
REVIEW ARTICLE
published: 22 November 2013

doi: 10.3389/fncom.2013.00169

Defining nodes in complex brain networks
Matthew L. Stanley , Malaak N. Moussa , Brielle M. Paolini , Robert G. Lyday , Jonathan H. Burdette*
and Paul J. Laurienti

Laboratory for Complex Brain Networks, Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA

Edited by:

Eric Kolaczyk, Boston University,
USA

Reviewed by:

Mark A. Kramer, Boston University,
USA
Nicole Lazar, University of Georgia,
USA

*Correspondence:

Jonathan H. Burdette, Laboratory for
Complex Brain Networks,
Department of Radiology, Wake
Forest University School of
Medicine, Medical Center
Boulevard, Winston-Salem, NC
27157-1083, USA
e-mail: jburdett@wakehealth.edu

Network science holds great promise for expanding our understanding of the human
brain in health, disease, development, and aging. Network analyses are quickly becoming
the method of choice for analyzing functional MRI data. However, many technical issues
have yet to be confronted in order to optimize results. One particular issue that remains
controversial in functional brain network analyses is the definition of a network node.
In functional brain networks a node represents some predefined collection of brain
tissue, and an edge measures the functional connectivity between pairs of nodes. The
characteristics of a node, chosen by the researcher, vary considerably in the literature.
This manuscript reviews the current state of the art based on published manuscripts
and highlights the strengths and weaknesses of three main methods for defining nodes.
Voxel-wise networks are constructed by assigning a node to each, equally sized brain
area (voxel). The fMRI time-series recorded from each voxel is then used to create the
functional network. Anatomical methods utilize atlases to define the nodes based on brain
structure. The fMRI time-series from all voxels within the anatomical area are averaged
and subsequently used to generate the network. Functional activation methods rely on
data from traditional fMRI activation studies, often from databases, to identify network
nodes. Such methods identify the peaks or centers of mass from activation maps to
determine the location of the nodes. Small (∼10–20 millimeter diameter) spheres located
at the coordinates of the activation foci are then applied to the data being used in the
network analysis. The fMRI time-series from all voxels in the sphere are then averaged,
and the resultant time series is used to generate the network. We attempt to clarify the
discussion and move the study of complex brain networks forward. While the “correct”
method to be used remains an open, possibly unsolvable question that deserves extensive
debate and research, we argue that the best method available at the current time is the
voxel-wise method.
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INTRODUCTION
The brain is a complex network with an underlying organiza-
tional structure. This organizational structure can be investigated
using the methods of network science. The study of complex
brain networks has dramatically developed and matured over the
past decade, becoming the method of choice for analyzing func-
tional brain imaging data. While network science holds great
promise for expanding our knowledge of the human brain in
health, disease, development, and aging, the rapid expansion and
increased popularity of network science as a paradigm for ana-
lyzing neuroimaging data generates the risk that new methods
may be misapplied or misinterpreted, leading to inaccurate and
misleading results.

Fundamentally, all networks are composed of two basic com-
ponents: the elements of the system and the pairwise relationships
between those elements. Formally, graphs represent these ele-
ments as nodes and the pairwise relationships between elements
as edges/links. Graph theory provides a rigorous, well-established
framework for describing brain connectivity, both locally and

globally, providing the first robust opportunity to expansively and
non-invasively explore the entirety of the human brain at one
time (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). In
functional brain networks, nodes represent some predefined col-
lection of brain tissue, and edges measure functional connectivity
between pairs of nodes. Functional connectivity is an observable
phenomenon quantifiable with measures of statistical dependen-
cies, such as correlations, coherence, or transfer entropy (Friston,
1994, 2011). Once the brain network has been generated, standard
network science measures can elucidate many different features,
both local and global, of the interactions between brain areas.

For networks to adequately model physical systems, nodes
must accurately and meaningfully represent the elements of the
system (Butts, 2009). In most social, biological and technolog-
ical networks, what constitutes a node and what constitutes a
link is clearer and reasonably defined. For example, in studies
of friendship networks, individual persons are an obvious choice
for nodes, and instances of friendship between persons are an
obvious choice for links; similarly, in studies of gene networks,
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genes are an obvious choice for nodes, and regulatory proteins
are a reasonable choice for links. In brain networks each indi-
vidual neuron could be represented as a node, and the edges
between nodes could then be represented by synapses. While this
has been done successfully in the significantly less complex C.
Elegans (Sporns and Kötter, 2004; Towlson et al., 2013), it is not
currently possible to image, record, or computationally analyze
the estimated 100 billion neurons in the human brain, each one
with ∼7000 synapses (Drachman, 2005). Although the Human
Brain Project and the BRAIN initiative are attempting to gener-
ate such a model, representing neurons as nodes and synapses as
links in the human brain may not be a desirable objective. A full-
scale replica of the human brain would be unlikely to produce
an understandable model, considering that it is as complex as the
real system. Current technology limits functional brain network
analyses to nodes above the millimeter scale, meaning that many
potentially interacting neurons and synapses will be represented
as individual nodes in human brain networks.

The lack of a clear, obvious choice of what should represent
a node in a functional brain network has resulted in the analysis
of brain networks across a wide range of scales, ranging from 70-
node (Wang et al., 2009) to 140,000-node whole brain networks
(Eguíluz et al., 2005) and using a variety of parcellation schemes
dependent on wide-ranging definitional criteria. Nevertheless,
the manner in which nodes are explicitly defined in brain net-
works largely determines the neurobiological interpretation of the
network topology (Butts, 2009). There is currently no universally
accepted nodal definition, making this one of the most important
unsolved problems in network analyses of neuroimaging data.

The purpose of this paper is to discuss concepts and issues
surrounding node definition in functional brain network analy-
ses. It is critical to acknowledge the fact that the optimal method
for defining nodes remains an enigma. In any system as com-
plex as the human brain, the boundaries that are used to define
system elements are abstract and are typically related to the prob-
lem being addressed. In fact, the late complex systems scientist,
Donella H. Meadows, noted that all boundaries are human in
origin:

“. . . boundaries are of our own making and they can and should
be reconsidered for each new discussion, problem, or purpose.”
(Meadows and Wright, 2008)

Nevertheless, when generating a model of the human brain using
functional brain networks, it is necessary to define individual
nodes, and the boundaries of such nodes can dramatically influ-
ence the outcomes of the study (Smith et al., 2011). Of the
commonly used available methods, some certainly have advan-
tages over others, and node choice could change based on the
questions being studied. By identifying motivations and prob-
lems in each commonly used approach, we attempt to clarify the
discussion and move the study of complex brain networks for-
ward. Here, after completing a comprehensive meta-analysis of
the available literature, we provide a review of the most popular
nodal definition schemes based on: individual voxels, anatomi-
cal atlases, and prior functional activation studies. We argue that
the approach with the fewest problems currently available is the

voxel-wise approach. For the types of knowledge currently being
sought by most neuroscientists, the available alternatives to the
voxel-wise approach have significant limitations.

In the debate over the best way to define network nodes, the
various approaches available can be boiled down to one clear dis-
tinction: (1) a priori based determination of nodes, whether by
atlases, prior literature, or some other functional imaging tech-
nique; and (2) no a priori based determination of nodes (i.e.,
making each voxel a node). As neuroscience explores the orga-
nization of brain networks, the authors of this manuscript believe
that the smallest subdivisions possible (up to some point that is
currently unknown) will yield the most unbiased and informative
results. However, in keeping with Dr. Meadows’ observation, it is
important to remain open to possibilities that different bound-
ary definitions are appropriate for different questions. Unless
unequivocal evidence is found that one boundary definition is
better than another, it is vital that neuroscientists remain open
to others using various node definitions. Dogma should not be
allowed to supersede scientific inquiry.

In short, we favor the voxel-wise approach to studies of the
brain as a complex network, largely because it is not burdened
by prior reductionistic brain research findings. Limiting network
science studies of the brain based on findings from prior imaging
techniques will limit our ability to discover new, unknown prop-
erties that are not observable using past methodologies (Telesford
et al., 2011). One of the strengths of the network science approach
is that it thrives on the fact that all brain regions are dependent
rather than independent. This cannot be emphasized too strongly.
Implementing a priori information will weaken the validity of the
approach. We recognize that all currently available techniques are
flawed, because any nodal definition scheme will contain the sig-
nal of many neurons. It is not clear which granulation level is best,
so at this point we should use a method with the fewest prior
assumptions and as much of the available data as possible.

NODE DEFINITIONS IN THE LITERATURE
For our meta-analysis of the literature, studies were first identified
using the PubMed database and included articles with the fol-
lowing search terms: “functional,” “brain” and “networks.” The
search was limited to articles focused on human research and
articles published between 01/01/2005—01/31/2013. This initial
filter returned a total of 4847 research articles. These articles
were then filtered to only include original research publications
and to exclude literature reviews and commentary. Two differ-
ent researchers independently filtered the remaining articles to
exclude research that described functional networks generated
from electroencephalography and magnetoencephalography as
well as structural networks generated from diffusion weighted
imaging or voxel-based morphometry. The final list included 155
studies that specifically applied principles of graph theory to func-
tional magnetic resonance imaging (fMRI) data (see supplemen-
tal information for a complete list). Various methodologies were
used to identify associations between the nodes across studies.

These studies were then categorized by the parcellation scheme
each used for data analysis. Categories included analyses based
on the voxel-level (32 articles), established anatomical atlases
(86 articles) and previously published fMRI activation maps (20
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articles). Several studies presented varied non-traditional parcel-
lation schemes (23 articles), and a limited number implemented
multiple parcellation schemes (5 articles).

In studies using a voxel-wise approach, the number of nodes
varied greatly and ranged from under 5000 to as high as 140,000
nodes. In 2005, Eguiluz and colleagues published what is now
known to be the first study that applied graph theory analysis
to fMRI brain data. It is worth noting that this seminal con-
tribution to neuroimaging research was not only the first of its
kind but also has been referenced over 450 times. In addition to
traditional voxel-wise methods, our search revealed a new vari-
ant to voxel-wise methodology. In this approach a voxel-wise
based correlation matrix was generated using resting-state func-
tional connectivity MRI (rs-fcMRI) data. The voxels were then
clustered into groups using various methods to define the bound-
aries rather than using anatomic-based atlases (Thirion et al.,
2006; Cohen et al., 2008; Mumford et al., 2010; Vejmelka and
Palus, 2010; Craddock et al., 2012; Blumensath et al., 2013). These
boundaries were ultimately used to create putative functional
areas that are, in effect, made up of combinations of the origi-
nal voxels. The purpose of this approach is to create a universal
functional atlas of the human brain that can be standardized and
used by researchers interested in both resting-state and task-based
functional neuroimaging.

Although the initial application of graph theory principles
to neuroimaging brain data was voxel-based, parcellation of the
brain for functional network analysis has moved toward the use
of anatomical atlases. These atlases are strictly defined using
anatomical features of the brain, like locations of common gyri
and do not rely on any functional information. Atlases are gener-
ally standardized, readily available, and most often used for both
structural and functional neuroimaging analyses. The total num-
ber and size (i.e., voxels) of the regions that make up the entirety
of the brain differs across anatomic atlases. To generate networks
using an atlas-based approach, the blood-oxygen-level-dependent
(BOLD) signal from all voxels is averaged within each ROI. The
average time-series for all the ROIs are used to generate the final
correlation matrix.

We found that the Automated Anatomical Labeling (AAL)
atlas was the most commonly used, and the second most com-
monly used atlas was the Harvard-Oxford probabilistic atlas with
a threshold between 25 and 30%. It should be noted that many
studies did not use all the ROIs contained within a particular
atlas. Instead, researchers picked regions that were of interest to
the authors or re-sampled data to create ROIs of uniform size.

The third most common approach to parcellation was based
on the findings of prior fMRI activation studies. Studies imple-
menting this approach used significant clusters found within
group activation maps that were previously published by the
authors themselves or by others who had published findings per-
tinent to a paper’s topic. In addition to this, others performed a
meta-analysis of several different resting-state or task-based fMRI
activation maps to define a parcellation. For all these studies, a
Gaussian kernel with a full-width-half maximum of 3–10 mm
centered on the peak coordinates was used to create ROIs, and in
all instances this approach excluded much of the brain available
for analysis.

VOXEL-WISE APPROACH
The approach we favor for defining nodes in functional brain
networks treats each individual voxel as a node. Voxel-wise net-
works are constructed by assigning a node to each, equally sized
brain area (voxel), and then measuring the relatedness in activity
computed from pairs of simultaneously recorded time series. The
voxels are based on a grid placed on the brain during imaging and
then warped to MNI (Montreal Neurological Institute) standard
space during the image preprocessing. The placement is arbitrary,
but voxels are approximately aligned across subjects during the
warping procedure. It is acknowledged that perfect alignment is
not achieved, but interpretations of the results really should never
come down to a single voxel.

Among those who utilize a voxel-wise approach, the num-
ber of nodes varies widely. Voxel-wise approaches range from
incorporating roughly 3400 nodes (Liu et al., 2011) to 140,000
nodes (Eguíluz et al., 2005) in the brain network. This vari-
ability is due to differences in acquisition resolution and to
researchers choosing to limit their analyses to the voxels in
specific regions. Such differences in network size will produce
differences in network metrics, as is the case for all three
major approaches for defining nodes. This will make compar-
ison between quantified variables from voxel-wise networks of
different sizes difficult to interpret. However, if the entire brain
is included and the density of the connections is controlled,
then comparisons across studies with different-sized networks are
possible. The size of the network should not significantly inter-
fere with comparisons of the location of key nodes within the
brain.

Discussion
A common criticism of the voxel-wise approach is that connectiv-
ity between neighboring nodes is spurious and over-represented.
This is because local spatial correlations due to many non-neural
factors may manifest as edges even though there may not be direct
functional connectivity (Power et al., 2011). One possible cause
of increased local correlations is the result of reslicing and blur-
ring in data processing (Wig et al., 2011). Because reslicing and
blurring are inevitable steps in standard data processing, it is only
possible to partially alleviate the effects of voxels sharing non-
biological signal. Another possible cause is that the fMRI signal is
actually due to changes in blood flow, and local voxels share local
blood flow. Thus, changes in regional blood flow could increase
local correlations even if there are not strong associations in neu-
ral activity. However, it is important to note that the neurobiology
is such that neurons are, in fact, mostly connected to nearby neu-
rons. The probability of connection and the number of connects
falls off following either a Gaussian or exponential process. As
such, the probability of connection and number of contacts drops
dramatically beyond 0.5 mm from the neuron cell body (Liley
and Wright, 1994; Hellwig, 2000). Sporns and Zwi (2004) fur-
ther demonstrated that a model containing predominantly local
connections with sparse distant connections best captures small
world topology in an anatomical brain network. So, even though
blood flow may be locally coupled, so are real neurons. Therefore,
it is difficult to know how much is an artifact of fMRI and how
much is real due to the fact that most connections are local.
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To examine potential effects of local correlations on network
metrics, Hayasaka and Laurienti (2010) deleted local edges con-
necting spatially neighboring voxels in the voxel-wise network
in subjects and then recalculated network metrics. They exam-
ined network metrics on networks that were derived by applying
various thresholds to the correlation matrix that produced net-
works of different edge densities. They found reduced clustering
and increased path length due to the deletion of local edges. In
brief, clustering is a measure of the connections that exist between
the neighbors of a given node, whereas the path length is a mea-
sure of the number of steps required to get from one node to
another node (for further detail, see Watts and Strogatz, 1998).
The effect was minimal when the density of edges in the network
was set such that greater than 98% of the voxels remained con-
nected to the network. Large changes in clustering and path length
did occur when substantial portions of the network became frag-
mented. The degree distribution did not change dramatically
despite the deletion of local edges. In order to avoid adding spu-
rious local correlations to the network as much as possible, data
should not be spatially smoothed. Smoothing introduces spuri-
ously high correlations between adjacent voxels. Even if no spatial
smoothing is performed in the preprocessing protocol, fMRI data
inherently contains some degree of spatial smoothing due to the
data acquisition process. For example, the spatial normalization
process itself could introduce local correlations, which could bias
the structure of the network. This incidental spatial smooth-
ing can produce specious short-range connections that in turn
inflate the clustering metrics in high-resolution voxel-wise net-
works (van den Heuvel et al., 2008). It should be noted that
this is less of a concern for lower-resolution networks, because
the size of each node greatly exceeds the spatial extent of the
smoothing range (Zalesky et al., 2012). Another criticism of the
voxel-wise approach is that relationships between short distance
nodes are especially susceptible to spurious augmentation by sub-
ject motion (Power et al., 2011). However, subject motion is not
merely restricted to local voxels, as the head moves as a rigid
body. As such, most motion artifacts are associated with the inter-
face of different brain tissue types (e.g., gray matter/white matter
interface) (Field et al., 2000), and regions across hemispheres can
become correlated because of motion (Bright and Murphy, 2013)
rendering this a problem for any parcellation scheme.

Another criticism of the voxel-wise approach is that there are
serious signal-to-noise (SNR) problems and spurious connec-
tions due to the low signal in the small voxels. In particular, it
has been suggested that adopting an excessively high spatial res-
olution may be associated with a disproportionate loss in SNR
(Fornito et al., 2010). This will result in an increase in the ran-
dom connections in the network. It essentially will be like adding
random links to the true network. This would have the effect of
decreasing the overall network path length, but it would likely not
affect the local clustering (Watts and Strogatz, 1998). The main
opponents of the voxel-wise approach argue that the problem is
an increase in clustering, not a decrease in the path length (Power
et al., 2011). If the SNR of voxel-wise data were not of sufficient
quality, all traditional functional connectivity studies (e.g., Biswal
et al., 1995, 1997) that serve as the foundation for network anal-
yses in the brain would be called into question. In addition, all

traditional fMRI activation studies are voxel-wise, and thus those
works would be called into question.

There is no doubt that averaging signal across local voxels, as
is performed with the non-voxel-wise approaches, will decrease
the noise levels in each network node. In fact, we have evalu-
ated the magnitude of the correlation values in a voxel-wise and
atlas-based network averaged over 10 young, healthy subjects at
rest using recently published data (Peiffer et al., 2009; Hayasaka
and Laurienti, 2010). The positive correlation values were signif-
icantly higher (p = 0.001, paired t-test) when the time courses
were averaged across anatomical ROIs (average r = 0.221, SD =
0.017) than when individual voxels were used (average r = 0.159,
SD = 0.011). While it is true that averaging voxels reduces noise,
it is also true that real signals are lost if voxels with very differ-
ent true signals are averaged. This is in fact what we found when
we examined the correlation values of the strong associations that
are typically retained after thresholding functional networks. The
thresholds were set such that the density of connetions was com-
parable across the types of networks. For the atlas-based network
the retained edges had an average r-value of 0.421 (SD = 0.047).
For the voxel-wise network, the retained edges were significantly
higher (p < 0.001, paired t-test) with an average r-value of 0.55
(SD = 0.039). Thus, the averaging procedure used when combin-
ing many voxels into a single node did reduce overall noise, but it
also reduced signal in the strongest of the network connections.

Despite some potential limitations, voxel-wise networks have
strengths that make them an ideal choice for making new discov-
eries about human brain function. Representing nodes as equally
sized voxels allows the voxel-wise approach to escape three serious
problems facing other methods. First, voxel-wise networks are not
constrained by the assumption that voxels from the same anatom-
ical regions or functional areas are sufficiently similar so that they
can be averaged to form a larger node. Second, because each node
in the voxel-wise network is of equal size, signal variance will
not scale with the number of voxels that contribute to its esti-
mate, meaning that the quantification of pairwise relationships
will not be disproportionately more reliable for larger brain areas
(Hayasaka and Laurienti, 2010). Third, those ROIs comprised of
a greater quantity of voxels than other ROIs in region-based net-
works may exhibit differential connectivity simply due to the fact
that a greater variety of signals are included in the ROI itself
(Hayasaka and Laurienti, 2010). Because each node is the same
size in voxel-wise networks, no correction mechanism need be
developed to account for differences in the spatial extent of ROIs.

The voxel-wise approach generates high-resolution (meso-
scopic) brain networks, allowing researchers to acknowledge and
account for (given current technological constraints) the het-
erogeneity of areas present within the larger ROIs identified by
other parcellation techniques. For instance, in a recent study a
highly interconnected hub in the posterior cingulate cortex (PCC)
observed in a high-resolution voxel-wise network was centered
in the middle of three different ROIs (nodes) in a network with
nodes defined with an AAL atlas (Hayasaka and Laurienti, 2010).
Regardless of whether the three adjoining ROIs in the atlas-
based network were kept separate or averaged together, it would
not have been possible to meaningfully capture the high degree
area in the middle of the three anatomical ROIs. Additionally,
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although both anatomical atlas-based and voxel-wise network
analyses have consistently identified the PCC and the nearby pre-
cuneus as highly connected nodes, or hubs (Hagmann et al., 2008;
van den Heuvel et al., 2008; Buckner et al., 2009), only voxel-
wise networks allow for the precise localization of hub nodes
within these anatomical areas (Hayasaka and Laurienti, 2010). It
should be noted that (Tohka et al., 2012) compared a voxel-wise
(40,962 nodes) and an anatomical atlas-based (54 nodes) net-
work with results corroborating those of Hayasaka and Laurienti
(2010). This ability to more accurately identify the spatial loca-
tions of hubs in functional brain networks allows researchers to
more accurately quantify the assortativity of the network, effi-
ciency in the flow of information in the network, resiliency of
the network to targeted and random attack, and the nature of
the degree distribution of the network (whether the degree dis-
tribution is truly scale-free or instead an exponentially truncated
power law degree distribution). For overviews of these metrics,
see Bullmore and Sporns (2009), Rubinov and Sporns (2010), and
Kaiser (2011). Additionally, a substantial amount of research has
indicated that hubs are radically reorganized in a variety of neu-
rological disorders, including Alzheimer’s disease (Supekar et al.,
2008), stroke (Desmurget et al., 2007), schizophrenia (Lynall
et al., 2010) and abnormalities in consciousness (Achard et al.,
2012). This suggests that the ability to accurately and effectively
detect the location of hubs may serve an important purpose in
clinical settings.

Several extensions of the voxel-wise approach have been devel-
oped using rs-fcMRI correlations by attempting to group together
voxels with similar properties. Each group of voxels, or functional
“unit,” can potentially represent a node for further network analy-
ses. The full set of fundamental units of interest can, in theory, be
described with a robust brain map akin to a map of the countries
of the world, wherein each country is analogous to a distinct func-
tional unit (Wig et al., 2011). Methods used to identify functional
units (nodes) using rs-fcMRI data can be classified into 3 cate-
gories: detecting sharp transitions in rs-fcMRI patterns (Cohen
et al., 2008; Barnes et al., 2010, 2012; Nelson et al., 2010), identi-
fying functionally similar clusters (Thirion et al., 2006; Mumford
et al., 2010; Vejmelka and Palus, 2010; Craddock et al., 2012), and
region growing methods (Blumensath et al., 2013).

Some who have advocated for these rs-fcMRI approaches and
against a voxel-wise approach argue that although interrogating
voxels is suitable in the statistical analysis of neuroimaging data
when the goal is to identify groups of voxels with similar prop-
erties, treating a voxel as a node in a network explicitly implies
that it is being modeled as a distinct unit of information process-
ing (Wig et al., 2011). The implication here is that because voxels
are not distinct units of information processing, voxels should
not represent nodes for network analysis. We contend that such
an argument is circular. The techniques that have been devel-
oped using rs-fcMRI data are built upon what is fundamentally
a voxel-wise network analysis. In fact, (Barnes et al., 2010), who
implement an algorithm to detect transitions in connectivity pat-
terns to form boundaries between nodes, admit that each voxel
is treated as a node and the similarity measure (i.e., η2) between
nodes is treated as an edge in order to then find sharp transitions
in connectivity. Similarly, clustering and region-growing methods

initially require the detection of correlations between adjacent
voxels in order to then determine whether those voxels should
be grouped together. Groups of voxels identified by each respec-
tive approach are redefined as a single node, so that researchers
can go back to the original data and perform a new network
analysis using node definitions that were based on a voxel-wise
network analysis. If one has problems with a voxel-wise analy-
sis, then it is unreasonable to use a voxel-wise analysis to define
a nodal set in an attempt to avoid a voxel-wise analysis. It is nec-
essary to represent each voxel as a unit of information processing
when identifying putative functional units, which then become
the new units of information processing. Importantly, because
each approach is derived from a voxel-wise network analysis, the
problems previously presented for the voxel-wise approach are
conferred upon those methods developed using rs-fcMRI data.

The optimal method for combining voxels into functional
“units” remains an enigma. This is largely due to the inher-
ent inability to access any form of ground truth indicating that
a given method successfully parcellates functional units in the
brain (Craddock et al., 2012; Lohmann et al., 2013). A com-
mon strategy has been to identify algorithms that yield results
comparable to past methodologies. However, this strategy will
bias results toward prior traditional fMRI research and hamper
the ability to make new discoveries. Others check for repro-
ducibility of results generated by some new algorithm. However,
the ability to accurately reproduce results does not entail that
an algorithm has successfully delineated the “true” set of func-
tional units across the brain. The fact that some approach
is reproducible does not mean than it is accurate; it merely
means that it is reproducible. A better approach to validating
new parcellation schemes would be to identify which methods
best predict different behaviors or pathologies through extensive
research. Until there is evidence that unequivocally demonstrates
that a true whole-brain functional parcellation exists, we con-
tend that the least a priori information that is included, the
better.

STRUCTURAL ANATOMICAL ATLASES
The most widely used parcellation scheme defines nodes as indi-
vidually segregated anatomical regions-of-interest (ROIs) from
one of the many readily available structural anatomical atlases.
The mean time series is estimated for every subject by averag-
ing the fMRI signal over all voxels in each anatomically defined
ROI. Of the many modern structural brain atlases readily avail-
able, the number of ROIs (nodes) typically ranges from 70 to 250.
The most widely used anatomical atlas in functional brain net-
work studies is the standard AAL template, which parcellates the
cortex and subcortical structures by identifying gyral and sulcal
boundaries. The full AAL template comprises 116 ROIs (nodes)
(Tzourio-Mazoyer et al., 2002), but the cerebellum is often omit-
ted in network-based studies (Zalesky et al., 2010b) leaving the
cerebral hemispheres divided into 45 anatomical regions each. In
our literature search the AAL atlas was used to define nodes in
69 of the 86 total studies that used structural anatomical atlases.
However, it should be noted that some studies have used at least
two different atlases in network analysis, one of which being the
AAL atlas.
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In addition to the variability in choosing either the full 116
node network or a partial set of 90 nodes, it is not uncommon for
researchers (1) to only select particular regions from the AAL atlas
considered a priori to be of particular interest based on preexisting
literature (Çiftçi, 2011), (2) to exclude ROIs with less than some
predetermined percentage of brain coverage (Fornito et al., 2011),
or (3) to subdivide the AAL atlas into a greater quantity of nodes
of roughly homogenous size constrained to lie within the volume
encapsulated by its parent AAL ROI (Fornito et al., 2010; Zalesky
et al., 2010a; Zhang et al., 2011; Achard et al., 2012). Among those
who use the AAL atlas, variability in the number of nodes ranges
from a partial brain network of 32 nodes (Çiftçi, 2011) to a whole-
brain downsampled network of 4320 nodes (Fornito et al., 2010).

Similar patterns of variability in parcellation occur when dif-
ferent researchers use other structural anatomical atlases. For
instance, among those who use the Harvard-Oxford probabilistic
atlas, it is not uncommon (1) to use the full set of ROIs covering
48 cortical and 21 subcortical structural areas corresponding to
portions of cortical gyri and subcortical gray matter nuclei, (2)
to select only particular ROIs from the atlas considered a priori
to be of particular interest based on preexisting literature (Lord
et al., 2011), (3) to entirely exclude data from certain ROIs due
to suboptimal registration (Davis et al., 2013), or (4) to sub-
parcellate the atlas into a greater quantity of regions of roughly
uniform size entirely contained within a single parent ROI from
the original atlas (Alexander-Bloch et al., 2012, 2013). Among
those who use the Harvard-Oxford probabilistic atlas, variabil-
ity in the number of nodes ranges from a partial network of 19
nodes (Lord et al., 2011) to a whole-brain downsampled net-
work of roughly 300 nodes before thresholding (Alexander-Bloch
et al., 2012). Our literature search revealed that 10 studies have
used the Harvard-Oxford Probabilistic Atlas to define network
nodes.

Discussion
Proponents of using anatomical atlases to define nodes for
network-based fMRI studies often argue that ROIs should repre-
sent areas with clear anatomical boundaries in order to preserve
the interpretability of results from functional connectivity stud-
ies. Others argue that it is only possible to establish relationships
between brain structures and their functions by defining nodes
based on anatomical features (Tzourio-Mazoyer et al., 2002).
Despite the variability in the quantity of nodes and percentage of
brain space used in the literature, the fact that the size and extent
of each node remains fixed within a single atlas across subjects
and studies is an advantage for the approach. The lack of variabil-
ity in this regard has the potential to neatly standardize studies,
allowing for the meaningful comparison of results across studies.

However, the various anatomical brain atlases currently avail-
able exhibit remarkable differences in the number, shape, and
location of ROIs. Because the properties of ROIs are highly
non-linear, a slight change in the number, shape, or location of
ROIs can dramatically alter connectivity profiles (Li et al., 2010),
producing profound effects on network metrics. Low spatial res-
olution anatomical templates are more likely to combine areas
that have distinct temporal signals (Fornito et al., 2010; Craddock
et al., 2012). Averaging disparate temporal signals will decrease

the signal-to-noise because the signals of interest are actually aver-
aged out, thus adding noise to the network analyses. In fact,
significant differences in network metrics have been observed
across different anatomical templates. For instance, Wang et al.
(2009) examined statistical differences in the topological prop-
erties of functional brain networks between an AAL network
(90 node) and an Automatic Non-linear Imaging Matching and
Anatomical Labeling (ANIMAL) network (70 node). While both
networks exhibit robust small-world attributes and an exponen-
tially truncated power law degree distribution, the majority of
other local and global topological parameters vary significantly
across the two networks. Further, because of significant differ-
ences in both the quantity of nodes and the percentage of brain
space incorporated in network analyses among researchers who
use variants of the same anatomical atlas, meaningfully com-
paring results between any two studies is potentially difficult,
impractical, and misleading (Honey et al., 2009; Kaiser, 2011).

Because of the coarse resolution of anatomical atlas-based
approaches to defining nodes, these atlases are most likely to
collapse many different, interacting brain areas with different
functions into a single node. Consequently, representing many
different interacting groups of neurons (and synapses) with dif-
ferent properties as single nodes may poorly represent reality,
obscuring the differences between smaller units within the col-
lapsed node. The regions defined by anatomical atlases should
not be expected to contain homogenous functional connectiv-
ity for two distinct reasons. First, because ROIs derived from
most atlases are so large, it is more likely that they include sig-
nals from several different functional sub-regions (Hayasaka and
Laurienti, 2010). To overcome this problem, some researchers
(e.g., Hagmann et al., 2008; Achard et al., 2012) have randomly
subdivided ROIs, mitigating the possibility of mixing BOLD time
series. While randomly subdividing anatomical ROIs has been
shown to increase regional homogeneity (Craddock et al., 2012),
there is no reason to assume that these randomly subdivided
parcels accurately represent structural patterns in the underlying
neuroanatomy. Second, and more importantly, putative func-
tional areas simply do not need to obey the divisions created by
any parcellation scheme based on anatomical landmarks. Putative
functional areas could extend across a morphological boundary,
or multiple putative functional areas may be present within a
single morphologically defined parcel. Changes in state or condi-
tion could also result in changes in the organization of putative
functional areas, which need not map onto divisions based on
anatomical features.

In fact, anatomical atlases have been shown to exhibit poor
ROI homogeneity, failing to accurately reproduce functional con-
nectivity patterns present at the voxel scale (Craddock et al.,
2012). To further demonstrate this point, we have randomly
chosen one anatomical ROI (node) from the AAL atlas (left
precuneus) and another from the Harvard-Oxford Probabilistic
Atlas (precuneus, as the atlas does not separate the precuneus
into two separate ROIs). Using recently published data (Rzucidlo
et al., 2013), we randomly selected a subject (25 year old, healthy
female). Data were acquired at 4 mm × 4 mm × 5 mm voxel-size,
and each voxel was represented as a node for network analy-
sis. We employed Pearson’s correlation coefficient (a commonly
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used correlation measure in the literature) to compare the time
series of each voxel with every other voxel within the identified
anatomical ROI in a single representative subject at rest and while
engaged in a standard 2-back task. To generate networks of com-
parable edge density, the resting state data were thresholded at
0.6996 and the 2-back data at 0.6520, in accordance with the
thresholding strategy laid out in Hayasaka and Laurienti (2010).
Figure 1 demonstrates that the voxels within the identified ROI
are poorly correlated (the average r-value is close to 0) with one
another within both the AAL atlas ROI or the Harvard-Oxford
probabilistic atlas ROI. If these were homogeneous regions (i.e.,
the voxels/brain regions are “behaving the same”), then the time
series of the voxels within the ROI would be very similar, yielding
high r-values.

We have also plotted the degree distribution and average path
length for those voxels within each anatomical ROI exclusively
with respect to all other voxels within the ROI. Figure 1 demon-
strates that the voxels within each anatomical ROI do not have
a normal degree distribution, as one would expect should each
ROI be functionally homogenous. Instead, a significant quantity
of voxels within each ROI has a very small number of connections
to other voxels within the ROI. Additionally, because no voxel
within either anatomical ROI has an average path length of one
within the ROI itself, different subregions within the ROIs have
different network properties.

FUNCTIONAL ACTIVATION META-ANALYTIC APPROACHES
Another approach to defining nodes in functional brain net-
works utilizes results from preexisting traditional task-evoked
fMRI studies to identify a set of fixed ROIs for all subsequent stud-
ies. Some ROIs have been chosen from prior task-evoked fMRI
studies examining either an individual cognitive function or a
limited set of cognitive functions, which are then implemented in
subsequent network analyses (e.g., Fair et al., 2007; Nomura et al.,
2010; Rish et al., 2013), while others have used data derived from
a diverse set of studies and performed a meta-analysis to define
a set of nodes to be used for any future network analysis (Power
et al., 2011; Wang et al., 2011). Among those who use preexisting
data from a diverse set of task-evoked fMRI studies, some further
include resting-state functional connectivity MRI (rs-fcMRI) data
to locate additional ROIs to include in the set of nodes (Power
et al., 2011).

Nodes defined using fMRI activation data are invariably,
though not necessarily, modeled by spheres typically of 3–6 mm
radii, fixed on either points of peak activity within a putative
functional area (Power et al., 2011; Stevens et al., 2012) or cen-
ter of mass coordinates of an putative functional area (Dosenbach
et al., 2007). These differences in sphere radii across studies trans-
late to dramatic differences in volumes ranging from roughly
113–905 mm3. Incorporating spheres to define functional areas
excludes all voxels except those in the spheres. The spheres are
meant to represent all activity within putative functional areas.
This is thought to minimize the likelihood of crossing the bound-
aries of a functional area. Using spheres does invalidate concerns
related to the problems of signal variance scaling and the dif-
ferences in the number of ROI connections due differences in
ROI sizes that affect anatomical atlas-based networks (Wig et al.,

2011). In the available literature no study has utilized a set of
spherical ROIs covering more than 25% of the cerebral cortex
and subcortical nuclei; many only cover a fraction of 1% of the
cerebral cortex and subcortical nuclei (e.g., Nomura et al., 2010;
Rish et al., 2013). The number of nodes in studies utilizing this
parcellation strategy range from roughly 10–264 nodes.

Discussion
One of the primary motivations for limiting the functional
activation-based method to spheres is predicated upon the idea
that the voxel-wise approach is hampered by a tendency for
nearby voxels to share non-biological signal (causing increased
functional connectivity correlation) and that short-distance rela-
tionships are especially susceptible to spurious augmentation by
subject motion (Power et al., 2011; Wig et al., 2011). However,
these same concerns may be problematic for functional activa-
tion approaches as well, because each sphere is composed of a
set of neighboring voxels. If such artifacts are indeed predomi-
nantly local, averaging signal from adjacent voxels will not average
out these signals because the spurious signals are located in the
adjacent voxels that are being averaged.

Proponents of this approach often argue that by using an
extensive meta-analytic procedure, it is possible to accurately
identify discrete functional macroscopic “units” of brain organi-
zation, each of which representing a distinct unit of information
processing. These macroscopic “units” supposedly best represent
well-formed nodes in network analyses. This contrasts with the
voxel-wise approach wherein voxels are not meant to correspond
to macroscopic units of brain organization. Consequently, propo-
nents of the meta-analytic approach argue that there is no reason
to believe that a voxel-wise approach incorporates well-formed
nodes (Power et al., 2011; ?). Operating under this presupposi-
tion, proponents of the meta-analytic approach argue that the
failure of the voxel-wise approach to properly model macroscopic
functional “units” has practical implications that will distort
network measures. The argument runs as follows:

“As all voxels existing within a functional area undoubtedly share
an edge with one another, graph measures that focus on specific
properties of nodes will be biased toward nodes (voxels) existing
within areas (and possibly communities) that are larger than oth-
ers, and measures describing global properties of the graph will be
distorted due to a misrepresentation of areas as a function of the
number of voxels they contain” (Wig et al., 2011).

We contend that this criticism is unfounded, and it is simple to
demonstrate that all voxels existing within functional areas do not
share an edge with one another, assuming that a reasonable net-
work density is used (obviously, if no threshold is applied and all
nodes are connected to all nodes, then the statement above would
be true).

To illustrate this point, we attempted to reproduce a portion of
this method by examining a spatially contiguous auditory ROI in
the right cerebral hemisphere identified in a previous task-evoked
fMRI analysis (Peiffer et al., 2009) as used in Figure 2. A total of
61 normal, healthy adults ranging in age from 18 to 80 years old
were included. In the task portion of the auditory paradigm, 2-
Hz bursts of white noise alternated with silence. Subjects had to
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FIGURE 1 | This figure shows one anatomical ROI (node) from the AAL

atlas (left precuneus) and another from the Harvard-Oxford Probabilistic

Atlas (precuneus, as the atlas does not separate the precuneus into two

separate ROIs). Column 1 shows four histograms, each depicting the
correlation of the time series of each voxel with every other voxel within the
identified anatomical ROI in a single representative subject at rest and while
engaged in a standard 2-back task. For each histogram depicting each ROI
identified from each atlas and each condition, the voxels within the identified
ROI (node) are poorly correlated with one another overall. This suggests that
the SNR ratio is low. In the second and third columns, the degree distribution
and average path length have been plotted for those voxels within each
anatomical ROI exclusively with respect to all other voxels within the ROI. We
have excluded connections to other voxels outside of the ROI. Presumably, if
the identified functional area were functionally homogenous, then at best we

would see every single voxel within the region connected (strongly positively
correlated) to every other voxel within the region, or at worst, we would see
the degree distribution following a normal curve. However, column 2 shows
that (1) not every voxel is connected to every other voxel in the putative ROI
and that (2) the degree distribution within the ROI itself follows a power-law
instead of a uniform distribution. A significant sum of voxels within each ROI
has relatively few connections (strong positive correlations) to other voxels
within the ROI, and some have zero connections to other voxels within the
ROI itself. No voxel within either anatomical ROI has an average path length
of one within the ROI itself ((Wig et al., 2011) claim that each voxel must be
connected to every other voxel within an ROI in order for the ROI to be a
functional unit). Consequently, different subregions within the ROIs likely
have different topological features, and consequently contribute to the
structure and function of the network as a whole in different ways.

identify a 500-Hz tone randomly embedded in the white noise.
All participants were included in a random-effects group analysis
and the activation map was thresholded at a t-score greater than
10 (one sample, one tail, t-test with 60 df ). The region of acti-
vation in the right auditory cortex was then used as the region
of investigation. A resting-state brain network was then created
at the voxel level using a random individual study participant
(healthy 25 year old female) from a different study (Rzucidlo

et al., 2013). The connectivity profile of the auditory area was then
explored. The degree distribution, path length, and clustering for
all voxels, exclusively within the identified ROI by disregarding
all other voxels outside of the putative functional area, are shown
in Figure 2. Presumably, if the identified functional area were
functionally homogenous, then at best we would see every sin-
gle voxel within the region connected to every other voxel within
the region, or at worst, we would see the degree distribution
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FIGURE 2 | This figure shows an auditory ROI (T > 10) identified in a

previous activation study during which subjects were exposed to

2-Hz bursts of white noise alternated with silence. Subjects had to
identify a 500-Hz tone randomly embedded in the white noise.
Presumably, if the identified functional area were functionally
homogenous, then at best we would see every single voxel within the
region connected to every other voxel within the region, or at worst we
would see the degree distribution following a normal curve. However,
This figure shows that not every voxel is connected to every other voxel
in the putative ROI, and the degree distribution within the ROI itself is
not a uniform distribution. Instead, a significant quantity of voxels within
each ROI has relatively few connections to other voxels within the ROI,
and the degree distribution follows a power law distribution instead of a

normal distribution. Additionally, if the ROI were functionally homogenous,
then clustering should be close to a value of one for each and every
node within the region. However, This figure shows that this is not the
case. Instead, there is a wide distribution of clustering values for those
voxels contained within the ROI. Finally, if the ROI were functionally
homogenous, then average path length should be close to one (or
precisely one) for all voxels within the ROI. However, This figure shows
that it often requires many steps to get from one voxel to another within
the ROI. This figure also shows the degree distribution, path length, and
clustering for all voxels within the identified ROI, but without discarding
all other voxels outside of the putative functional area. It is clear that
different subunits (voxels) within the putative auditory ROI may serve
very different functions with respect to global topology of the network.

following a normal distribution curve. However, Figure 2 shows
that not every voxel is connected to every other voxel in the puta-
tive ROI, and the degree distribution within the ROI itself is not
a uniform distribution. Instead, it follows a truncated power law.
Additionally, if the ROI were functionally homogenous, then clus-
tering should be close to a value of one for each and every node
within the region. However, Figure 2 shows that this is not the
case. Instead, there is a wide distribution of clustering values for
those voxels contained within the ROI. Finally, if the ROI were
functionally homogenous, then average path length should be
close to one (or precisely one) for all voxels within the ROI as
Wig et al. (2011) have suggested. However, the data demonstrates
that it often requires many steps to get from one voxel to another
within the ROI.

To further demonstrate the heterogeneity of the voxels within
this area, we calculated the degree distribution, path length, and
clustering for all voxels with the entire voxel-wise brain network
(Figure 2). The results show a tremendous diversity of connec-
tivity across the voxels within this putative functional area. Such
diversity may be critical for very different functions with respect
to global topology of the network. In fact, many voxels within
identified ROIs have shorter path lengths to voxels outside of the
ROI than to those within the ROI.

Those who use a meta-analytic approach might respond that
the peak activity coordinates represented by the sphere itself ade-
quately capture the properties of the putative functional area.

Thus, it would only be important that the spheres are function-
ally homogenous. While it is clear that the auditory ROI is not
functionally homogenous, and thus, the meta-analytic method
fails in this regard, it is also possible to show that not even the
spheres themselves are functionally homogenous. Using the same
data, we randomly selected six different coordinates identified by
Power et al. (2011) as peak activity locations of putative functional
areas located within the auditory ROI. Nodes were represented
as cubes of 9-mm length (a relatively small size among studies
that use cubes or spheres), and a total of 27 voxels were contained
within each node. Figure 3 shows the degree distribution of all
voxels within each of the cubes. No voxels in any of the six cubes
share an edge with all other voxels within the cube. In fact, across
all the cubes, there are only 2 voxels that have connections with
20 of the possible 26 other voxels. Most voxels have 10 or fewer
connections with the potential 26 other voxels. Consequently, it
is not true that “all voxels within a functional area undoubtedly
share an edge with one another.”

Furthermore, there is no strong evidence that graph mea-
sures focusing on connectivity of individual voxels within larger
areas will be distorted due to a misrepresentation of areas as
a function of the voxels they contain. Nor is there any rea-
son to believe that measures describing global properties of the
graph will be distorted due to a misrepresentation of areas as a
function of the voxels they contain. No matter how the puta-
tive functional area is represented, subsections of brain tissue
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FIGURE 3 | This figure shows the respective degree distributions of 6

different cubes composed of 27 voxels each on the coordinates provided

by (Power et al., 2011). The size of each cube is smaller than the typical
sphere in the literature, so if all the voxels in each sphere do not have very
similar, high degrees within the sphere, then it is unreasonable to use any

spheres generally to represent functional areas. Despite the fact that 27
voxels are contained within each sphere, 5 of the 6 spheres do not have
more than a maximum degree of 10. Additionally, in 5 of the 6 spheres, there
is at least one voxel that is not connected (highly correlated) with any other
voxels in the sphere.

within the functional area have very different properties. When
treating these supposed functionally homogenous “units” as a
single node in a functional brain network, researchers will fail to
see different properties in different subregions of the functional
area itself. Thus, the variation in the properties of voxels within
functional areas is still worth investigating. In fact, by using a
voxel-wise approach, it is possible to objectively discover func-
tional areal distinctions of varying sizes in individual subjects,
without having to resort to amassing an arbitrary set of pre-
existing traditional fMRI studies—a process inherently prone to
experimenter bias and error—in order to define putative func-
tional areas. Furthermore, the voxel-wise approach allows for
putative functional areas to change across people, conditions,
states, and time. The meta-analytic approach assumes that the
functional areas are pre-existing and do not change.

Using smaller spheres or cubes to represent larger functional
areas or merely choosing a partial set of brain areas for network
analysis will fail to incorporate all brain space with detectable
signal into network analysis. Consequently, such approaches
likely misrepresent local and global network measures and fail
to reap the distinctive benefits of a network-based approach.
Connectivity can be assessed between all brain areas simultane-
ously using network science. This is an incredible leap forward
in neuroscientific research. Prior to 2005, researchers were lim-
ited to evaluating connectivity between a few select areas at a
time. While valuable, such analyses do not allow researchers to
examine how any particular area fits into overall network organi-
zation. The clear benefits of examining how a particular area fits
into overall network organization can be illustrated by examin-
ing the efficiency of information flow in a network (see Figure 4).
When examining the connectivity exclusively between 4 different
brain areas of a larger network, one would have an idea how

those four areas communicated with each other, but it would
be impossible to know how the efficiency of other brain areas
provide alternate paths of information transfer. Figure 4 shows
how conclusions from connectivity analyses for a select group
of regions could dramatically differ from a whole-brain analysis.
Each portion of neglected brain space could potentially con-
tribute to several functions of the network as a whole. The fact
that all possible connections are included in a network analysis
ensures that both whole-brain and region-to-region connectivity
can be evaluated accurately. For, all nodal definition schemes
should allow for the meaningful interpretation of both local and
global metrics.

All approaches that define putative ROIs from functional acti-
vation studies are fundamentally restricted by the current avail-
ability and breadth of imaging studies (Wig et al., 2011, 2013).
The set of tasks used to predefine putative functional areas varies
significantly from researcher to researcher. For instance, Wang
et al. (2011) used 5 different tasks, including: error-processing,
default-mode, memory, language and sensorimotor. In contrast,
Power et al. (2011) used 9 different tasks, including: button-
pushing, verb generation, reading, sustained task-induced deac-
tivations, transient task-induced deactivations, sustained task
block activations, on-cue task block activations, error commis-
sion, and memory retrieval. Not only is it difficult, or perhaps
impossible, to compare such different brain networks (Honey
et al., 2009; Kaiser, 2011), but also there is no reason to assume
that any one particular set of tasks is better than the other. The
set of tasks used by Wang et al. (2011) do not include any spa-
tially overlapping ROIs, nullifying the problem of having to either
randomly (and thus arbitrarily) delete encroaching ROIs or spa-
tially average certain ROIs due to encroachment. However, the
set of tasks used by Power et al. (2011) is more comprehensive,
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FIGURE 4 | Network analysis from a single subject at rest based on a 90

node AAL parcellation. The 90 node network was chosen, because it is
easily amenable to being visually represented as a whole. The figure shows
how conclusions from network analyses that do not use all brain nodes could
dramatically differ from a whole-brain analysis. (A) When only considering the
blue nodes (neglecting the rest of the network), there is limited connectivity

between the four nodes (black lines). To get from Node 1 to Node 4 it
requires three steps. (B) However, when the entire network is included,
other nodes (green nodes) that connect to two or more blue nodes can be
seen. Through the green nodes, new pathways between the blue nodes are
evident. There are now three different pathways through a green node (each
one is circled in light blue) such that Node 1 can reach Node 4 in two steps.

likely producing a slightly fuller depiction of brain activation foci.
Still, only incorporating 9 different tasks to define all functional
areas in the brain can only produce an incomplete description of
the location and extent of all putative functional areas, especially
since so many identified ROIs were either randomly deleted or
spatially averaged together. There is no neuroscientific reason to
assume that the peaks of activation ascertained by analyzing data
from 9 kinds of tasks will be applicable to all types of tasks. No set
of tasks should be considered complete or comprehensive.

Importantly, as more tasks are incorporated into the meta-
analysis, it becomes more and more likely that putative functional
areas overlap. For instance, by only incorporating 9 different
tasks in a meta-analysis to define nodes, Power et al. (2011) had
to spatially average 171 putative ROIs (represented as spheres
on peak activity coordinates), because they were encroaching
upon one another. Presumably, a larger, more complete corpus
of task-evoked fMRI data will contain many more overlapping
nodes. And, as one progresses toward including a more “com-
plete” set of task-evoked fMRI data to identify putative functional
areas, then all areas of the brain will collectively become acti-
vation foci. As more task-evoked data is compiled, more and
more spheres will be spatially encroaching on one another, requir-
ing researchers to randomly delete encroaching ROIs or spatially
average encroaching ROIs. Both options will fail to accurately
represent the network.

In addition to the issues of individual variability, we con-
tend that the functional activation approach cannot be applied
to interventional studies, longitudinal observational studies, or
studies that examine the brain networks of populations with dis-
tinct brain physiology. Patterns of neural activity in response
to various task demands change considerably across the lifes-
pan (Stiles, 2008; Power et al., 2010; Vogel et al., 2010), and the
literature is full of studies showing different brain activation pat-
terns across patient populations. The peak activity coordinates of
putative functional areas identified by this approach in subjects
within a certain age group or diagnostic category may not be
transferrable to subjects in a different age group or diagnostic
category.

In contrast to functional activation approaches, using a
voxel-wise approach allows for a model-free, unbiased exam-
ination of both inter-regional and intra-regional connectivity.
Consequently, the voxel-wise method has the potential to reveal
new information about network organization, without relying on
an arbitrary set of preexisting traditional task-related fMRI stud-
ies. Network science has tremendous promise to tell us something
new about the functional nature of the brain. However, tradi-
tional fMRI studies identify a linear association between task and
brain activity. If network science studies of the brain are limited
by findings from traditional fMRI, then will be able to provide lit-
tle insight beyond what has already been discovered. The network
science approach holds tremendous promise for identifying new
relationships in the brain, but this is not possible if we are lim-
ited to what previous non-network fMRI analyses have already
demonstrated (Telesford et al., 2011).

CONCLUSION
This manuscript has examined the predominate schemes that
are currently used for defining nodes in functional brain net-
works: voxel-wise, anatomical atlas-based, and functional acti-
vation meta-analytic. We argue that voxel-wise networks are the
most likely to result in new discoveries of unknown brain prop-
erties. The other methods are limited by a priori knowledge, and
therefore, limit our ability to make new discoveries. Voxel-wise
networks have the resolution to allow for the identification of
key network nodes that are encompassed within larger anatom-
ical regions. Voxel-wise networks also allow for the discovery of
key nodes that are not located within a putative functional unit.
Overall, the voxel-wise method is data-driven and allows for dis-
coveries that cannot be achieved by other methods. Undoubtedly
there are limitations to the voxel-wise approach, but we believe
that the evidence for these potential limitations is currently poor
and that the strengths of the voxel-wise approach outweigh the
potential weaknesses.

There is a fundamental difference in the underlying accepted
presuppositions among those who do brain network analy-
ses (complexity theory) and those who do functional brain
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mapping (reductionism). Applying a priori information from
prior research based on anatomy or brain activation research lim-
its brain network analyses to the discoveries made in these fields.
Such methods will surely provide support for the past studies of
localization of function as the nodes are based on such research.
If the goal is simply to replicate past findings using a new method,
then much less effort should be directed toward this goal. If
the intent is to discover new principles and organization of the
human brain, then researchers should not be tethered to the out-
comes of past work. If network science studies do not replicate
past fMRI findings or do not corroborate structure-function rela-
tionships that have been tied to brain anatomy, then either we
are discovering new things about how the brain works or we are
wrong. We should explore these two possibilities and recognize
that all or our models are wrong and that the new ideas com-
ing from network science are moving us closer to truth about
the brain. The litmus test is going to be whether brain network
research enables us to better understand human behavior, brain
diseases, clinical treatments, and the mind. The test should not be
whether brain networks reinforce what we already believe about
the brain, because at this stage, our understanding of the human
brain is rather trivial.

Why not use an approach that does not include a priori
assumptions about functional subunits of the brain? We have
heard the argument that without a priori assumptions, we cannot
understand and interpret findings. Many ask what the findings
mean in relation to all the previous neuroscience studies. We
would suggest responding that one should not bias his/her results
with concepts that may hold back the field. Why not see if net-
work science can fundamentally alter our view of the brain and
brain function, because it is a fundamentally new way of thinking.
It does not assume certain tissues in the brain are static func-
tional units. Rather, it allows for a dynamic brain, able to perform
complex functions, which are emergent network features of the
system. We hold that the “static functional unit” view is more
wrong than the non-biased dynamic view. We acknowledge that
the latter view (i.e., a voxel-wise approach) is also flawed, but let’s
not handcuff these new techniques with past methodologies.

We contend that no nodal parcellation scheme has been devel-
oped that is capable of providing valuable information beyond
what the voxel-wise approach has already shown. Additionally,
because the voxel-wise approach does not require implementing
any a priori assumptions regarding what constitutes the “right”
node, the approach is fundamentally unbiased. Therefore, the
approach allows the data to speak for itself. Though we have
argued that the voxel-wise method for defining nodes in func-
tional brain networks is a better method than the other available
options, the “best” method to be used remains an open question
deserving debate and additional research. However, rather than
being debated, it is more common for peer reviewers to reject
manuscripts that do not use the method that they deem appro-
priate. This review was meant to be a step forward in fostering
discussion. It is critical that we acknowledge the fact that the abso-
lutely correct parcellation scheme remains an enigma, and it is
possible that multiple different parcellation schemes developed in
the future will be valuable and meaningful in elucidating different
network properties.

ACKNOWLEDGMENTS
The work was partially supported by The National Institutes of
Alcohol Abuse and Alcoholism (AA021639), the Translational
Science Center at Wake Forest University, Wake Forest Older
Americans independence Center (P30 21332), National Institute
on Alcohol Abuse and Alcoholism (T32-AA007565), and the
Sticht Center on Aging.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fncom.2013.
00169/abstract

REFERENCES
Achard, S., Delon-Martin, C., Vértes, P. E., Renard, F., Schenck, M., Schneider,

F., et al. (2012). Hubs of brain functional networks are radically reorganized
in comatose patients. Proc. Natl. Acad. Sci. U.S.A. 109, 20608–20613. doi:
10.1073/pnas.1208933109

Alexander-Bloch, A. F., Vértes, P. E., Stidd, R., Lalonde, F., Clasen, L., Rapoport, J.,
et al. (2013). The anatomical distance of functional connections predicts brain
network topology in health and schizophrenia. Cereb. Cortex 23, 127–138. doi:
10.1093/cercor/bhr388

Alexander-Bloch, A., Lambiotte, R., Roberts, B., Giedd, J., Gogtay, N., and
Bullmore, E. (2012). The discovery of population differences in net-
work community structure: new methods and applications to brain
functional networks in schizophrenia. Neuroimage 59, 3889–3900. doi:
10.1016/j.neuroimage.2011.11.035

Barnes, K. A., Cohen, A. L., Power, J. D., Nelson, S. M., Dosenbach, Y. B. L.,
Miezin, F. M., et al. (2010). Identifying basal ganglia divisions in individuals
using resting-state functional connectivity, M. R. I. Front. Syst. Neurosci. 4:18.
doi: 10.3389/fnsys.2010.00018

Barnes, K. A., Nelson, S. M., Cohen, A. L., Power, J. D., Coalson, R. S.,
Miezin, F. M., et al. (2012). Parcellation in left lateral parietal cortex is
similar in adults and children. Cereb. Cortex 22, 1148–1158. doi: 10.1093/
cercor/bhr189

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-planar mri.
Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Blumensath, T., Jbabdi, S., Glasser, M. F., Van Essen, D. C., Ugurbil, K.,
Behrens, T. E. J., et al. (2013). Spatially constrained hierarchical parcella-
tion of the brain with resting-state fMRI. Neuroimage 76, 313–324. doi:
10.1016/j.neuroimage.2013.03.024

Bright, M. G., and Murphy, K. (2013). Removing motion and physiological arti-
facts from intrinsic BOLD fluctuations using short echo data. Neuroimage 64,
526–537. doi: 10.1016/j.neuroimage.2012.09.043

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T.,
et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: map-
ping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29,
1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Butts, C. T. (2009). Revisiting the foundations of network analysis. Science 325,
414–416. doi: 10.1126/science.1171022

Çiftçi, K. (2011). Minimum spanning tree reflects the alterations of the default
mode network during Alzheimer’s disease. Ann. Biomed. Eng. 39, 1493–1504.
doi: 10.1007/s10439-011-0258-9

Cohen, A. L., Fair, D. A., Dosenbach, N. U. F., Miezin, F. M., Dierker, D., Van
Essen, D. C., et al. (2008). Defining functional areas in individual human
brains using resting functional connectivity MRI. Neuroimage 41, 45–57. doi:
10.1016/j.neuroimage.2008.01.066

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 169 | 12

Biswal, B. B., Kylen, J. V., and Hyde, J. S. (1997). Simultaneous assessment of
flow and BOLD signals in resting-state functional connectivity maps. NMR
Biomed. 10, 165–170. doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::
AID-NBM454>3.0.CO;2-7

http://www.frontiersin.org/journal/10.3389/fncom.2013.00169/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2013.00169/abstract
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Stanley et al. Defining nodes in brain networks

Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., and Mayberg, H. S.
(2012). A whole brain fMRI atlas generated via spatially constrained spectral
clustering. Hum. Brain Mapp. 33, 1914–1928. doi: 10.1002/hbm.21333

Davis, F. C., Knodt, A. R., Sporns, O., Lahey, B. B., Zald, D. H., Brigidi, B. D.,
et al. (2013). Impulsivity and the modular organization of resting-state neural
networks. Cereb. Cortex 23, 1444–1452. doi: 10.1093/cercor/bhs126

Desmurget, M., Bonnetblanc, F., and Duffau, H. (2007). Contrasting acute and
slow-growing lesions: a new door to brain plasticity. Brain 130(Pt 4), 898–914.
doi: 10.1093/brain/awl300

Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K.,
Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and sta-
ble task control in humans. Proc. Natl. Acad. Sci. U.S.A. 104, 11073–11078. doi:
10.1073/pnas.0704320104

Drachman, D. A. (2005). Do we have brain to spare. Neurology 64, 2004–2005. doi:
10.1212/01.WNL.0000166914.38327.BB

Eguíluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., and Apkarian, A. V.
(2005). Scale-free brain functional networks. Phys. Rev. Lett. 94:018102. doi:
10.1103/PhysRevLett.94.018102

Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin,
F. M., et al. (2007). Development of distinct control networks through seg-
regation and integration. Proc. Natl. Acad. Sci. U.S.A. 104, 13507–13512. doi:
10.1073/pnas.0705843104

Field, A. S., Yen, Y.-F., Burdette, J. H., and Elster, A. D. (2000). False cerebral acti-
vation on BOLD functional MR images: study of low-amplitude motion weakly
correlated to stimulus. Am. J. Neuroradiol. 21, 1388–1396.

Fornito, A., Yoon, J., Zalesky, A., Bullmore, E. T., and Carter, C. S. (2011).
General and specific functional connectivity disturbances in first-episode
schizophrenia during cognitive control performance. Biol. Psychiatry 70, 64–72.
doi:10.1016/j.biopsych.2011.02.019

Fornito, A., Zalesky, A., and Bullmore, E. T. (2010). Network scaling effects in graph
analytic studies of human resting-state FMRI data. Front. Syst. Neurosci. 4:22.
doi: 10.3389/fnsys.2010.00022

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a
synthesis. Hum. Brain Mapp. 2, 56–78. doi: 10.1002/hbm.460020107

Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connect.
1, 13–36. doi: 10.1089/brain.2011.0008

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V.
J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS
Biol.6:e159. doi: 10.1371/journal.pbio.0060159

Hayasaka, S., and Laurienti, P. J. (2010). Comparison of characteristics
between region-and voxel-based network analyses in resting-state fMRI data.
Neuroimage 50, 499–508. doi: 10.1016/j.neuroimage.2009.12.051

Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyra-
midal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121.
doi: 10.1007/PL00007964

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R.,
et al. (2009). Predicting human resting-state functional connectivity from
structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040. doi:
10.1073/pnas.0811168106

Kaiser, M. (2011). A tutorial in connectome analysis: topological
and spatial features of brain networks. Neuroimage 57, 892–907.
doi:10.1016/j.neuroimage.2011.05.025

Liley, D. T. J., and Wright, J. J. (1994). Intracortical connectivity of pyramidal and
stellate cells: estimates of synaptic densities and coupling symmetry. Network 5,
175–189. doi: 10.1088/0954-898X/5/2/004

Li, X., Marrelec, G., Hess, R. F., and Benali, H. (2010). A nonlinear identification
method to study effective connectivity in functional MRI. Med. Image Anal. 14,
30–38. doi:10.1016/j.media.2009.09.005

Liu, J., Qin, W., Yuan, K., Li, J., Wang, W., Li, Q., et al. (2011). Interaction between
dysfunctional connectivity at rest and heroin cues-induced brain responses
in male abstinent heroin-dependent individuals. PLoS ONE 6:e23098. doi:
10.1371/journal.pone.0023098

Lohmann, G., Stelzer, J., Neumann, J., Ay, N., and Turner, R. (2013). “More is differ-
ent” in functional magnetic resonance imaging: a review of recent data analysis
techniques. Brain Connect. 3, 223–239. doi: 10.1089/brain.2012.0133

Lord, L.-D., Allen, P., Expert, P., Howes, O., Lambiotte, R., McGuire, P.,
et al. (2011). Characterization of the anterior cingulate’s role in the at-
risk mental state using graph theory. Neuroimage 56, 1531–1539. doi:
10.1016/j.neuroimage.2011.02.012

Lynall, M.-E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller,
U., et al. (2010). Functional connectivity and brain networks in schizophrenia.
J. Neurosci. 30, 9477–9487. doi: 10.1523/JNEUROSCI.0333-10.2010

Meadows, D. H., and Wright, D. (2008). Thinking in Systems: a Primer. White River
Junction, VT: Chelsea Green Pub.

Mumford, J. A., Horvath, S., Oldham, M. C., Langfelder, P., Geschwind, D.
H., and Poldrack, R. A. (2010). Detecting network modules in fMRI time
series: a weighted network analysis approach. Neuroimage 52, 1465–1476. doi:
10.1016/j.neuroimage.2010.05.047

Nelson, S. M., Cohen, A. L., Power, J. D., Wig, G. S., Miezin, F. M., Wheeler, M.
E., et al. (2010). A parcellation scheme for human left lateral parietal cortex.
Neuron 67, 156–170. doi: 10.1016/j.neuron.2010.05.025

Nomura, E. M., Gratton, C., Visser, R. M., Kayser, A., Perez, F., and D’Esposito,
M. (2010). Double dissociation of two cognitive control networks in patients
with focal brain lesions. Proc. Natl. Acad. Sci. U.S.A. 107, 12017–12022. doi:
10.1073/pnas.1002431107

Peiffer, A. M., Hugenschmidt, C. E., Maldjian, J. A., Casanova, R., Srikanth, R.,
Hayasaka, S., et al. (2009). Aging and the interaction of sensory cortical function
and structure. Hum. Brain Mapp. 30, 228–240. doi: 10.1002/hbm.20497

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,
et al. (2011). Functional network organization of the human brain. Neuron 72,
665–678. doi: 10.1016/j.neuron.2011.09.006

Power, J. D., Fair, D. A., Schlaggar, B. L., and Petersen, S. E. (2010). The
development of human functional brain networks. Neuron 67, 735–748. doi:
10.1016/j.neuron.2010.08.017

Rish, I., Cecchi, G., Thyreau, B., Thirion, B., Plaze, M., Paillere-Martinot, M. L.,
et al. (2013). Schizophrenia as a network disease: disruption of emergent brain
function in patients with auditory hallucinations. PLoS ONE 8:e50625. doi:
10.1371/journal.pone.0050625

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi:
10.1016/j.neuroimage.2009.10.003

Rzucidlo, J. K., Roseman, P. L., Laurienti, P. J., Dagenbach, D. (2013). Stability
of whole brain and regional network topology within and between rest-
ing and cognitive states. PLoS ONE 8:e70275. doi: 10.1371/journal.pone.
0070275

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F.,
Nichols, T. E., et al. (2011). Network modelling methods for FMRI. Neuroimage
54, 875–891. doi: 10.1016/j.neuroimage.2010.08.063

Sporns, O., and J. D. Zwi, (2004). The small world of the cerebral cortex.
Neuroinformatics 2, 145–162. doi: 10.1385/NI:2:2:145

Sporns, O., and Kötter, R. (2004). Motifs in brain networks. PLoS Biol. 2:e369. doi:
10.1371/journal.pbio.0020369

Stevens, A. A., Tappon, S. C., Garg, A., and Fair, D. A. (2012). Functional brain
network modularity captures inter- and intra-individual variation in working
memory capacity. PLoS ONE 7:e30468. doi: 10.1371/journal.pone.0030468

Stiles, J. (2008). The Fundamentals of Brain Development: Integrating Nature and
Nurture. Cambridge, MA: Harvard University Press.

Supekar, K., Menon, V., Rubin, D., Musen, M., and Greicius, M. D. (2008). Network
analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS
Comput. Biol. 4:e1000100. doi: 10.1371/journal.pcbi.1000100

Telesford, Q. K., Simpson, S. L., Burdette, J. H., Hayasaka, S., and Laurienti,
P. J. (2011). The brain as a complex system: using network science
as a tool for understanding the brain. Brain Connect. 1, 295–308. doi:
10.1089/brain.2011.0055

Thirion, B., Dodel, S., and Poline, J.-B. (2006). Detection of signal syn-
chronizations in resting-state fMRI datasets. Neuroimage 29, 321–327. doi:
10.1016/j.neuroimage.2005.06.054

Tohka, J., He, Y., and Evans, A. C. (2012). The impact of sampling density upon
cortical network analysis: regions or points. Magn. Reson. Imaging 30, 978–992.
doi: 10.1016/j.mri.2012.02.029

Towlson, E. K., Vértes, P. E., Ahnert, S. E., Schafer, W. R., and Bullmore, E. T. (2013).
The rich club of the C. elegans neuronal connectome. J. Neurosci. 33, 6380–6387.
doi: 10.1523/JNEUROSCI.3784-12.2013

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard,
O., Delcroix, N., et al. (2002). Automated anatomical labeling of activa-
tions in SPM using a macroscopic anatomical parcellation of the MNI
MRI single-subject brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.
2001.0978

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 169 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Stanley et al. Defining nodes in brain networks

van den Heuvel, M. P., Stam, C. J., Boersma, M., and Hulshoff Pol, H. E.
(2008). Small-world and scale-free organization of voxel-based resting-state
functional connectivity in the human brain. Neuroimage 43, 528–539. doi:
10.1016/j.neuroimage.2008.08.010

Vejmelka, M., and Palus, M. (2010). Partitioning networks into clusters and
residuals with average association. Chaos 20:033103. doi: 10.1063/1.3460360

Vogel, A. C., Power, J. D., Petersen, S. E., and Schlaggar, B. L. (2010). Development
of the brain’s functional network architecture. Neuropsychol. Rev. 20, 362–375.
doi: 10.1007/s11065-010-9145-7

Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., et al. (2009).
Parcellation-dependent small-world brain functional networks: a resting-state
fMRI study. Hum. Brain Mapp. 30, 1511–1523. doi: 10.1002/hbm.20623

Wang, J., Zuo, X.-N., Gohel, S., Milham, M. P., Biswal, B. B., and He, Y. (2011).
Graph theoretical analysis of functional brain networks: test-retest evaluation
on short- and long-term resting-state functional MRI data. PLoS ONE 6:e21976.
doi:10.1371/journal.pone.0021976

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’
networks. Nature 393, 440–442. doi: 10.1038/30918

Wig, G. S., Laumann, T. O., Cohen, A. L., Power, J. D., Nelson, S. M., Glasser, M. F.,
et al. (2013). Parcellating an individual subject’s cortical and subcortical brain
structures using snowball sampling of resting-state correlations. Cereb. Cortex
doi: 10.1093/cercor/bht056. [Epub ahead of print].

Wig, G. S., Schlaggar, B. L., and Petersen, S. E. (2011). Concepts and principles
in the analysis of brain networks. Ann. N.Y. Acad. Sci. 1224, 126–146. doi:
10.1111/j.1749-6632.2010.05947.x

Zalesky, A., Fornito, A., and Bullmore, E. (2012). On the use of correla-
tion as a measure of network connectivity. Neuroimage 60, 2096–2106. doi:
10.1016/j.neuroimage.2012.02.001

Zalesky, A., Fornito, A., and Bullmore, E. T. (2010a). Network-based statistic:
Identifying differences in brain networks. Neuroimage 53, 1197–1207. doi:
10.1016/j.neuroimage.2010.06.041

Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., et al.
(2010b). Whole-brain anatomical networks: Does the choice of nodes matter.
Neuroimage 50, 970–983. doi: 10.1016/j.neuroimage.2009.12.027

Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J.-R., Xu, Q., et al. (2011).
Altered functional–structural coupling of large-scale brain networks in
idiopathic generalized epilepsy. Brain 134, 2912–2928. doi: 10.1093/brain/
awr223

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 04 October 2013; accepted: 03 November 2013; published online: 22
November 2013.
Citation: Stanley ML, Moussa MN, Paolini BM, Lyday RG, Burdette JH and Laurienti
PJ (2013) Defining nodes in complex brain networks. Front. Comput. Neurosci. 7:169.
doi: 10.3389/fncom.2013.00169
This article was submitted to the journal Frontiers in Computational Neuroscience.
Copyright © 2013 Stanley, Moussa, Paolini, Lyday, Burdette and Laurienti. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic prac-
tice. No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 169 | 14

http://dx.doi.org/10.3389/fncom.2013.00169
http://dx.doi.org/10.3389/fncom.2013.00169
http://dx.doi.org/10.3389/fncom.2013.00169
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Defining nodes in complex brain networks
	Introduction
	Node Definitions in the Literature
	Voxel-Wise Approach
	Discussion

	Structural Anatomical Atlases
	Discussion

	Functional Activation Meta-Analytic Approaches
	Discussion


	Conclusion
	Acknowledgments
	Supplementary Material
	References


