack of stabilizing con-
trol actions (Collins and Luca, 1993; Collins and De Luca, 1994).
(Please note that these notions are related, but not equivalent

to notions of stability, which are beyond the scope of this work
because our static grasp task is stable). Recent work also supports
the idea of interpreting scaling exponents in terms of indicat-
ing the degree of control effort (Dingwell and Cusumano, 2010;
Dingwell et al., 2010).

To further confirm the reliability of our results, we repeated the
DFA on the first and second half of each trial to test if the structure
of the variability in normal forces is sensitive to the level of total
grasp force. We felt this to be necessary because, as is commonly
reported in studies of static grasp (e.g., Johansson and Westling,
1987), we noticed that some trials exhibited a relaxation of the
total grasp force, likely an adaptation to reduce fingertip forces
over time to mitigate fatigue (see Results).

MODELING OF TRIPOD GRASP
As in Rácz et al. (2012), we applied the same analysis methods to
synthetic data generated by a simulation of the task. For a descrip-
tion of the model, see Appendix. In that model the variability in
the simulated normal forces comes from our implementation of
a standard Brownian random walk [see Appendix and Rácz et al.
(2012) for details]. Analyzing data from a strictly mechanical sim-
ulation allows us to disambiguate features of mechanical origin
from features of the control that cannot be explained by mechan-
ics, and are therefore of likely neural origin [for other examples
of this approach see Kutch and Valero-Cuevas (2012), Rácz et al.
(2012), and Ristroph et al. (2010)].

RESULTS
PRINCIPAL COMPONENT ANALYSIS OF SIMULATED NORMAL FORCES
Figure 3 shows the simulated normal forces plotted against each
other, which shows that, by construction, the valid solutions pop-
ulate a plane representing the constraints of the task. In agreement
with our mechanical analysis (Rácz et al., 2012), PCA of the sim-
ulated data finds the two basis vectors (principal components, or
PCs) describing that plane: the Grasp Mode [0.81 0.41 0.41]T and
the Compensation Mode [0.0 −0.71 0.71]T , Figure 2.

Mechanically, the dynamics associated with the Compensation
Mode reflects movement of the intersection point of the three
force vectors, as shown in Yoshikawa and Nagai (1991) and
Flanagan et al. (1999): as long as the force vectors, extended
from their respective application points, intersect in one com-
mon point inside the object, there will be no moment exerted
on the object. The only physical limitation is that the force vec-
tor extended from each fingertip stay within its friction cone.
The Grasp Mode, in turn, quantifies changes in the total grasp
force, which is equivalent to the intersection point not mov-
ing side-to-side on the manifold in Figure 2, but rather up-
and-down as the distance to the origin quantifies the total
grasp force.

Table 2 | Different scaling exponents found by linear fitting in the logarithmic displacement vs. time scale plot.

Value of α at n Type of correlation Nature of correlation Effect on data

>0.5 Persistence Positive (negative) increment followed by positive (negative) increment Expansion

<0.5 Anti-persistence Positive (negative) increment followed by negative (positive) increment Contraction (stabilization)

=0.5 Brownian motion No correlation between increments (No control)
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These two PCs together explain all the normal force variance
in the simulated data. In this idealized case, by construction once
again, if the variability of normal fingertip forces exhibits this
structure in steady-state static tripod grasp, then such variability
will not give rise to accelerations or rotations of the grasped object
and exists entirely in the null space of the task. Actual accelera-
tion of the object is associated with variability of normal forces
perpendicular to this plane, along the PC vector of the Hinge
Mode [0.6 −0.5 −0.5]T .

PRINCIPAL COMPONENT ANALYSIS OF EXPERIMENTAL FORCES
As expected, subjects met the task requirements of not drop-
ping the object and holding it still, but still showing some

FIGURE 3 | Representative plot of the simulated thumb, index, and

middle finger normal forces without visual feedback. Top: The three
simulated normal forces plotted against each other. Note that the force
fluctuations come to lie on a plane, whose orientation we compute using
PCA. The rotated coordinate system indicates the directions of normal
force variability, and the lengths of the arrows indicate the variance
explained along that direction. Note that since in the simulation the motor
task is executed perfectly, two directions, which span a manifold of
solutions, explain all variability. Bottom: The three simulated normal forces
during a trial plotted individually. Note that the floor effect results from the
hard constraint of minimum normal force in the simulation, which for the
subjects is more flexible and can result in a downward trend in total grasp
force in trials without visual feedback.

variability in their normal forces and object movement. The
object markers (for motion capture) stayed well within 5 mm
in all directions, and object motion was significantly affected
by the presence of visual feedback, but not weight (p < 0.01,
Mann–Whitney U test). Given the mechanics of the task and
instructions to the subjects, the small but measurable linear
accelerations of the object must be due to dynamics along the
Hinge Mode (or to a lesser extent to the unmodeled vertical
motion and 3D rotation modes given that the wrist was held
fixed).

We applied PCA to the time series of experimental normal
forces (see Figures 4, 5 for representative trials for two different
conditions) and, as expected from the mechanical requirements
of the task (Rácz et al., 2012), we found that the variability of

FIGURE 4 | Representative plot of experimental thumb, index, and

middle finger normal forces recorded during one trial with a 200 g

weight without visual feedback. Top: The three normal forces plotted
against each other. Note that the force fluctuations come to lie on a plane
defining the mechanical requirements of the task (see Appendix and
Figure 2), whose orientation we calculate using PCA (directions and
variances explained shown by the rotated and scaled coordinate
system—note that most of the variability is explained by two components
and the data come to lie on a plane). Note the elongated distribution of the
data, due to a gradual reduction of total grasp force in the absence of visual
feedback. Bottom: The three normal forces during a trial plotted
individually. Note the elongated distribution of the data is here seen as a
downward trend in the three fingers.
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FIGURE 5 | Representative plot of experimental thumb, index, and

middle finger normal forces recorded during one trial with a 200 g

weight, with visual feedback. Top: The three normal forces plotted
against each other. Note that the force fluctuations come to lie on a
plane, as is expected if the task constraints are met (see Appendix and
Figure 2, note the rotated and scaled coordinate system), but the
variability in normal forces populates the plane in a tighter cluster given
that a constant total grasp force is now a task constraint the subjects
enforces. Bottom: The three normal forces during a trial plotted
individually. Note the absence of a downward trend across the three
fingers, due to the enforcement of the visual constraint on the sum of
normal forces.

normal forces consistently exhibited a structure described by the
three principal components found in the simulation.

In the case of no visual feedback, the Grasp Mode obtained
from PCA explains approximately 90% of the normal force vari-
ance, while the Compensation Mode approximately 5–10% and
the Hinge Mode 1–3% (Figure 6). In contrast, in trials with visual
feedback the Grasp and Compensation Modes contribute roughly
equally to the normal force variance, slightly less than 50% each
(Figure 6) with 1–3% accounted for by the Hinge Mode. The low
percentage of variance explained by the Hinge Mode in both cases
shows that subjects were mindful of the request to perform static
grasp, and satisfied the task requirements of not accelerating the
object. Lastly and not surprisingly, the Hinge Mode shows almost

FIGURE 6 | Mean proportions of variance explained by the Grasp,

Compensation, and Hinge Modes, respectively, in the sample trials

with (right) and without (left) visual feedback. In trials without visual
feedback, PCA indicates that most variance occurs along the Grasp
Mode—which is true given that subjects gradually reduce the total grasp
force and the data are distributed in an elongates fashion compared to the
tighter cluster in the case where visual feedback is provided (cf.
Figures 2, 3) The overwhelming majority of the variance in trials with and
without visual feedback is explained by the Grasp and Compensation
modes, and hence the normal force variability occurs on a planar manifold.

no variation over time given that the object was held relatively
still, as confirmed by motion capture. Figure 10 further shows
that the variance explained by three Modes remains unaffected
even if we consider all three force components for each digit.

DETRENDED FLUCTUATION ANALYSIS OF TIME SERIES PROJECTED
ONTO PRINCIPAL COMPONENTS
Our first finding is that the Grasp, Compensation and Hinge
Modes all naturally exhibit three distinct scaling regions, rep-
resenting temporal correlations at three different time scales
(Figure 8). In particular, the distinct time scales are at 10, 100, and
1000 s of milliseconds, subject to some fluctuation. Due to this
fluctuation, we calculated the scaling exponent only for a conser-
vative subrange of these time scales that was common to all trials
and subjects, i.e., 1–50, 250–500, and 3500–7000 ms.

In the following, all reported changes in scaling exponents α

(i.e., slopes of the log–log plots) are statistically significant at the
p < 0.01 level, based on Kruskal–Wallis (across the three weight
conditions) and Mann–Whitney U statistical tests (across the two
visual feedback conditions). We used these non-parametric test
(equivalents of ANOVA and t-test, respectively), because inspec-
tion of deviations from normality revealed a clear absence of a
normal distribution of α required for parametric tests.

DETRENDED FLUCTUATION ANALYSIS: GENERAL SCALING EXPONENT
RESULTS
Consider Figure 9, which shows the mean scaling exponents
across all trials, respectively. At short time scales (1–50 ms), the
slopes associated with both the Compensation and Hinge Mode
time series are close to 0.5, indicating lack of positive or negative
correlation (approximating a random walk) between increments
and thus absence of a corrective control effort, while the Grasp
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Mode has a mean slope of 0.7, reflective of positive correlations
(i.e., diffusive growth) in the time series.

At medium time scales (200–500 ms), the slope of the Grasp
Mode decreases to 0.5, indicating lack of corrective control
effort along this dimension, while the Compensation Mode now
indicates the activity of a stabilizing or correcting effort, with the
scaling exponents α having decreased to a value of 0.3, and the
Hinge Mode shows a very strong negative correlation (indica-
tive of strong corrective action) of RMS deviation scaling with
exponent α = 0.1, indicating a strong tendency to enforce a
constant mean level. Importantly, the 200–500 ms time delays
include the shortest voluntary time scales of the sensorimotor
system (Kawato, 1999).

The long time scale (3500–7000 ms) is not particularly differ-
ent from the 200–500 ms time scale in terms of DFA slopes, except
that the Grasp Mode now becomes corrective as well, with a slope
having decreased from 0.5 to 0.3.

Importantly, DFA scaling exponents did not significantly differ
between the first and the second half of the trials.

EFFECT OF ADDING VISUAL FEEDBACK
Solid arrows in Figure 9 show the effect of adding visual feedback.
Note that these arrows indicate only those statistically signifi-
cant changes found based on our Mann–Whitney U statistical
tests. Visual feedback had the predictable effect of decreasing the
scaling exponent α for the Grasp Mode at the long time scales
of 3500–7000 ms; indicating the success of the long visuomotor
loop in keeping the total grasp constant. However, and somewhat
counter-intuitively, it also increased the slope of the Grasp Mode
at short time scales (1–50 ms), indicating greater positive correla-
tions (i.e., diffusive growth) in the short latencies not affected by
the visuomotor loop. This may reflect increased signal-dependent
noise and spurious corrections known to result from higher gains
in the motor and sensory components of a feedback loop—in this
case the visuomotor loop. The Hinge Mode was the only other
Mode affected by visual feedback; where its slope in the long
time scales became slightly, but statistically significantly, more
corrective as it is changing from 0.13 to 0.1.

DETRENDED FLUCTUATION ANALYSIS: EFFECT OF INCREASING
WEIGHT
Dashed arrows in Figure 9 show the effect of adding weight to
the object. Note that these arrows indicate only those statistically
significant changes found based on our Kruskal–Wallis statisti-
cal tests. The α slope of the Grasp Mode at scales (1–50 ms)
increased toward to 1.0, as in the case of adding visual feed-
back. Again, this perhaps reflects the increase in signal-dependent
noise with the need for greater grasp forces. Signal-dependent
noise scales linearly with force and is observed in the 8–12 Hz
frequency band of force measurements (Jones et al. (2002), i.e.,
time scales of <125 ms) and induces positive mechanical cor-
relations across fingers due to reaction forces. The only other
significant effect of weight was a slight increase of the Hinge Mode
slope in the medium time scales, possibly reflecting the increased
difficulty of maintaining immobile the more massive objects,
which would show less effective corrections in this time-scale
(see Figure 9).

DISCUSSION
Our spatio-temporal analysis of static grasp demonstrates that
fingertip forces exhibit evidence of corrective actions and absence
of corrective actions in both the task-relevant and task-irrelevant
task subspaces. Our main message is that, during a static tripod
grasp, we find examples at different time scales of how task-
irrelevant parameters, which are commonly associated with the
UCM, are actively controlled, and how task-relevant parame-
ters (i.e., performance variables) are not actively controlled. This
evidence critically extends our approach to task relevance, and
compels us to revise our understanding of neural control of
task redundancy. In particular, our results challenge the currently
dominant approaches to redundancy of the UCM Hypothesis and
the Minimal Intervention principle that advocate a separation of
control strategies between task-relevant and task-irrelevant vari-
ables. Rather, we demonstrate that there exist corrective actions
common to all task variables that supports the notion of a
continuum, rather than a separation, of neural control strate-
gies common to both task-relevant vs. task-irrelevant variables.
Moreover, the similarity of control actions across time scales seen
in both task-relevant and task-irrelevant spaces points to a level of
modularity in corrective action not previously recognized. After
explaining how methodological considerations do not challenge
our main findings, we discuss the implications of our results to
our understanding of neural control of task redundancy.

METHODOLOGICAL CONSIDERATIONS
We find that variability of the normal forces of the fingertips on
the object during static grasp suffices to show a counter exam-
ple to current thinking about neural control of task redundancy.
We designed our experimental paradigm of static equilibrium
to sidestep methodological and theoretical difficulties encoun-
tered by prior studies of more complex tasks, e.g., (Dingwell
et al., 2008, 2010; van Beers et al., 2013). Studies investigating
the UCM hypothesis and Minimal Intervention principle must
restrict themselves to a measurable subset of performance vari-
ables (it is not practical to record EMG from all muscles, angles
from all joints, etc.) during well-defined tasks (like planar limb
motion or body motion in the sagittal plane). We used a mechan-
ical model developed in Rácz et al. (2012) to interpret our normal
force data, and were careful to only analyze trials for which the lin-
ear and angular accelerations were measured as negligible based
on motion capture data, and thus considered as static grasp. We
initially analyzed the 9-dimensional system that included tangen-
tial forces of all three fingertips, but found that the only significant
tangential forces were those counteracting gravity. They were
relatively constant, which is not surprising given the trials we
considered as valid examples of static grasp. The magnitudes of
the fluctuations of the other tangential forces (those in the hori-
zontal plane) were several orders of magnitude smaller than the
normal forces, and therefore considered negligible for the pur-
poses of making our main point. Namely, showing a counter
example of task-irrelevant task variables (those associated with
the UCM) being actively controlled during a static tripod grasp.
Tangential forces add to the dimensionality of the motor con-
trol task—some of the performance variables associated with
these dimensions could be identified as task-relevant, others as
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being part of the UCM. However, any additional task variabil-
ity dimension is, mathematically and in the context of the UCM
hypothesis, perpendicular to existing dimensions (e.g., moment
cancelation efforts do not necessitate normal force variability,
from a purely mechanical point of view). Therefore, whether or
not these additional dimensions are subject to control (i.e., con-
stitute additional performance variables) has no bearing on our
main finding that there exist at least two task-irrelevant (from
a UCM point of view) dimensions of variability (i.e., Grasp and
Compensation Modes) that are being continuously controlled in
the task of static tripod grasp, while simultaneously, there exists
a task-relevant direction, or performance variable (i.e., Hinge
Mode), that is not controlled at short time scales. Nevertheless,
studying potential coupling between mechanically independent
task dimensions is a worthwhile problem. In fact, we have looked
at this problem for a similar (but dynamic) task in a previ-
ous paper (Rácz et al., 2012), but that analysis and discussion is
beyond the scope of this work.

Our methodology has some important strengths and differ-
ences compared to prior work that uses a temporal analysis. Our
work on multifinger manipulation differs from that of locomo-
tion (Dingwell et al., 2008, 2010), reaching and gaze shifting
(van Beers et al., 2013) in that: (1) it is substantially simpler
problem than locomotion and therefore easier to identify per-
formance variables; (2) it is equally important to activities of
daily living; and (3) particularly relevant to human evolution.
In particular, Dingwell et al. (2010) recently showed that gait, a
non-linear dynamical task, exhibits the expected greater variabil-
ity along goal-irrelevant directions as per the UCM and Minimal
Intervention principle. In agreement with our findings, they find
corrections for deviations in both goal-relevant and -irrelevant
directions; but prefer to say that the nervous system largely
“ignores non-essential variations.” While they use DFA to study
the correlation structure along each projected time series, they
interpret the scaling exponents as continuous variables that indi-
cate different levels of control action at different time scales in
different subspaces. Given the complexity and non-linearity of
their task, they explore variations in model structure to alter
what was being controlled, but not the task variables, to fur-
ther strengthen their conclusions. We did not need to do that
because we chose a simpler task where the analytical solution
to the mechanics of the system and task allows us to define our
Modes, and interpret the scaling exponents. Importantly, they
cite us (Valero-Cuevas et al., 2009)—when stating that quantifi-
cation of variances along spatial dimensions alone can lead to
incorrect conclusions about control—as motivation for their use
of temporal analyses as a necessary next step. This is the point
we also now make by emphasizing spatio-temporal analyses for
static grasp. In fact, it is perhaps a testament to the utility of
these spatio-temporal analyses that, even when done at multiple
levels of observation and across multiple tasks, different studies
agree that temporal dynamics is critical to proper interpreta-
tion of neural control. Lastly, van Beers et al. (2013) study two
simultaneous discrete movement tasks: reaching and gaze shifts
between visual targets that are not related to our work in multifin-
ger grasp. However, their autocorrelation analysis of task-relevant
and task-irrelevant variables shows that task-irrelevant variability

is corrected less intensively. Because their tasks are dynamical
target-driven tasks, their interpretation of the temporal structure
of variability in the task-irrelevant variables is motor exploration,
learning and performance optimization. Given that our static
grasp task is simpler and has clear goals that can be modeled
mechanically, we can make stronger claims as to the nature and
structure of the variability. Our approach is, however, necessar-
ily silent about methodological issues in those other non-linear
dynamical experimental and analytical paradigms. However, we
agree with them in that active exploration for fatigue mitigation is
a potential benefit of variability in these task-irrelevant variables
(see below).

Furthermore, it is important to consider prior studies that have
identified voluntary and involuntary collaborative force interac-
tions among fingertips when pressing or grasping rigid objects
[e.g., Baud-Bovy and Soechting (2001); Scholz et al. (2002); Shim
et al. (2005); Latash and Zatsiorsky (2009); see for review Schieber
and Santello (2004)]. From the mechanical perspective, many
extrinsic flexor and extensor muscles are multitendoned or have
multiple compartments subject to a certain level of common
neural inputs [but the thumb and index finger are largely inde-
pendent (Brand and Hollister, 1999)]. This provides a level of
mechanical coupling across fingers—which is mostly known to
prevent large, individuated or disparate finger motions [Agee
et al. (1991); Brand and Hollister (1999); Zilber and Oberlin
(2004); as reviewed by Schieber and Santello (2004)]. Our task
was designed to consider these potential confounds by requir-
ing a low-magnitude static grasp in postures where all fingers
are similarly flexed so that tendinous interconnections do not
play a dominant role. Common neural inputs to muscles across
fingers are also not a confound because, as reported by Latash
and Zatsiorsky (2009), those common drives do not produce
the kind of variability that leads to a pervasive dynamic Grasp
Mode in the low frequency range during non-grasp force pro-
duction tasks. Common neural input, by definition, is composed
of highly correlated short-latency (i.e., high frequency) discharge
of motor units. As reported by Bremner et al. (1991) the dura-
tion of the synchronization ranged from 5 to 31 ms (mode =
13 ms). These latencies are only applicable to the shortest (i.e.,
1–50 ms) time scales in Figure 9. Moreover, the Grasp Mode cap-
tures such effects of common neural drive because it is defined as
synchronous increase or decrease of finger forces. Common neu-
ral drive would not enter the other Modes because they require
opposing (i.e., synchronous increases and decreases) in finger
forces. Thus, common neural drive cannot explain our findings
of evidence of control action in task-irrelevant variables, and lack
of it in task-relevant variables, that are spread across Modes and
time scales.

Lastly, Bryce and Sprague (2012) have urged caution when
analyzing non-linear or non-stationary signals with DFA.
However, our goal is not to estimate exact or specific Hurst expo-
nents, but rather show that a clear deviation from the 0.5 line
exists, much like in the recent work by Dingwell. We did consider
the potential confound of non-stationary time series, but our
results are robust with respect to analyzing first and second halves
of each trial. Furthermore, we do not observe an initial curvature
mentioned by Bryce and colleagues, among other things because

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 155 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rácz and Valero-Cuevas Control continuum across task relevance

we do not allow for estimation of very small time scales, as men-
tioned in our methods. Instead, we see an initial linear region,
with scaling different for each Mode. This finding is robust across
subjects and trial halves. This underscores the stability of our
conclusion: that task-irrelevant dimensions are indeed subject to
control intervention, and vice versa, and that this observation is
time-invariant.

SPATIAL ANALYSIS
Our simulation results clearly show that the first two principal
components, the Grasp and Compensation Modes, span the null
space of force dynamics associated with successful static grasp:
variation of force inside this manifold does not violate the con-
straints of static grasp (i.e., zero net force and moment). Given
however, that noise and variability are inevitable elements of neu-
romuscular systems, successful task completion naturally leads to
the population of the null space manifold, and task-relevant vari-
ability in the Hinge Mode orthogonal to the solution manifold
(i.e., modulating linear motion of the object in violation of the
static task requirement) will be minimal, but not necessarily zero.

In the case of static grasp, the fingertips are coplanar in the
horizontal plane, and their vertical tangential components serve
to cancel gravity. Therefore, the point of intersection of 3D force
vectors in the horizontal plane can either:

Remain stationary. In this case the only possible changes in
the fingertip force vectors are to increase or decrease their mag-
nitudes simultaneously and proportionally, i.e., change the total
grasp force. Mind the fact that these magnitudes are bounded
above by finger strength and the possibility of crushing the object;
and below by the need to support the object against gravity.
Regardless of the location of the point of intersection within the
object, such simultaneous and proportional increases or decreases
in 3D fingertip force vector magnitudes will induce identically
simultaneous and proportional changes in the normal compo-
nent of the normal forces. This is captured by the Grasp Mode
where all normal forces are positively correlated and therefore
having PC loadings of the same sign, as in [0.81 0.41 0.41]T

in Figure 2. Please note that the loadings are the unit vectors
describing the multidimensional correlation defining each PC.
Therefore the loadings for this PC show that the thumb, index
and middle finger forces all co-vary in this Mode. This analytical
argument shows that the normal forces suffice to detect the spatial
correlation structure defining the Grasp Mode. To confirm this,
Figure 11 plots the loadings of the 1st PC of the 3D force analysis
case (i.e., normal and two tangential forces for each digit) for all
subjects and trials. This 9D equivalent to the Grasp Mode shows
that positive correlation of all three normal forces dominates, and
that the loadings of the tangential forces straddle the zero line (i.e.,
do not show strong covariation with the normal forces) to create
a vector roughly [0 0 0.8 0 0 0.4 0 0 0.4]T .

Move within the object. If, say, the thumb force vector main-
tained its magnitude but changed its direction along an arc to the
right by increasing its the tangential component and decreasing
its normal component, then maintaining static equilibrium (as
it was in the experiments we analyzed) would require the other
two fingertip force vectors to track the 3D thumb force vector.
In so doing, the magnitude of one fingertip force vector must

increase, and the other decrease. This lengthening and shortening
of the vectors must again be simultaneous and proportional. Once
again, this will also induce identically simultaneous and propor-
tional changes in the normal component of the normal forces.
This is captured by the Compensation Mode, where one normal
force is positively correlated with the thumb force and the other
negatively. Thus the fingers have PC loadings of opposite signs,
as in [0 −0.71 0.71]T in Figure 2. That is, the full 3-component
force vectors are not required to detect these changes. The normal
forces suffice to detect these changes and their associated struc-
ture as the Compensation Mode. To confirm this, Figure 12 plots
the loadings 2nd PC of the 3D force analysis case for all subjects
and trials. This 9D equivalent to the Compensation Mode shows
a dominant anti-correlation between the loadings of the normal
forces of the index and middle finger, and that the loadings of the
normal force of the thumb and all tangential forces straddle the
zero line to create a vector roughly [0 0 0 0 0 −0.7 0 0 0.7]T .

A different combination of normal forces is the one perpendic-
ular to the manifold. This is the “Hinge Mode” that would induce
linear motion, with PC loadings [0.6 −0.5 −0.5]T (thumb normal
force increasing and simultaneous and proportional decreases in
the fingers’ normal forces). Our results show that dynamics along
this task-relevant Mode was minimal because, by construction,
we only analyzed cases where the object was in static equilibrium,
in agreement with the UCM hypothesis that this Mode exhibits
less variability. The normal forces suffice to detect these changes
and their associated structure as the Hinge Mode, as also shown
for the 3D force analysis case in Figure 13.

Very critically, we did not need PCA to identify our three
Modes empirically. Rather, these were prescribed by the analyt-
ical solution to the mechanics of the system and task. PCA was
only applied to the experimental data to identify for each sub-
ject the directions of normal force variability that maximally
corresponded to the known directions inferred from mechanical
analysis. For all subjects, these agreed well, by construction, with
the closed-form analytical solution as mentioned in the results.

Our experimental spatial results, as expected, are in agree-
ment with our simulations and the prior evidence for the UCM
Hypothesis and the Minimal Intervention principle (Scholz and
Schoener, 1999; Jordan, 2003): the variance in task-relevant vari-
ables is smaller than in the task-irrelevant spaces. The difference
in variance explained by the Grasp and Hinge Modes in each case
is explained by comparing Figures 4, 5 where, in the absence of
visual feedback, the total grasp force (Grasp Mode) shows large
variability that is absent when visual feedback is provided to avoid
such drift. More specifically, the projection of the fingertip force
time series data recorded without visual feedback onto the Grasp
Mode shows a very slow monotonic downward trend (Figure 7
for a representative trial). We interpret this slow trend to be the
major contributor to large spatial variability explained by this
mode: it is caused by the three fingers reducing their normal
forces simultaneously. This underscores an important shortcom-
ing of PCA when applied to non-stationary signals (for a detailed
discussion see Clewley et al., 2008). On the other hand, in tri-
als including visual feedback, the Grasp Mode does not exhibit
such a trend (Figure 5 for a representative trial). This is not sur-
prising, since holding a constant total force is now an explicit
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Table 3 | Summary of findings, highlighting in bold discrepancy among UCM and Minimal Intervention (MI) predictions and temporal

Detrended Fluctuation Analysis (DFA) results.

Mode Experimental

condition

Task

relevance

UCM and MI

predictions

Spatial PCA

results

Temporal DFA results

at different time scales

Grasp mode No visual feedback
With visual feedback

Irrelevant
Relevant

No control
Control

High variance
Low variance

Controlled and uncontrolled
Controlled and uncontrolled

Compensation mode No visual feedback
With visual feedback

Irrelevant
Irrelevant

No control
No control

High variance
Low variance

Controlled and uncontrolled
Controlled and uncontrolled

Hinge mode No visual feedback
With visual feedback

Relevant
Relevant

Control
Control

High variance
Low variance

Controlled and uncontrolled
Controlled and uncontrolled

As per Figures 8 and 9, by uncontrolled we mean evidence of unstable and Brownian growth (scaling exponents �0.5), and by controlled we mean evidence

of corrective action (scaling exponents <0.5). In particular, both the Grasp and Compensation Modes are task-irrelevant but show temporal features of corrective

action at some time scales. Similarly, the Hinge Mode is task-relevant but shows temporal features of lack of corrective action at some time scales.

FIGURE 7 | Representative plot of the experimental normal forces

now projected onto the principal components for the same

representative trial as in Figure 4 without visual feedback. Top: The
force fluctuations on the plane spanned by the Grasp and Compensation
Modes. Bottom: The three principal component time series during a trial
plotted individually. Note how the Grasp Mode captures the common
downward trend, while the Compensation and Hinge Modes have
relatively lower variability.

task constraint, converting the Grasp Mode into a task-relevant
Mode (see Table 3). As a consequence, the Compensation Mode
(the other task-irrelevant dimension) now contributes a larger
proportion of the overall variability (Figure 6). The fact that
variability in the Grasp Mode does not disappear with visual
feedback is well known and can be attributed to unavoidable
motor noise, and other central and peripheral sources of corre-
lated finger forces (Santello and Soechting, 2000; Poston et al.,
2010; Rácz et al., 2012). The Compensation Mode also exhibits a
slow non-monotonic modulation both increasing and decreasing
over time (Figure 7). This indicates that index and middle fin-
ger normal forces are slowly and continuously modulated, out of
phase, during static grasp.

As we have argued before (Clewley et al., 2008; Kutch and
Valero-Cuevas, 2011; Kutch and Valero-Cuevas, 2012), PCA of
analytical solutions and experimental data alike naturally show
a reduction in the dimensionality of task variables, which is a
necessary result of meeting task constraints with a biomechan-
ical plant. But this does not imply that the CNS is itself using
a low-dimensional controller to simplify or optimize the redun-
dancy problem. Rather, this simply reflects the structure of the
solution space. Therefore, the question in not only whether the
CNS can meet the requirements of the task (by definition it did
if the task was accomplished), but also how it continues to meet
them as time goes by. This makes temporal analysis of task vari-
able dynamics critical to understanding the neural control actions
in both the task-relevant and task-irrelevant spaces.

TEMPORAL ANALYSIS
Our DFA results, on the other hand, demonstrate the presence
and absence of corrective actions by the CNS at different time
scales in both the task-relevant and task-irrelevant task sub-
spaces. Both linear and non-linear time series analysis has been
commonly employed to reveal temporal correlation structures
(positive or negative) indicative of control strategies (destabi-
lizing or stabilizing, respectively), primarily in postural control
research (Collins and De Luca, 1994; Jeka et al., 2004). For
instance, in a seminal paper by Collins and De Luca (1994)
the authors demonstrated a complex correlation structure in the
center-of-pressure time series recorded during quiet stance, a
highly redundant task. However, this perspective has not been
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FIGURE 8 | Representative DFA of projected normal force time series

from one subject, where the data were collected in a 200 g weight trial,

without visual feedback. The plot shows the three scaling regions (1–50,
250–500, and 3500–7000 ms) which we used to fit the scaling exponent, for
each normal force correlation Mode (Grasp, Compensation, and Hinge

Modes). The red lines show the linear fits to the behavior of diffusion vs. time
scale—their slopes can either be greater than, equal or less than 0.5 (dashed
line), indicating the diffusive process is positively correlated (pc or
uncorrected divergence), uncorrelated (uc or Brownian motion), or negatively
correlated (nc or corrective action), respectively, at those time scales.

FIGURE 9 | Summary of temporal analysis. Distribution of DFA scaling
exponents of the normal forces projected onto the three Modes at three time
scales—during the first (left box plots) and the second half (right box plots) of
the trials, in trials without visual feedback. Solid arrows indicate the effect, if
any, of adding visual feedback; and dashed arrows indicate the effect, if any,
of increasing the weight. Note that these arrows indicate any statistically
significant changes found based on the non-parametric statistical tests
described in the text. We find that, contrary to the suppositions of the UCM

hypothesis and Minimal Intervention principle borne by spatial analysis, at
different time scales we see evidence of control effort (i.e., negatively
correlated time histories with scaling exponents <0.5) in the task-irrelevant
Modes (i.e., Grasp and Compensation); and evidence of uncorrected
divergence in the Grasp Mode—which becomes task-relevant when visual
feedback is provided—, and Brownian-like dynamics and unstable growth in
the task-relevant Hinge Mode (i.e., non-correlated and positively correlated
time histories, respectively, with scaling exponents �0.5).

brought to bear to the study of task redundancy. Once again,
one can argue that the available literature endorses preferen-
tial as opposed to a strict separation into clearly controlled and
uncontrolled variables, but we lacked a specific quantification of
the temporal nature of the dynamics of task-relevant and task-
irrelevant that would allow us to infer the neural control strategies
in each space.

As per Figures 8, 9, we find that both task-relevant and
task-irrelevant variables exhibit the features of uncorrected diver-
gence, Brownian motion and corrective action, depending on
the time scale considered—as evidenced by positive, neutral,

and negative correlations between force increments separated
by different time periods (i.e., scaling exponents >0.5, = 0.5,
and <0.5, respectively). As per Table 3, the UCM and Minimal
Intervention approaches would predict a clearer separation of
corrective actions (i.e., control strategies) across task-relevant and
task-irrelevant variables.

The temporal features of the task-irrelevant Grasp Mode
challenge the UCM Hypothesis and the Minimal Intervention
principle. The Grasp Mode (when no visual feedback is given)
exhibits all three control strategies as the time scales lengthen,
and goes from uncorrected divergence, to Brownian motion to
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FIGURE 10 | Percent variance explained when considering

three-dimensional forces for each digit (3D force analysis that is

9-dimensional given three forces for each of three digits, empty box

plots) vs. when considering only the normal force at each digit (normal

force analysis, gray box plots). The box plots show the variance explained
by each PC from all subjects and trials, where the 1st PC explains the
majority of the variance, the 2nd PC a modest amount, and the third PC
less than 10%. The remaining variance explained by PCs four to nine is
shown for the 3D force analysis. The structure of each PC is given by its
loadings (as shown in Figures 11–13). Those figures shows that, even in
the 3D force analysis case, the 1st, 2nd, and 3rd PC’s represent the Grasp,
Compensation and Hinge Modes seen in the normal force analysis. This
consistency across percent variances explained demonstrates that the
reduced normal force analysis is valid and equivalent to the full 3D force
analysis.

corrective action. The slow downward trend in total grasp force
in trials when without visual feedback happens at medium to
long time scales—so it does not explain the uncorrected diver-
gence seen at the short time scales. Such divergence, which was
also present and even accentuated with visual feedback, is more
likely a consequence of positive correlations that can be shown
to be a result of the interplay between purely random signal-
dependent noise (Jones et al., 2002), motor unit synchronization
(Schieber and Santello, 2004), and instantaneous (but low-pass
filtered by skin compliance) mechanical reaction forces. This vari-
ability in what are both task-irrelevant and task-relevant variables
is nevertheless left uncorrected by the CNS either as part of the
neural control strategy or because of inability to do so at such
short latencies. Alternatively, we can argue that task-irrelevance is
not only a spatial consideration but also a temporal one, where
low-magnitude or short term variability is accepted and only
corrected upon crossing a certain spatial or temporal threshold.
But such interpretation is not really compatible with the UCM
Hypothesis and the Minimal Intervention principle, but rather
with other theories specifically phrased to advocate intermittent
or drift-and-act control as an optimal strategy (Collins and
De Luca, 1994; Guckenheimer, 1995; Milton et al., 2009a; Suzuki
et al., 2012).

FIGURE 11 | Loadings of the 1st PC, the Grasp Mode, when considering

the 3D force analysis case (normal plus two tangential force

components, empty box plots) for each digit vs. when considering

only its normal force (normal force analysis, gray box plots). Box plots
show loadings from all subjects and trials. Note that the loadings of all
tangential forces (Fx and Fy) straddle the zero line, demonstrating that they
are not relevant to the correlation structure of the 1st PC. The normal force
components (Fz) of all digits have positive and non-zero loadings, indicating
that the structure of this PC using normal forces is equivalent to that of the
full 3D force analysis. The dispersion or exact median values in the box
plots are not the means to establish the task-relevance or task-irrelevance
of the PC. That dispersion is a consequence of natural variability and
inaccuracies in motor performance, and unavoidable sensor noise. It is the
goals of the task and mechanical analysis that determine how to identify
the task-relevant and task-irrelevant Modes.

FIGURE 12 | Loadings of the 2nd PC, the Compensation Mode, when

considering the 3D force analysis case for each digit (empty box plots)

vs. when considering only its normal force (gray box plots). Box plots
show loadings from all subjects and trials. Note that the loadings of the
normal force components (Fz) of the thumb, and all tangential force
components (Fx and Fy), straddle the zero line, demonstrating that they are
not relevant to the correlation structure of the 2rd PC. The normal force
components (Fz) of the index and middle finger exhibit anti-correlation,
indicating that the structure of this PC using normal forces is equivalent to
that of the full 3D force analysis. The increase in dispersion in the full 3D
force analysis compared to the Grasp Mode in Figure 11 is naturally
associated with the increased susceptibility to measurement noise as this
Mode explains much less of the variance in the data, see Figure 10.

The neutral and negative correlations in the Grasp Mode at
medium and long latencies, respectively, cannot be attributed to
control intervention to avoid dropping the object due to a crit-
ical reduction in Grasp Mode force. The total grasp force level
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FIGURE 13 | Loadings of the 3rd PC, the Hinge Mode, when

considering the 3D force analysis case for each digit (empty box plots)

vs. when considering only its normal force (gray box plots). Box plots
show loadings from all subjects and trials. Note that the loadings of the
tangential forces (Fx and Fy) of the thumb, index and middle fingers
straddle the zero line, demonstrating that they are not relevant to the
correlation structure of the 3rd PC. The normal force components (Fz) of
the thumb exhibits anti-correlation to those of the index and middle fingers,
indicating that the structure of this PC using normal forces is equivalent to
that of the full 3D force analysis. The increase in dispersion in the full 3D
force analysis compared to the Grasp Mode in Figure 11 is naturally
associated with the increased susceptibility to measurement noise as this
Mode explains much less of the variance in the data, see Figure 10.

always remained well above the weight of the object, the hand
was held still, and the scaling exponents were unchanged between
the first and second half of the trials (Figure 9)—and slip-grip
responses happen at latencies well below 200 ms (Cole and Abbs,
1988; Gysin et al., 2003; Rácz et al., 2012). Thus we conclude
that corrective control intervention depends on factors other than
safety boundaries or automatic grasp tendencies seen only dur-
ing dynamic manipulation (Rácz et al., 2012). Moreover, such
corrective control intervention occurs regardless of whether the
Grasp Mode is task-irrelevant or task-relevant (when without or
with visual feedback, respectively). Further challenging the UCM
Hypothesis and the Minimal Intervention principle, the task-
irrelevant Compensation Mode also exhibits corrective control
intervention at medium and long time scales.

DFA exposes an absence of correlation at very short time scales
in the task-relevant Hinge Mode. This indicates an absence of cor-
rective actions (i.e., control). This lack of control may, however,
simply be due to the inability of the neuromuscular system to do
so at such short latencies; or may be evidence of an intermittent or
drift-and-act strategy. While finding the reasons for this requires
further investigation, it is nevertheless important to point out this
important temporal feature not previously addressed by the UCM
Hypothesis and the Minimal Intervention principle, to the best of
our knowledge. That is, the fact remains that, due to physiological
limitations or control strategy, even highly task-relevant variables
are left uncontrolled at some time scales.

The fact that the results are so similar between the first and the
second halves of the trials indicates that the observed dynamics
and the associated correlation structure depend neither on time
nor the total grasp force (which can be interpreted as location
in the force space; or in control terms our findings are not

state-dependent). This in turn suggests a temporal control strat-
egy that is state-independent (except potentially at the bound-
aries; which we have no reason to believe our subjects approached,
but could be an important next research step).

One possible explanation for the observed negative corre-
lations along the Grasp and Compensation Modes could be
that traversing the solution manifold is an active process,
through which the CNS actually takes advantage of redundancy.
Specifically, controlled dynamics along the Compensation Mode
corresponds to the regulation of the index and middle finger con-
tributions to the opposition of thumb normal force. In agreement
with others, we speculate that the may be actively trying to shift
the demands between the two fingers over time, which in turn
might mitigate effects of fatigue at the muscle level (e.g., Cote
et al., 2002; Dingwell et al., 2008; van Beers et al., 2013). By
gradually varying fingertip forces, the CNS can achieve a change
in the underlying muscle coordination pattern, which in turn will
change the rates of fatiguing of individual muscles, thus allowing
for improved use of available resources. The slow downward trend
along the Grasp Mode direction of normal forces agrees with this
fatigue reduction strategy: a general reduction of forces generated
by the muscles leads to a reduction in the fatigue rate. But at these
low levels of grasp force magnitude, the redundancy of solutions
for a given set of fingertip force vectors would also allow changes
in coordination patters that would not be detectable as changes in
the magnitude or direction of fingertip force vectors. This issue,
therefore, deserves further investigation.

Lastly, note that here we do not employ DFA to determine
self-similarity or fractional dimensionality in the data, as has
been done in some studies (Hausdorff et al., 1996). In those
studies, the linearity in the logarithmic plots needs to extend
over at least one order of magnitude to count as strong evi-
dence of fractionality (Kantz and Schreiber, 2004). In our case
the requirements for the linearity of the logarithmic plots are
not as rigid because the quantification of long-range correlations
applies to data where the linearity extends over shorter ranges of
time scales. Moreover, challenging the preferential separation of
control action across task variables as in the UCM Hypothesis
and the Minimal Intervention principle only requires evidence of
similar corrective actions (or their absence) in both task-relevant
and task-irrelevant-which our results clearly show. These results
expose a fundamental limitation of the UCM hypothesis and the
Minimum Intervention Principle: their focus on spatial aspects of
motor variability and disregard for temporal aspects.

CONCLUSIONS AND MODULARITY
We show that both task-relevant and task-irrelevant parame-
ters show corrective action at some time scales; and conversely,
that task-relevant parameters do not show corrective action at
other time scales. In agreement with recent work in other behav-
ioral contexts, these results propose we revise our understanding
of variability vis-á-vis task relevance by considering both spa-
tial and temporal features of all task variables when inferring
control action and understanding how the CNS confronts task
redundancy. Moreover, these results are counter examples to
the UCM hypothesis and the Minimal Intervention principle,
as they assume a separation of task variables into relevant
and irrelevant ones, indicated by their respective variabilities.
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As mentioned above, proponents of UCM hypothesis and the
Minimal Intervention principle admit the possibility of prefer-
ential as opposed to strictly uncontrolled variables (Latash et al.,
2010), or that the nervous system largely “ignores non-essential
variations” (Dingwell et al., 2010), but such qualitative distinc-
tions have only begun to be quantified or considered in the spatio-
temporal domain when inferring control action. Following up on
those qualifications, we present specific spatio-temporal quan-
titative examples of controlled intervention (or lack thereof) in
both task-relevant and task-irrelevant spaces (based on mechan-
ical/mathematical definition of the task and its possible modes
of variability) to expand our understanding of neural control
strategies. Additional work is needed to revise our view of neural
control that takes into considerations both spatial and tempo-
ral aspects of neuromuscular function and variability, and the
structure and nature of the solution space of the task.

The similar nature of control actions across time scales
in both task-relevant and task-irrelevant spaces that we find
point to a level of modularity not previously recognized. The
spatio-temporal results presented here instead suggest that neural
control uses a continuum of control strategies going from uncor-
rected divergence to strong corrective actions that are not defined
by the level of task-relevance of the controlled variables; and
which may also involve intermittent and drift-and-act character-
istics. Importantly, while the increase in weight and the addition
of visual feedback does seem to modulate the dynamics on the
individual dimensions, it does not lead to a crossing of the 0.5 line
and therefore not to a fundamental change in the control strategy.
Our methodological consideration and spatio-temporal analy-
sis allow us to present clear examples of how the task-irrelevant
parameters (i.e., elemental variables that are organized to consti-
tute the UCM) are actively and continuously controlled during a
tripod grasp at certain time scales, while the task-relevant param-
eter (or performance variable) is not actively controlled during a
tripod grasp at certain time scales. Therefore, we show that esti-
mating the different extents of control based on task variable vari-
ances alone (a purely spatial approach) is insufficient, as Dingwell
and we had proposed before (Valero-Cuevas et al., 2009; Dingwell
et al., 2010). Rather, those variables constituting the UCM (which
are again, mathematically defined by the unambiguous mechanics
of the task, see Figure 2) may have different temporal dynamics,
but are not controlled in a fundamentally different way.

This spatio-temporal approach to variability provides a tool to
quantify the nature and degree of neural control action, extending
the traditional spatial variance magnitude approach by quanti-
fying the temporal nature of variability. For example, traversing
the solution manifold is an active process by which the controller
enforces the constraints of the task. The CNS does not create the
solution manifold 1, but rather seeks to inhabit it as has been
discussed earlier (Keenan et al., 2009; Kutch and Valero-Cuevas,
2012; Suzuki et al., 2012). As such, the means by which the

1To be clear, the solution manifold arises independently of the controller as
it depends only on the characteristics of the plant and the constraints of the
tasks. A controller can then choose to inhabit a particular region or subset of
the solution manifold to meet the requirements of the task (Kutch and Valero-
Cuevas, 2012; Suzuki et al., 2012).

CNS enters and continually inhabits the solution manifold can be
thought of as the implementation of a dynamical attractor on the
task variables. In the context of time-varying stochastic behav-
ior of differential and discrete-time distributed systems like the
neuromuscular system, the implementation of such a controller
enforcing an attractor can be thought of as the implementation
of a specific probability density of the state (for a presentation
of this view see Sanger (2011), which is different from Bayesian
estimation and discrete-time Markov processes).

This emerging view of the nervous system as functioning at the
level of affecting probability density functions (Sanger, 2011) is
compatible with a modular interpretation of our spatio-temporal
results. DFA estimates the statistical self-affinity of stochastic pro-
cesses with memory whose underlying statistics (mean, standard
deviation and higher-order moments) or dynamics are non-
stationary (Kantelhardt et al., 2001). That is, DFA quantifies how
well a probability density function is implemented. Thus the con-
tinuum of control strategies seen across all Modes and time scales
can be thought of as essentially differently tuned versions of the
same modular control process that can let drift (i.e., uncorrected
divergence), be indifferent, or enforce (i.e., corrective action) the
statistics of the time-varying probability density of the state so
that it populates the solution space. Hence the level of modu-
larity in the controller rests on the ability of the system to work
with probability density functions in the task-relevant and task-
irrelevant spaces at different time scales—and not with distinct
basis functions or synergies implementing a separation of task
variables.
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APPENDIX
IDENTIFICATION AND MODELING OF THE MECHANICAL
REQUIREMENTS OF THE TASK AND ITS NULL SPACE
Each fingertip applies a three-dimensional force f̃ to the object.
Computing the cross product of the moment arm, i.e., the vector
between the point of force application and the object’s center of
mass, with the fingertip force vector yields the moment applied to
the object. The total 6-dimensional force and moment applied to
the object can be computed with the following mapping W:

[ ∑
f∑

m

]
6 × 1

=
[

I3 × 3 I3 × 3 I3 × 3

Mth Mind Mmid

]
6 × 9

⎡
⎢⎣

f̃ th

f̃ ind

f̃ mid

⎤
⎥⎦

9 × 1

= Wf̃

where I3 × 3 is the unit matrix and M{th, ind, mid} is the skew-
symmetric matrix representing the cross-product between the
moment arm of the finger and its force vector f{th, ind, mid}. Since
W is a mapping from 9-dimensional (three 3-D finger forces)
to 6-dimensional (six degrees of freedom for the object grasped)
space, the associated null space, i.e., the space of vectors for which
0̃ = Wx̃ has 3 dimensions. Any vector x̃ in this null space repre-

sents a solution to the static grasp requirement

[ ∑
f∑

m

]
=

[
0̃
0̃

]
,

i.e., that both the sum of forces and the sum of moments should
be zero. This is the mathematical description of the task-irrelevant
subspace because fingertip forces can change inside this space but
the object will remain static.

However, this is a necessary, but not sufficient, requirement.
Additionally, we require that the finger tips do not slip, so the
tangential forces are upper-bounded through the friction rela-
tionship ftangential ≤ μfnormal, i.e., the tangential force cannot
exceed the normal force, multiplied with the friction coefficient μ,
which we have set to 0.04, the approximate friction coefficient of
Teflon on Teflon. This represents a lower bound on the coefficient
of friction, since this coefficient is certainly greater whenfingertip

and Teflon surface interact. That is, the grasp under experimental
conditions is actually less constrained and tangential components
can be greater. In addition, the sum of tangential forces directed
vertically needs to oppose the force applied to the object by grav-
ity. A nominal object had a weight of 100 g, hence the sum of
tangential forces had to equal 0.981N, which in turn determined
the sign (positive, i.e., into the object) and the minimum mag-
nitude of the normal forces. This requirement changes with the
weight condition, of course. For a complete list of static grasp
model constraints, see Table A1.

Given that the task null space is well described, it was impor-
tant to simulate the properties of expected solutions to com-
pare against the experimental results to properly disambiguate
the spatio-temporal features of the fingertip forces that can be
explained by mechanics from those of neural origin; as in Rácz
et al. (2012) and Kutch and Valero-Cuevas (2012). Enforcing all
constraints gives us mathematical description of the null space of
the task. To simulate instances of these fingertip forces, we numer-

ically sampled vectors f̃ tnull
from the null space of the above linear

matrix by multiplying the three null space basis vectors ñi with
random values a, b, c, drawn from a standard Brownian random
walk: f̃ tnull

= a · ñ1 + b · ñ2 + c · ñ3. We then added these null

space vectors f̃ null to the minimum sum-of-squared-forces solu-

tion f̃ min sq of force vectors that met all the above described static

grasp constraints: f̃ t = f̃ min sq + f̃ tnull
, using MATLAB’s (Natick,

MA) quadprog() function to determine the actual solution
with minimum Euclidean distance to f̃ min sq + f̃ tnull

.

Table A1 | List of relevant constraints in static grasp.

Constraint Magnitude Interpretation

∑
F [0, 0, mg]T Sum of forces equal and opposite to

gravity force, i.e., no net force∑
M 0 Sum of moments equals zero, i.e., no

net moment

FiT ≤ μ · FiN Tangential force at the i-th finger
cannot exceed normal force
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