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Neurons innervate space by extending axonal and dendritic arborizations. When axons
and dendrites come in close proximity of each other, synapses between neurons can be
formed. Neurons vary greatly in their morphologies and synaptic connections with other
neurons. The size and shape of the arborizations determine the way neurons innervate
space. A neuron may therefore be characterized by the spatial distribution of its axonal and
dendritic “mass.” A population mean “mass” density field of a particular neuron type can
be obtained by averaging over the individual variations in neuron geometries. Connectivity
in terms of candidate synaptic contacts between neurons can be determined directly on
the basis of their arborizations but also indirectly on the basis of their density fields. To
decide when a candidate synapse can be formed, we previously developed a criterion
defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal
distance less than a threshold value. In this paper, we developed new methodology for
applying this criterion to density fields. We show that estimates of the number of contacts
between neuron pairs calculated from their density fields are fully consistent with the
number of contacts calculated from the actual arborizations. However, the estimation of
the connection probability and the expected number of contacts per connection cannot
be calculated directly from density fields, because density fields do not carry anymore the
correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two
connectivity measures can be estimated from the expected number of contacts by using
empirical mapping functions. The neurons used for the validation studies were generated
by our neuron simulator NETMORPH. An example is given of the estimation of average
connectivity and Euclidean pre- and postsynaptic distance distributions in a network of
neurons represented by their population mean density fields.
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INTRODUCTION
Because synapses can form only when axons and dendrites are in
close proximity, the connectivity in neuronal networks strongly
depends on the three-dimensional morphology of the constitut-
ing neurons. Neuronal morphology varies greatly, and the sub-
stantial variability in neuronal morphologies will consequently
also produce large variability in their connections with other
neurons. An additional factor determining connectivity is the
spatial position of neurons, leading to widely varying distances
between neurons pairs. The morphology of neurons is complex,
with branches of varying orientations and diameters bifurcating
at different lengths. In reconstructions this complex morphology
is usually approximated in a piece-wise linear fashion, i.e., by a
number of line pieces or cylinders (the latter when the diameter is
also measured). These reconstructions in continuous space pre-
serve the details of the arbor structures of the neurons. Another
way of characterizing the spatial structure of neurons is by dis-
cretizing space by means of a grid of voxels and defining in each
voxel the neuronal “mass” (i.e., the length or the volume of a
branch in that voxel). When the mass in each voxel is divided by

the voxel volume, this description results in a neuronal “mass”
density field (in short called density field). Clearly, the density
field of a single neuron fully reflects the arbor structure of the
neuron, with non-zero densities in voxels occupied by arbors and
zero densities elsewhere.

When an average density field is obtained from a number of
neurons (after alignment of the somata), the individual arbor
structures get lost, and the number of non-zero voxel densities
increases because of the large variations in neuronal morpholo-
gies. Only for very high neuron numbers will a stable estimate
of the population mean density field be obtained. Although the
level of smoothness of the population mean density field may
be high in areas near the soma, it will remain low in remote
areas, which are visited only by spurious branches of individual
neurons. The smoothness of a density field may be enhanced if
certain symmetries can be assumed in the averaged morphol-
ogy of cells. For instance, when neurons grow out without any
orientation preference, a spherical symmetry in the density field
may be assumed. In that case, the total mass at a certain radial
distance from the soma can be smeared out uniformly over
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the sphere with that radius. Similarly, when rotation invariance
around a central axis can be assumed, the total mass at a cer-
tain radial distance from, and a certain height at the axis, can
be smeared out uniformly over the circle with that radius and
at that height. Stable estimates of the population mean density
fields of neurons reflect shape characteristics that are typical for
a given cell type. Therefore, these estimates can be regarded as
powerful statistical descriptors of the neurons’ spatial innerva-
tion patterns and, as such, as templates for various neuronal cell
types.

Synaptic contacts may occur when axonal and dendritic ele-
ments are very close in space, i.e., within a few microns, a condi-
tion usually referred to as Peters’ rule (Peters, 1979). Binzegger
et al. (2004) use another interpretation of Peters’ rule in that
axons connect in direct proportion to the occurrence of the
synaptic target structures in the neuropil. Locations where can-
didate synapses can be formed can be found by testing the
proximity of any pair of line pieces of the axonal and dendritic
arborizations of neuronal reconstructions. Recently, we devel-
oped a new method for finding candidate synaptic locations in
areas innervated by both axonal and dendritic arborizations. The
method defines the precise locations of the candidate synap-
tic contact points on the axonal and dendritic segments. The
term candidate is used because it refers to the minimal geo-
metric requirement for a synapse. Whether in neuronal tissue
functional synapses will actually develop at the locations of can-
didate synapses depends on other factors as well. When we use
the word synapse in the following, it is meant to mean candi-
date synapse. The method is based on proximity and crossing of
axonal and dendritic line pieces (van Pelt et al., 2010). By varying
the positions of the somata of the pre- and post-synaptic neurons,
one can obtain the number of synaptic contacts as a function of
neuron positions. Repeating this process for many neuron pairs
of a population of reconstructed neurons yields a statistical esti-
mate of the number of synaptic contacts vs. soma positions. From
these outcomes, one can also derive an estimate of the connec-
tion probability (the probability that an arbitrary neuron pair
is connected, i.e., has at least one synaptic contact) as well as
the mean number of synaptic contacts per connected neuron
pair.

The question whether connectivity can also be derived from
the overlap of dendritic and axonal density fields has been
addressed by Liley and Wright (1994), based on the work of Uttley
(1955). They derived an analytical expression for the expected
number of synapses between two neurons at given positions. They
assumed spherical symmetry in the axonal and dendritic den-
sity fields and used exponential decaying radial functions. Their
analytical approach in continuous space required smooth density
functions. Kalisman et al. (2003) constructed averaged templates
of axonal and dendritic fluxes in 3D space (preserving spatial and
directional information) for calculating the expected number of
contacts. They found a good agreement with the actual number of
autapses in reconstructed rat cortical layer 5 pyramidal neurons.
Stepanyants and Chklovskii (2005) calculated neurite segment
length density functions from reconstructed neurons and applied
the formalism of Liley and Wright (1994) to study the relation
between neurogeometry and potential synaptic connectivity. In

order to obtain spatially smooth density fields, they convolved the
skeleton densities with a Gaussian function with a typical stan-
dard deviation of 10–30 μm. Recently, McAssey et al. (in revision)
used the Liley and Wright method to investigate the propagation
of individual neuron variability via the density fields into variabil-
ity in the estimated number of contacts. Using sets of generated
neuron morphologies of different sizes, they showed how the
standard deviation in the estimated number of contacts decreases
with increasing size of the data set used for calculating the density
fields. Instead of deriving connectivity from density fields, Cuntz
(2012) followed the reverse way by using a minimal spanning tree
approach to derive the dendritic density fields from the spatial
distribution of contacts points between the neurons.

Important for the validity of the methodology developed for
deriving connectivity from density fields is that the estimated
connectivity from overlapping density fields is consistent with
the connectivity derived from the actual arborizations. To our
knowledge such a rigorous validation has never been carried out
before.

The objectives of this paper are (i) to derive connectivity
from overlapping density fields using our recently developed cri-
terion for the formation of synaptic contacts (van Pelt et al.,
2010); (ii) to develop a method that is also applicable for highly
irregular density fields (such as those of individual neurons)
and that is thus not dependent on any smoothness requirement
of the density fields; (iii) to validate the neuronal connectivity
estimates from the overlapping density fields with the actual con-
nectivity derived from mutually innervating axonal and dendritic
arborizations.

The method developed here is based on a discretization of
space by a grid of voxels of a given size (here set to 1 μm), with
each voxel having a certain dendritic and/or axonal mass den-
sity. These densities are then used to calculate the probabilities of
finding axonal and dendritic line pieces in the voxels. Assuming
uniform random orientations of these line pieces in each voxel,
we then apply the above mentioned proximity/crossing crite-
rion to axonal and dendritic line pieces (van Pelt et al., 2010) in
the same or within different voxels. The connectivity measures
between two neurons at given positions are obtained by evaluat-
ing all voxel pairs of the axonal and dendritic density fields. The
new method is used to make predictions of the expected num-
ber of contacts, the connection probability between a pre-synaptic
and post-synaptic neuron, and the number of contacts between a
connected pre- and post-synaptic neuron pair, using their den-
sity fields. In addition, the mean connection probability and the
Euclidean distances of synapses to their pre- and post-synaptic
somata are estimated in a given network of neurons represented
by their density fields.

The data set of neuronal arborizations used for the calcula-
tion of the density fields and the actual connectivity between
the individual neuronal arborizations (validation) was obtained
using our simulator NETMORPH (Koene et al., 2009). A number
of 50 random neuron morphologies were generated with growth
parameters optimized on a set of rat cortical L2/3 pyramidal neu-
rons, reconstructed by Svoboda (Shepherd and Svoboda, 2005)
and made available by the NeuroMorpho.org data base (Ascoli,
2006).
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SUMMARY OF FINDINGS
An exact expression was derived for the expected number of con-
tacts between two neurons based on the overlap of their axonal
and dendritic density fields. This density-field based estimate of
the number of contacts turned out to be fully consistent with the
number of contacts calculated directly from the actual arboriza-
tions. The method is applicable to any arbitrary filling of space
with density values, thus also to “fields” obtained from single
dendritic or axonal arborizations. No assumptions were needed
for the “smoothness” of the density fields. A significant reduc-
tion in computational load was achieved when local uniformity of
axonal densities in the neighborhood of dendritic densities could
be assumed. This approximated expression was consistent with
the expression derived by Liley and Wright (1994), using analyt-
ical methods. The accuracy of the approximated expression was
quantified. Our attempt to estimate the connection probability
and the expected number of contacts per connection (connected
neuron pair) from the density fields failed because the fields do
not carry anymore the underlying correlative structure in the
spatial distribution of arbors and synapses. Using empirical map-
ping functions, however, we could well estimate both connectivity
measures from the expected number of contacts. For a network of
spatially distributed neurons the average connection probabilities
between neuron pairs vs. their intersoma distance were calcu-
lated from their population mean density fields. We showed how
Euclidean distances of synapses to their pre- and post-synaptic
somata can be estimated from the density fields, and how these
distances for a centrally located neuron in a network depend on
the spatial distribution of the other neurons.

The paper is organized as follows. The Materials and Methods
section gives a brief summary of the developed methodology; the
developed methodology is fully described in the Appendix (see
Supplementary Material). The Results section includes an appli-
cation part with the estimation of connectivity measures between
two neurons based on their density fields, a validation part in
which the density-field estimates are compared with the estimates
based on the original arborizations, and an application part with
the estimation of averaged connectivities between neurons in a
network. The findings are discussed in the Discussion section.

MATERIALS AND METHODS
AXONAL AND DENDRITIC MASS DISTRIBUTIONS IN A SPATIAL GRID
OF VOXELS
Axonal and dendritic arborizations innervate space in a manner
that is determined by their morphological characteristics. Like the
morphology of neurons, the spatial innervation patterns of neu-
rons may vary considerably between neurons. To quantify these
spatial patterns, we discretize space by a cubic three-dimensional
grid, with volume elements (voxels) of size sv and volume s3

v μm3

(Figure 1).
A single arborization will intersect only a fraction of the voxels

in the 3D grid, and within each such voxel it will do so with a cer-
tain “mass.” “Mass” in this context refers to the volume or to the
length of the arbor structure. In this study we will use the length of
the part of the arborization that lies in the voxel, thus ignoring the
diameters of the arborizations. For a large number of arboriza-
tions aligned according to their somata, many more voxels will be

FIGURE 1 | Discretization of space by means of a three-dimensional

grid of voxels. Red, voxels occupied by the branching structure.

intersected depending on the variability of the arborizations. The
summed “mass” per voxel is then a measure for the total mass of
the population of arborizations at that location in space. Dividing
the summed “mass” per voxel by the number of arborizations
gives an estimate for the population mean mass mv of a sin-
gle arborization per voxel, or for its density ρ in the case of a
unit voxel (sv = 1 μm). Voxel densities, calculated separately for
axonal and dendritic arborizations, result in so-called (popula-
tion mean) axonal and dendritic density fields. The mass per voxel
is then obtained via

mv = ρ × s3
v (1)

indicating the expected length of an axonal or dendritic arboriza-
tion in that particular voxel.

SCALE OF THE 3D GRID
The scale of the grid is defined by the size of the individual voxels
sv. Evidently, this size determines the level of fine structure that is
preserved in the density fields. Neuronal branches contain branch
points and their branches may be curved. Coarse grid scales do
not capture these finer details and integrate all length within a
voxel. Finer grid scales increasingly capture more linear parts of
the branches. A voxel size of 1 μm is considered to be appropriate
in capturing the branching structure in all its relevant details. In
addition, the intersections of the branches with voxels of this size
can be expected to deviate little from straight lines. For fine grid
scales, single axonal or dendritic trees will intersect only a small
fraction of the total number of voxels. A large number of trees is
therefore needed to obtain statistically sufficiently stable density
fields of axonal and dendritic arbors.

ESTIMATION OF DENSITY FIELDS
A dendritic arbor of a cortical L2/3 pyramidal neuron may fill
voxels up to distances of about 400 μm from the soma. With a
1 μm voxel size, there are already 4π ∗ 4002 = 2.010.619 voxels
at that distance in 3D space (i.e., the surface of the sphere with
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a radius of 400 μm). When an individual dendrite reaches such
distances with one branch, then only single voxels are intersected
at these distances. If one wants a population sum with all voxels
at that distance intersected by at least one branch, a total number
of about 2 ∗ 106 dendrites is needed. To obtain stable statistical
averages per voxel, one needs a multitude of this number, say at
least 20 ∗ 106 dendrites. Axonal fields extend over larger distances
of, say, 1000 μm for local arborizations. The number of voxels
at this distance from the soma is 4π ∗ 10002 = 12.566.371 and
for stable density field estimates in peripheral areas one needs
a number of at least 1.2 ∗ 108 axonal arborizations. Evidently,
these are unrealistically high numbers if experimental recon-
structed neurons need to be used for building density fields.
Neural simulators could possibly do the job, but the numbers are
still huge.

The estimation of (smooth) density fields becomes more
tractable when the density fields can be assumed to have
some symmetry. For instance, if the arborizations invade
space without any preferred direction, then spherical symme-
try may be assumed. Under these conditions it is sufficient
to have a stable estimate of the radial distribution of den-
dritic mass Md(r) and axonal mass Ma(r) vs. distance r from
the soma. The spatial densities ρ per unit volume are then
obtained via

ρd(r) = Md(r)

4πr2
and ρa(r) = Ma(r)

4πr2
. (2)

When spherical symmetry cannot be assumed, the arborization
may show axial symmetry around a central axis (i.e., being invari-
ant for rotations around the axis). Axial symmetry may be present
in cortical pyramidal neurons, with the apical dendritic main
stem as the axis of symmetry. Axial symmetry was implicitly
assumed in the so-called fan-in projection method by Glaser
and McMullen (1984). With axial symmetry it is sufficient to
have stable estimates of the mass distribution at different heights
z and distances rp perpendicular to the central axis, Md(z, rp)

and Ma(z, rp). The spatial densities per unit volume are then
obtained via

ρd(z, rp) = Md(z, rp)

2πrp
and ρa(z, rp) = Ma(z, rp)

2πrp
. (3)

The estimation of density fields becomes even more tractable
without any requirement on smoothness or complete filling of
space. In this study 50 neurons are used to construct a population
mean axonal and dendritic density field.

CONNECTIVITY AND AXONAL AND DENDRITIC DENSITY FIELDS
Axons can make synaptic connections with dendrites when their
branches are sufficiently close to each other (Peters, 1979).
Given reconstructed axonal and dendritic arborizations one can
search the whole space for locations of sufficient proximity. With
arborizations approximated by series of line pieces, one needs
to test all combinations of axonal and dendritic line pieces. An
algorithm for such a search has recently been developed by van
Pelt et al. (2010). The algorithm is based on the requirement that

pairs of axonal and dendritic line pieces cross with a crossing dis-
tance smaller than a given criterion distance. In density fields,
however, the individual branch structure is lost and replaced
by the probability of a finding a certain mass in the individ-
ual voxels. The question then becomes how these densities can
be used in estimating the connectivity between axons and den-
drites. We propose an answer to this question by the following
method.

Voxel mean intersection length, densities, and hit probabilities
A line intersecting a voxel has intersecting points with two voxel
planes. The line piece between these intersecting points, called the
intersecting line piece (or intersection), has a certain length lint.
For a voxel of size s, lint can be as small as 0 μm when the line is
intersecting a corner of the voxel and as long as the diagonal in the

voxel, thus having a range of lint(s) ∈
[

0, s
√

3
]

μm. Intersecting a

voxel of size s by a large number of randomly oriented lines gives
a characteristic distribution of intersection lengths (see Appendix
section A1) with a mean of

lint(s) = C × s, with C = 0.66653, (4)

and a standard deviation of

sd (lint(s)) = 0.39156 × s. (5)

When a randomly oriented line is drawn in a space larger than
the voxel, the line may or may not intersect the voxel; that is, in
a statistical sense, the voxel will be hit with a certain probability
phit

voxel(s). When there are N randomly oriented lines in that space,

the voxel will be hit by an expected number of E
{

nhit
v

} = N ×
phit

v (s). The total length of the intersecting line pieces Ltot
int(s) (total

mass) then becomes

Ltot
int(s) = E

{
nhit

v

}
× lint(s) = C × s × E

{
nhit

v

}
. (6)

Rewriting this equation as

E
{

nhit
v

}
= Ltot

int(s)

C × s
(7)

gives us the expected number of intersecting line pieces in a voxel,
expressed in terms of the total “mass” in the voxel and the mean
intersection length. When the probability of hitting a voxel is very
low, this equation applies to the hit probability itself with

phit
v (s) ∼= Ltot

int(s)

C × s
(8)

which gives us the probability that a voxel is hit by a random line
in the surrounding space, expressed in terms of the total “mass”
in the voxel and the mean intersection length. Let the density ρ

denotes the mass per unit voxel (i.e., with s = 1 μm), then the
mass per voxel of size s becomes ρ × s3. Dendritic mass mvd and
axonal mass mva in a voxel v can now be related to the probabil-
ity phit

vd that a voxel v is intersected by a dendritic branch and the
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probability phit
va that the voxel is intersected by an axonal branch,

respectively:

phit
vd (s) ∼= mvd

C × s
= ρvd × s3

C × s
= ρvd × s2

C

and (9)

phit
va (s) ∼= ρva × s2

C
.

(see also Appendix section A2).

Crossing line pieces, crossing probabilities, and crossing distances
An estimate can now be made of the connectivity between axonal
and dendritic arborizations when they are expressed in terms of
density fields (see also Appendix section A3). Two infinite lines
in space are at their shortest distance at the site where they are
crossing. At this site a connection line can be drawn orthogo-
nal to both infinite lines, with a length called crossing distance.
Although two infinite lines will cross with certainty (except when
they are parallel or coincide), two line pieces with finite length
may or may not cross in space. This principle is used for defining
possible unique synaptic locations between dendritic and axonal
arborizations, with the additional requirement that in the case of
crossing the crossing distance should not be larger than a given
distance criterion (van Pelt et al., 2010).

The crossing of random intersections in a single voxel or in
different voxels is described in Appendix section A3. The results
are briefly summarized here. The probability pcross that a pair of
random line pieces in a single voxel cross is equal to

pcross = 0.3133, (10)

which is independent of the size of the voxel. In contrast, crossing
distances between crossing line pieces in a single voxel do scale
linearly with the size s of the voxel and are given by their mean
and standard deviation

dcross = 0.334 × s; and dcross(sd) = 0.256 × s, (11)

(Figure A5). For a pair of voxels v and w at a given distance dv, w

from each other, the crossing probability of random line pieces in
both voxels is dependent on the voxel distance, as shown in the
graph of Figure A6. A best fit through the data points was given
by Equation A16

pcross
v, w

(
dv, w ≥ 1

) ∼= 0.04467 × (dv, w − 0.1966)−1.8264. (12)

Conditional crossing probabilities
When a distance criterion of δ μm is set to the crossing distance
between crossing line pieces the conditional crossing probability

pcross
v, w (s, dv, w|δ) (13)

becomes dependent on δ and on the size of the voxel (see also
Appendix section A4). For two random lines in a single voxel the
conditional crossing probability pcross

v,v (s|δ) is shown in Figure A7
of Appendix section A4.1. For two random lines in different

voxels v and w at a distance dv, w from each other, the condi-
tional crossing probability pcross

v, w (s, dv, w|δ) is shown in Figure A8
of Appendix section A4.2 (for the unconditional values, see
Figure A6 of the Appendix section A3.2). The figures illustrate
how the crossing probability decreases with increasing distance
between the voxels particularly when this distance is near the cri-
terion value (Figure A8). Note that the distance between voxels
is taken as the distance between corresponding voxel corners (or
centra). The crossing distances of crossing line pieces in voxel
pairs are in the range of [dv, w − s

√
3; dv, w + s

√
3].

pcross
v, w

(
s, dv, w � δ|δ) = 0,

pcross
v, w

(
s, dv, w � δ|δ) = pcross

v, w

(
s, dv, w

)
, (14)

pcross
v, w

(
s, dv, w

∼= δ|δ) < pcross
v, w

(
s, dv, w

)
.

Density-weighted conditional crossing probabilities
In the foregoing the crossing probabilities were determined on
the basis of the presence of a random line piece in a voxel. When
the presence of a line piece is a stochastic event then the crossing
probabilities need to be multiplied with the probabilities that the
line pieces are present (see Appendix section A5). In that case, the
crossing probability of line pieces in two voxels v and w at a given
distance dv, w from each other is given by

pcross
v, w

(
s, dv, w|δ) × phit

v × phit
w = pcross

v, w

(
s, dv, w|δ)

×ρv × s2

C
× ρw × s2

C

= s4

C2
× pcross

v, w

(
s, dv, w|δ) × ρv × ρw. (15)

In the overlap area of a dendritic density field D and an axonal
density field A, each voxel has a dendritic and an axonal mass that
determines the probability of finding a dendritic or an axonal line
piece in these voxels, which is dependent on the size of the voxels.
The probability that a dendritic line piece in voxel v and an axonal
line piece in voxel w cross is now given by

s4

C2
× pcross

v, w

(
s, dv, w|δ) × ρvD × ρwA, (16)

with ρvD the dendritic density in voxel v and ρwA the axonal
density in voxel w.

Expected number of synapses in overlapping axonal and dendritic
density fields
The expected number of crossing line pieces of the axonal and the
dendritic field in the overlap area can now be obtained by calcu-
lating the expected number of crossing axonal and dendritic line
pieces in all the pairs of axon and dendrite voxels in the overlap
area that meet the distance criterion.

E
{

ncross
D, A |δ} = s4

C2
×

space∑
v

space∑
w

pcross
v, w

(
s, dv, w|δ) × ρvD × ρwA

= s4

C2
×

space∑
v

ρvD ×
space∑

w

ρwA×pcross
v, w (s, dv, w|δ). (17)
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Assuming that a synaptic connection may be present at locations
where axonal and dendritic line pieces cross each other at suf-
ficient small crossing distances, we now have an expression for
the expected number of synaptic contacts in the overlap area of
axonal and dendritic density fields, given by

E
{

n
synapse
D, A |δ

}
= E

{
ncross

D, A|δ} . (18)

The double summation in Equation 17 runs over all voxel pairs (v,
w) in the given space. However, for each dendritic voxel v only the
axonal voxels w within the criterion distance δ contribute to the
sum. The second summation over the axonal voxels w can there-
fore be restricted to the ones in the local environment venv (see
Equation A23) of the dendritic voxel v:

E
{

n
synapse
D, A |δ

}
= s4

C2
×

space∑
v

ρvD ×
venv∑

w

ρwA × pcross
v, w (s, dv, w|δ).

(19)

Approximation of the expected number of synapses—local
uniformity in axonal densities
If it can be assumed that the axonal densities ρwA in the local
environment of a dendritic voxel v are not very different from the
axonal density ρvA in voxel v itself, Equation 19 can be simplified
into

E
{

n
synapse
D, A |δ

} ∼= s4

C2
×

space∑
v

ρvD × ρvA ×
venv∑

w

pcross
v, w (s, dv, w|δ).

(20)
The second summation now runs over all voxels in the local envi-
ronment of a given voxel v but does not depend on the position of
voxel v anymore. The outcome that we will call the local environ-
ment crossing factor f env(s, δ) now becomes a fixed number that
is only dependent on the size of the voxels s and the distance
criterion δ (see Appendix section A5.2):

f env(s, δ) =
venv∑

w

pcross
v, w

(
s, dv, w|δ). (21)

The values of the local environment crossing factor f env(s, δ) are
shown in Table A1 of Appendix section A5.2.1. The local envi-
ronment crossing factor f env(s, δ) can be approximated by a linear
dependence on the criterion δ as (for s = 1) f env(s = 1, δ) ∼=
0.69822 × δ (Equation A38). Then, Equation 20 simplifies into

E
{

n
synapse
D, A |s = 1, δ

} ∼= 1.572 × δ ×
space∑

v

ρvD × ρvA

= 1.572 × δ × IDA, (22)

with IDA denoting the overlap sum IDA = ∑space
v ρvD × ρvA.

Connection probability and number of contacts per connection
(connected neuron pair)
The connection probability of two neurons denotes the probabil-
ity that they are connected, i.e., have at least one synaptic contact.

The question whether and how the connection probability for a
neuron pair can be estimated from their population mean den-
sity fields, can be answered as follows: Let E

{
n

syn
v

}
denotes the

expected number of synapses in voxel v. Because the voxel size is
small, this expected number will be much smaller than one and
can be interpreted as the probability p

syn
v of finding a synapse in

that voxel. The probability of no-synapse in that voxel p
nosyn
v is

then given by p
nosyn
v = 1 − p

syn
v . The product of the no-synapse

probabilities of all voxels in area A, assuming independency, then
yields the probability of no-synapse in the overlap space, p

nosyn
A =∏

i

(
1 − p

syn
vi

)
. The connection probability pcon

A , i.e., the proba-
bility of at least one contact in the overlap space, is then given by
pcon

A = 1 − p
nosyn
A .

A basic assumption in this approach is that the synapse prob-
abilities of all the voxels are independent of each other. As will
be shown in the Results section, this approach gave inconsistent
outcomes, indicating that the basic assumption of independency
is not justified. Alternatively, the connection probability was
estimated from the expected number of contacts by using a map-
ping function derived from the connectivity between the actual
arborizations. Also for the estimation of the number of contacts
per connected neuron pair from the expected number of con-
tacts a mapping function was used that was derived from the
connectivity between the actual arborizations.

Euclidean distances of synapses to their pre- and post-synaptic
somata
Euclidean distance distributions of synapses to their pre- and
post-synaptic somata can also be obtained from the overlap-
ping density fields. For a given neuron pair the probability
of finding a synaptic contact is calculated in each voxel of
the overlap space. With the Euclidean distance of this voxel
to the pre- and post-synaptic somata, the probability of the
synaptic contact is then accumulated to the pre- and post-
synaptic Euclidean distance probability distribution, respectively.
Summing over all voxels then yields the distance distributions for
a single neuron pair. In an area with many neurons this proce-
dure must be repeated for all neurons pairs. The final pre- and
post-synaptic Euclidean distance distributions, averaged over all
neuron pairs, thus depend on the number and positions of all the
somata.

RESULTS
ESTIMATION OF THE CONNECTIVITY BETWEEN AN AXONAL AND A
DENDRITIC NEURON USING POPULATION MEAN DENSITY FIELDS
For the application of the method the morphologies of a number
of 50 neurons were generated with the simulator NETMORPH,
using a parameter set optimized on a set of rat layer 2/3 pyramidal
cells obtained from the Svoboda data set in the NeuroMorpho.org
data base (Figure 2).

DENSITY FIELDS WITH AXIAL SYMMETRY
An example of density field calculations based on axial symme-
try is given in Figure 3. Assuming that the axial symmetry axis
coincides with the apical main stem of the neuron, we calcu-
lated the axonal and dendritic mass of 50 NETMORPH-generated
neurons as a function of the position along the symmetry axis
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(height, also referred to as Z-axis) and the radial distance (radius,
i.e., orthogonal distance to the symmetry axis. To this end, each
neuron was first soma-centered at the origin and aligned accord-
ing to its apical main stem, and then “sliced” into layers of 1
micron thick. Subsequently, the axonal and dendritic intersec-
tions per layer were analyzed for their radial mass distribution.
The axonal and dendritic density fields are calculated by divid-
ing the “mass” at a given height and radius r from the symmetry
axis by the perimeter (2πr) of the circle with radius r, under the

assumption that the mass is distributed uniformly over the circle
centered at the symmetry axis. These density fields are shown in
Figure 3. Because of the large perimeters of the circles, the den-
sities decrease rapidly with increasing radius down to very low
levels at large radial distances, as shown in the logarithmic plot for
the density field. These plots also show the ranges over which the
axons and dendrites send their branches. The population mean
density fields clearly show the non-smoothness due to the isolated
branches in remote areas from the soma center.

FIGURE 2 | Display of the set of 50 random neuronal morphologies with

their axonal (green), basal (red), and apical (blue) dendritic

arborizations, generated with the NETMORPH simulator using a

parameter set optimized on a set of rat cortical layer 2/3 pyramidal

neurons from the NeuroMorpho.org database. The neurons are aligned
according to their apical dendrites.

FIGURE 3 | Population mean density distributions of (left) dendrites and

(right) axons of 50 aligned neurons, plotted as function of the axial

(height) and radial positions. The color-coded log10-density scales run from

the values indicated at the left of the color bars. The solid dots along the
height axes indicate the position of the cell body. Note that a number of −9
was assigned to voxels whenever their original density was zero.
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Finally, for a given spatial positioning of the two cell bodies, the
overlap sum IDA (Equation 22) of the axonal and dendritic density
fields was determined by calculating for each voxel the density
product of both fields and summing these products over all voxels
in the overlap area. Subsequently, Equation 22 is used to calculate
the expected number of contacts between both neurons for vari-
ous values of the proximity criterion δ. The outcomes are given
in Figure 4 as contour plots (panel A) and axial-radial curves
(panel B), which show how the expected number of synaptic con-
tacts decrease monotonically with increasing distance between
the cell bodies. Note that the expected number of contacts has
its maximum when the pre-synaptic neuron is positioned about
50 μm above the post-synaptic neuron.

VALIDATION OF THE DENSITY-FIELD ESTIMATED NUMBER OF
CONTACTS BETWEEN TWO NEURONS
The number of contacts estimated from overlapping axonal and
dendritic density fields is validated by comparison with the num-
ber of contacts between the actual 3D arborizations of the same
data set of simulated neurons. The actual number of contacts
was determined for all the 50∗49 = 2450 neuron pairs with the
soma of the dendritic neuron centered at the origin and the soma
of the axonal neuron positioned at a given axial and radial dis-
tance. The number of contacts was determined by assessing, for
all the pairs of dendritic and axonal line pieces, whether they were
crossing and whether the crossing distance was smaller than or
equal to the given proximity criterion (van Pelt et al., 2010). The
mean number of contacts for all the neuron pairs, and the mean
number of contacts for all the connected neuron pairs, were deter-
mined for a number of different axial and radial positions of the
axonal cell bodies. The results are shown in Figure 5. The solid
curves indicate the expected number of contacts from the den-
sity fields; these curves are identical to the ones in Figure 4. The

individual data points show the mean and standard error in the
mean (sem) (n = 2450) of the number of contacts actually deter-
mined from the overlapping axonal and dendritic arbors between
all neuron pairs. An excellent agreement was found between the
density-based expectations and the arbor-based calculations, even
within the small standard error values. A similar agreement was
found for the distance criteria δ = 2 and δ = 3 (not shown in
Figure 5). Although the actual number of contacts is highly vari-
able between neuron pairs, as reflected in the standard deviation
in the distribution of data points (Figure 10), it is because of the
large number of 2450 data points that the sem values become very
small. This agreement thus validates the density field approach for
estimating the number of contacts between neuron pairs.

ESTIMATION OF THE CONNECTION PROBABILITY FROM THE
EXPECTED NUMBER OF CONTACTS
The connection probability between two neurons was calcu-
lated from their population mean density fields according to
the approach described in the Materials and Methods section.
For validation, the connection probability was also calculated
from the actual arborizations as the ratio of the number of con-
nected neuron pairs (with at least one contact) and the total
number of 2450 neuron pairs. Both approaches turned out to
give inconsistent results. The density-field expected values were
significantly larger than the arbor-based data points. A general-
ization of the approach in the Materials and Methods section is
further described in Appendix section A7, where it is explained
how the connection probability between two neurons can be
estimated from the expected number of contacts when indepen-
dency is assumed for the spatial distribution of synapses. This
resulted in a “theoretical” mapping curve, which is shown in
Figure A13 and in Figure 6 (solid curve). The relation between
the connection probability and the expected number of contacts,

FIGURE 4 | Expected number of contacts between two neurons

shown in (A) contour and (B) axial-radial plots. The neurons are
aligned according to their apical main stem. In all the plots the dendritic
neuron is soma-centered at the origin. In (A) the position of the soma
of the axonal neuron is given by the coordinate axes in the plot. The
contours are labeled by the respective values of the expected number

of contacts (as a multiple of the criterion value δ, the inner contours
maintain the stepwise increase of 0.2δ). In (B) the radial position of
the axonal soma is given by the abscissa coordinate, while each curve
is labeled with the positive (upper panel) and negative (lower panel)
displacement along the Z -axis (�Z ) of the axonal soma relative to the
dendritic soma. The ordinate scale is normalized for δ = 1 μm.
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FIGURE 5 | Comparison of the expected number of contacts

predicted by the population mean density-field approach (solid

curves), and obtained directly from the axonal and dendritic arbors

of the aligned neurons [individual data points with mn(sem) values].

Each curve is labeled with the positive (Upper panels) and negative

(Lower panels) displacement along the Z -axis (�Z ) of the axonal soma
relative to the dendritic soma. Shown are the validations for criterion
values of δ = 1 (Left column) and δ = 4 (Right column). The
validations for δ = 2 and δ = 3 showed a similar agreement between
density-based and arbor-based calculations (not shown in figure).

estimated from the population mean density fields, was found
to exactly match this theoretical mapping curve. However, the
density-field estimated connection probability was inconsistent
with the arbor-based connection probability. This thus implicated
that the theoretical mapping function was not appropriate. For
validation, it was compared with an empirical mapping function,
derived from the arbor based calculated number of contacts and
connection probability. To this end, for a given spacing of the
cell bodies, both the mean number of contacts and the connec-
tion probability for all the 2450 neuron pairs were determined
from the actual arborizations. By varying the spacing for x-shifts
of (0, 20, 50, 100,. . ., 500 μm) and y-shifts of (−300, −200,. . .,
500 μm) one obtains 12∗9 = 108 data points, as shown in the
scatterplots of Figure 6. The actual data points indeed show sig-
nificantly lower connection probabilities than those predicted by
the theoretical curve (upper solid curve). For low number of
contacts the data points are very close to but do not exceed the
theoretical curve. Apparently, the theoretical curve, derived from
the expected number of contacts, provides an upper limit for
the connection probability. Figure 6 includes best-fitting regres-
sion functions of the type f (x) = a(1 − ebxc

) through the data
points. The method for calculating the connection probability
(see Materials and Methods section) and its generalization in A7
are based on the assumption that the expected number of con-
tacts in the voxels in the overlap space are independent of each
other (see also Equation A49). The incorrectness of this assump-
tion is likely caused by the fact that synapses are restricted in their
positions to the axonal and dendritic arborizations, which pro-
vide an underlying correlative structure to the synapse positions
that is not reflected anymore in the density fields.

An explanation for the overestimation of the connection prob-
ability can be given by referring to the procedure in Section

Connection Probability and Number of Contacts per Connection
(Connected Neuron Pair). Because actual synapses are restricted
to the arbor subspace they are spatially correlated. In other words,
finding an actual synapse implicates a higher probability of find-
ing another actual synapse in that subspace. Similarly, not finding
an actual synapse at a given location implicates a high prob-
ability to be not at the arbor subspace and also implicates a
higher probability of not finding an actual synapse nearby. In the
density field approach the probability of finding or not finding
a synapse at a given location (voxel) is assumed to be inde-
pendent of the probability of finding or not finding a synapse
elsewhere, respectively. The product of the probabilities of not
finding a synapse in the different locations in the overlap area
is thus higher in the actual case than in the density field case.
Consequently, the probability of at least one contact will be lower
in the actual case than in the density field case. Thus, the density
field approach overestimates the connection probability between
two neurons.

Because the connection probability could not be estimated
from the density fields, we alternatively estimated it from the
(correct) density-field estimated number of contacts using the
empirical mapping functions. The results, shown in Figure 7 for
distance criterion values of δ = 1 μm and δ = 4 μm, are now
in good agreement with the validation data, and for several cell
positions the expected curves even agree within the sem values
of the validation data. However, for other cell-cell positions the
validation data lie somewhat above or below the expected curve.
Figure 6 shows that the scatter of the validation data around the
best-fitting curve is not random but mainly positive or nega-
tive for the different cell-cell positions. For instance, the 	Z = 0
data points are lower than the curve, whereas the 	Z = 200 data
points lie above the curve. This structure in the variation of the
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FIGURE 6 | Scattergram of the mean connection probability vs. the

mean number of contacts (obtained from the actual arbors of all

the 2450 neuron pairs in the validation set). Each panel is labeled
by the used distance criterion δ and includes the theoretical mapping

function (solid line; see also Figure A13), a best-fitting regression
function (dashed line) through the data points of the type
f (x) = a(1 − ebxc

), and the values of the optimized parameters. The
data points are labeled by their z-shift values (see symbols).

FIGURE 7 | (Solid lines) Connection probabilities estimated from the

expected number of contacts using the best-fitting mapping

functions shown in Figure 6. Each curve is labeled with the positive
(Upper panels) and negative (Lower panels) displacement along the
Z -axis (�Z ) of the axonal soma relative to the dendritic soma.

Individual data points are the arbor-based results. Results are shown for
distance criterion values of δ = 1 μm (Left column) and δ = 4 μm
(Right column). For δ = 2 μm and δ = 3 μm a similar agreement
between density-based estimations and arbor-based calculations was
obtained (not shown).
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data translates also directly into the deviations shown in Figure 7.
The small deviations between the expected and validation data
can therefore be explained by the structure in the variations in the
validation data, which appeared to depend on the cell-cell posi-
tions. Thus, the connection probabilities can be well-estimated
from the density-field expected number of contacts using the
empirical mapping function.

ESTIMATION OF THE EXPECTED NUMBER OF CONTACTS PER
CONNECTED NEURON PAIR
The expected number of contacts per connection between two
neurons is defined as the mean of the number of contacts in
a connected neuron pair, averaged over all the connected neu-
ron pairs in the data set. This number is equal to the ratio of
the expected number of contacts and the connection probabil-
ity (Equation A50 in Appendix section A7). But similarly to the
connection probability, the density-field expected values were sig-
nificantly different from the validation data. These deviations
can be seen in Figure 8 by comparing the relationship between
the number of contacts per connection vs. the number of con-
tacts as predicted from the density-field approach (thick solid
line) and calculated from the actual arborizations (individual
data points). The empirical mapping functions (dashed lines in
Figure 8) were obtained by regressing the data points with a func-
tion of the form f (x) = a + bx + cedx. The theoretical mapping
curve (solid line in Figure 8) is also shown in Appendix section
A7 (Figure A13).

Because the number of contacts per connection also could
not be estimated from the density fields, we alternatively esti-
mated it from the (correct) density-field estimated number of
contacts using the empirical mapping functions. The results for
δ = 1 μm and δ = 4 μm are shown as solid curves in Figure 9.
The estimated values appear to be in very good agreement with
the validation data for several cell-cell positions, even within the
sem values of the data points. But for other cell-cell positions
the deviations show the same systematic structure as in the
scatterplots of Figure 6, indicating that they originate from the
variability structure in the validation data for the different cell-
cell positions. Thus, also the number of contacts per connection
can be well-estimated from the density-field expected number of
contacts using the empirical mapping function.

DENSITY FIELDS OF INDIVIDUAL NEURONS—VALIDATION OF
EQUATION A24
In Equation A24 it was shown that the expected number of con-
tacts obtained from the overlap of population mean density fields
is equal to that obtained from the sum of the overlap of individ-
ual neuron density fields. To test this equality, we estimated the
expected number of contacts in a neuron pair from the overlap
between the axonal and dendritic density fields of the individ-
ual neurons at given spatial locations by means of the exact
expression (A24). Next, the outcomes were averaged over all the
2450 neuron pairs. The calculations were repeated for a range of
mutual locations of the neuron pairs. The distributions for the

FIGURE 8 | Scattergram of the mean number of contacts per

connection vs. the mean number of contacts (obtained from the

arbors of all the 2450 neuron pairs in the validation set). Each
panel is labeled by the distance criterion δ and includes the

theoretical mapping function (solid line and see Figure A13), a
best-fitting regression function (dashed line) through the data points
of the type f (x) = a + bx + cedx , and the values of the optimized
parameters.
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FIGURE 9 | (Solid lines) Number of contacts in connected neuron

pairs, estimated from the expected number of contacts using the

best-fitting mapping function shown in Figure 8. Each curve is
labeled with the positive (Upper panels) and negative (Lower panels)
displacement along the Z -axis (�Z ) of the axonal soma relative to the

dendritic soma. Individual data points are the arbor-based results.
Results are shown for distance criterion values of δ = 1 μm (Left

column) and δ = 4 μm (Right column). For δ = 2 μm and δ = 3 μm a
similar agreement between density-based estimations and arbor-based
calculations was obtained (not shown).

averaged expected number of contacts between individual neuron
density fields turned out to match exactly the ones obtained from
the population mean density fields as shown in Figure 4. This
agreement thus validates Equation A24 and also demonstrates
that connectivity estimates based on density fields of individual
neurons give consistent results, irrespective of the irregularities of
the individual neuron fields.

DENSITY FIELDS OF INDIVIDUAL NEURONS—VARIABILITY IN THE
CONNECTIVITY BETWEEN NEURONS
Measures of connectivity between individual neuron pairs show
large variations. As illustration, connectivity measures were
calculated for all the 2450 neuron pairs, with the axonal neuron
placed at an x-shift of 100 μm and a z-shift of 100 μm relative to
the dendritic neuron. Again the exact expression (A24) was used.
The distributions of these measures are shown in Figure 10.

DENSITY FIELDS OF INDIVIDUAL NEURONS—VALIDATION OF THE
LOCAL UNIFORMITY ASSUMPTION IN THE AXONAL DENSITY IN THE
CALCULATION OF THE DENSITY FIELDS OVERLAP
Thus far, all the calculations involving the population mean den-
sity fields used the approximated expression in Equation 22,
which is based on the assumption that the axonal densities in the
local environment of a dendritic voxel do not differ much from
the axonal density in the dendritic voxel itself. For a density field
that is calculated as the mean of a large population of neurons,
this is a reasonable assumption. For density fields of individual
neurons, however, this may not be a good assumption, as the den-
sity field then reflects the individual arbors, which are not filling
space in a smooth manner. This is also the case when the density
field is obtained by spreading arbor mass in an axial symmetric

way. Therefore, also the approximated expression of Equation 22
needs to be validated. To this end, the number of contacts between
two neurons is calculated using (1) the approximated expression
of Equation 22, (2) the exact expression in Equation 19, and (3)
the actual contacts points between the arbors themselves. The
results for the 2450 neuron pairs, with the axonal soma shifted
−100 μm in the Z-direction and 150 μm in the X-direction rel-
ative to the dendritic soma, and with δ = 4 μm, are displayed in
Figure 11. When the approximated expectations are plotted vs.
the exact expectations for all the 2450 neuron pairs, they show
a clear diagonal pattern (Figure 11A). When the relative differ-
ence between the approximated and the exact expectations are
plotted vs. the exact expectations, the data points show a jitter
around zero, with larger fluctuations for smaller values of the
exact expectations (Figure 11C). For very small values of the exact
expectations, the approximated expectations are systematically
smaller than the exact expectations (Figure 11D). These findings
can be understood by realizing that the approximated expecta-
tions are based on the product of axonal and dendritic densities
per voxel. In the case of a positive dendritic density but zero
axonal density, the product will be zero. For the exact expectation,
however, also the axonal densities in the environment of the den-
dritic voxel contribute to the density product sum, implicating
that even when the axonal density in the dendritic voxel is zero its
environment may contribute positively. Thus, for small values of
the expected number of contacts, the approximated expectation
as given by Equation 22 underestimates this number. Figure 11B
shows the comparison of the exact expectation of the number of
contacts with the actual number of contacts between the overlap-
ping axonal and dendritic arbors of all the 2450 neuron pairs. It
is clear from Figure 11B that even if the actual arbors do not have
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FIGURE 10 | Distributions of connectivity measures of the 2450 pairs

of individual neurons, with the axonal neuron placed at an x-shift of

100 μm and a z-shift of 100 μm. Shown are the distributions of (A) the
density-product values, (C,F) the expected number of contacts, (D,G) the
connection probability, and (E,H) the expected number of contacts per
connected neuron pair. These measures were calculated for proximity

criteria of δ = 1 μm (2nd row) and δ = 4 μm (3rd row). The top-right panel
(B) shows the mapping functions used for calculating the connection
probability (left ordinate) and the expected number of contacts per
connection (right ordinate) from the expected number of contacts. The
curves are labeled with the value of the proximity criterion δ, with T
denoting the theoretical mapping curve.

contacts, the expected number of contacts can be positive. Also,
for a given value of the expected number of contacts the actual
numbers of contacts can range between zero and 20, a range also
shown in Figure 10F.

For the expected mean number of contacts, averaged over all
the 2450 neuron pairs, with z-shift = −100 μm and x-shift =
150 μm, the relative differences between the exact and approxi-
mated expectations were −0.003% (δ = 1 μm), −0.005% (δ =
2 μm), 0.037% (δ = 3 μm) and 0.016% (δ = 4 μm). Compared
over a large number of soma-soma positions, the mean value of
the expected number of contacts between two neurons calculated
with the exact and the approximated expression (both averaged
over all 2450 neuron pairs) showed a relative difference of less
than 0.05% (δ = 1 μm), 0.1% (δ = 2 μm), 0.2% (δ = 3 μm),
and 0.2% (δ = 4 μm).

NETWORK APPLICATIONS OF DENSITY FIELDS
Thus far, the focus was on using density fields for estimating the
connectivity between two neurons at given positions in space (see
Figures 5, 7, 9). In a network, however, neurons all take their indi-
vidual positions. Network connectivity is therefore determined
by the mean of the connectivities between all pairs of neurons.

Evidently, this network connectivity is highy dependent on the
actual positions of the neurons. An example is given in section
Estimation of the Connection Probability in Neuronal Networks
for the averaged connection probability in a network. Density
fields can also be used for estimating the Euclidean distance
distributions of synapses to their pre- and post-synaptic somata.
The method and example results are explained and discussed in
section Estimation of Euclidean Distances of Synapses to their
Pre- and Postsynaptic Somata.

Estimation of the connection probability in neuronal networks
For deriving the mean connection probability in a network one
needs to average over all the different mutual positions of the
neuron pairs. This can be done by calculating the distance dis-
tributions of all the neuron pairs in the network and convoluting
the distributions with the expected connection probabilities, as
shown in Figure 7. An example is given in Figure 12 for a network
composed of 2000 neurons, all represented by the same popula-
tion mean density field, obtained from the data set of 50 neurons
(see Figure 2). The somata of the 2000 neurons were uniform ran-
domly distributed in a cylindrical space with a height of 360 μm
and a diameter of 1000 μm.
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FIGURE 11 | (A) Expected number of contacts between two neurons
calculated with the approximated voxel-voxel overlap approach (ordinate) vs.
the expected number of contacts calculated with the exact
voxel-environment overlap approach (abscissa). (B) Actual number of contacts
between two neurons vs. the expected number of contacts calculated with
the voxel-environment overlap approach. Note that many data points are

plotted over, but this information is not essential because the figure only aims
at illustrating the range of actual values underlying a given expected value.
(C) Relative difference between expected number of contacts according to
the voxel–voxel and voxel-environment approach vs. expected number of
contacts according to the voxel-environment approach. (D) Similar to (C) but
with finer abscissa scale.

FIGURE 12 | Network connection probabilities, averaged over all

neuron pairs in the network, as a function of their Euclidean intersoma

distance. A number of 2000 somata were uniform randomly distributed in
a cylinder with a height of 360 μm and a diameter of 1000 μm.

Estimation of Euclidean distances of synapses to their pre- and
post-synaptic somata
Density fields can also be used to derive the Euclidean dis-
tance distributions of synapses to their pre- and post-synaptic

somata. To this end, the probability of finding a synapse is deter-
mined in each voxel in the overlap area as well as the voxel’s
Euclidean distance to pre- and post-synaptic somata. The distance
distributions are then constructed by summing the probabilities
sorted by their distances. Evidently, pathlength distributions of
synapses to their pre-and post-synaptic somata cannot be deter-
mined, as the arbor structure is lost in creating the density fields.

Synapses can occur only where axons and dendrites over-
lap in space. These overlap areas are determined by the posi-
tions of the somata and the extents of their arbors. When a
dendrite overlaps only with remote areas of an axonal field,
the possible synaptic locations will have large Euclidean dis-
tances to their pre-synaptic somata. Alternatively, when a den-
drite overlaps with central areas of an axonal field, possible
synaptic locations will have short Euclidean distances to their
pre-synaptic somata. When synapses are distributed homo-
geneously over the axonal and dendritic arborizations, their
Euclidean distance distributions reflect the axonal and den-
dritic mass distributions vs. Euclidean distance to their somata
(Figure 13).

To illustrate the effect of spatial boundaries, we calculated
the pre- and post-synaptic distances for a centrally located neu-
ron in the cylindrical space of height 360 μm and diameter
2000 μm, with a total number of 5000 neurons (density of 4421
neurons/mm3) that are uniform randomly distributed in the
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cylindrical space (Figures 13C,D). Note that the expected num-
ber of synapses between two neurons vs. their intersoma distance
follows the patterns as shown in Figure 4. Although the pre-
synaptic distribution (Figure 13C) has a rough resemblance with
the axonal mass distribution in Figure 13A, it differs from that,
with a mean distance of 281 μm for the mass distribution and a
mean distance of 216 μm for the pre-synaptic distribution. Also
the post-synaptic distribution (Figure 13D) has a rough resem-
blance with the dendritic mass distribution in Figure 13B, but
differs in particular in the tail of the distribution, with a mean
distance of 112 μm for the mass distribution and a mean distance
of 91 μm for the post-synaptic distribution.

These differences can be understood from a cartoon drawing
illustrating the dimensions of the dendritic and axonal density
fields and the cylindrical space. Figure 14A shows an axonal den-
sity field of a centrally located neuron in the cylindrical space and
three dendritic density fields of neurons at nearby and remote

locations. The figure illustrates that a large part of the axonal field
of the central neuron cannot be overlapped by dendritic fields
of the other neurons due to their spatial constraints within the
cylinder. At low cell densities, the shape of the pre-synaptic dis-
tance distribution becomes in a sensitive way dependent on the
particular locations of the dendritic density fields (not shown
here). This was not so much the case for the post-synaptic
distributions. Because of the size of the axonal fields the cen-
tral dendritic density field will have overlap with many more
axonal fields (Figure 14B), even at low cell densities. Because
of the spatial constraint, the apical part of the dendritic den-
sity field will generally be overlapped by a less dense part of
the axonal density fields; this explains why the tail in the post-
synaptic distributions differs from that in the dendritic mass
distribution.

The bounded area of the cylinder also puts constraints on
the intersoma distance distribution, as shown in Figure 15. The

FIGURE 13 | (A) Axonal and (B) dendritic mass distributions vs. Euclidean
distance to somata. The tail in the dendritic mass distributions originates from
the apical dendrite and its apical tuft. (C) Pre-synaptic and (D) post-synaptic
Euclidean distance distributions of a centrally located neuron, as calculated

from its connections with all other neurons. The total number of 5000 neurons
are uniform randomly distributed in a cylinder of height 360 μm and radius
1000 μm. The pre-synaptic distance distribution has a mean(sd ) value of 216
(120) μm and the post-synaptic distance distribution a mean(sd ) of 91(63) μm.

FIGURE 14 | Cartoon drawing of axonal (green) and dendritic (red)

density fields with their somata in a cylindrical space (blue rectangle) of

height 360 µm and diameter 2000 µm. (A) An axonal field with its soma

centered, and three dendritic fields at various locations in the space. (B)

A dendritic field with its soma centered, and three axonal fields at various
locations in the space.
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FIGURE 15 | Frequency distribution of distances between a central

soma and 5000 other somata uniform randomly distributed in a

cylindrical space of height 360 µm and diameter 2000 µm (density of

4421/ mm3).

rather linear pattern differs significantly from a quadratic pattern
expected in unconstrained space.

DISCUSSION
RATIONALE AND SUMMARY
Neuronal density fields are statistical descriptors of the spatial
innervation of axonal and dendritic arborizations. They were
used in several studies to estimate neuronal connectivity (Uttley,
1955; Liley and Wright, 1994; Kalisman et al., 2003; Stepanyants
and Chklovskii, 2005). Recently, we developed a new criterion for
determining the location of synaptic contacts in areas innervated
by both dendritic and axonal arborizations (van Pelt et al., 2010).
In order to apply this criterion to connectivity studies based on
density fields, we needed to develop new methodology. A second
objective of the present study was to validate the connectivity esti-
mates based on the density field approach with the connectivity
data derived from the actual arborizations.

Our recently developed method for finding synaptic locations
is based on crossing dendritic and axonal line pieces in com-
bination with a distance criterion (van Pelt et al., 2010). The
application of this criterion to density fields required an inves-
tigation into the statistical geometry of intersections of lines and
voxels (Appendix section A1). First we needed to obtain intersec-
tions of randomly oriented lines with cubic voxels, a procedure
that turned out to be not trivial. The intuitive procedure of first
selecting a uniform random point within the cube through which
a uniform oriented line is drawn was incorrect. Essential is that
first a uniform random orientation is selected followed by the
selection of a uniform random point in space (thus not restricted
by the cube) through which the line is drawn. The length distribu-
tions of the intersections were highly irregular. Their orientations
(in terms of azimuth and elevation angle distributions) were
significantly different from those expected for random oriented
lines (showing uniform and cosine distributions, respectively).
We were not able to trace earlier literature on these topics; thus to
our knowledge these findings are new. For sake of completeness,

the 2D case for intersections of random lines with a square in a
plane has been included in Appendix section A1.

Knowing the mean intersection length makes it possible to
relate the density in a voxel to the probability of an intersec-
tion. By taking a random “dendritic” intersection in a given
voxel and a random “axonal” intersection in another voxel, we
were able to apply the crossing/proximity criterion. If both line
pieces cross and the crossing distance between the line pieces was
within the distance criterion, a synaptic connection was identi-
fied. Repeating this procedure many times yielded the probability
of a synaptic connection, weighted by the intersection probabil-
ities for this voxel pair. The connectivity of a given “dendritic”
voxel could be obtained by pairing it with all “axonal” voxels in its
close environment. The total sum for all dendritic voxels in the
overlap area of the axonal and dendritic density fields resulted
in the expected number of contacts between the “axonal” and
“dendritic” neuron.

The summation over all local “axonal voxels” around a den-
dritic voxel can be simplified if the local axonal densities do not
vary much. Then the summation can be replaced by the prod-
uct of the axonal and dendritic density in the dendritic voxel
only, multiplied with a local environment crossing factor that inte-
grates the crossing properties of random dendritic line pieces in
the dendritic voxel and random axonal line pieces in the local
environment. This factor is independent of the density fields,
and thus can be obtained once and applied to all voxel pairs.
For smooth axonal density fields without strong gradients, this
assumption is warranted, but for individual neuron density fields
it may not. To test the error made in such conditions, we cal-
culated the expected number of contacts between neurons using
their individual density fields with the exact procedure and the
approximated one. Both procedures yielded similar results as long
as the expected number of contacts was not too small. For very
small values, however, for instance in the case of large inter-
soma distances, the approximation procedure underestimated the
number of contacts compared with the exact procedure, down to
even 100% (Figure 11). However, averaged over neuron pairs for
a range of intersoma distances, the relative difference was less than
about 0.2%.

With the approximation expression, the expected number of
synaptic contacts between two neurons reduces to a simple sum-
mation over all the voxels in the overlap area of the axonal and
dendritic density product per voxel, multiplied with Icoef (which
includes the local environment crossing factor) (Equation A28, and
Table A1). The expression derived by Liley and Wright (1994)
had a similar structure but with an integral of density products,
because of the formulation in continuous space. The coefficient
in their expression was equal to πε

2 , with ε denoting the distance
criterion. This coefficient turned out to be equal to our coef-
ficient Icoef (at least up to the 3rd decimal, Table A4, and see
Equation A39). This proves the consistency between the two fully
independent and different approaches.

ESTIMATION OF CONNECTIVITY MEASURES
The calculations were based on a data set of 50 neurons generated
with the simulator NETMORPH (Koene et al., 2009). The growth
rules were optimized on a data set of rat cortical L2/3 pyramidal
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cells from the NeuroMorpho.org database. For the calculation of
the density fields the neurons were aligned according to their api-
cal dendrites, and axial symmetry was assumed. Although the
population mean density fields were far from smooth (particu-
larly in remote areas; see Figure 3), accurate estimates could be
obtained for the connectivity measures between neuron pairs at
varying locations of their somata.

An important objective of this study was the validation of
the density-field based connectivity expectations with the data
obtained from the actual arborizations.

Validation of the estimation of the number of contacts
As shown in Figure 5, the agreement between both approaches
for calculating the number of contacts was extremely good, even
within the small standard error in the mean of the actual arboriza-
tions (because of averaging over 2450 neuron pairs). This implies
that the number of contacts estimated using population mean
density fields is a full alternative to the averaging over the number
of contacts between the actual neuronal arborizations.

Estimation of the connection probability
An attempt was made to estimate the connection probability
from the density fields. A basic assumption in the approach used
was that synaptic contacts are independently distributed in 3D
space. The incorrect outcomes made clear that this assumption
was not valid. Actually, it emphasizes the correlative structure in
the spatial distribution of synapses, which may not be surprising
as synapses are distributed along neuronal arborizations. These
correlative structures are not preserved in the population mean
density fields, making density fields not suitable for predicting
connection probabilities. Alternatively, we estimated the connec-
tion probabilities from the correct expected number of contacts
by using empirical mapping functions, which produced outcomes
that agreed very well with the validation data.

Estimation of the number of contacts per connection
Because this connectivity measure is calculated as the ratio of the
expected number of contacts and the connection probability, it
cannot be estimated from the density fields either. Alternatively,
we estimated the number of contacts per connected neuron pair
from the correct expected number of contacts by using empirical
mapping functions, which produced outcomes that agreed very
well with the validation data.

Empirical mapping functions
The empirical mapping functions for both the connection proba-
bility and the number of contacts per connection were dependent
on the distance criterion for synaptic contacts. Whether these
mapping functions are also dependent on the morphology of
the cell types is still unknown. If not, the mapping functions
could have a general validity. Investigation of this question was
considered to be outside the scope of this paper.

Distinction between basal and apical dendrites of pyramidal cells
In the calculation of the dendritic density fields, no distinction
was made between basal and apical dendrites. When such a dis-
tinction is made, the connectivity measures can be estimated for
basal and apical dendritic connectivity separately.

COMPARISON OF PRESENT FINDINGS WITH OTHER CONNECTIVITY
STUDIES
Number of contacts between two neurons
Hellwig (2000) estimated computationally the number of con-
tacts between eight experimentally reconstructed rat cortical L2/3
pyramidal neurons by placing them at several distances from each
other. For two groups of four neurons each, the number of con-
tacts as a function of the cell separation was determined using a
distance criterion of 1 μm. Our results (Figure 5) compare well
with the two regression curves of Hellwig. The difference between
the two regression curves of Hellwig illustrates the effect of small
sample sizes (four) when the number of contacts between indi-
vidual neuron pairs may vary as strongly as shown in Figure 10
(see also McAssey et al., in revision).

Connection probabilities in neuronal networks
In neuronal networks neurons take different positions. To derive
connectivity estimates for the whole network, one needs to aver-
age over all the different relative positions of the neuron pairs.
This can be done by calculating the distance distributions of
all the neuron pairs and convoluting the distributions with the
expected connectivity data (see Figures 5, 7, 9). An example of
this procedure for calculating the averaged connection probabil-
ity is given in Figure 12. For a distance criterion of 1 μm, the
connection probability shows a monotone decreasing pattern,
from a value of about 0.7 at very short intersoma distances down
to about 0.04 at an intersoma distance of 500 μm. For larger
distance criteria the connection probabilities slightly increase,
while the intersoma distance dependency becomes more linear.
Experimental data on connection probabilities of rat layer 2/3
rat pyramidal neurons have been collected by Holmgren et al.
(2003). In paired electrophysiological recordings, they found con-
nection probabilities of about 0.09 at intersoma distances of
0–25 μm, decreasing down to about 0.01 at intersoma distances
of 100–200 μm. Using multipatch experiments on a large set of
thick-tufted layer 5 pyramidal neurons in rat cortical somatosen-
sory slices, Perin et al. (2011) estimated the mean (functional)
connection probability as a function of intersoma distance. The
connection probabilities for this type of neuron showed a simi-
lar dependence on distance but with values about a factor of 3–4
lower than our outcomes.

In general, our estimates are substantially higher than the
experimental estimates. Several notes need to be made. Our esti-
mates are based solely on geometrical considerations and mark
only possible candidate synaptic locations. Whether at these loca-
tions actual synapses are present and whether they are functional
and measurable in electrophysiological experiments are open
questions. It is notoriously hard to collect experimentally reliable
estimates of connectivities in neuronal networks, an effort that
is hampered by issues such as cutting effects in slices, unbiased
sampling of patched neurons, and measuring resolutions. The
computational predictions strongly depend on the chosen dis-
tance criterion for synapse formation and, although a criterion of
about 4 μm seems plausible in view of the local geometry, it still
has to be validated. A larger uncertainty is the probability that a
candidate synapse location really represents a functional synapse.
With a computational estimate of about 0.9 for the connection
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probability at very short distances and an experimental estimate
of about 0.09 (Holmgren et al., 2003), there is still a factor of 10
difference to be explained.

An interesting finding from the present study is that the
expected number of contacts was highest when the pre-synaptic
neuron was placed about 50 μm above the post-synaptic neuron
(Figure 4). Kalisman et al. (2003) reported a similar observation
(with a maximal number of contacts at a displacement of 100 μm
for layer 5 pyramidal cells).

Pre- and post-synaptic Euclidean distance distributions
The probability of having a synapse at a particular location in
space directly depends on the local values of the axonal and
dendritic densities. The distribution of synapses on the axonal
and dendritic arborizations is thus determined by the overlap
profile of the density fields, which depends on the locations of
the somata. An example is given for a number of neurons with
their somata uniform randomly distributed in a cylindrical space
(Figure 13). In the case of uniform density fields and unrestricted
space, one would expect pre- and post-synaptic distances to be
equal to the radial mass distributions of the axons and dendrites.
The comparison thus shows the effect of inhomogeneous density
fields and restricted space on the spatial distribution of synapses.

Feldmeyer et al. (2002) studied connectivity between layer 4
spiny neurons and the dendrites of layer 2/3 pyramidal cells in
the rat barrel cortex by means of paired recording and reconstruc-
tion techniques. The distribution of the post-synaptic Euclidean
distances of synapses on the pyramidal dendrites turned out to
correspond quite well with our predictions, although the limited
number of their observations (59 synapses in 13 neuron pairs)
prevented a detailed shape comparison. Data on pre-synaptic
Euclidean distance distributions appears to be absent in the lit-
erature, probably because of the experimental challenges involved
in reconstructing full axonal arbors of neurons that project to a
given target neuron.

EXPERIMENTAL CHALLENGES IN MEASURING NETWORK
CONNECTIVITY
Helmstaedter (2013) recently evaluated the state-of-the art of
experimental techniques for resolving the connectivity matrix
in neuronal circuits (connectomics). As structures involved
in connections (axonal diameters, spine necks) have minimal
dimensions of less than about 50 nm, the minimal required imag-
ing resolution must be less than about 30 nm. Present electron
microscopy techniques meet these resolution requirements but
are limited in the volume that they can image. While these recon-
structions are time consuming, the time needed for segmentation
and determining the wiring exceeds these imaging times by fac-
tors. Therefore, computational approaches may provide valuable
alternative approaches for studying connectivity at a cellular level
in neuronal networks.

FUTURE CHALLENGES
Density fields calculated from experimentally reconstructed
neurons
The present study was based on a set of neuronal morphologies
produced by the simulator NETMORPH (Koene et al., 2009), but

could equally well have been based on a set of experimentally
reconstructed neurons. A set of simulated rather than experi-
mentally reconstructed neurons was chosen because it puts no
restriction on the number of neurons and because simulated
neurons do not suffer from incompleteness caused by tissue
sectioning, a problem that affects many sets of experimentally
reconstructed neurons.

If a sufficiently large set of experimentally fully reconstructed
neurons became available, the axonal and dendritic density fields
derived from these neurons would provide powerful statistical
representations of their spatial innervation patterns. These den-
sity fields can replace actual arborizations when one wants to
build networks of these neurons. The limited availability of actual
neuronal reconstructions is then no longer restricting the size of
the network. The connectivities emerging in such networks can
then be reliably estimated from the overlap of the neurons’ den-
sity fields, as has been shown in this study. For building cortical
networks, one needs density fields of a variety of neuron types.
These neuron-specific density field templates are not yet available,
and constructing them would be an interesting challenge for the
future.

Variability in neuronal morphologies and density fields
Neurons vary substantially in their morphologies. Density fields
based on different data sets from the same neuron population
will also show variations, which inevitably propagate to variations
in the estimated connectivity values. This issue has recently been
addressed by McAssey et al. (in revision). They show how the vari-
ation in the estimated number of contacts between two neurons
decreases with increasing size of the data set used for calculating
the density fields. They advocate the use of neuronal simulators,
because simulators enable the generation of any desired num-
ber of morphologies so that the density fields can be estimated
with any desired level of statistical stability. Essential is that the
simulated neurons are realistic in all relevant aspects of their
morphology.

Density field completion of sectioned incomplete neurons
Many neuronal reconstructions for a variety of cell types and
species that are made available through the NeuroMorpho.Org
data base (Ascoli, 2006) are, unfortunately, incomplete and not
directly suitable for constructing density fields. However, when
parts of the density fields within the spatial constraint of a section
can be reliably estimated from incomplete neuronal reconstruc-
tions, it should be possible to make the density field complete
provided axial or spherical symmetry can be assumed.

Density fields of neuronal populations at various developmental
stages
During neuronal development, axonal and dendritic arbors
increase their spatial innervation area by neurite elongation and
branching. Connectivity studies on developing networks criti-
cally rely on the availability of reconstructed neurons at different
developmental stages, but such morphological time series are
unfortunately scarce. Density fields of outgrowing neurons will
also change with developmental stage and presumably according
to a particular growth pattern. If density fields can be determined
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for a number of developmental stages, such growth patterns could
possibly be described in terms of a density field growth function.
These density field growth functions could then, for example, be
used for (i) interpolating or extrapolating to developmental stages
for which experimental data is not available, and (ii) studying
connectivity in developing neuronal networks.

CONCLUSION
Determining the connectivity between neurons requires knowl-
edge about their innervation of space. Neurons can be represented
by their actual arborizations, but also by their density fields. In
this paper, we have shown that the number of contacts between
neurons estimated from their population mean density fields is
fully consistent with the number of contacts calculated from their
actual arborizations. However, the connection probability and
the number of contacts per connection cannot be reliably esti-
mated from the density fields. Alternatively, they can be estimated
from the expected number of contacts by using empirical map-
ping functions. The population mean density fields are powerful
representations of the mean axonal and dendritic spatial inner-
vation patterns of a given cell type. These density fields can be
used in neuronal network studies to obtain statistical connec-
tivity estimates by representing each neuron by the population
mean density field of its cell type. The large variation between
individual neurons is then already expressed in the density field
itself.
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