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Neuronal networks in rodent barrel cortex are characterized by stable low baseline
firing rates. However, they are sensitive to the action potentials of single neurons
as suggested by recent single-cell stimulation experiments that reported quantifiable
behavioral responses in response to short spike trains elicited in single neurons. Hence,
these networks are stable against internally generated fluctuations in firing rate but at
the same time remain sensitive to similarly-sized externally induced perturbations. We
investigated stability and sensitivity in a simple recurrent network of stochastic binary
neurons and determined numerically the effects of correlation between the number
of afferent (“in-degree”) and efferent (“out-degree”) connections in neurons. The key
advance reported in this work is that anti-correlation between in-/out-degree distributions
increased the stability of the network in comparison to networks with no correlation
or positive correlations, while being able to achieve the same level of sensitivity. The
experimental characterization of degree distributions is difficult because all pre-synaptic
and post-synaptic neurons have to be identified and counted. We explored whether the
statistics of network motifs, which requires the characterization of connections between
small subsets of neurons, could be used to detect evidence for degree anti-correlations.
We find that the sample frequency of the 3-neuron “ring” motif (1→2→3→1), can
be used to detect degree anti-correlation for sub-networks of size 30 using about 50
samples, which is of significance because the necessary measurements are achievable
experimentally in the near future. Taken together, we hypothesize that barrel cortex
networks exhibit degree anti-correlations and specific network motif statistics.

Keywords: barrel cortex, detection threshold, nanostimulation, degree distribution, computational model, network

motifs

INTRODUCTION
Rodents can be trained to use their whiskers to detect an
object that predicts a reward and respond with licking to
obtain this reward (Huber et al., 2012). The neural responses
in barrel cortex to whisker stimulation are hypothesized to
play an important role in performing this task (Petersen and
Crochet, 2013). Animals can also be trained to detect electri-
cal microstimulation (Butovas and Schwarz, 2007; Houweling
and Brecht, 2008) or optogenetic stimulation (Huber et al.,
2008) of barrel cortex. Microstimulation activates a large num-
ber of neurons that are spatially distributed within a few hun-
dred microns around the stimulating electrode (Histed et al.,
2009). An important question is how many neurons need to
be activated for the subject to reliably detect the stimulation
and whether some cell types are more sensitive than others.
Answers to these questions may come from nanostimulation
experiments in which a single neuron is activated through juxta-
cellular stimulation (Houweling and Brecht, 2008). These exper-
iments show that adding trains of 10-15 action potentials in a
single cortical neuron can indeed be detected, but the reliability

of detection is low and reaction times are long compared to
microstimulation.

The spontaneous firing rates in the barrel cortex are low, rang-
ing from less than 1 Hz in the superficial layers to a few Hz in
the deep layers (de Kock and Sakmann, 2009; Barth and Poulet,
2012), and whisker stimuli typically evoke a single spike (or none)
in responsive neurons. The activity in the low firing rate state
(LFS) is also stochastic, both in time as well as across cells, but
the precise nature of sparse firing is still being quantified (Barth
and Poulet, 2012). For a LFS a single spike could represent a sig-
nificant perturbation, potentially yielding 28 additional spikes in
postsynaptic neurons (London et al., 2010). The network state
therefore needs to be stable against small fluctuations that may be
amplified through recurrent connectivity. At the same time the
aforementioned experiments show that the network is sensitive
to small perturbations that are externally generated. Sensitivity
and stability are connected and can in general not be optimized
at the same time, as the increase in one causes a decrease in the
other. Furthermore, stable LFS, in the sense of asynchronous and
irregular activity, is difficult to achieve (Kumar et al., 2008).
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We use two insights to find the optimal trade-off between sta-
bility and sensitivity. First, the external and internal generated
firing rate fluctuations may have different statistics. The exter-
nal perturbation is a train of action potentials [e.g., of 200 ms
duration (Houweling and Brecht, 2008)] in a single neuron,
thus correlated in time, whereas the internal fluctuations are
likely to be of shorter duration and involve a more diverse set
of neurons. Second, network structure may be such that these
fluctuations have different stability properties (possibly through
learning). Our guiding hypothesis is that simultaneous stability
and sensitivity are achieved through an anti-correlation between
the in- and out-degree of synaptic connectivity between neurons
in barrel cortex. Thus, neurons with a low number of synaptic
inputs have a high number of synaptic outputs and neurons with a
high number of inputs have a low number of outputs. We further
hypothesize that such an anti-correlation leads to a distribution
of synaptic connectivity motifs that is different than for a random
network (Milo et al., 2002). Experiments show that barrel cortical
circuits have a motif distribution that is different from random
(Song et al., 2005; Perin et al., 2011), whereas theoretical stud-
ies show that networks with non-random motif distribution have
different synchronization properties (Roxin, 2011; Zhao et al.,
2011; Litwin-Kumar and Doiron, 2012) (LaMar and Smith, 2010)
and can emerge through synaptic plasticity during reward-based
learning (Bourjaily and Miller, 2011a,b). Our work is the first
that focuses on the effect on network dynamics of correlations
between the in- and out-degree of the same neuron, rather than
between in- and/or out-degrees of different neurons, which is
referred to as assortativity (Newman, 2010).

Here we test these hypotheses in simplified networks of neu-
rons. In order to focus on the effect of network structure, rather
than the full dynamics of spiking neurons, we model neurons
as binary units. The inputs to the binary units are determined
through a connection matrix with a pre-specified degree distri-
bution generated by a configuration model (Newman, 2010). We
first describe how the networks are constructed and then deter-
mine (1) their stability in terms of the maximal coupling constant
for which the LFS is still stable and (2) their sensitivity to single-
cell perturbations using a receiver operating characteristic (ROC)
analysis. Finally, we address the issue of how to detect evidence
for anti-correlations in the degree distribution experimentally on
the basis of sampling sub-networks.

Taken together, we find that anti-correlated networks are more
stable than equivalent correlated and uncorrelated networks, but
can still reach the same level of sensitivity, which represents a key
theoretical advance in terms of a hypothesis for the experimen-
tally observed sensitivity and stability of neuronal networks in
the rodent barrel cortex. Furthermore, the hypothesis is of exper-
imental significance, because our analysis shows that correlations
in the degree distribution can be detected using sub-networks of
sizes that are experimentally accessible in the near future.

METHODS
NETWORK DYNAMICS
The model network was composed of N binary excitatory neu-
rons, whose state at time t is given by xi(t), a N-dimensional
vector with ones for neurons that are active and zeros for ones

that are not, here i is the index of the neuron. The new state
xi(t + 1) is obtained in two steps. First, the probability νi,t + 1 of
a neuron being active is calculated using Equation (1). Second,
for each neuron the firing probability is compared to a random
number that is uniformly distributed between 0 and 1. The neu-
ron is set to 1 when the random number is less than or equal to
the probability value

vi, t + 1 = 1

1 + exp

(
h0 − J

Npc

∑
j

wij xj,t

) (1)

The probability has a sigmoidal form, with the exponent con-
sisting of a constant term h0, which sets the probability of firing
in the absence of inputs from other neurons, and a coupling term
representing the network input. The coupling term contains the
adjacency matrix wij, whose construction is described below, and
in which wij = 1 if there is an input from neuron j to neuron i
and wij = 0 otherwise. The overall probability of a connection is
pc. Hence the sum across rows of the adjacency matrix is on aver-
age Npc and we normalize the coupling term by J/Npc so that J
then represents the overall coupling strength. The network activ-
ity is calculated in time bins that we consider to be 10 ms. The
network has a high firing rate state (HFS), in which each neuron
is active on each time step, to which the network will converge
when enough neurons are active on a previous time step. We are
primarily interested in the LFS, in which each neuron fires only
in a fraction of the time bins, corresponding to a firing rate of
approximately 1 Hz (Barth and Poulet, 2012). Alternatively, in a
given time bin, only a fraction of neurons are active.

The network activity is represented by the mean probability
of firing of a neuron during a time bin and is calculated as the
total number of spikes divided by the number of neurons. When
normalized by the bin width, it represents the mean firing rate of
a network neuron in spikes per second (Hz).

NETWORK CONNECTIVITY
Our goal is to determine whether correlations in the in- and out-
degree distribution are beneficial in that they increase sensitivity
and/or stability relative to uncorrelated networks. Hence, we need
a control network without degree correlations. Although the stan-
dard random network, Erdos-Renyi (ER) (Newman, 2010), does
not have correlations in the degree distribution and is easy to gen-
erate samples of, it is not appropriate as a control because it has
a sharp degree distribution (see below) and we instead need large
variance degree distributions.

For ER networks with a connection probability p, the degree
distribution (for both out- as well as in-degree) is given by a
binomial distribution

p(k) =
(

N − 1
k

)
pk(1 − p)N−1−k (2)

which has a mean of (N − 1)p and a variance of (N − 1)p(1 − p),
which in the limit of large N converges to Gaussian distribution
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FIGURE 1 | Construction of networks with a correlation between out-

and in-degree. In panels (A) to (D), we show scatterplots of the
out-degree vs. in-degree, whereas the corresponding marginal distributions
are shown for (E) the in-degree and (F) the out-degree. We considered four
types of networks, each with N = 2000 neurons and a connection
probability of pc = 0.05. (A) The Erdos-Renyi (ER) network in which each
connection is chosen at random with a probability pc = 0.05, for which
there is no correlation [ρ = 0.0034 (standard deviation: 0.018)] and the
relative variance of in- and out-degree across neurons is small for large
networks. In order to examine networks with a higher variance of degree
values, we first generated a degree distribution in the form of a truncated,
bivariate Gaussian. In (B) the covariance matrix was diagonal, with equal
variance for the out- and in-degrees, which yielded uncorrelated in- and
out-degrees [ρ = 0.0010 (0.019)]. To generate correlations we started from a
covariance matrix with unequal variances and rotated it by 45 degrees
anticlockwise to obtain (C) anti-correlated [ρ = 0.821 (0.0085)] and by 45
degrees clockwise to obtain (D) correlated degree distributions [ρ = 0.821
(0.0085)]. In the anti-correlated case, nodes with a high out-degree had a
low in-degree and vice versa, whereas in the correlated case, nodes with a
high out-degree also had a high in-degree, as illustrated by the insets in (C)

and (D), respectively. (E,F) The networks were constructed so that the
marginal distributions for the correlated (red), anti-correlated (blue) and
uncorrelated (green) case were the same. The ER network (purple) had
much tighter marginal distributions.

with a ratio of the standard deviation over the mean of

√
1 − p

N
(3)

This means that the distribution becomes very tight for large
network sizes (Figures 1A,E,F).

Hence we generated networks from a truncated bivari-
ate Gaussian for the joint in- and out-degree distribution
as explained below (Figures 1B–F). We start from a bivariate
Gaussian with a diagonal covariance matrix given by

p(x, y) = 1√
4π2σxσy

exp

(
− (x − μ)2

2σ2
x

− (y − μ)2

2σ2
y

)
(4)

which is rotated across 45 degrees clockwise or anticlockwise
to obtain a distribution with positive and negative correlations,
respectively. The resulting distribution is truncated below at
1 because the degree cannot be negative and we exclude the
case of zero (since a zero degree neuron would not be con-
sidered part of the network) and above at twice the mean
degree to make the distribution symmetric. The resulting dis-
tribution is normalized to make the integral over the positive
quadrant equal to one. The short axis is represented by σx

and the long axis is represented by σy. The mean degree μ

was equal to Npc, with a network size N = 2000 and connec-
tion probability pc = 0.05 (Holmgren et al., 2003) this yields
μ = 100. The long axis was σy = μ/3. The term dispersion
refers to the ratio σx/σy, which was set to 0.3 for the standard
parameter set.

Correlated degree distributions were obtained by sampling for
each neuron i, the in- and out-degree from the above bivari-
ate Gaussian, din

i and dout
i . The simplest method for generating

a realization of the corresponding network is the configuration
method (Newman, 2010). A list with dout

i stubs with value i,
is made and concatenated into a list sout

k . Likewise, a list with

din
i stubs with value i, is made and concatenated into a list sin

k
and randomly permuted. From these two lists, pairs are picked
from the same position, i.e., the kth stub on the out-list is
matched to the kth stub on the in-list to make the connection
sout
k to sin

k . This algorithm produces networks with two artifacts,

there could be self-connections sout
k = sin

k , and a given connec-

tion could be sampled twice (or more), sout
k = sout

l and sin
k = sin

l .
For sparse networks the likelihood of self-edges is small (0.05%),
but the probability for multi-edges was larger, around 2.7%. For
the cases in which there were multi- or self-edges, we removed
the corresponding links.

NETWORK STABILITY
Cortical networks with a low firing rate need to be stable in
the sense that stochastic fluctuations should not lead to large
increases in the firing rate that could be detected as a stimulation,
resulting in a false positive. We characterized the network stability
in three ways.

First, we simulated the network and determined the mean
firing rate, averaged across neurons and across time bins, as a
function of the coupling strength J for various levels of back-
ground activity h0. To determine both the maximal stability
and tease apart the contribution of neuronal heterogeneity and
stochasticity to instability, we performed the simulations accord-
ing to a number of different schemes. We considered the mean
field limit, in which the network is taken to be so large that each
neuron received the same number of inputs and that the resulting
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mean firing rate of each neuron was the same. Equation 1 reduces
in that case to

vt+1 = 1

1 + exp(h0 − Jvt)
(5)

yielding the following equation for the fixed points

v = 1

1 + exp(h0 − Jv)
(6)

which correspond to the roots of the function

f (x) = x − 1

1 + exp(h0 − Jx)
(7)

and can be obtained by iterating the fixed point equation
Equation 6 or using Matlab’s root finder fzero. The background
field h0 determines the baseline firing rate r0, which is the rate
obtained in the absence of coupling, J = 0:

r0 = 1

�t

1

1 + exp(h0)
(8)

where we have divided by the bin size �t to obtain a firing rate
in Hz.

There is always a high firing rate solution for sufficiently high
coupling strength J, because when all neurons are active on a
given time step, they will also all be active on the next time step.
There can also be a low firing rate solution which depends on
the coupling strength and the baseline firing rate. The coupling
strength Jc at a given baseline firing rate below which the LFS
exist is the upper limit of stability. The stochastic dynamics gen-
erates fluctuations, which could push the network away from the
LFS, whereas a degree distribution with a large variance would
cause a dispersion in the mean firing rate across neurons. These
effects are characterized by performing the full simulations with-
out stochasticity to determine the effect of firing rate dispersion,

vi,t+1 = 1

1 + exp
(

h0 − J
Npc

∑
j wijvj,t

) (9)

and the stochastic version in Equation (1) to determine the effect
of fluctuations.

Second, in the latter case, the state (LFS vs. HFS) reached is
not deterministic, because a network can have a firing rate that
fluctuates around the LFS or veers off to the HFS due to a some-
what larger fluctuation. We therefore performed the simulation
multiple times and recorded how often (on what fraction of the
trials) the network ended up at the HFS state as a function of the
coupling constant. In this case we defined Jc to be the value of
the coupling constant at which 50% of the states converged to
the HFS within 400 time steps. The initial condition of the net-
work was obtained by making a random set of neurons active
in such a way that on average it had the same number of active
neurons as expected based on the firing rate in the mean-field
limit.

Third, when fluctuations stay in the basin of attraction (BOA)
of the LFS, the network will not diverge, which means that

the above fraction is an indirect measure of the BOA. We also
determined a more direct measure by starting networks from dif-
ferent initial conditions, each with a different number of active
neurons, and determining which fraction of trials goes to the HFS
within 400 time steps. These initial states are characterized by
the effective number Neff of active neurons as is explained in the
Results section and represented in Equation 11.

NETWORK SENSITIVITY
The sensitivity to a perturbation in experiment is tested in the
model by activating a few selected neurons for a fixed duration.
The stimulation was characterized by the number np of neurons
stimulated (typically np = 8), the number of time bins, Tstim,
the stimulation lasted (typically Tstim = 6) and the mean out-
degree of the stimulated neurons represented by Neff. For a fair
comparison between different networks we randomly picked the
stimulated neurons from the network and repeated the stimu-
lation for 50 different realizations of the network. In order to
estimate the effect of out-degree on the detection of the stim-
ulation, we also ordered neurons based on their out-degree,
with the highest out-degree first. This ordered set was divided
into ten groups of equal size. We then randomly selected the
stimulated neurons from a specific group and compared how
the network response depended on which group was being
stimulated.

ROC ANALYSIS
The ROC is obtained by picking a threshold and determining
how often a firing rate response from the unstimulated network
exceeds this threshold: the fraction of false positives. In addition,
it is determined how often the firing rate of the stimulated net-
work exceeds this threshold, this is the fraction of true positives.
The ROC curve is traced out by plotting the true positives vs.
the false positives for each possible threshold. When the distri-
butions are exactly the same, the number of true positives equals
the number of false positives, hence the ROC is the diagonal with
an area under the curve (AUC) of 0.5. The deviation of the ROC
curves from the diagonal, or equivalently deviation of the AUC
from 0.5, is a measure for how different the distributions are and
maps for Gaussian distributions on to d′, which is the difference
in means of the distributions divided by the standard deviation
(Kingdom and Prins, 2010). This also means that one can deter-
mine how many trials are needed to detect, given a particular
ROC value, a difference between stimulation trials and unstim-
ulated responses. The errors in the ROC curve and AUC value
were determined by resampling of the simulated trials. Typically
Nr = 2000 resamplings were used.

FUZZY CLUSTERING AND PERCEPTRON ANALYSIS
Fuzzy c-means (FCM) was used to cluster data points, such as
a vector of network firing rates in consecutive time bins, or
the motif distribution for a particular realization of a network,
into groups with similar properties. FCM can be understood by
first considering K-means clustering. In a K-means clustering,
a number of clusters is chosen and the objects to be clustered
are assigned on a random basis to each of the potential clus-
ters (Duda et al., 2001). The name of the algorithm derives from
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the convention that the number of clusters is denoted by K.
Using these assignments, the mean of each cluster is found. Then,
using these means, objects are re-assigned to each cluster based
on which cluster center they are closest to. This process repeats
until the cluster centers have converged onto stable values or a
maximum iteration count is reached. This type of clustering min-
imizes the sum of the squared distances of the clustered objects
from their cluster means. FCM functions in the same way, but
rather than belonging to any particular cluster, each object i is
assigned a set of normalized probabilities uij of belonging to clus-
ter j (Bezdek, 1981). This is equivalent to minimizing a non-linear
objective function of the distances of the objects from the cluster
centers, characterized by the “fuzzifier” parameter, which is set to
two. After the algorithm converges each data point is assigned to
the cluster to which it is most likely to belong (maximizing the uij

with respect to the cluster index j). A more complete description
is given in (Fellous et al., 2004).

The perceptron algorithm is a method to classify responses x
of the network (Duda et al., 2001). Here the vector x = (rt, rt+1)
represents either a point in the firing rate return map or it
represents the binary activity for each neuron during a partic-
ular time bin. The algorithm tries to find a weight vector w
such that the sign wTx is positive when x belongs to group 1
(stimulated network) and negative when it belongs to group 2
(unstimulated).

ANALYSING MOTIF COUNT DISTRIBUTIONS
To investigate whether we could use motif statistics (restrict-
ing ourselves to 3-node motifs) of smaller parts of the complete
network to distinguish between networks with different degree
correlations, we generated Nr = 1000 realizations of each net-
work type: correlated, anti-correlated and uncorrelated. We used
smaller networks, N = 200, because these networks are adequate
to represent sub-network statistics of size Nsub up to 200. We
used standard parameters, pc = 0.05, now yielding μ = 10 and
σy = μ/3 = 3.33 and σx = 0.3σy = 1.0 for the smaller network.
From each realization we sample sub-networks of Nsub from 4 to
24 in steps of 4 and from 30 to 200 in steps of 10. For each (sub)
network we count the number of 3-node motifs using the explicit
formulas given in Table III of Itzkovitz et al. (2003). Each motif
is labeled by a number according to the convention also found
in Itzkovitz et al. (2003). The counts in an ER network vary with
powers of the expected number of edges per node k and network
size N, λN3(k/N)e, where λ is a factor representing the symmetry
of the pattern [see Table III in Itzkovitz et al. (2003)] and e is the
number of edges in the pattern, which defines the complexity of
the motif.

As a first step in the analysis we determined the mean and
standard deviation of the motif count across the Nr realiza-
tions. To reduce the size of statistical fluctuations we also pooled
motif counts by averaging them across Nav realizations. We either
split the original Nr realizations into Nr/Nav groups, yielding a
reduced number of data points or we randomly sampled with
replacement NrNav samples from the original Nr samples to keep
the same number of pooled motif counts. The count distribu-
tion was often not Gaussian, which meant we could not use
the t-test for the difference in mean count over the standard

deviation. Hence, we utilized a ROC analysis. In order to obtain
error estimates we created Nb = 20 different sets of Nr = 500
realizations, each of which were obtained by randomly sam-
pling with replacement from amongst the Nr = 1000 original
realizations.

We also wanted to determine whether incorporating counts
of pairs of motifs would improve the ability to distinguish
between networks with different degree correlations. We con-
sidered each realization, drawn from one or the other group
of networks, as a two-dimensional data point and used FCM
to find two clusters. FCM outputs the confidence (or proba-
bility) that the data point belongs to cluster 1. This value can
be used as part of an ROC procedure. For a given threshold,
the true positive corresponds the fraction of data points belong-
ing to group 1 for which the confidence exceeds the threshold,
whereas the false positive corresponds to the fraction exceed-
ing threshold that belongs to the second group. We applied
this procedure for each possible pair of motifs and for each
sub-network size.

RESULTS
ANTI-CORRELATED NETWORKS ARE MOST STABLE IN THE
ZERO-NOISE CASE
The mean-field limit, corresponding to an infinite network, is
studied by considering the dynamics of a network where each
neuron has the same firing rate, each neuron has the same num-
ber of synaptic inputs, i.e., in-degree, and there is no stochasticity.
In this case the dynamical equations reduce to a self-consistent
equation for the average firing rate v (Equation 6 in Methods),
which is solved according to the fixed point method. There are
typically two stable solutions, one corresponding the HFS, in
which the neuron is constantly firing (firing probability v = 1
or close to one) and one corresponding to the LFS at much
lower rates, together with one unstable solution in between
(Figure 2A). For high enough coupling constants only the HFS
solution remains. We studied this by starting from an initial value
of vt near zero and then iterating Equation 5 until convergence,
if there is a LFS, it will converge to the LFS and if there is no
LFS it will converge to the HFS, resulting in a sudden jump in
firing rate as a function of J (Figure 2B). The coupling strength
for which this jump occurs is denoted by Jc and depends on the
baseline firing rate r0 (defined in Equation 8, Figures 2B,C). The
higher r0 the less stable the network is. The firing rate of the LFS
for J values just before it becomes unstable, referred to as rc, is the
maximum firing rate that the network can sustain, which varies
approximately linear with the baseline firing rate (Figure 2D).

The effect of network size is studied by iterating Equation 9
for a vector of firing rate values, which ignores the effects of noise
that are present in the full equations, Equation 1. In these finite
size systems, the LFS is less stable, as reflected in the Jc values that
are much below the mean-field limit (Figure 2E). There also is
a difference between networks depending on their degree correla-
tions, with the anti-correlated network being more stable than the
ER network, correlated and uncorrelated networks. These differ-
ences become more pronounced for larger networks (Figure 2E).
The difference also depends on the baseline firing rate, with the
anti-correlated network again being the most stable (Figure 2F).
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FIGURE 2 | Anti-correlations in the degree distribution improve the

stability of the low firing rate state (LFS). We compared the stability of
finite-size networks with different degree correlation structure by iterating
Equation 9 (which is Equation 1 without taking into account stochastic
spiking). (A) The mean-field solution, corresponding to an infinite-size
network, is simulated by assuming that the firing rate of each neuron is
equal, yielding Equation 6, of which all roots are shown in the graph. (B)

Mean firing rate r vs. coupling constant J in the mean-field limit for different
values for the baseline firing rate r0. When the LFS loses stability, the only
remaining solution is the HFS. As a result the plotted firing rate suddenly
jumps to the maximum possible rate of 100 Hz (corresponding to 1 spike
per bin). (C) The range of stable coupling constants, which are between 0
and Jc , decreases with increasing baseline firing rate. (D) The firing rate rc
of the LFS just before it turns unstable increases linearly with r0. (E) The
stability of the LFS depends on system size and approaches the mean-field
limit (cyan) gradually as network size N increases (baseline rate r0 = 1 Hz).
The anti-correlated network (blue) is always more stable than the ER
(purple), correlated (red), and uncorrelated (green) networks. (F) The
difference between the mean field Jc and that of the finite-size networks
decreases with baseline firing rate (network size N = 2000).

ANTI-CORRELATED NETWORKS ARE MORE STABLE AGAINST
FLUCTUATIONS
The dynamics of binary networks is stochastic because on each
time step the expected firing rate is translated into a binary
value. Hence, the firing rate, either averaged across network neu-
rons during one time bin, or of one neuron averaged over a few
time bins, will fluctuate. These fluctuations will alter the stabil-
ity because these fluctuations could drive the network out of the
BOA of the LFS toward that of the HFS state. The firing rate
in the LFS state vs. coupling constant curve for the stochastic

FIGURE 3 | The anti-correlated network is more stable against

fluctuations. (A) The firing rate vs. coupling strength for the mean-field
solution (cyan) and networks with uncorrelated (green), correlated (red) or
anti-correlated (blue) degree distributions (r0 = 1 Hz, N = 2000). The
anti-correlated degree distribution leads to the most stable network. The
dashed box approximately indicates the interval of coupling strengths
highlighted in panels (B) and (C). (B) Despite the existence of a stable LFS
for a particular coupling strength, fluctuations in network activity may
perturb the network away from it and the network ends up in the
co-existing stable HFS state. The fraction of states that end up in the HFS
state is close to zero far below Jc and increases to unity above Jc . The LFS
state is more stable for the anti-correlated (blue) network than for the
uncorrelated network (green), which in turn is more stable than the
correlated network (red). The dashed lines are fits to the sigmoidal function
in Equation 10. (C) The stability depends on the strength of the correlation.
When the width (dispersion) corresponding to the small axis in the bivariate
Gaussian degree distribution is increased, which means lower correlation,
the stability is reduced. Data are for an anti-correlated network. (D) A
neuron’s firing rate is correlated with its in-degree, but the degree of
correlation is reduced to 0.519 (0.014) due to jitter in this relation for
Equation 1 (blue dots) from 0.997 (0.002) for Equation 9 (green dots). Data
for anti-correlated network, J = 30.96. (E,F) The degree of stability can be
qualified by Jgap, the distance of the Jc for the finite-size network from that
for the mean-field network, shorter distances meaning more stable
networks. Jgap decreases with the (E) baseline firing rate r0 and with (F)

network size. In both panels the anti-correlated network (blue line)
corresponds to the lowest curve indicating higher stability compared to ER
(purple), uncorrelated (green) and correlated (red), an advantage that
increases with network size. The network had N = 2000 neurons, for each
coupling strength Nt = 100 simulations were performed, with a length of
500 time steps, of which the first 100 were discarded as a transient.

network (Figure 3A) looks similar to that for the zero noise case
(not shown), but the fraction of trials on which the HFS state
is reached displays a sigmoidal behavior (Figure 3B): with some
networks switching to the HFS state close to, but below the critical
coupling constant Jc, whereas most of the networks go to HFS for
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coupling constants above Jc. In between there is a transition point
where an equal number of networks go to the LFS and HFS state.
The anti-correlated state is more stable, because this transition
point lies to the right of the transition point for the other net-
works (Figure 3B). We have fitted the probability to the following
expression,

p(J) = 1/(1 + exp(− (J − Jh) /σJ) (10)

where Jh is the transition point and σJ represents the sharpness of
the transition. The transition for correlated and anti-correlated
networks is sharper than for uncorrelated networks, as indicated
by the σJ = 0.424 and 0.420, compared to 0.391, respectively, with
R2 values (fraction of explained variance) all approximately 0.999.

The in- and out-degrees are drawn from a bivariate Gaussian,
which has a long axis, in the direction of the correlation, and a
short axis perpendicular to that direction (Equation 4, Methods).
Increasing the standard deviation along the short axis, termed dis-
persion, reduces the degree of correlation. In addition, it makes
the anti-correlated network less stable (Figure 3C).

The stability properties of the finite-size networks are different
from that in the mean-field limit (Figure 2), because the firing
rate of a neuron depends on the number of inputs (in-degree),
which varies across neurons in the network (Figure 3D, green
dots). The correlation between the neuron’s firing rate and its
in-degree is almost perfect for the non-stochastic network, with
squared Pearson correlation R2 = 0.997 (0.002), but becomes jit-
tered due to the stochastic spiking resulting in a squared Pearson
correlation of 0.519 (0.014) (Figure 3D, blue dots).

The mean-field limit represents the highest level of stability,
because both finite-size and noise effects reduce it. The reduc-
tion in stability can be captured into Jgap, which is the mean-field
critical coupling minus the critical coupling value for the noisy,
finite-size network. The smaller Jgap is, the more stable the system
is. The gap decreases both with baseline firing rate (Figure 3E)
and network size (Figure 3F). As the network size increases,
the comparative stability advantage of anti-correlated networks
increases.

The stability against fluctuations can be analyzed differently.
Non-linear dynamical systems are characterized in terms of the
basin of attraction (BOA). Consider a simple one-dimensional
system with two stable fixed points (and an unstable one in
between) (Strogatz, 1994). Depending on the initial condition
of the one state variable, the system will converge to one or the
other fixed point. The catchment area of the first fixed point, the
range of initial conditions that converge toward it, is the BOA.
There is a well-defined boundary between the two BOAs. Our
goal is to characterize this boundary between LFS and HFS for
the binary networks studied here, which is complicated because
of the high dimensionality of the state space and the stochastic-
ity, which means that a given initial condition near the boundary
could converge to a LFS or HFS depending on the role of the
dice. The first issue means we have to find a more effective and
compact description of the initial state. Our initial choice was
to use the number Na of active neurons in the initial condition.
However, when the Na highest out-degree neurons are active, the
network is more likely to converge to the HFS than when the Na

lowest out-degree neurons are active, even though the initial state
has an equal number of active neurons. Hence, we used the so
called effective number of active neurons, where each neuron’s
contribution is weighted by their out-degree:

Neff = N

∑
i ∈ active dout

i∑
i dout

i

(11)

We started the simulations from a random initial state,
characterized by a specific number of active neurons (range:
between 0 and 200), and repeated this procedure enough times
(Nr = 4000) to ensure sufficient coverage across the relevant Neff

values. For each Neff value so sampled, a fraction converged to
the LFS and the remainder went to the HFS state (Figure 4A). For
small Neff most states converge to LFS and for Neff larger than
a transition value Neff,90 most converge to the HFS (Figure 4B).
We choose as transition value the lowest Neff value for which
90% or more states went to the HFS. The transition value Neff,90

decreases with coupling strength J (Figures 4C,D) until its value
comes close to the number of active neurons represented by the
average firing rate of the mean-field network, at which point
stability is lost. This is because the BOA of the LFS shrinks
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FIGURE 4 | The basin of attraction of the LFS is larger for

anti-correlated networks indicating enhanced stability against

fluctuations. (A) Simulations were started from initial states with a
different number Na of active neurons, which is translated into an Neff value
(see text) to allow for a fair comparison of initial conditions. We show the
firing rate as a function of time (in units of iterations). For low Na the
anti-correlated network converged to the LFS, whereas for high Na runs it
converged to the HFS. (B) This was reflected in the histogram where green
filled bars indicate the number of states with a particular Neff that
converged to the LFS and the open bars indicate the number of states that
converged to the HFS. Data for anti-correlated network with J = 25. (C)

Neff,90 as a function of coupling constant J for uncorrelated (green),
correlated (red) and anti-correlated (blue) networks together with the
number Na,av of active neurons corresponding to the firing rate of the
mean-field solution (cyan dashed line) as a reference. (D) Close-up of panel
(C). The data were obtained from a network of N = 2000 neurons, with a
baseline rate of 1 Hz. For each coupling strength, and, each network type
we used Nr = 1000 initial conditions and averaged across 4 realizations of
the network.
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to zero and most initial conditions go to the HFS. The anti-
correlated network is more stable because it can sustain initial
states with a higher number of active neurons and still return
to the LFS as compared to other networks. Furthermore, for
the anti-correlated networks the BOA is finite for larger values
of the coupling constant compared to other networks. Overall,
when a sufficient number of neurons are active in the ini-
tial condition, both the effective and unnormalized number of
active neurons yield similar results for the size of the BOA (not
shown).

THE SENSITIVITY OF THE NETWORK CAN BE CHARACTERIZED USING
ROC ANALYSIS
During spontaneous (unstimulated) activity in the network, the
firing rate will fluctuate from time bin to time bin, which can
be considered random draws from a distribution. When the net-
work is stimulated, the average firing rate will be altered, trivially
because of the activated neurons, but non-trivially through the
downstream effect of this stimulation on the other neurons. The
stimulation is characterized by the number of cells np stimulated
(and their out-degree, see below) and the duration of the stim-
ulation Tstim. We used np = 8 and Tstim = 6. Its effect on the
network can be detected when there is a systematic difference
between the network states, quantified, for instance, in terms of
the mean firing rate of the overall activity. An ROC analysis quan-
tifies how different the distribution of firing rate is between the
stimulated and unstimulated networks and how easy it is to detect
this difference and can thus be compared to measured behavioral
responses. In all of the following analyses we exclude the stim-
ulated cells themselves. One reason is that the decision process
would be based on downstream neurons, hence we should detect
the difference in the downstream population.

The histogram of the simulated firing rates was shifted relative
to that of the unstimulated network (Figure 5A). In Figure 5B,
the ROC curve corresponding to the empirical distributions in
panel a is shown. The evaluation of the corresponding AUC, as
a function of time is shown in panel c. Before the stimulation
at t = 10, the statistics of both networks are the same, yield-
ing an AUC of close to 0.5, whereas after stimulation the AUC
rises to the 0.75. The ability to detect a stimulation increases
with the strength of the coupling constant (Figure 5D). This can
be simply understood because a higher J increases the impact
of presynaptic activity on the neuron’s firing rate, hence it also
increases the effect of stimulation. There is no difference in sen-
sitivity due to the correlation structure of the network as long as
neurons with similar out-degrees are stimulated, because the sen-
sitivity only depends on the out-degree. The AUC also increases
with baseline firing rate of the network (Figure 5E), which indi-
cates that network state changes, such as those occurring during
arousal or with attention in which the overall firing rate increases,
could improve task performance. Also for this behavior there
was no difference between networks with the different type of
degree correlations. The derivative of the mean firing rate r with
respect to J increases with baseline firing rate r0, suggesting that
the effect of a stimulation on the network firing rate increases
with r0, which is indeed borne out by the simulation results in
Figure 5E.

FIGURE 5 | Network sensitivity, when evaluated using an ROC

analysis, depends only on the mean out-degree of the stimulated

neurons and not on the degree correlations. (A) Distribution of firing rate
across cells in a 10 ms time bin for spontaneous activity (red) and for the
stimulated network (blue), in which 8 random cells were stimulated. Note
that the stimulated cells were not included in this ROC analysis and we
used the binary responses xi (t) to determine the firing rate. (B) The
corresponding ROC curve (blue) quantifies the difference between the
distributions, relative to the diagonal (gray), which represents distributions
that cannot be distinguished. (C) The area under the curve (AUC) for the
ROC curves calculated for different time bins. The AUC before stimulation
was close to 0.5 because the distributions were the same apart from
fluctuations due to sampling. After the stimulation, which started at t = 10
and ended at t = 15, the AUC rose to around 0.75. (D) The AUC increases
with increasing coupling constant and (E) with increasing baseline firing
rate. (F) The AUC depended on the mean out-degree of the stimulated
neurons. Neurons were divided into ten groups according to their
out-degree, with the first group having the highest out-degree. The group
index is indicated on the x-axis. The results in (D–F) were not significantly
different for correlated (red), anti-correlated (blue) or uncorrelated (green)
networks, t-test, p = 0.4479, 0.6279, 0.7421, respectively. The network
was comprised of N = 2000 neurons, of which np = 8 neurons were
stimulated for the duration of Tstim = 6 time units starting on the 10th bin.
In panel (A–C) results for an uncorrelated network are shown. Parameters:
(A–C,F) J = 18, r0 = 1; for (D) r0 = 1 and (E) J = 20.

Stimulus detection depended on which cells were stimulated,
with their average out-degree being the most important fac-
tor. We chose np neurons to be stimulated randomly from 10
different groups with different mean out-degree, which were
generated as follows. First all neurons were ordered according
to their out-degree, with the highest out-degree neurons com-
ing first, and then divided into ten equally-sized groups, labeled
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1 to 10. Multiple stimulation trials were done with np neurons
picked from one of the groups from which the group AUC was
determined. The AUC for each group was then plotted as a func-
tion of the group label (Figure 5F). The AUC values for the first
group were much higher than for the next groups demonstrating
clearly that the group with the highest mean out-degree also had
the highest AUC.

Taken together, these simulations show that the correlations in
the degree distribution do not directly affect network sensitivity
to stimulation. Rather, this sensitivity is determined by the out-
degree of the stimulated neurons. Networks can display a higher
sensitivity if they have a larger variability in the out-degree dis-
tribution and those cells with the highest out-degree are being
stimulated. ER networks have a low variance in the out-degree,
and will therefore have a reduced sensitivity compared to the net-
works here, compare the AUC of the first group to that of the fifth
group which represents neurons with an out-degree closest to the
mean.

The fluctuations in firing rate during spontaneous activity are
expected to have different temporal correlations compared to
those in the stimulated network, as an increase due to an exter-
nal stimulation is going to persist across the time bins during
which the stimulation takes place. Hence, the detection rate could
improve by taking into account (spatio) temporal correlations.
The first step is to consider the correlation in network firing rate
r between two consecutive time bins. When rt+1 is plotted vs. rt a
return map would be obtained. However, because the firing rate
values are restricted to x/(N�t), where x is an integer between
0 and N, and N the network size, the return map would have a
non-informative appearance. Hence, we made a density represen-
tation, by replacing each sample by a two-dimensional Gaussian
(kernel density estimate) with a standard deviation (bandwidth)
optimally estimated from data following the Silverman’s rule of
thumb (Silverman, 1986). The hot spot in the return map den-
sity obtained for stimulated networks (Figure 6B, plus sign) is
shifted along the diagonal in the positive direction (i.e., higher
rates) in comparison to the return map for spontaneous activity
(Figure 6A).

We determined whether such a two-dimensional represen-
tation would improve the detection rate. An equal number of
samples from spontaneous activity and from stimulated activ-
ity were provided to a fuzzy clustering method (FCM) routine
in Matlab in order to find two clusters (Fellous et al., 2004).
The FCM returns for each data point i the probability uij that
it belongs to cluster j. As the sum of probabilities needs to be
unity, for two possible clusters we only need to consider ui1. We
thus obtain a distribution of ui1 values for data points from the
spontaneous activity and a distribution for data points from the
stimulated network. The difference between these distributions is
a measure for how well stimulation can be detected and can thus
be subjected to a ROC analysis. In this ROC analysis the ui1 val-
ues are treated in exactly the same way as the firing rates used to
obtain the results in Figure 5. The resulting AUC values were 5%
higher than based on the distribution of firing rates in one bin
(t-test, p = 0).

In the firing-rate based detection procedure, each neuron
(except the directly stimulated ones) carries equal weight. The

FIGURE 6 | Detection can be improved by including past activity and

weighting neurons depending on how many inputs they receive from

directly stimulated neurons. (A,B) Density representation of the firing rate
return map, wherein the probability of obtaining consecutive rate values (rt ,
rt+1) is represented by a color scale, with red indicating the highest
probability and blue indicating a near zero probability. The results are shown
for (A) spontaneous activity and (B) stimulated activity. The plusses indicate
the location of the peak in panel (B). (C) Analysis of factors that contribute to
a neuron’s weight in detection decision that is outputted by the perceptron
procedure. There was significant but small correlation between weight and
(top left) in-degree or (top right) out-degree. There was a correlation
between the weight and the number of direct inputs from stimulated
neurons (bottom left), but only a weak correlation with the number of inputs
from cells that received direct input from the stimulated cells (bottom right).
The network was comprised of N = 2000 neurons, coupling constant
J = 18, baseline firing rate r0 = 1 Hz. In the stimulated network, np = 8
neurons were stimulated for a duration of Tstim = 6 time bins.

cells that are not directly connected to the stimulated neurons
would display firing rate fluctuations that are unrelated to the
stimulation, hence act as noise that reduces probability of detec-
tion. The signal to noise of the firing rate fluctuations could be
improved by weighing those neurons less. To explore this hypoth-
esis we applied a perceptron procedure (see Methods) to learn the
optimal weights for classifying the network state vectors (Duda
et al., 2001). An equal number of network states for spontaneous
activity and for stimulated networks were supplied to the per-
ceptron routine together with the corresponding class labels. The
output was a weight for each neuron. As before the activity of
the directly stimulated neurons was not included in this anal-
ysis. To determine what features contributed to the weight we
plotted the weight vs. feature value in a scatter plot and calcu-
lated the corresponding Pearson correlation. There was a small,
but significant correlation between the weight and the in-degree
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(Figure 6C, top left, correlation 0.073 ± 0.03, p = 0.0011) and
with the out-degree (Figure 6C, top right, correlation−0.052 ±
0.027, p = 0.018). There was a strong correlation between the
weight and the number of direct inputs the neuron received from
stimulated neurons (Figure 6C, bottom left, correlation 0.410 ±
0.15, p = 0.0). The number of indirect inputs from stimulated
neurons was less relevant (Figure 6C, bottom right, correlation
0.072 ± 0.032, p = 0.012). We calculated this by determining the
number of inputs from cells that received direct inputs.

Taken together, these analyses show that our estimates for the
detection of stimulation based on overall firing rate are under-
estimates and can be improved by taking into account network
history and by selecting which neurons to listen to. The latter
of which may be achieved through synaptic plasticity and the
appropriate learning rules.

DETECTING ANTI-CORRELATION IN THE DEGREE DISTRIBUTION WITH
LIMITED DATA
The results here establish that anti-correlation between in- and
out-degrees results in more stable, but equally sensitive networks,
compared to networks without correlations between in- and out-
degree, or positive correlations between them. Hence, learning
to detect a stimulation could proceed by altering the correla-
tion between in- and out-degree. To demonstrate such a learning
effect, the in- and out-degree of a number of neurons needs to be
sampled. Classical tracing techniques are not appropriate because
they involve the connections to or from multiple nearby neurons
(Lanciego and Wouterlood, 2011). For instance, when the ret-
rograde tracer horseradish peroxidase is injected, it is absorbed
by multiple axon terminals and transported to their respective
cell bodies. These axon terminals do not necessarily synapse on
one and the same neuron near the injection site. Hence, the data
cannot be used to determine the in-degree of a neuron near the
injection site.

New viral-based techniques could help, because they work
by infecting a few cells in the neighborhood where the virus is
injected (Wickersham et al., 2007; Osakada et al., 2011). The
virus will then retrogradely label the cells presynaptic to these
cells by crossing one synapse and one synapse only. In the presy-
naptic cells the infection stops because the virus misses the
proteins necessary to cross another synapse. The challenge with
this method is to infect only one cell, with both an anterogradely
and retrogradely crossing virus.

Currently, the gold standard is to simultaneously record mul-
tiple cells in vitro and assess connections by inducing action
potentials in one neuron at a time and recording the post-synaptic
responses in the other cells. The current record is 12 cells recorded
simultaneously (Song et al., 2005; Perin et al., 2011). This means
that the anti-correlation in the degree distribution will have to be
assessed indirectly, by sampling from sub-networks.

Motifs represent patterns in the connectivity that occur more
often than expected if the connections were made random (Milo
et al., 2002). For instance, consider a network for which the
average probability of a connection is p. For two neurons, if
these connections are made randomly, the probability of having
no connection is (1 − p)2, for having one connection 2p(1 − p)

and for having a bidirectional connection p2. When it is found

that bidirectional connections occur significantly more than the
expected p2 then there is additional, non-random, structure in the
network (Song et al., 2005). Motifs most often refer to triplets of
neurons and the patterns of connectivity between them that occur
more often than expected in a random network (Milo et al., 2002).
A motif distribution is the number of times each motif occurs in
a network and a motif is considered present when it occurs more
often than in a control network. Motif distributions are affected
by many network properties such as, for instance, the degree
distribution. The networks studied here, even when uncorrelated,
have a different degree distribution than the ER network, which
means that ER random networks are not a good control. Hence,
we have to numerically generate the control distributions rather
than having access to the analytical expression for the expected
rate of each motif. In addition, in experimental settings we do not
have access to the whole network from which to determine the
motif distribution, we have to do with sub-networks. These sub-
networks do not come from the same network, rather they come
from networks sampled from an ensemble of networks with simi-
lar properties. To obtain estimates for how to observe evidence for
anti-correlation in the degree distribution we need to deal with
each of these issues.

The overall goal is to distinguish between pairs of networks
with anti-correlated, uncorrelated and correlated degree distribu-
tion with the same marginal distribution for in- and out-degree.

We considered 13 different motifs that consisted of three con-
nected neurons and gave each motif a numerical label as shown in
Figure 7A. We determined the number of motifs in each realiza-
tion of a network with correlated, anti-correlated or uncorrelated
degree distribution and took the average. This was done for
the full network (here reduced to N = 200) as well as for sub-
networks (size Nsub). The complexity of a motif corresponds to
the number of edges in the pattern, ranging from 2 to 6, which
determines how often it is counted in a network. We normal-
ized the counts such that they took values on the order of unity
in order to better compare them across motifs. The mean count
as a function of Nsub converged to a constant for network sizes
between 50–100 neurons (Figure 7B), with more complex motifs
requiring larger Nsub. The width of the count distribution, quan-
tified as the standard deviation, decreased with Nsub as the-3/2
power (Figure 7C). Hence, for large enough networks the differ-
ences in mean counts across network type can be detected with
certainty. This power law behavior is consistent with the results
for a Binomial process with probability p and on the order of
n ∼ N3

sub trials, for which the mean is np and the variance is
np(1 − p). In that case the normalized mean is p, and its variance
(1-p)/n (see also Equations 2, 3), leading to a standard deviation

varying as n−1/2 = N−3/2
sub .

We are looking for motifs whose counts are different between
the analyzed network types. In Figure 7D we show the count as a
function of motif for the three network types, with the highest dif-
ference occurring for the complex motifs 110 and 238. However,
the counts for these motifs, which have the largest number of
edges, are characterized by a large standard deviation. When we
plot the motifs in an order based on the ratio of count difference
over standard deviation, motif 98 comes up as winner instead
(Figure 7E). Figure 7D shows that there are fewer motif 98 in
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FIGURE 7 | Motif 98 is the most sensitive to degree correlations. (A)

There are 13 motifs that involve 3 connected nodes. Below the graphical
representation we plot the numbering used here, which follows Itzkovitz
et al. (2003). The expected number of motifs depends on network size,
hence we normalize the count by N3(k/N)e, with N the number of nodes, k
the expected number of edges per node and e the number of edges in the
motif. In addition, we include a numerical factor representing the equivalent
permutations [listed in Table 3 in Itzkovitz et al. (2003)]. (B) The normalized
counts, averaged across a thousand realizations, converge to constant
values for sub-networks larger than 50–100 nodes, with the precise value
depending on the complexity of the motif involved. (C) The standard
deviation of the normalized counts fall off as N−3/2. We illustrate the results
for the anti-correlated network, which are typical for the correlated and
uncorrelated network also. In addition, we omitted motif 238 because it
occurs at such a low probability that it makes the statistics noisy. (D) The
normalized counts for each motif for the (red) correlated, (blue)
anti-correlated and (green) uncorrelated networks. We used the counts for
the full network, rather than sub-networks. Network size in panel (D) and
(E) was N = 200. We used a bivariate Gaussian degree distribution with a
mean number of nodes equal to 10, a standard deviation along the long axis
of σy = 3.33 and along the short axis of σx = 1.0. (E) The maximum
difference in mean count between all three possible comparisons (black
bars), relative to the mean standard deviation of these counts across the
three network types. The motifs are ordered on the count over standard
deviation ratio, starting with the largest. According to this analysis motif 98
should be used to best distinguish between different network correlation
structures.

anti-correlated networks compared to correlated networks. This
can be understood intuitively by noting that in “ring” motif 98
each neuron has the same number of inputs as outputs, namely 1,
which is more representative for correlated networks (Figure 1D,
inset) than for anti-correlated networks (Figure 1C, inset).
Furthermore, this means there is a lower probability of closing the
ring, because in an anti-correlated network a neuron with many
inputs has fewer outputs to get to the next neuron in the ring.

The count distributions are not Gaussian for small sub-
networks. Figure 8A shows the count distribution for motif 98 for
networks with N = 200. Each network gives rise to a symmetric

appearing distribution, with the peak at a different location
depending on the network type. The distribution for the anti-
correlated and correlated network were farthest apart, with that of
the uncorrelated distribution situated in the middle. For Nsub =
30 (Figure 8B), the corresponding distributions fell on top of
each other and are asymmetric because the counts are always
positive. To compare the distributions we therefore performed
an ROC analysis. As expected based on the reduced overlap
between distributions, the AUC increases with sub-network size,
and motif 98 comes out on top with the highest AUC (Figure 8C).
Furthermore, given the lower overlap between the anti-correlated
and correlated distribution (Figure 8A), the AUC values for
the comparison between anti-correlated and correlated network
is higher (Figure 8C) than for either the comparison between
anti-correlated and uncorrelated (Figure 8D) or correlated with
uncorrelated (not shown).

In experiments only relatively small networks can be mapped,
up to 12 cells using paired recordings and a few tens to hun-
dreds using population calcium imaging. For these numbers the
degree correlations cannot be reliably distinguished based on
a single measurement. We therefore pooled measurements to
see if this improved discriminability for more experimentally
accessible smaller sub-networks. This procedure (pooling motif
counts across Nav = 50 network realizations) indeed reduced
overlap between distributions (Figure 8E, compare to Figure 8B).
The more motif counts were pooled, the higher the AUC was
(Figure 8F). Furthermore, the value of unity, corresponding to
perfect discriminability is reached for smaller sub-network sizes.
For Nav = 50, Nsub = 30 networks are perfectly discriminable
and the AUC transitions from values just above 0.7 to unity
between Nav = 30 and 50 (Figure 8F). Taken together, sub-
networks of a few tens of neurons could be used to test our
hypothesis experimentally.

The question is whether this result can be improved by includ-
ing counts for multiple different motifs (Figure 9A). Without
pooling, motif 98 by itself outperforms any pair of motif counts,
according to the AUC value (Figure 9B). To determine the AUC
value for pairs of motif counts we used the FCM procedure
as outlined in the methods section. When counts are pooled
(Figure 9C), some motif pairs outperform motif 98 by a small
margin. The pairs are highlighted in Figure 9D, and involve motif
98 itself. The more separated the cloud of points corresponding to
different network types is, the better the FCM procedure classifies
the networks, compare the plusses (correct discrimination) and
dots (incorrect) in Figure 9A.

DISCUSSION
The overall firing rates in barrel cortex (de Kock et al., 2007;
Greenberg et al., 2008; Barth and Poulet, 2012) are much lower
than might be expected based on the classic experiments in
macaque visual cortex (Hubel and Wiesel, 1968). Neural activity
is also variable, which can be characterized as across trial reliabil-
ity, or in terms of the coefficient of variation and Fano factor of
spontaneous activity (Shadlen and Newsome, 1998). These mea-
sures reveal that the activity is similar to that of a Poisson process,
in which the occurrence of a spike in a time bin is uncorrelated
with whether or not a spike occurred in previous bins. The mean
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FIGURE 8 | Degree correlations can be distinguished by pooling fifty

measurements of networks at least thirty neurons in size. (A) Motif
count varies across network realizations, but degree correlations can be
distinguished when the corresponding distribution show little overlap. We
show the distribution of the normalized counts of motif 98 for (red)
correlated, (blue) anti-correlated, and (green) uncorrelated networks with
200 neurons. (B) For smaller sub-networks (Nsub = 30), the distributions
overlap. Furthermore, these distributions are not Gaussian as they are
skewed because counts are always positive. Hence, a more general
procedure, such as the ROC analysis needs to be used instead of looking at
the differences in mean count relative to the standard deviation. (C,D) The
area under the ROC curve (AUC) as a function of sub-network size Nsub for
the comparison (C) between correlated and anti-correlated networks and
(D) between anti-correlated and uncorrelated networks. Each motif is
labeled with a line style and color as indicated in the legend. Motif 98 is
most sensitive in both cases (as well as for the correlated vs. uncorrelated
comparison that is not shown). It is more difficult to distinguish an
anti-correlated network from an uncorrelated one than to distinguish it from
a correlated network. The average AUC values were determined based on
the AUC value for each of twenty different motif distributions of 500
network realizations, which were sampled randomly with replacement out
of 1000 realizations. (E) The motif distribution for Nsub = 30 can be pooled
across Nav = 50 network realizations in order to shrink the width of the
distribution, so that the differences in mean counts become clearer
[(compare to panel (B)]. (F) The AUC for larger Nav values reaches unity
(distributions are perfectly distinguishable) for smaller sub-network sizes.
We show (green) no pooling, (blue) pooling across Nav = 5 realizations and
(red) pooling across Nav = 50 realizations. The AUC goes from 0.7 to 1.0
between Nsub = 30 and 50 when pooled across Nav = 50 realizations,
indicating that networks of size 30 can be used to determine degree
correlation structure.

firing rate is maintained by the intrinsic excitability of neurons
and their synaptic inputs, including recurrent excitation. High
variability together with a low firing rate implies that the net-
work dynamics should be stable against fluctuations in the mean
activity in the sense that these fluctuations do not generate states

FIGURE 9 | The gain in discriminability by using the joint distribution

of motif counts rather than the marginal distribution is limited. (A) The
outcome of the FCM procedure to find two clusters. Red points indicate
counts obtained from a correlated network and blue points are those for
the anti-correlated network. The plusses indicate points correctly classified
by FCM and the dots represent incorrectly classified network realizations.
Each motif-pair ROC curve is obtained by applying the ROC analysis to the
FCM generated probability of each network to belong to cluster one (see
methods). (B) The resulting AUC as a function of sub-network size for motif
98 (red) is higher than for all possible pairs of motifs (black curves). The AUC
shown is for comparing anti-correlated and correlated networks. (C) When
the motif count is pooled across Nav = 20 realizations some two-motif
curves exceed the single motif curve, which are shown separately in panel
(D). This suggests that for a specific size of the sub-network
distinguishability can be improved by considering pairs of motif counts.

with networks bursts in which all neurons in the network are
active at the same time.

Experiments show that rodents can detect single-cell stimu-
lation in barrel cortex, in which a single neuron is electrically
stimulated to produce a high-frequency train of action potentials
(Houweling and Brecht, 2008). This may mean that single-cell
stimulation can cause an increase (or decrease) in the firing rate
of the local network that is significantly different from that occur-
ring during spontaneous activity. Taken together, this means that
cortical networks with a low firing rate should at the same time
be stable against fluctuations in firing rate and sensitive to weak
stimulation. The overall goal of this paper was to a find a potential
explanation for how the contrasting demands of sensitivity and
stability can be realized. To achieve this we examined the dynam-
ics of binary neural networks with correlation between the in-
and out-degrees of neurons. In the following we summarize the
main results with the aim of linking the detection performance
of the network to experimentally obtained behavioral results, the
mechanism by which sensitivity and stability can be achieved,
and predicting the anatomical signatures of the hypothesized net-
work. We also discuss the role of other biophysical factors, such as
inhibition, not taken into account in the present study.

GENERATING THE NETWORK CONNECTIVITY UNDERLYING ENHANCED
STABILITY
Our guiding hypothesis is that networks with an anti-correlation
between the in- and out-degree of neurons are more stable and
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equally sensitive as other networks with comparable marginal
degree distributions. Network sensitivity is generated by neurons
with a high out-degree, because these would amplify the effect of
nanostimulation the most. This amplification would also desta-
bilize the network, so these cells should not be activated during
spontaneous activity. As the input to neurons is proportional to
the mean firing rate and their in-degree, this can be achieved by
making sure that high out-degree neurons have low in-degrees.
To maintain the average degree, both in and out, there then also
need to be neurons with a low out-degree and a high in-degree.
We implemented this hypothesis as an anti-correlation in the in-
and out-degree.

In the standard Erdos-Renyi networks, the relative variance
in the degree distribution for large networks becomes too small
to have out-degrees that are much larger than the mean degree,
which is needed to reach the desired sensitivity. Hence, we needed
to broaden the degree distribution artificially by using a trun-
cated bivariate Gaussian distribution. Networks with this sampled
degree distribution were generated via the configuration model
(Newman, 2010). This configuration model generates networks
with self-edges and multi-edges. Analytical calculations show that
the probability for obtaining a network with one or more of
these edges is close to one for the large mean degrees we consider
(Blitzstein and Diaconis, 2006). Nevertheless, the number of these
edges is low and their impact on the dynamics was limited.

There are a number of ways to address the multi and self-edge
problem in a more principled approach that differ in computa-
tional efficiency and ease of implementation. First, one can use
the configuration model procedure, but reject an invalid edge
and find a valid replacement. This carries the risk that the algo-
rithm stops when there are no valid edges available, which means
that the whole procedure has to be restarted. Alternatively, as
mentioned before, one can identify the invalid edges when the
network construction has been completed and remove them or
replace them by valid ones. See Blitzstein and Diaconis (2006)
for a review. Second, one can find one graph that satisfied the
degree distribution using the Havel-Hakim procedure (Viger and
Latapy, 2005; Erdos et al., 2010; Chatterjee et al., 2011) and
generate samples from the overall graph distribution by swap-
ping links (Blitzstein and Diaconis, 2006). Swapping links refers
to the procedure where randomly chosen existing links i → j
and k → l are swapped into i → k and j → l when this yields a
simple graph without self-edges and multi-edges. This requires
careful calibration of the number of swaps and also introduces
bias because these swaps do not change the number of triangles
in the network (Roberts and Coolen, 2012). Third, a sequen-
tial method can be defined that produces all possible graphs, by
randomly selecting amongst the allowed edges that keep the resid-
ual degree distribution graphical (Del Genio et al., 2010; Kim
et al., 2012). A degree distribution is graphical when there exists
a simple graph with that distribution, after each step the degree
distribution is lowered to account for the connections realized,
and this is referred to as the residual degree distribution. This
method does not produce the graphs with the correct probabil-
ity. Hence, averages based on these graphs have to be reweighted
to take this into account. Furthermore, in our hands, an imple-
mentation of this method produces graphs with a correlation

between the in- and/or out-degrees between different nodes,
which is referred to as assortativity. This necessitates a num-
ber of link swaps to remove these correlations. Fourth, edges
can be sampled according to a Boltzman function (Park and
Newman, 2004), where the expectation value of the degree of
a node is fixed through a Lagrange multiplier, for which the
appropriate value has to be picked, which can be achieved, for
instance, through a maximum likelihood approach or iterative
rescaling (Chatterjee et al., 2011). Taken together, we opted to
use the simplest method here, because these alternative methods
for network generation were computationally more intensive and
also suffered from aforementioned additional drawbacks, such as
graphs that were not sampled according to a uniform probability
(Del Genio et al., 2010) or other biases in the network statis-
tics (Roberts and Coolen, 2012). Recently developed methods for
generating networks with degree correlations, both in a single
neuron as well as between pairs of neurons look very promising
(Roberts and Coolen, 2012).

STABILITY IS ENHANCED WHEN THE IN- AND OUT-DEGREE ARE
ANTI-CORRELATED
Our aim was to find stable networks, by which we mean that fluc-
tuations do not cause a cascade of recurrent excitation resulting
in all cells being active at the same time. One solution would be
to have inhibitory neurons, but this does not affect the stability
of the LFS, it just changes the ultimate level of activity reached
(Avermann et al., 2012). Stability can be assessed in a number of
different ways. First, stability in the nonlinear system sense: is the
LFS a fixed point of a noise-less, infinite size system? We deter-
mined that there was a range of coupling strengths J, below Jc, for
which such a LFS exists. The higher the baseline firing rate, the
smaller that range is. Finite-size systems have a smaller range of
stable coupling strength, because there is heterogeneity, not every
neuron has the same in-degree. For instance, the uncorrelated
network had a higher variance in the degree distribution than
the ER network, and also had a smaller Jc. Interestingly, networks
with a positive correlation between in- and out-degrees reduced
stability even more, leading to a lower Jc, whereas for networks
with a degree anti-correlation, Jc was higher, even exceeding the
value for the ER network of the same size.

These calculations ignore the effects of fluctuations, which we
subsequently introduced by making the dynamics stochastic. This
did not alter the stability as determined before in terms of the
existence of the LFS, but introduced other features. The LFS has a
BOA with a fuzzy boundary due to the stochastic dynamics. A net-
work can then be unstable when the fluctuations are large enough
to leave the BOA when you wait long enough. This is primarily a
concern for J values close to (and below) Jc. We determined the
fraction of trials during which the network left the LFS BOA dur-
ing the simulated time interval. As expected the anti-correlated
network is more stable, because Jc is larger. For coupling con-
stants away from Jc, this way of characterizing the BOA does not
work. Hence, we started the network in states with many more
neurons active than would be expected as a result of any normal
fluctuation, and determined whether it converged to the LFS or
HFS. This revealed that the BOA was larger for the anti-correlated
network even away from Jc.

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 156 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Vasquez et al. Stability & sensitivity in cortical networks

Taken together, these results clearly show that anti-correlated
networks are more stable than uncorrelated ones, which means
they can operate stably at higher coupling strengths and base-
line firing rates, which confers advantages when the sensitiv-
ity is higher for higher coupling strengths and baselines rates.
Furthermore, their sensitivity is enhanced compared to ER net-
works with the same connection probability, because of a subset
of neurons with a high out-degree.

Recent experiments summarized in Barth and Poulet (2012)
show that the average firing rate in sensory cortex is low, espe-
cially in superficial layers. This holds for spontaneous as well as
evoked activity, and for both anesthetized animals and awake ani-
mals and is the basis for the parameter settings in the model.
Nevertheless, there is a small subset of cells that display high firing
rates. Cells that have recently been active express the immediate-
early gene c-fos. When the c-fos promoter is used to express the
fluorescent marker GFP, the recently active cells can be targeted
for recording in vivo and in vitro. The so called fosGFP+ cells had
a higher firing rate both in vivo and in vitro and received more
excitatory inputs and less inhibitory inputs (Yassin et al., 2010).
Furthermore, these cells are more likely to be connected amongst
themselves. In the anti-correlated networks, there are neurons
with a high in-degree but a low out-degree which make the net-
work more stable, and neurons with high out-degree but low
in-degree that make the network more sensitive. The fosGFP+
neurons could correspond to the former group, which form the
backbone for the spontaneous activity. We did not explicitly build
in assortativity in the network to preferentially connect high in-
degree neurons to each other as suggested by Yassin et al. (2010).
We take from this result that the prevailing homeostatic processes
create networks with more strongly connected sub-networks
and produce cell-to-cell heterogeneity in the balance between
excitation and inhibition. Training to detect electrical stimula-
tion should thus be able to induce similar changes in network
structure.

THE SENSITIVITY ESTIMATED USING DIFFERENT MEASURES OF
NETWORK ACTIVITY
Rodents were able to distinguish between patterns of neural activ-
ity during spontaneous activity and those caused by single-cell
nanostimulation. Nevertheless, this distinction was small, given
the effect size measured experimentally (Houweling and Brecht,
2008). One hypothesis is that the total amount of activity (firing
rate) due to nanostimulation significantly exceeds that expected
of a typical fluctuation. For a stationary network dynamics, this
implies a fixed threshold above which a fluctuation is more
likely caused by nanostimulation, whereas fluctuations below the
threshold are more likely due to spontaneous activity. This can be
quantified using a ROC curve, and the area under it, the AUC.
The ROC is the curve traced out by varying this threshold and
plotting the true positive rate (nanostimulation above thresh-
old) vs. false positive (spontaneous fluctuations above threshold).
When both distributions for the fluctuations are Gaussians, the
AUC corresponds to the difference in means divided by the (com-
mon) standard deviation (Kingdom and Prins, 2010). Hence it is
a measure of the difference in response relative to the size fluc-
tuations around it. We found that the main determinant of the

AUC is the out-degree of the stimulated neurons, independent of
the correlation between in- and out-degree in the network. The
AUC increases with coupling strength and baseline firing rate. The
anti-correlated network has an advantage because it allows for a
broader range of J and r0 values. It thus has an increased stability
at equal sensitivity.

The above represents an underestimate of the sensitivity,
because it assumes that the activity of each neuron contributes
equally to the detection (decision) and that the temporal signa-
ture of the firing rate fluctuation is not informative. Our further
analysis shows that each of these factors would improve detection
performance and makes it therefore likely that state-of-the-art
classification approaches such as support vector machines would
even further improve performance. Taken together this means
that as a system the rodent brain could reach a much higher sensi-
tivity than predicted here, when it could utilize all the information
available in the network activity. Model simulations of spike pat-
tern detection by cortical networks (Haeusler and Maass, 2007)
suggests that laminar models with plastic synapses allow for more
accurate estimates of the detection capability compared to neural
networks that do not take into account the layered structure of
cortex.

DETECTING SIGNATURES OF ANTI-CORRELATED DEGREE
DISTRIBUTIONS
The model makes the prediction that anti-correlated networks
would be more appropriate for the detection of nanostimulation
in stable networks. To test this prediction we need to be able to
distinguish correlations in the degree structure of the network
without having access to all the inputs and all the outputs of
a subset of neurons. We find that anti-correlations change the
frequency of specific network motifs in a way that is indepen-
dent of the network size, which means that it can be determined
by averaging across many smaller sub-networks. A “ring” motif,
number 98, which was a projection from neuron 1 to 2, from 2 to
3 and from 3 to 1, discriminated best between correlated and anti-
correlated networks (Figure 7). Pairs of motif counts increased
discriminability to a small extent, and only when the counts
were pooled. This shows that these networks can be detected
experimentally based on sampling sub-networks comprised of 30
neurons, when enough samples are available.

FUTURE STUDIES SHOULD INCORPORATE MULTIPLE TYPES OF
INTERNEURONS
The model was highly simplified so that we could focus on the
connectivity structure. Having established the advantages of anti-
correlation, our goal is to study the effects in more realistic
networks. There are many other biophysical features that could
be included in the model that would change the results quanti-
tatively or, in some cases, even qualitatively. Here we highlight a
small selection of the most relevant ones.

The first issue is inhibition. Experimental evidence shows
that two types of inhibitory neurons, those expressing parvalbu-
min (PV) and somatostatin (SOM), are relevant in determining
the gain of the response of pyramidal cells to whisker stimula-
tion, visual stimulation or current injection (Gentet et al., 2010;
Kwan and Dan, 2012; Lee et al., 2012). Avermann and coworkers
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(Avermann et al., 2012) constructed a model of L2/3 in bar-
rel cortex constrained by in vitro measurements and studied the
effect of stimulating varying amounts of pyramidal cells express-
ing channelrhodopsin by light pulses. In this model the strongest
projection, in terms of the connection probability and synaptic
strength, was from pyramidal cells to fast spiking (FS) interneu-
rons (corresponding to PV neurons). Even when a relatively small
fraction of the pyramidal cells were stimulated, almost all FS cells
were recruited. For higher fractions of stimulated pyramidal cells,
the non-fast spiking (NFS) interneurons (such as SOM interneu-
rons) would become gradually activated. As a result the pyramidal
cell activity remained low despite strong stimulation. The authors
hypothesize that the strong inhibition is a mechanism to maintain
sparse spiking in the pyramidal cells, with the NFS cells providing
a back-up inhibitory mechanism. It is not clear how this com-
putational model would be applicable to in vivo dynamics where
FS cells are already spontaneously active. Furthermore, the level
of activity in the different interneurons depends on brain state
(Gentet et al., 2010). We have simulated binary networks with
inhibitory neurons and find that anti-correlated degree distribu-
tions in the E–E sub-network improve stability (and yield the
same sensitivity).

Detection could also take place by a state change in the net-
work. The network has a LFS and a not too biologically plausible
HFS, which in the context of a network with inhibition would
perhaps correspond to something like an upstate. The true pos-
itive rate would correspond to how often single-cell stimulation
would drive the network out of the BOA for the LFS, whereas the
false positive rate would correspond to how often this would hap-
pen in the spontaneous state. The latter is given by the fraction of
trials the system goes to the HFS state (Figure 3). The former can
be tuned by changing the number of neurons and the duration
of stimulation. A proper examination of this issue would require
a network with a population of inhibitory neurons (Avermann
et al., 2012).

A second issue is the effect of including spike timing. Synapses
are sensitive through short-term depression and facilitation to
the temporal patterns of stimulation (Abbott and Regehr, 2004),
which could thereby affect the postsynaptic response in a non-
linear fashion, thereby preferentially activating specific popula-
tions of neurons. Dendritic nonlinearities also affect the impact
of synaptic inputs based on their temporal coincidence and
whether they arrive on the same part of the dendrite (Gasparini
et al., 2004; Major et al., 2008; Polsky et al., 2009; Lavzin et al.,
2012). Either of these effects could increase the sensitivity to
external stimulation, while not appreciably changing the sta-
bility, thereby strengthening the results reported in this paper.
However, to fully quantify these effects would require new and
more extensive simulations that fall outside the scope of this
paper.

PERCEPTUAL RELEVANCE OF ELECTRICAL OR OPTICAL STIMULATION
IN EXPERIMENT
Our study explores a hypothesis for how to achieve detection of
an electrical stimulation by quick recurrent excitation that escapes
before being shut down by inhibition, without destabilizing the
spontaneous state. We now review the relevant literature focusing

on the difference between electrical and sensory stimulation and
the role of inhibition.

The barrel cortex normally processes thalamic activity gener-
ated in response to whisker stimulation. According to the canoni-
cal cortical circuit (Douglas and Martin, 2004; Lefort et al., 2009;
Petersen and Crochet, 2013) this activity arrives first in layer 4
(L4) of the barrel column representing the stimulated whisker and
then goes to L2/3 and subsequently to L5. It stands to reason that
when during a task an animal needs to make a decision based on
whisker stimulation, this is based on activity in L2/3 or L5 that
came there by way of L4. The path taken by activity induced by
optical, micro- or nanostimulation does not necessarily directly
involve L4 and improving detection could thus require altering
the underlying cortical circuit.

When monkeys were trained to detect microstimulation at
a location in the visual cortex corresponding to a specific
retinotopic location, the stimulation threshold for detection was
reduced from about 50 μA to 5 μA over a few thousands of trials
(Ni and Maunsell, 2010). At the same time the contrast thresh-
old needed to detect real visual stimuli at the same retinotopic
location increased from 4–8% to 8–60%. When the monkeys were
subsequently retrained on detecting visual stimuli, the sensitivity
was recovered in another few thousand trials, but the sensitivity to
electrical stimulation was reduced. One possible interpretation is
that learning to detect electrical stimulation reorganizes the recur-
rent circuits in L2/3 to become more sensitive at the expense of the
L4 to L2/3 feedforward connection.

The animal improves its performance when learning to detect
microstimulation, which could also be the case for single-cell
nanostimulation modeled here. This improvement could occur
because of one or more of the following reasons. First, the
network could become more anti-correlated by changing the
in-degrees. This means that the stability of the network would
improve over time and perhaps that the number of false positives
would reduce. Second, the out-degree of the stimulated neu-
rons could increase, so that the nanostimulation signal becomes
louder, hence the true positives should increase. Third, the neu-
rons involved in the detection process become more sensitive to
neurons directly downstream of the stimulated cells.

The threshold for detecting microstimulation in monkey
visual cortex matches the strength necessary to elicit action poten-
tials in mouse and cat cortex in the neighborhood of the electrode,
5–10 μA (Histed et al., 2009) and in rat barrel cortex 2–5 μA
(Houweling and Brecht, 2008). These numbers did not depend on
whether metal or glass pipette electrodes were used. Stimulation
close above this threshold activated a set of widely dispersed neu-
rons within a few hundred microns from the electrode, through
antidromic action potentials in axons that are close to the elec-
trode. As a result, the spatial pattern of activation was very
sensitive to small changes in the location of the electrode.

Similar stimulus strength, 10 μA for 0.1 to 0.5 ms, yielding
charge transfers on the order of 1 nC, applied in the infragran-
ular layers could be detected in rats (Butovas and Schwarz, 2007).
The authors (Butovas and Schwarz, 2003) estimate that this corre-
sponds to activating 80% of the pyramidal cells within 450 micron
of the electrode, yielding an increase in their firing rate of 25%
corresponding to about 0.5 excess spike per neuron. Interestingly,
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trains of electrical stimulation were more effective, indicating that
temporal correlation may be necessary to distinguish stimulation
from spontaneous activity. Physiological measurements indicated
that synapses of pyramidal cells on fast spiking interneurons
depress more than the pyramidal to pyramidal synapses, which
means that pulse trains could lead to more a prominent increase
in activity than single stimuli (Holmgren et al., 2003).

Optogenetics was used to determine how many neurons in
L2/3 would be required to generate a change in activity that would
be detectable by a mouse (Huber et al., 2008). The authors’ esti-
mate of 300 neurons producing one action potential was based
on a measured distribution of light intensity thresholds necessary
to elicit an action potential, the number of neurons expressing
the light-sensitive channelrhodopsin (ChR2) channels and the
spatial fall off of the light intensity, and represents according to
these authors an overestimate. The number of 300 neurons cor-
responds to about 5% of the approximately 6500 neurons present
in a mouse barrel column (Lefort et al., 2009).

Nanostimulation refers to electrical activation of an individ-
ual neuron with a glass pipette in the juxtacellular configuration.
Nanostimulation in rat barrel cortex must have led to behav-
iorally relevant changes in network activity, as the animal was able
to detect nanostimulation, but the average effect size was rather
small (Houweling and Brecht, 2008). The nature of this activity
could not be assessed, but experiments in mouse visual cortex
may shed some light on this. Single-cell stimulation led to spikes
in the stimulated neuron and calcium transients in some of the
surrounding neurons that could be detected using two-photon
microscopy (Kwan and Dan, 2012). Such stimulation induced
postsynaptic activity in very few other pyramidal cells, 20 out
of 1152 measured. SOM interneurons [corresponding to the NFS
of Avermann et al. (2012)] were most strongly activated, 5 out of
17 measured. PV expressing cells did not respond to this stimu-
lation, but their calcium transients were most strongly correlated
to the network activity produced by the rest of the measured cells.
This indicates that in this state the SOM cells would be required
to damp the increase in activity generated by the recurrently
connected pyramidal cell network.

SUMMARY
Taken together, experimental results suggest that detection of
single-cell stimulation requires a quick propagation of excitatory
cell activity, before the various types of inhibition kick in. Our
studies indicate that anti-correlated degree distributions could be
an important strategy for increasing sensitivity while maintaining
stability.
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