frontiers n

COMPUTATIONAL NEUROSCIENCE

ORIGINAL RESEARCH ARTICLE
published: 27 December 2013
doi: 10.3389/fncom.2013.00184

=

Mean-field models for heterogeneous networks of
two-dimensional integrate and fire neurons

Wilten Nicola and Sue Ann Campbell *

Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada

Edited by:
Arnulf Graf, California Institute of
Technology, USA

Reviewed by:

Carmen C. Canavier, LSU Health
Sciences Center, USA

G. B. Ermentrout, University of
Pittsburgh, USA

*Correspondence:

Sue Ann Campbell, Department of
Applied Mathematics, University of
Waterloo, 200 University Ave.,
Waterloo, ON N2L 3G1, Canada
e-mail: sacampbe@uwaterloo.ca

We analytically derive mean-field models for all-to-all coupled networks of heterogeneous,
adapting, two-dimensional integrate and fire neurons. The class of models we consider
includes the Izhikevich, adaptive exponential and quartic integrate and fire models. The
heterogeneity in the parameters leads to different moment closure assumptions that can
be made in the derivation of the mean-field model from the population density equation
for the large network. Three different moment closure assumptions lead to three different
mean-field systems. These systems can be used for distinct purposes such as bifurcation
analysis of the large networks, prediction of steady state firing rate distributions,
parameter estimation for actual neurons and faster exploration of the parameter space. \We
use the mean-field systems to analyze adaptation induced bursting under realistic sources
of heterogeneity in multiple parameters. Our analysis demonstrates that the presence of
heterogeneity causes the Hopf bifurcation associated with the emergence of bursting to
change from sub-critical to supercritical. This is confirmed with numerical simulations of
the full network for biologically reasonable parameter values. This change decreases the
plausibility of adaptation being the cause of bursting in hippocampal area CA3, an area

with a sizable population of heavily coupled, strongly adapting neurons.
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1. INTRODUCTION

As computers become more powerful, there is a move to numer-
ically simulate larger and larger model networks of neurons
(Izhikevich and Edelman, 2008). While simulation is useful for
confirming observed behavior it is not as helpful in determining
the mechanisms underlying the behavior. The tools of dynami-
cal systems theory, such as bifurcation analysis can be useful in
this regard when studying single neuron or small network mod-
els. However, they are not viable for large networks, especially if
the neurons are not identical. Thus, a common approach is to
try to extrapolate large network behavior from detailed analysis
of the behavior of individual cells or small networks (Skinner et
al., 2005). This can be problematic as networks can have behav-
ior that is not present in individual cells. For example, individual
neurons that are only capable of tonic firing when isolated may
burst when coupled in a network (van Vreeswijk and Hansel,
2001). Further, large networks may exhibit behavior not present
in smaller networks. For example, Dur-e-Ahmad et al. studied
bursting in networks ranging in size from 2 cells to 100. They
found that bursting occurred in a larger range of parameters for
larger networks (Dur-e-Ahmad et al., 2012, Figure 7).

Given the role of bursts in networks of neurons, it is impor-
tant to understand how a network transitions (bifurcates) from a
non-bursting behavior, to bursting. Bursting has been suggested
to be a fairly important and information dense firing mode for
neurons. For example, single bursts can induce long term poten-
tiation and depression in the hippocampus, which are important
processes for learning and memory (Lisman, 1997). Additionally,
bursts have been found to carry more information about an

animal’s position in space than isolated spikes alone as place fields
have been found to be more accurately defined when consider-
ing bursts alone (Lisman, 1997). Additionally, the mechanism we
analyze in this paper, adaptation induced bursting has also been
suggested as a biologically plausible mechanism for the generation
of grid cells via oscillatory interference of the bursting (Zilli and
Hasselmo, 2010). However, adaptation induced bursting is a net-
work level phenomenon and we cannot apply bifurcation analysis
directly to a network of adapting neurons.

Mean-field theory offers one approach to bridge this gap.
In applying this theory, one usually derives (or suggests) a low
dimensional system of differential equations that govern the
moments of different variables across the network (Bressloff,
2012). For example, for a network of all-to-all coupled Izhikevich
neurons (Izhikevich, 2003), one can derive a two dimensional sys-
tem of differential equations for the mean adaptation variable and
the mean synaptic gating variable (Nicola and Campbell, 2013).
Mean-field systems enable one to conduct network level bifurca-
tion analysis and hence to test different hypotheses about large
network behavior. For example, Hemond et al. (2008) found that
when uncoupled, the majority of hippocampal pyramidal neu-
rons in region CA3 do not display bursting. This is contradictory
to the observation that burst firing is ubiquitous in this region
(Andersen et al., 2006, section 5.3.5). A possible explanation for
these contradictory observations is that bursting is a network
level phenomenon. This hypothesis has been tested using bifur-
cation analysis of the mean-field system derived from a network
of Izhikevich neurons (Dur-e-Ahmad et al., 2012). In particular,
it was shown that for a network of identical all-to-all coupled
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neurons fit to experimental data from Hemond et al. (2008)
for CA3 pyramidal cells, bursting occurs for a large range of
synaptic conductances and applied currents if the spike frequency
adaptation in the neurons is sufficiently strong.

Hemond et al. (2008) also observed that the pyramidal neu-
rons in their study were heterogeneous, in particular, the neurons
had different degrees of spike frequency adaptation. When the
study of Dur-e-Ahmad et al. (2012) was extended to a network of
two homogeneous subpopulations of hippocampal neurons with
different degrees of spike frequency adaptation, the mean-field
equations predict, and numerical simulations confirm, that the
region in the parameter space where bursting occurs decreases in
size (Nicola and Campbell, 2013). This would seem to indicate
that adaptation induced bursting may not be robust to hetero-
geneity, however, it is unknown how robust this network level
bursting is to heterogeneity in different parameters. An extension
of the mean-field system in Nicola and Campbell (2013) to large
networks of heterogeneous neurons, is needed to fully analyze the
robustness of adaptation induced bursting.

The application of mean-field analysis to large networks of het-
erogeneous neurons has been primarily limited to networks of
one dimensional integrate and fire neurons with heterogeneity in
the applied current (Hansel and Mato, 2001, 2003; Vladimirski
et al., 2008). Hansel and Mato (2001, 2003) analyze a network
of all-to-all coupled quadratic integrate and fire neurons con-
sisting of two subpopulations: one excitatory and one inhibitory.
They showed analytically that the tonic firing asynchronous state
can lose stability either to a synchronous tonic firing state or a
bursting state. Vladimirski et al. (2008) analyze a network of all-
to-all coupled linear integrate and fire neurons subject to synaptic
depression. This model was used to study network induced burst-
ing in the developing chick spinal cord. Their derivation of the
mean-field model is based on temporal averaging of the fast
synaptic gating variable, in addition to the usual network aver-
aging. This results in a model that only involves the distribution
of slow synaptic depression variable and the distribution of fir-
ing rates. Vladimirski et al. note that, for their model, increased
heterogeneity tends to make population induced bursting more
robust. They also note that one cannot understand the behavior
of their network with a single slow, network averaged synaptic
depression variable.

More recently, Hermann and Touboul (2012) considered net-
works with heterogeneity in the synaptic conductances. They
compare heterogeneity induced by a distribution of parameters
and heterogeneity induced by noise. For a firing rate (Hopfield-
type) model, they derive a mean field representation of the
situation with noise, which is a system of two ODEs for the
mean and variance of the network average voltage. They show
that increasing the strength of the noise, (which corresponds to
the variance of the heterogeneity) causes a transition from qui-
escence to oscillations in both the mean-field model and the full
network simulations both with noise and a distribution of param-
eters. Based on these results, they suggest a mean field model for
a network of excitable Fitzhugh Nagumo neurons, which con-
sists of coupled ODEs for the network mean voltage and network
mean recovery variable. In both the mean-field model and full
network simulations they observe a transition from quiescence to

periodicity and then to chaos as the variance of the heterogeneity
is increased.

The motivation for the present paper is to explore the effect of
heterogeneity in parameters on network induced bursting when
adaptation is the primary negative feedback acting on the individ-
ual firing rates. To this end, we introduce a set of mean-field equa-
tions for networks of heterogeneous two-dimensional integrate
and fire neurons. While the specific neural model we consider is
for neurons with adaptation, our derivation is quite general and
could be applied to other integrate and fire models. In contrast
with (Vladimirski et al., 2008) our derivation of the mean-field
model does not use temporal averaging thus we end up with a
mean-field system which involves the network averaged synaptic
gating variables as well as the distribution of adaptation variables.
We also allow for heterogeneity in more than one parameter. Our
approach is a generalization of that used for homogeneous net-
works of two dimensional integrate and fire neurons (Nicola and
Campbell, 2013), however, in the heterogeneous case it turns out
that there are actually multiple mean-field models, as different
assumptions can be made during the derivation. This leads us
to three distinct mean-field systems, each derived under differ-
ent assumptions, and used for different purposes. Together, these
sets of equations allow us to do bifurcation analysis on large net-
works, as in the homogeneous case. We show that the bifurcation
structure of the heterogeneous network differs both qualitatively
and quantitatively from the homogeneous network case. We dis-
cuss the implications of this for network induced bursting in the
hippocampus.

When considering a homogeneous network, the mean-field
variables are a good approximation for the variables of every
neuron. However, this is not the case for a heterogeneous net-
work. If the heterogeneity is large, then the neuron variables may
be also widely distributed, rendering information about the first
moments less useful. This also implies that the behavior of any
individual neuron is less predictable with a mean-field system
than it was in the homogeneous case. One of our mean-field
systems addresses this problem, giving information about the
distributions of the variables instead of just the mean.

When considering a model for a specific heterogeneous net-
work of neurons, one stumbling block is determining the dis-
tribution of parameters. Estimates of the distribution can be
made through direct intracellular recording of a sufficient num-
ber of neurons and conventional measurements of the biophys-
ical properties (membrane capacitance, voltage threshold, etc.).
Unfortunately, this is a very time consuming and intensive pro-
cess. What is needed is a way of measuring the biophysical param-
eters of multiple neurons simultaneously. There are a few ways
to sample multiple neurons such as multi-unit recordings using
tetrode arrays, or two-photon microscopy techniques (Buzsaki,
2004; Grewe et al., 2010). However, these techniques typically
only tell us about spike times of large (dozens to hundreds of
neurons) networks (Buzsaki, 2004). While an impressive accom-
plishment, this still does not tell us anything directly about the
biophysical properties of the neurons that caused those spikes. In
this paper we use a mean-field system to determine an approx-
imate distribution of firing rates for a network given a known
distribution of parameters. This is an unusual state of affairs for a
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mean-field system, as these kinds of systems seldom give infor-
mation about entire distributions. More importantly, however,
using a mean-field system, we can invert a distribution of steady
state firing rates (which can be obtained from multi-unit record-
ings) to obtain a distribution of parameters. In fact, this can be
done at the individual neuron level, to determine the parameter
value for any particular neuron. This allows one to estimate dif-
ferent biophysical parameters, which are difficult to measure at
the network level, using easy to measure firing rate distributions.
However, the assumptions required for the numerical accuracy of
the estimation are fairly strong.

The plan for our article is as follows. Section 1.1 introduces
the general class of adapting two-dimensional integrate and fire
neurons used in our network models. This class was introduced
by Touboul (2008), who also completed the bifurcation analysis
of the single, uncoupled neuron. Population density methods are
briefly introduced in section 1.2, as a population density equation
serves as an intermediate step to obtain our mean-field models.
Section 2 begins with a review of mean-field theory and the equa-
tions for the homogeneous network. This is followed, in sections
2.1-2.3, by the derivation of the three mean-field systems for the
heterogeneous network. A comparison of numerical simulations
of these mean-field systems and the full network is the subject
of section 2.4. Applications of mean-field theory to networks
with a single heterogeneous parameter can be found in section
3 including bifurcation analysis (section 3.1), distributions of
parameters and firing rates (section 3.2) and using mean-field
theory for parameter estimation from firing rate data (section
3.3). Applications of mean-field theory to networks with multiple
sources of heterogeneity are included in section 4. A discussion of
our work and its implications can be found in section 5.

2. MATERIALS AND METHODS

2.1. NON-LINEAR INTEGRATE AND FIRE NEURONS

We consider a network of two-dimensional integrate and fire
models of the form

v=F@W)—w+1 (1)
w = a(bv — w), (2)

where v represents the non-dimensionalized membrane poten-
tial and w serves as an adaptation variable. Time has also been
non-dimensionalized. The dynamical equations (1, 2) are supple-
mented by the following discontinuities

v (t:}:ike> = Vreset> 3)
+ —
w (tspike> - W( splke) + Wijump-

This particular notation was formally introduced by Touboul
(2008), along with a full bifurcation analysis of this general family
of adapting integrate and fire neurons. Members of this fam-
ily include the Izhikevich model (Izhikevich, 2003), the adaptive
exponential (AdEx) model (Brette and Gerstner, 2005; Naud et
al., 2008) and Touboul’s own quartic model (Touboul, 2008).
The methods of this paper can be applied to a network of any
particular neuron belonging to this general family, and thus all

v (tspike) = Vpeak =

derivations are done for this model. For the numerical examples,
however, we only consider the Izhikevich neuron. In dimensional
form this model is:

CVi = k(Vi = V) (Vi = VR) = Wi + Lpp, i (4)
. Vi—VR)—W;
Wi _ Tl( 1 R) i (5)
Tw
Vi <t+k = Vreset
V(tsplke) = Vpeak: W, S_El ¢ — W W A (6)
(tsplke i ( sp1ke) + jump, 1>

In dimensionless form, this model is given by Equations (1-3)
with F(v) = v(v — o) in addition to dimensionless versions of
the discontinuities (Equations 6). We will use uppercase letters
for dimensional variables and lower case for their dimensionless
counterparts. The application to other neural models is straight
forward, see Nicola and Campbell (2013) where the homoge-
neous mean-field theory has been derived and tested for both the
AdEx and the Izhikevich models.

Networks of these neurons can be coupled together through
changes in the synaptic conductance. The synaptic conduc-
tance of post-synaptic neuron i due to presynaptic neurons j =
1,2,..., Nis given by

N
8i
N > s, (7)

j=1

gi(1) = gisi(t) =

where g; denotes the maximal synaptic conductance of neuron i
and s;(t) denotes the total proportion of postsynaptic ion chan-
nels open in the membrane of neuron i. The time dependent
variable s;j(t) represents the proportion of postsynaptic ion chan-
nels open in the membrane of neuron i as a result of the firing in
neuron j.

The changes in s;(t) that occur after a spike are often mod-
eled as transient pulses. For example, if neuron j fires its kth
action potential at time ¢ = ¢; x, then the variable s;;(¢) at time
t is given by

s = ) E(t— 1,5 (8)

tj>k<t

There are different functions proposed for E(¢) in the literature
including the simple exponential, the alpha synapse and the dou-
ble exponential. We primarily consider the simple exponential
synapse

E(t) = Sjump exp <;), 9)

s

which is governed by the ordinary differential equation

ds,] (t) slj

T

Lk <t

(t—1tx). (10)

In the rest of the paper, we assume all-to-all connectivity and
that the synaptic parameters sjymp and s are the same for every
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synapse. In this case we may set s;(t) = s(t) for all i, as each post-
synaptic neuron receives the same summed input from all the
presynaptic neurons. Then, using Equations (7) and (10), the net-
work of all-to-all coupled neurons that we consider is given by the
following system of discontinuous ODE’s:

vi = F(v)) —wi + L + gis()(Er —vi),  (11)
wi = aj(bv;i —w;), (12)

S Si N
s= ==+ BN N5 — 1. (13)

T N ¢
j=1tk<t
+

() = ,

Vi(ti,_k) = Vpeak = it 4 Q= Vresa (14)

Wi(t:rk) = Wi(t;k) + Wjump-

fori=1,2,...N.

In the examples, we consider one or more parameters as the
sources of heterogeneity. However, to simplify the notation in the
derivations, we use the vector B to represent all the heterogeneous
parameters. Then, denoting the state variables v and w as the vec-
tor x, we can write the equations for the individual oscillator as

(15)

x=G(x,B,s) = (G1(x, B,s)>

G2 (x» B)

Given a specific heterogeneous parameter, G; and G, may not
depend on B, or all of the components of f. However, for the sake
of simplicity, we include the dependence in both equations.

Our numerical examples are restricted to the Izhikevich neu-
ral model, and we primarily consider the driving current I; of
each neuron, the synaptic conductance g; and the adaptation
jump size, Wjump,; as the source of heterogeneity. However, the
mean-field equations we derive can be applied to any of the
two-dimensional adapting integrate and fire models, with any
heterogeneous parameter or set of parameters.

Finally, we note that in many applications b is a small param-
eter, and thus the by term can be dropped in G,. We do this in
all our numerical studies. However, one can still derive appropri-
ate mean-field equations if this term is present (see discussion in
Nicola and Campbell, 2013), and thus we have left the term in the
derivations.

2.2. THE POPULATION DENSITY EQUATION

The population density function, p(x, t) determines the density
of neurons at a point in phase space, x, at time ¢. Consider first the
case of a homogeneous network, i.e., all the oscillators have the
same parameter values, denoted by B. In the limitas N — 00, one
can derive the following evolution equation for the population
density function:

dpx 1) _ =V -J(x,B,s, 1) (16
at
where J is given by
J(x,B,5. ) = G(x, B, 9)p(x, ) = (1, J"V). )

and must satisfy the boundary condition

]V(Vpeak» w,B,s,t) = ]V(Vreset» W+ Wjump, B, s, 1) (18)

In the same limit, the differential equation for s converges to

s
§=—=—+4 5jumP/ ]V(Vpeakv w,s, B, t)dw (19)
Ts w

where the integral term is actually the network averaged firing
rate, which we denote as (R(#)). Derivations of Equation (16)
can be found in various sources (Nykamp and Tranchina, 2000;
Omurtag et al., 2000).

Equation (16) is frequently referred to as the continuity equa-
tion and it has various applications besides its use as an inter-
mediate step in mean-field reductions. For example, the equation
has been used to determine the stability of the asynchronous
tonic firing state by various authors (Strogatz and Mirollo, 1991;
Abbott and van Vreeswijk, 1993; van Vreeswijk et al., 1994;
van Vreeswijk, 1996; Hansel and Mato, 2003; Sirovich et al.,
2006). These papers predominantly consider homogeneous net-
works of linear integrate and fire neurons. The exception is the
work of Hansel and Mato (2003) which considers heterogeneity
in the applied current. One can study stability of various fir-
ing states using spectral analysis or other analytical treatments
of this equation (Strogatz and Mirollo, 1991; Abbott and van
Vreeswijk, 1993; van Vreeswijk, 1996; Knight, 2000; Sirovich
et al., 2000, 2006; Hansel and Mato, 2003). However, these
approaches are too complicated for the models we consider in
this paper.

Now consider a heterogeneous network where the param-
eters vary from oscillator to oscillator, but are static in
time. Then one can rewrite the equations for the individual
oscillator as

1./i = Gl (xis Bi? S)v (20)
w; = Ga(x;, By), (21)
B, =o0. (22)

In this case the flux contribution due to § is 0 and the evolution
equation for the network is given by

9o(x.B,1) _

ot @3)

-V J(x,B,s,1)
The density now has the vector of parameters, 8, as an indepen-
dent variable. The flux consists of the vector (JV, J", 0), with B
as an independent variable, as opposed to a fixed constant. If the
parameters are time varying however, the final component of the
flux will be non-zero. The equation for s is also different in the
heterogeneous case:

§=-> +5jumpf []V(Vpeak,w, s, B ndwdp’.  (24)
Ts wJB

While the evolution equation (23) is an exact representation
for the network in the large network limit, it is difficult to
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work with analytically. Additionally, as the dimensions of the
PDE become large, it becomes difficult to find numerical solu-
tions efficiently (Ly and Tranchina, 2007). However, mean-field
reductions of the network can be used to reduce the popula-
tion density PDE to a system of non-linear switching ODEs that
governs the moments of the distribution. Unlike the PDE, the
system of ODEs is tractable using bifurcation theory, at least
numerically. Furthermore, we show that in the heterogeneous
case, the resulting mean-field systems can yield more informa-
tion than just the type of bifurcation that the network can
undergo.

2.3. MEAN-FIELD THEORY

In the homogeneous case, the mean-field system of equations for
an all-to-all coupled Izhikevich network was derived in Nicola
and Campbell (2013). We present here a quick summary of
this derivation. In order to derive a mean-field system of equa-
tions, one first needs to reduce the PDE for p(x,t) = p(v, w, t)
by a dimension. This is done by first writing the density in its
conditional form:

pv,w, t) = py(v,t) pw(w|v, 1) (25)

and then integrating the continuity equation with respect to w.
This yields the one dimensional PDE

dpv(v.t) 3G, (wiv), pv (v, t) 3], (wlv), s, )

)

ot v ov
(26)
where the flux has been redefined to
Jv, (wlv), s, 1) = / TV (v, w, s, t) dw. (27)
w

One can now make a first order moment closure assumption,
(w|v) = (w), and derive an approximate ODE for (w), which
yields the system

0 a
3P0 D =— ((F@) = (w) + 1+ g(Er —v)3) (p (v, 1))

b(v) — (w)

Tw

(w) = + WjumpJ (Vpeaks (W), s, )

W
Il

N
L + Sjump](vpeala (w), s, 1)
s

where the subscript on the density function has been dropped for
convenience. The details and validity of the first order moment
closure assumption that is used can be found in Ly and Tranchina
(2007). We note, however, that the work in Ly and Tranchina
(2007) was primarily with leaky integrate and fire neurons, as
opposed to the two-dimensional adapting class we consider here.
However, it is a necessary assumption to proceed analytically. If
we assume that the adaptation time constant, t,, = é is large, one
can apply a quasi-steady state approximation to derive a system of

switching ODE’s for (w) and s:

b —
(w) = M + Wjump (Ri (1)) (28)

J = —Ti + Siump (Ri()) (29)

(Ri())

-1
[ [fV Fv) —(w) +d},+g(er—v)s] tH((w),$) =0 (30)
0 tH({(w),s) <0

The switching manifold for the system, H({w), s) is given by:

H({w),s) =1 — (w) + min(F(v) +gle- —v)s).  (31)
Note that H({w), s) depends on the parameter(s) of the model,
and thus for the heterogeneous case, we make this dependence
explicit by writing H({w), s, B). As the computation for (v) is
somewhat lengthy and is only outlined in the discussion of Nicola
and Campbell (2013), we have placed it in Appendix A. Note
that this approach is similar to temporal averaging of a fast volt-
age equation assuming slow synaptic and adaptation currents,
as outlined in Ermentrout (1998) and Ermentrout and Terman
(2010).
For the Izhikevich neuron, Equations (30, 31) become

-1
(R,‘(l‘)) — [fv v(v—ot)—(w)dll—t-g(e,—v)sjl :H(<W)’ S) e
0 tH({w),s) <0

(32)

_(atg)’

H({w),s) =1— 1

{(w) + gers. (33)

Note that in this case, we can evaluate (R;(t)) explicitly:

I—1%((w),s)

t Vpeak — = Jggs " Vreset— J;gs
(Ri(0) = ™ U ns )N\ V- ne
0 tH({w), s) <0

cH({w), s) >0

in addition to an approximation to (v)

(Ri(1)) (Vpeak— “FE) +H((w),9) atgs
> log ((vrese‘fW)erH((w%s) +—== :H((w), s) >0

—~—=H({w).s)

(=
g CH((w), s) <0
(34)
A comparison of solutions of these equations and the full network
are shown in Figure 1 for both the tonic firing and the burst-
ing case. Note that during tonic firing, the steady state firing of
the individual neurons appears to be asynchronous, while during
bursts the neurons separate into two synchronous subpopula-
tions that fire out of phase with one another (see Figures 1E,F).
While the mean-field system is more accurate when the neurons
all fire asynchronously, the synchronization in the bursting state
does not appear to be a substantial source of error in determin-
ing the mean-values and the resulting qualitative behaviors. The
asynchronous firing in the non-bursting region is consistent with
previous work on the stability of asynchronous states with exci-
tatory coupled class one oscillators (Abbott and van Vreeswijk,
1993).
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FIGURE 1 | Numerical simulation of a homogeneous network of 1000
Izhikevich neurons, with parameters as follows. (A,C,E) /5,, = 4500
PA, gsyn = 200nS (B,D,F) /3pp = 3500 pA, gsyn =200nS. The rest of the
parameters can be found in Table 1. Simulations of the mean-field
equations (in red) and the mean values of the corresponding full network
simulations (in blue) showing (A) tonic firing and (B) bursting. In this
and the following figures (W(t)) is the network mean adaptation variable
in dimensional form and (g(t)) = gsynS(t) is the network mean synaptic

910 920 930 940 950 960 970 980 990 1000

Time (ms)

conductance. (B,D) Raster plots for 40 randomly selected neurons from
the network simulation in (A,C). (E,F) are the last 100 ms of the raster
plots in (C,D), respectively. The mean-field equations are fairly accurate
both when the network is tonically firing and when it is bursting. For
the tonic firing case the neurons fire asynchronously at steady state,
while in the bursting case, the neurons seem to align into two
synchronously firing subpopulations firing out of phase with one another
during the burst.

This system of equations is valid when t,, 3> O(1), however,
the magnitude of t, is also significant. While in the original
derivation of Nicola and Campbell (2013), t; = O(t,,) was sug-
gested as a criterion for validity, this is not actually necessary. One
merely requires that t; not be significantly smaller than O(1), the
time scale of the PDE. The reason for this is that if the time scale
of the ODE for s is smaller than that of the PDE then the quasi-
steady state approximation must be applied to the ODE for s as
well. The requirements on the time constants are carried forward
in the heterogeneous case.

In our models, the timescale of the ODE for s is typically
between that of the PDE and that of the ODE for w, thus we
have not applied the quasi-steady approximation to s. Applying a
quasi-steady state approximation to both s and the reduced PDE
yields a more compact system, which is just an ODE for (w), how-
ever, the analysis does not get any simpler. The reason for this is
two-fold: the ODE for (w) remains non-smooth and the firing
rate now has to be implicitly solved at each time step. Thus, it is
more convenient to apply the quasi-steady state approximation
only to the partial differential equation.

Frontiers in Computational Neuroscience

www.frontiersin.org

December 2013 | Volume 7 | Article 184 | 6


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nicola and Campbell

Mean-field models for heterogeneous networks

When parameter heterogeneity is added into the mix, it turns
out that there are multiple “mean-field” systems of equations that
can be derived, by applying different assumptions on the condi-
tional moments. We outline three different assumptions that can
be made and derive the resulting system of mean-field equations
in each case.

2.3.1. Mean-field system |
We begin by writing out the density function in the conditional
form

,O(X, B? t) = px(xv t)pB(BLx! t) (35)
The continuity equation is then given by
a , b b
(px(x, ) pp(BIx, 1)) T (36)

ot

Simple integration with respect to f yields the reduced continuity
equation
dpx(x, 1)

o7 = -V - J(x,s, (B|x), t).

(37)
This step is valid for all the non-dimensionalized models we
consider as they are all linear in their dimensionless parame-
ters (see Touboul, 2008). The flux has also been redefined upon
integration to

TV, IW) = pe(x, ) (Gi(x, (Blx), 5), Ga(x, (BIx))) .

We now apply the moment closure assumption (B|x) = (B) to
yield the following PDE:

0px(x, 1)

LR = -V s, B . (38)

It should be clear that this is equivalent to the continuity equation
for a homogeneous network with parameter values fixed at (f).
Thus, the associated mean-field system is identical to the homo-
geneous case, only with the parameters fixed at (B). This is the
simplest assumption one can make in the heterogeneous case. For
example, if we treat I as the source of heterogeneity for a network
of Izhikevich neurons, with distribution p;(I), then the resulting
mean-field system is

b{v) — (w)

Tw

<W)/ = + Wjump (Ri(1)) (39)

J = ,Ti + Sjump (Ri(1)) “w

-1
d .
(./lV vy —a) — (w) +V(I)+g(e,7v)s) . H((W>’ S, (I>) =0

(Ri(1)) = (41)
0 tH((w),s, (I)) <0
2
H(w).s. (1)) = (1) — (w) — & +4g5) +gers (42)
®; <z) (Vpeak— “FE) 2 +H((w) 5. (1)) atgs
log ((vim—@ﬂm«w»s, <1>>> 7
) = H({w),s,(I)) = 0 (43)
8 J=H(w), s, (1)
cH({(w), s, (I)) <0

Note that I in Equations (32, 33) has been replaced by (I) in
Equations (41-43). We treat this system as the baseline mean-field
model for comparison purposes, in addition to direct numerical
simulations of the network. We denote this system of equations as
mean-field one (MFI). We should expect this system to be an ade-
quate approximation to the actual network for narrowly centered
distributions of the parameter heterogeneity (small values of the
variance, op).

This set of differential equations is representative of a common
approach taken when fitting actual neurons. In this approach,
multiple estimates of parameters or measurements taken from
multiple neurons are averaged to yield a single parameter value,
which is really the mean parameter value, (). Simulations of
homogeneous, large networks are then run with the parameters
fixed at their mean values. As we shall see in subsequent sections,
the behavior of a simulated heterogeneous network can differ
substantially from that of MFIL.

2.3.2. Mean-field system Il
To derived our second mean-field system, we begin by writing the
density function in the alternative conditional form

p(v,w,B,t) = pww, t|B, v)ov (v, t|B)op(B). (44)

Next we integrate the continuity equation with respect to w. This
yields the following system

_/ (a]‘/(v, wos Bt IV (v, w, s, B, t)) p
w v aw

d
=5, (wlv. B). 5. B, 1) — JY (v, w5, B O)law

BPV(% tIB)

ot op(B)

—aim, (wlv, B). 5. B. 1. (45)
v

where the last term vanishes as J" is assumed to be vanishing on
the boundary, and

J(v, (w|v, B),s, B, t) = / ]V(v, w,s, B, t) dw. (46)
w

We now make the first order moment closure assumption
(w|v, B) = (w). Then to complete the system, we must derive a
differential equation for (w):

// /WMdﬂdwdv
vJwJB ot
w %
/// (8]74-%) dp dw dv
// /GZ(V7 w, B)p(V, W,B,t) dBdeV
vJw/g

- / f W(]V(Vpeakv w,Ss, B! t) - ]V(Vreset’ w,s, ﬁv t)) dﬁ dW
wJB

(w)’

= (GZ(V» w, B)) - / /W(]V(Vpeaka w, s, Bs t)
wJB
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_]v(Vpeaks W — Wjump, S, B, 1)) dB dw (47)

= <G2 (V7 w, B)) + A fW Wjump]V(Vpeakv w, s, B9 t) dW dB

+ O(w. )ump)

~ Ga((v), (w), (B))"‘/‘;W]ump](vpeakv .5, B, 1) dB. (48)

Note that we have made the approximation (Gz(v w,B)) =
G2 ({(v), (w), (B)) in addition to dropping the O(w? Wiump ) terms.
Additionally, the substitution in Equation (47) comes from the
boundary condition (Equation 18).

Applying a quasi-steady state approximation to the PDE
(Equation 45) yields the following equation for the steady state
voltage independent flux, J((w), s, B):

[fv m] 1

ppB) if H((w),s,$) =0

w),s, B) =
(49)
We interpret the ratio J({w), s, B)/0p(B) as the parameter depen-
dent (or conditional) network averaged firing rate, (R;(¢)|B),
based on the fact that

Aﬂwmamdszumn»

In other words, the distribution of parameters induces a distribu-
tion of firing rates across the network, and the network averaged
firing rate is the mean of the distribution.

In summary, the resulting mean-field equations are given by:

b(v) — (w)

Tw

W) =

+ /ﬁ Wiump (Ri (1) 1B) pp (B) dB (50)

g:_§+%m4mmm%@% (51

1
(Ri(H)IB) = { I:fV Gi(v,(w) sﬁ)] tH((w),s,p) =0 (52)
0 CH((w),s,B) <0

(W), s, B) = I = (w) + min(F(v) + gley — v)s) (53)

) = fBMB)pfs(B) dap (54)

where the forms of G;(v, (w), s, B) and H((w), s, ) depend on
which specific neural model is used, and the equatlon for (v|B)
can be found in Appendix A. Note that the distribution of fir-
ing rates is not computed explicitly in these equations, only the
conditional firing rates, (R;(t)|B), are computed. However, we
show in section 3.2.2 that a distribution for the steady state firing
rates of the network can be computed using (R;(#)|B). We refer to
Equations (50-54) as mean-field two (MFII).

It appears that MFII adds some smoothness to the non-smooth
MFI equations. This can be easily seen by taking a heteroge-
neous background current to each neuron, I;. In this situation,

0 if H(w),s,B) <0

each neuron has a total input current given by I; + Isyn, where
Isyn is the synaptic current given by the network coupling. It
follows that the network averaged firing rate is approximately a
function of Iy,

/G(Ri(t)ll + Iyn) pr(D) dI ~ F(Isyn)

If Iyy is treated as parameter, this equation can be evaluated with
differing standard deviations for the normally distributed input
current. When this is done we see that the F(I) curve becomes
smoothed out as the standard deviation increases. This is shown
in Figure 2.

Additionally, MFI and MFII also differ in the order in which
the integrations are carried out. In MFI, we integrate with
respect to B first, and then apply the first order moment clo-
sure assumptions (B|x) = (B) and (w|v) = (w). In MFIL, we
integrate with respect to w first, and then apply the moment clo-
sure assumption (w|v, B) = (w). Furthermore, if (R;(¢)|B) does
not actually depend on the heterogeneous parameter B, such
as when the heterogeneity is in Wjump, then MFI and MFII are
identical.

The first order moment closure assumption used here can
be weakened. This leads to the “mean-field” system in the next
subsection, which is a different kind of system than MFI and
MEFII.

2.3.3. Mean-field system Ill

Suppose that instead of assuming that (w|v, B) = (w), we make
the weaker assumption that (w|v, B) = (w|f). It turns out that
this assumption yields a PDE, even when one makes the quasi-
steady state approximation, as we now show. Applying this weaker

120 o1 =0pA
or =50 pA
1000 or =100 pA
= or = 250 pA
jas]
= gt
j—")g
<
~
o 60
=
=
40
20+
0 - L L
0 500 1000 1500 2000
Current (pA)
FIGURE 2 | The firing rate curve A ) for a Gaussian distributed
background current in the (R;(t)) response curve for the homogeneous
network. The F(/) curves are plotted for increasing values of ; which
smooths out the square root type non-smoothness at the onset of firing.
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moment closure assumption to Equations (45) yields the follow-
ing simplification of the continuity equation:

dpv (v, tIB)

d

Application of the quasi-steady state approximation now yields

-1
Yo wiB)s. By = | [ Gt e ®)  H(wiB) ) = 0
0  H((w|B). 5. B) < 0

H((wiB).s,B) = I — (w|B) + Hlvin(F(V) + g(er —v)s).
An equation for the time variation of (w|B) can be derived in a

similar manner to the last section, yielding the following mean-
field system:

bl b —
(’;’lﬂ) _ b{vIB) — (wiB) + Wiamp (Ri(1) B) (56)

t Ty

ds s
0= s [ RO ®) a8 (57)
dv -1 .
(Ri(1) B) = { [y i) HOBs 820 o
0 cH({(w|B),s,B) <0
Note that (w) can be computed via:

(w) = /B(WIB)ps(B) dp. (59)

The equation for (v|B) can be found in Appendix A. We denote
this system as mean-field three (MFIII). Note that the equation
for (w|B) is actually a PDE. This is due to the fact that the con-
ditional moments, (w|B), (R|B) and (v|B) are functions of both
time and the “spatial” variable B. This partial differential equation
is easier to deal with than most PDEs as it has no spatial deriva-
tives, however, the right hand side of the differential equation is
non-smooth.

While this system should be more accurate than mean-field II,
it has the drawback of being more difficult to analyze. The depen-
dence on B forces one to discretize over a mesh in B in order
to work numerically with this system. This approach, typically
referred to as the method of lines in the literature, is often used
to solve PDE’s with no spatial derivatives. We use this approach to
numerically simulate Equation (56). In order to compute the inte-
grals in Equations (57-59) using the method of lines, we choose
a grid that is non-uniform and generated with the density func-
tion pg (B). The integrals are subsequently replaced with averaging
over the entire grid, which is precisely a Monte—Carlo method for
estimating the integrals.

Numerical bifurcation analysis of MFIII is more difficult as
it is a PDE. In principle it is possible to do numerical bifurca-
tion analysis on a PDE by discretizing and analyzing the result-
ing large system of coupled ODE’s (Ko and Ermentrout, 2007).
However, when we tried this approach on MFIII it proved to
be too numerically intensive, and required a lengthy period of

time for convergence of the numerical methods used for con-
tinuation. Additionally, the system of ODE’s is still non-smooth,
which causes problems with most numerical continuation soft-
ware. However, as we shall show later, an approach that yields
similar information to direct bifurcation analysis can be used with
MFIIIL.

3. RESULTS

3.1. NUMERICAL SIMULATIONS

We carried out numerical simulations of the full network model
with a large number of neurons and the corresponding mean
field systems. The large network simulations are carried out on
the dimensional version of the equations. The results are pre-
sented in terms of the network mean adaptation, (W (t)), which
is the dimensional version of (w), the network mean synaptic
conductance, (g(t)) = gyns(t), and the dimensional parameters
described in Table 1. Since the mean field systems are given in
terms of the dimensionless variables and parameters, results from
mean field simulations are converted to dimensional form for
comparison with the full network simulations.

Table 1 | The values of the model parameters and variances of the
distributions used in this paper.

Dimensional parameters Dimensionless parameters

c 250 pF
k 2.5nS/mV
VR —65mV
b Vr
Vr Va+40- ¢ 0(_1+W 0.6215
v
—41.7mV a:1+ﬁ 0.6215
R
v,
Voeak 30mv Vooak = 1+ lpTe:r 1.461
v
Vieset —55mV Vieset = 1+ |r‘j:elt 0.1538
W,
Wiymp 200 pA Wiump = k‘wg 0.0189
-1
W 200 ms a= (‘ch“/“'> 0.0077
- —1ns b= kli\/m —0.0062
I
lapp 1000-5000pA /= 22 0.0776-0.3333
K|Vl
syn 0-600nS g= /ﬁs\;; 0-3.6923
IV,
Teyn 4ms s = LC'R‘ 26
Sjump 0.8
N 1000
o) 0-1000 pA
ag 50nS
Od 50 pA
m (mixing 0-1
parameter)

These values apply unless otherwise indicated. Rheobase for the dimensional
parameter values is I, = 1000 pA.
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Recall that simulations of a homogeneous network and the
corresponding mean-field system are shown in Figure 1. Note
that the network undergoes a bifurcation from tonically firing to
bursting as the amount of applied current I,pp is decreased, with
all other parameter values held fixed. Further simulations show
that if I}, is decreased below Iy, then all neurons in the network
are quiescent (non-firing).

To determine and compare the validity of the three mean-
field systems we derived for the heterogeneous networks, we
have run a series of numerical simulations of these systems and
of an actual network containing 1000 neurons. The parame-
ter values for the individual neurons can be found in Table 1.
They are based on those given in Dur-e-Ahmad et al. (2012)
which were fit to data for hippocampal CA3 pyramidal neu-
rons from Hemond et al. (2008). These are the parame-
ter values we use for the rest of this paper, unless otherwise
indicated.

As a starting point, we consider heterogeneity only in the
applied current. The distributions are assumed to be normal
with mean (I) and standard deviation o;. We varied the values
of the mean and standard deviation and found that the accuracy
of the mean-field approximations depends on where the mean is
relative to the different bifurcation regions and on the size of the
standard deviation.

As for the homogeneous network, the heterogeneous net-
work undergoes a bifurcation from tonic firing to bursting as the
amount of current applied to the individual neurons is decreased,
with all other parameters held fixed. This can be seen in Figure 3
where the bifurcation with decreasing (Lpp) is shown. As (Ipp) is
decreased below I, there is a bifurcation to quiescence. We will
not discuss this latter bifurcation in detail, as we are primarily
interested in analyzing the transition from tonic firing to bursting.

Note that the bifurcations described above only occur in the
mean sense. Since the current values are normally distributed,
there is non-zero probability that some neurons receive large
enough or small enough current to be in a state other than that
corresponding to the value of (I,pp). For small enough standard
deviations, very few neurons in an actual finite network are likely
to have behavior different from the mean. However, for large stan-
dard deviations, a sizable proportion may not follow the mean
behavior.

Given this knowledge of the different qualitative behaviors of
the network, we can see how the mean-field systems compare.
For tonic firing (Figure 3A), even when the standard deviation
is large, the mean-field systems approximate the network means
(g(#)) and (W (¢t)) very well. However, when the network is burst-
ing, with (Iopp) > Iih, we see a difference as to which mean-field
system is superior. For small values of 67, we have numerically

A 6000 T T - -
—~ 4000F / q
= V4 Actual Network
:"i 'l Mean Field |
~ 2000 *i‘ Mean Field Il
I +rore Mean Field 11
ot . . . .
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FIGURE 3 | Numerical simulations of a network of 1000 Izhikevich
neurons with parameters as in Table 1, except gsy, = 200 and the
applied current which is normally distributed with mean and variance as
follows. (A) (/app) = 5000 pA, o) = 2000 pA. (B) (/app) = 3000 pA,

o) = 200pA. (C) (lapp) = 3000 pA, 6; = 500 pA. (D) (/app) = 3000 pA,

o, = 2000 pA. Blue is the network average of a given variable, red is MFI,
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3000+
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= 2000
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. . ,
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Time (ms)
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D 4000 ; ; ; ;
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green is MFIl and black is MFIII. In this region, the mean-driving current is
away from rheobase, (lapp) > In. All three approximations are quantitatively
and qualitatively similar for small to intermediate sized variances in the
distribution of currents. For small variances, MFI is the most accurate and for
larger variances, MFlIl is the most accurate. For large variance, MFII
bifurcates back to tonic firing earlier than MFI and MFIII, as seen in (D).
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FIGURE 4 | Numerical simulations of a network of 1000 neurons with
parameters as in Table 1, except g5y, =200 and the applied current
which is normally distributed with mean and variance as follows.

(A) (lapp) = 1200 pA, o, = 200pA. (B) (lapp) = 1200pA, o; = 500pA. (C)

(lapp) = 1200 pA, o; = 1000pA. (D) (lapp) = 1200pA, o; = 2000pA. Blue is
the network average of a given variable, red is MFI, green is MFII, and
black is MFIIl. In these simulations, the mean-driving current is close to

B 2000
1500 |

1000

(w(t)

500

L L
1000 1500 2000

Time (ms)

0 500

L L
1000 1500 2000

Time (ms)

2500

2000
= 1500

= 1000

1000 1500 2000

Time (ms)

0 500

500 1000 1500

Time (ms)

2000

(and over) the rheobase. In all cases, MFI is the least accurate. This is
because it depends only on (lapp). When (lapp) = O(fn), even for small
variance, many of the neurons have / < |, and may not spike at all.
(A,B) For small values of o/, all three approximations are qualitatively and
quantitatively accurate. (C,D) For larger variance, o; = O(ly,), only MFIII is
qualitatively and quantitatively accurate. In this case, MFII bifurcates early
to tonic firing.

found that mean-field I is superior to mean-field II and III,
however all the systems are quantitatively and qualitatively accu-
rate (see Figures3B,C). However, for larger values of oy, the
amplitude error of MFIII is the smallest, and MFII is the worst
approximation as it bifurcates to tonic firing prematurely (see
Figure 3D).

When (I,pp) is close to I, we see even stronger differences
between the three mean-field systems. For small to intermedi-
ate standard deviations, MFII and MFIII are clearly superior
to MFI, having a smaller amplitude and frequency error (see
Figures 4A,B). However, for larger values of o as shown in
Figures 4C,D, only MFIII is a qualitatively and quantitatively
accurate representation of the behavior of the network. The
amplitude and frequency error of MFI are very large, and MFII
again bifurcates prematurely to tonic firing.

One should note that for (I,pp) = O(I1n) and for large values
of oy, the network can undergo a period doubling bifurcation.
This is shown in Figure 5. The large standard deviation in the
current forces different neurons into different regimes, such as
tonic firing, bursting, alternate burst firing and quiescence as
seen in Figure 5A. During a burst the heterogeneity causes the
neurons to fire asynchronously. Neurons with higher applied
current fire followed by those with lower applied current. See

Figure 5B. A small subpopulation of neurons with low applied
current are alternate bursters (i.e., burst with twice the period of
the rest of the bursting neurons). This appears as a period dou-
bled limit cycle in the mean variables of the network, as seen
in Figures 5C,D. Only MFIII is able to approximate the period-
doubled limit cycle with any degree of accuracy, as shown in
Figures 5C,D. Period doubling bifurcations are well known for
their capability of inducing chaos. Given that MFIII accurately
represents the period doubling bifurcation, it may be able to repli-
cate any potential chaotic behavior. However, we leave further
investigation of this interesting behavior for future work.

To summarize, all the mean-field systems are valid for tonic fir-
ing parameter regimes, and MFI is valid for all parameter regimes
with small o7, except for (Ipp) = O(Is). Mean-Field II and III
are valid for bursting with (Ipp) > I, and MFIII is the only
valid approximation for (lapp) = O(I). Thus, when (lpp) is
large we may be able to use MFII to determine the type of bifurca-
tion(s) involved when a heterogeneous network transitions from
tonic firing to bursting and the location in parameter space of
the bifurcation curves. Note that when the mean network behav-
ior undergoes a bifurcation from a tonic firing steady state to a
bursting oscillation, this does not indicate that the entire net-
work of neurons is bursting, or tonically firing. However, we will
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FIGURE 5 | Period doubled limit cycle in the heterogeneous network and
in MFIIl. The network consists of 5000 neurons, with parameters as in

Table 1, except gsyn = 200 and the applied current which is normally
distributed with mean (/app) = 1100 pA and variance o; = 2000 pA. (A) Raster
plot of 100 randomly selected neurons of the network arranged in order of
increasing current. Individual neuron behaviors include burst firing, alternate
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burst firing, tonic firing and quiescence. (B) Close-up of raster plot. The
neurons appear to fire in “traveling waves” during a burst. (C) Comparison of
the mean variables of the large network simulation and the simulations of the
mean field systems. Only MFIIl is able to reproduce the period doubling
behavior. (D) Comparison of the “phase portrait” of period doubled limit cycle
for MFIIl and the mean variables of network.

show how to use MFIII to determine what proportion of neurons
display the different types of behavior, given a specific parameter
regime and level of heterogeneity.

In addition to simple heterogeneity using unimodal distribu-
tions, one can also apply the same three mean-field equations to
networks where multiple subpopulations exist. However, unlike
previous attempts at modeling networks with multiple subpop-
ulations, we do not generate discrete coupled subnetworks with
different fixed values of the parameters in each subnetwork.
Instead we use a smoother approach where the networks have
distributions of parameters with multiples modes indicative of
multiple subpopulations. This can be easily done through the
processing of mixing unimodal distributions (see Appendix C).

3.2. APPLICATIONS OF MEAN-FIELD THEORY WITH A SINGLE SOURCE
OF HETEROGENEITY

3.2.1. Numerical bifurcation analysis using MFIl

As shown in Figure 3 the CA3 model network a makes transition
from tonic firing to bursting as (I,pp) is varied. Similar transitions
occur when gy, is varied. In this section, we use numerical bifur-
cation analysis of MFII to determine the bifurcations involved in
this transition, and the curves where they occur in the (Iypp)-gsyn
parameter space. Since the mean-field system (Equations 50-54)

consists of switching ODEs, this involves bifurcations of non-
smooth systems as well as standard (smooth) bifurcations. A
review of the theory of non-smooth systems can be found in
di Bernardo et al. (2008). For the standard (smooth) bifurcations,
the numerical bifurcation analysis is done in MATLAB (MATLAB,
2012) using the MATCONT package (Dhooge et al., 2003). While
it is possible to apply typical numerical continuation techniques
to non-smooth bifurcations, primarily by defining alternate sets
of test functions, and functions defining non-smooth limit cycles
and equilibria for continuation (see Kuznetsov et al., 2003),
implementation of these algorithms is outside of the scope of
this paper. We opted instead to determine the non-smooth bifur-
cations via direct numerical simulations. We compare the mean
field theory results to those for the homogeneous system and to
direct simulations of large networks.

In Nicola and Campbell (2013) we carried out a numerical
bifurcation analysis for a homogeneous network. The mean-field
equations in this case, which are the same as MFI with (I,p)
replaced by Ipp, indicate that the transition from tonic firing to
bursting occurs via the following sequence of bifurcations. The
stable bursting limit cycle is created in a saddle node bifurcation
of (non-smooth) limit cycles. The smaller, unstable limit cycle
becomes smooth in a grazing bifurcation and then disappears in
a subcritical-Hopf bifurcation which destabilizes the equilibrium
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FIGURE 6 | Comparison between the bifurcation structure of gsyn Value is supercritical. This makes bursting at low gsyn values less robust
homogeneous and heterogeneous networks using mean-field models. in the heterogeneous case as discussed in the text. The non-smooth
The parameters are as in Table 1, except the applied current which is sequence of bifurcations for the homogeneous network is expanded upon in

normally distributed with mean and variance as follows and gsyn which varies (C,D). In (C), we continue the smooth unstable limit cycle (blue) from the
as shown. (A) MFI, lapp = 2000 pA. (B) MFII, (/app) = 2000 pA, o; = 500 pA. Hopf bifurcation at low gsyn values until the continuation halts (red). This

(C) MFI, low gsyn bifurcation sequence (3D view). (D) MFI, low gsyn occurs close to the grazing bifurcation with the switching manifold. \We use
bifurcation sequence, (2D view). In (A,B), the curved blue lines denote the direct numerical simulations to continue the stable non-smooth limit cycle
value of the equilibrium point, which corresponds to tonic firing in the (green). Key points in this bifurcation sequence are shown in the phase plane
network. The vertical black/blue lines denote the amplitude range for the in (D). A smooth unstable limit cycle expands and grazes the switching
stable/unstable limit cycles, respectively. These correspond to bursting if the manifold at approximately gsyn = 52.71nS, and persists to collide in a
amplitude reaches zero, otherwise they correspond to the network having an non-smooth saddle-node of limit cycles at approximately gsyn = 55.11 nS.
oscillatory average firing rate. (A) Homogeneous case. Numerical bifurcation This sequence of bifurcations happens very rapidly in the parameter space,
analysis of MFI displays two subcritical Hopf bifurcations: one at a low gsyn leaving a narrow region of bistability between the tonic firing and bursting
value and one at a high value. (B) Heterogeneous case. Numerical bifurcation solutions. Note that the totally unstable-non smooth limit cycles in (D) are
analysis of MFII also displays two Hopf bifurcations, but the one at the low computed via direct simulation of the time reversed MFIl system.

point corresponding to tonic firing. This transition is shown in  hence corresponds not to bursting, but to firing with an oscil-
Figure 6A when I is held fixed and gsyn is varied. The bursting latory firing rate. This limit cycle then grows until it becomes
limit cycles are created at a low gy, value and destroyed at a high  a non-smooth, bursting limit cycle in a grazing bifurcation (in
Zsyn Value. Details of the sequence of bifurcations for low gy, are  Figure 6B this occurs at gy, ~ 150). We verified this prediction
illustrated in Figures 6C,D. The sequence for high gy, is the same  of the mean-field model by running direct simulations of a net-
but reversed. work of 10,000 neurons with fixed (I,pp), o7 while varying the
Using MFII, we numerically confirm that, as for the homo-  gyn value. As shown in Figure 7A, when the steady state mean
geneous network, the mean-field system of the heterogeneous variables are plotted vs gyn, the supercritical nature of the Hopf
network undergoes a Hopf bifurcation as the network transitions  bifurcation in the large network is apparent.
from tonic firing to bursting. However, as shown in Figure 6B, To further investigate the heterogeneous case, we used
with (I pp) held fixed the transitions for low gy, and high gn  MATCONT to carry out two parameter continuation of the Hopf
are not the same. For high gy the transition is the same as the  bifurcation for MFII with four different values for the stan-
homogeneous case. For low gsyn the transition occurs via the fol-  dard deviation of I,p: o7 = 250,500,750, and 1000 pA. As shown
lowing sequence of bifurcations. A supercritical Hopf bifurcation in Figure 7B, in all cases there appears to be a codimension-2
destabilizes the equilibrium point corresponding to tonic firing Bautin (or generalized Hopf) bifurcation on the two-parameter
and creates a stable limit cycle. This limit cycle is smooth and Hopf bifurcation curve, with the Hopf being supercritical on the
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Table 1, except gsyn varies as discussed below and the applied current which
is normally distributed with mean and variance as discussed below. (A)
Simulations of a network of 10,000 neurons with {/app) and o, as shown were
run at discrete values of gsyn for 2000 ms. The last 400 (ms) of simulation
time is plotted (in red), showing the stable limit cycle oscillation for different
Jsyn Vvalues. This is compared to numerical continuation of the MFII limit
cycle and equilibrium (in green and blue). Both the actual network and MFII
appear to undergo a supercritical Hopf bifurcation for low g values and a
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subcritical Hopf for high g values. (B) The Hopf bifurcation curves for the
mean-field systems with o, as shown. Red denotes supercritical Hopf
bifurcations and blue denote subcritical Hopf bifurcations. The black circles
denote codimension 2 Bautin bifurcation points. (C) Simulations of a network
of 1000 neurons run on a discrete mesh of (/app) and gsyn values. The 0%
(dotted line) and 100% (solid line) network bursting contours for o; = 0, 250,
500, 750, and 1000 pA are colored in black, magenta, blue, green, and red,
respectively. The curves are spline fits to the actual contours. (D) MFIl Hopf
bifurcation curves and spline fits to the 0% bursting and 100% bursting
contours of the actual network for ; = 1000.

left boundary before this point and subcritical after. By con-
trast, in the homogeneous case (o; = 0 line in Figure 7B) the
bifurcation is subcritical everywhere on the two-parameter Hopf
curve.

Further verification of the mean-field results can be found in
the direct numerical simulations of a network of 500 neurons
shown in Figure 7C. The simulations were run on a 50 x 50 mesh
in the gyn vs (Ipp) parameter space, using five different values for
the standard deviation of Iypp: o1 = 0, 250,500,750, and 1000 pA.
Note that o7 = 0 is the homogeneous network. The proportion
of bursting neurons, ppyrst, was computed using Equation (A6)
(see Appendix B). The 0 and 100% bursting contours can be seen
in Figures 7C,D. In these figures, there appear to be two kinds
of transitions from tonic firing to bursting. Along the (lower) left
part of the boundary of the bursting region, the transition is grad-
ual: the proportion of bursting neurons gradually increases from
0 to 100%. Along the rest of the boundary, however, the whole
network transitions to bursting simultaneously. This agrees with
the prediction from the mean-field model that two different bifur-
cations occur along the bursting boundary. Note also that the

size of the entire bursting region and the 100% network bursting
region get smaller as the level of heterogeneity (oy) increases.

Let us reiterate the primary differences between supercritical
and subcritical Hopf induced bursting seen in Figures 6, 7. First,
the subcritical case allows for bursting a lower gy, values than the
supercritical case. This is because in the subcritical case bursting
is initiated via a a saddle-node of limit cycles bifurcation which
occurs to the left of the Hopf bifurcation, while in the supercritical
case, bursting starts to the right of the Hopf in a grazing bifurca-
tion. Second, the transition to bursting is sharp in the subcritical
case and gradual in the supercritical case. The supercritical Hopf
bifurcation is consistent with the gradual transition from burst-
ing to firing seen in Figures 7C,D. When only a few neurons are
bursting and the rest have oscillatory firing rates the correspond-
ing mean behavior is a limit cycle with small amplitude. As more
and more neurons become bursting this increases the amplitude
of the limit cycle of the mean behavior until it grazes the switch-
ing manifold. In the subcritical case, the saddle-node of limit
cycles involves large amplitude limit cycles, corresponding to all
the neurons being in the bursting state.
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The bifurcation curves in Figure 7B are both qualitatively and
quantitatively accurate descriptions of the behavior of the actual
network. For example, in the actual network simulation, the
bursting region decreases as oy increases (see Figure 7C). This
same behavior is displayed by the MFII equations, albeit to a
greater degree, as shown in Figure 7B. However, there is a greater
degree of quantitative error for lower values of gy, and larger val-
ues of o7. In particular, for a fixed value of oy MFII predicts that
the Hopf bifurcation occurs at a higher value of gsy, than occurs
in the real network (compare Figures 7B,D directly) and this pre-
diction error seems to increase as oy increases. This is why MFII
indicates the network should be tonically firing when o7 is high
(in Figure 3D, for example).

Taken together, these results indicate that for small gsyn, net-
work induced bursting via adaptation is not robust to hetero-
geneity in the applied current. This occurs for qualitative and
quantitative reasons, both related to the Hopf bifurcation associ-
ated with the left boundary of the bursting region. Qualitatively,
the addition of heterogeneity causes this bifurcation to change
from subcritical to supercritical making the bursting less robust
for small gsy, values. Quantitatively, the gy, value of this bifurca-
tion increases when the heterogeneity becomes stronger, while the
value of the Hopf bifurcation associated with the right boundary
does not change appreciably. Thus the size of the bursting region
decreases with increasing heterogeneity.

3.2.2. Bifurcation types and manifolds using MFIIl

It is difficult to use MATCONT with MFIII as MFIII is an infi-
nite dimensional dynamical system, as it is a PDE. However, the
existence of equilibrium points can be determined using standard
root finding algorithms. While direct bifurcation analysis is diffi-
cult to implement in this situation, one can use properties of the
firing rate to describe, qualitatively and quantitatively, any tran-
sitions between network states. This will be the approach of this
section. To begin, we consider networks that are tonically firing,
we then proceed to the study of bursting networks.

For a network of neurons with heterogeneity in the parame-
ters, even if all the neurons are tonically firing, one cannot find
a steady state firing rate for the network, as in the case of a
homogeneous network. The parameter heterogeneity creates a
distribution of steady state firing rates across the network. While
the mean-field equations by themselves can only determine the
mean of this distribution, with an added assumption we can
approximate the distribution of steady state firing rates for the
network with a great degree of accuracy.

Consider a network with just one heterogeneous parameter, f.
Assume that the steady state firing rate of each neuron in the net-
work can be related to its value for the heterogeneous parameter:
R; = ¢g(B). Assume further that one can approximate this function
by the steady state value of (R;(1)|B):

2B ~ (RilB). (60)
This is easily determined through direct simulation of MFIII,
Equations (56-58), until the system reaches steady state. Treating
g as the transformation of a random variable, one can deter-
mine the steady state distribution of firing rates in the network,

Pr(r), through the standard theorem on transforming random
variables:

. (61)

d
pr(r) = pp(g (1)) ‘drglu)

which can be found in any standard textbook on probability the-
ory (such as Renyi, 1970). Note that we must assume that (R;|B)
is monotonic and invertible for this procedure to be valid.

We carried out this computation for a network of 1000 neu-
rons with a normal distribution in either I, g, or Wjymp. Details
of the implementation can be found in Appendix D. We numer-
ically determined the distribution of steady state firing rates for
the neurons in the full network through

_ 1
IS last”

i=1,2,...N (62)

R;

where ISI; 1.t 1s the last interspike interval for the ith neuron mea-
sured from a lengthy (1000 ms) simulation. Figure 8 shows the
results of the two approaches. The blue curve in the left column
shows the distribution of parameter values. This is used in MFIII
to calculate the predicted distribution of firing rates, which is
the dashed red curve in the right column. The solid blue curve
in the right column is the computed distribution of firing rates
from numerical simulation of the full network equations. There
is excellent agreement between the firing rate distributions in all
cases.

We carried out the same computations with a bi-modal distri-
bution in I, g, or Wjump, generated by mixing normal unimodal
distributions (see Appendix C). This is one way of representing
a network with two subpopulations of neurons with different
parameters. The mean field approach again gives an excellent
approximation to the qualitative and quantitative properties of
the steady state distribution of firing rates, as shown in the right
column of Figure 9.

The above approach is only valid when the network is tonically
firing. In this situation the steady firing rates of the network and
the individual neurons are constant. When the network leaves the
tonic firing regime, however, these steady state firing rates become
oscillatory. In the case of bursting, the amplitude of the oscilla-
tion is large enough that the firing rate goes to zero for intervals
of time. Whether or not the neurons are bursting, oscillatory fir-
ing rates cannot be represented as a simple distribution of firing
rates. However, with some additional work we can use the tools
developed above to determine what proportion of neurons in
the network is bursting. This is a statistical alternative to direct
bifurcation analysis.

From simulations of the full network, we know that when
the variance in the heterogeneity is large enough, not all of
the neurons necessarily display the behavior predicted from the
mean-field equations. For example, Figure 10 shows simulations
of a network where the mean-field equations display an oscilla-
tory firing rate which does not quite go to zero. The spike time
raster plot of the full network (Figure 10A) shows that some
neurons are bursting while others are tonically firing with an
oscillatory firing rate. However, simulation of the corresponding
mean-field equations (Figure 10B, dashed line) reveals only an
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curves, left column). The network firing rate distribution is estimated using
a histogram. The calculations were carried out on a network of 1000
neurons. Parameters, other than those given below, can be found in

Table 1. (A) Distribution of lapp With (fapp) = 4600 pA, 6, = 1000 pA. (B)
Distribution of gsyn with (gsyn) = 200nS, o4 = 50nS. (C) Distribution of
Wiump With (Wjymp) = 200 pA, o = 50nS.
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FIGURE 9 | Bimodal distributions in lpp, gsyn, and Wjymp lead to
bimodal distributions in the firing rate. These bimodal parameter
distributions are generated through distribution mixing of two normal
subpopulations with standard deviations and means as given below. See
Appendix C for details. The distribution of the firing rate or the distribution
of the parameter can be computed using MFIII if one knows the
complementary distribution. See sections 3.2.2 and 3.2.3 for details. Curve
descriptions are as given in Figure 8. Parameters, other than those given
below, can be found in Table 1. The calculations were carried out on a
network of 1000 neurons. (A) Distribution of /zpp with ju1 = 4500 pA,
o1 =500pA, p2 = 7000pA, o2 = 1000 pA, m = 0.7. (B) Distribution of gsyn
with w1 = 100nS, o1 = 30nS, wy = 300nS, 0o =50nS, m= 0.4. (C)
Distribution of W mp with 1 = 300pA, o1 = 50pA, 12 = 75pA,
o2 = 20pA, m=0.6.

oscillation, not bursting. While this is consistent with the behav-
ior of the network mean variables (Figure 10B, solid line), we
have lost the information that some of the neurons are bursting.
Similarly, one can find examples where the mean-field equations

exhibit bursting, but not all neurons in the network are burst-
ing. Thus, it would be useful to have more information about
individual neuron behavior. MFIII can be used to obtain such
information.
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FIGURE 10 | Visualizing a limit cycle in a heterogeneous network.
Numerical simulation of MFIIl and a network of 1000 neurons with
heterogeneity in the applied current. Parameters are as given in Table 1
except gsyn = 200nS, (lapp) = 1000 pA and o) = 4400 pA. (A) Raster plot
for 50 randomly selected neurons of the network arranged in order of
increasing current. Some of the neurons are bursting, while others are
tonically firing, albeit with an oscillatory firing rate. (B) In the mean
variables, the steady state behavior of both the network and MFIIl is an
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oscillation. (C) As MFIIl is a partial differential equation, the steady state
“limit cycle” is actually a manifold of limit cycles, foliated by the
heterogeneous parameter B = lypp. Part of the manifold has cycles with
(RIB) = 0 for an extended period of time (in blue). The other part contains
limit cycles that have (R|B) # O during the entire oscillation. We can
classify neurons with the parameter values in blue as bursting, and those
in green as oscillatory firing. (D) Averaging the limit cycle in (C) with
respect to B yields the mean limit cycle.

In the situation described above, the steady state mean network
firing rate is oscillatory. We will denote this oscillatory solution as
y. We interpret y to be the limit cycle parameterized by y(f) with
(s(y(®)), (w(y(t))|B)) being the graph of the limit cycle in phase
space. We will denote the period of the limit cycle as T. In this
case, the “steady state” firing rate for neuron i will be a periodic
function of time: R;(t), which depends on y and the value of the
parameter B associated with the neuron: R;(t) = g, y(1)), for
t € [0, T]. To proceed, we make the same assumption as above,
that

g, v(1) ~ (Ri(y(1)IB) (63)
where (R;(y(¢))|B) is the oscillatory firing rate associated with
the steady state limit cycle y in MFIIL. An example of the graph
of the steady state limit cycle derived from MFIII is shown in
Figure 10C. In this visualization we can clearly see that part of the
network is bursting (blue) while the rest is tonically firing with
an oscillatory firing rate (green). Integration of this limit cycle
over the heterogeneous parameter returns the “mean” limit cycle
(Figure 10D).

We now use this setup to approximate ppyrst, the proportion of
neurons in the network that are bursting during the network level
oscillation y. Noting that (R;(y(¢)|B)) > 0, for all ¢ € [0, T], the

tonically firing neurons correspond to those B values for which
(Ri(y(1)IB) > 0, for all ¢ € [0, T]. Thus we define, pionic, the
proportion of tonically firing neurons in the network via

Pronic = /BX <[tg[lg%](Ri(v(t))lﬁ>] > 0) (BB (64)

where X is the usual indicator function. Similarly, the proportion
of quiescent (non-firing) neurons is given by

bq= /ﬁX ([télr[l&);](Ri(v(t))lﬁ)] = 0) op(B)dB. (65)

Recall that the bursting neurons correspond to those p values
such that (R(y(#))|B) = 0, for some subinterval of [0, T]. Thus
we must have

Pourst = 1 — Pq — Ptonic- (66)
We compute these values as follows. First we numerically inte-
grated MFIII until the steady state oscillation v is reached. This is
an oscillation of (w(#)|B) and s(¢). The corresponding oscillatory
firing rate (R;(y(¢))|B) is computed through Equation (58) as a
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function of B on the limit cycle y. One can then determine

mp) = t%&}@(v(ﬂ)lﬁ% (67)
M(B) = max (R(y(1))IB), (68)
t€[0,T]
and the integrals simplify to
P = [ Hn @) (69)
pq = /ﬁh(—M(ﬁ))pﬁ(B) dp (70)

where h is the Heaviside function, with h(0) = 1.

Numerical results for a network with single heterogeneous
parameter are shown in Figure 11. For Figure 11A, the pro-
portion of bursting neurons was computed, using the method
described above, at each point in a mesh on the gyn vs. {(lapp)
parameter space. This data was then used to generate the ppyst
contours. For Figure 11B the actual network was simulated to
steady state at each point of a slightly coarser mesh. The propor-
tion of bursting neurons at each point was computed according
to Equation (A6) in Appendix B and used to generate the ppyrst
contours. The results of the mean-field computation are both
qualitatively and quantitatively accurate. In particular, MFIII
recovers the gradual transition to bursting on the left boundary
of the bursting region and the abrupt transition to bursting on
the right. It should be noted that it is much faster, by approxi-
mately an order of magnitude, to run a mesh of integrations over
MFIII then it is to run mesh over an actual network.

3.2.3. Inverting a steady state firing distribution to determine the
distribution of parameters using MFIII

Many parameters for neuron models are difficult to measure
directly using electrophysiology. However, a distribution of fir-
ing rates across a network of neurons is relatively easy to measure
using intracellular recordings, or can be estimated using mea-
surements from multi-electrode recordings and spike sorting
algorithms, among other methods (Buzsaki, 2004; Grewe et al.,
2010). We have seen in the previous section that, given a dis-
tribution of heterogeneities, MFIII can predict the steady state
distribution of firing rates. Here we show that one can invert this
process to yield a distribution of parameters given a steady state
distribution of firing rates.

We assume that only the firing rate distribution is known, and
denote it pr(r) as above. We then proceed as in the previous
section, assuming that the steady state firing rate for a partic-
ular neuron is some function of the heterogeneous parameters
R; = g(B) and that this function is well approximated by (R;|B).
Under these assumptions, one can solve for the distribution of
parameters f using

d
pp(B) = pr(g(B)) ‘dﬁg(ﬁ)’ (71)

which follows from standard statistical theorems on the
transformations of random variables (Renyi, 1970). Note that we

need to assume that (R;|B) is differentiable for this procedure to
be valid.

The primary problem we face in using this approach to
approximate the distribution pg(B) is that we need to determine
the steady state values of the function (R;|B). However, a cursory
look at the equations for MFIII shows that these in fact depend
on pg(P), the function we are trying to find, through the equation
for s:

;:_§+%m4®mm%@wﬁ (72)

Fortunately, however, this problem disappears when we look at
the steady state value for s:

200 300

Gsyn

FIGURE 11 | The proportion of bursting neurons, py,,s: for MFIll and an
actual network. (A) Using the techniques outlined in the text, MFlll is
used to compute the proportion of bursting neurons, pyyrst at each point in
a mesh over the parameter space. (B) Numerical simulations of a network
of 500 neurons are used to compute the proportion of bursting neurons,
Pourst- All the parameters for both the MFIII system and the actual network
are identical (see Table 1), except that MFlll is run over a finer mesh. The
results using MFIII are both qualitatively and quantitatively accurate. (A)

MFIII, o; = 500 pA. (B) Network, o; = 500 pA.
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5 = uSjump fﬁ (RiB)os (B) dB = Tesump (R, (73)

Here (R;) is the unconditioned steady state mean of the fir-
ing rate distribution. This information is readily available, as we
have assumed we know the steady state distribution, pr(r), and
determining the first moment is numerically trivial.

Putting the expression for s into the steady state equation for
(w|B) yields a set of coupled equations:

(WIB) = TwWjump (RilB). (74)

—1
d . =
[fv Gl(v,rssjumsz>,<w\ﬁ>,s)] H((wlp).s.B) = 0
(75)

0 H((wlB),s.p) <0

(Rilp) =

These may be solved for (w|B) and (R;|B) by discretizing in  and
numerically solving the resulting system at each grid point with
any standard root finding algorithm.

Alternatively, one can set s to its equilibrium value in MFIII
and numerically integrate the resulting equation:

(WIB)" = —a(wIB) + Wjump(Ri(1)IB), (76)

“H((wlB),5,8) = 0
(77)

0 H((w|B),5,B) <0

dv
I:fV G (thssjump <Ri>s<w‘ﬁ>;6):|
(Ri(D)1B)

until it reaches steady state, which will determine (w|f) and
(Ri|B). Note that this approach will only work if the tonic
firing equilibrium of the original mean-field system MFIII is
asymptotically stable.

We have implemented this approach as follows. A network of
1000 neurons is numerically integrated until it reaches its steady
state firing rate. The distribution of firing rates over the network is
found as described in the previous section. The density function
for this distribution, pr(7), is then estimated using the firing rate
histogram. Equations (76), (77) are numerically integrated until
they reach steady state. We then substitute the estimate of pr(r)
and the approximation (R;|B) of g(B) into (71) to determine the
parameter distribution pg(B). See Appendix D for more details.
Our results for unimodal and bimodal distributions are shown
in Figures 8, 9, respectively. In the right column of each figure,
the solid blue curve is the distribution of steady state firing rates
from integration of the full network. In the left column of each
figure the dashed red curve is the estimate of pg(B) found using
the procedure above, while the blue curve is the actual param-
eter distribution used in the network simulation. We note that
no information about the distribution of parameters is known
in the estimation procedure, yet the numerical results are very
accurate in both the unimodal (Figure 8) and the bi-modal case
(Figure 9).

Perhaps most interesting is that we can extend this tech-
nique to estimate the individual neuron parameter values, §;, i =
1,...,N. This again follows from the assumption that g(f) =
(R;|B) is the function that transforms the random variables B; into
R;. If the function is invertible, then we can compute the individ-
ual p; through numerically inverting the steady state (R;|B). For

example, when this technique is applied to a network where the
only source of heterogeneity is I, the mean relative absolute error
in the predicted values I; versus the actual values I; is only 0.6%.
The details about how to numerically invert for the individual
parameter values are included in Appendix D.

While network level inversion of a single heterogeneous
parameter is an important step forward, this is performed under
very strong assumptions. In particular, when performing this
inversion, all of the heterogeneity in the firing rates is assumed
to come from a single parameter. Additionally, all the other
parameters are assumed to be known. These two assumptions are
exceptionally strong and one has to take great care in inverting
actual recorded firing rates from neurons that they be reasonably
satisfied.

3.3. MEAN-FIELD APPLICATIONS WITH MULTIPLE SOURCES OF
HETEROGENEITY

In order for the mean-field applications to be useful for realis-
tic neuronal networks, one needs to consider heterogeneity in
more than one parameter. Recall that the mean field systems
derived in section 2.3 are valid for multiple heterogeneous param-
eters, one simply considers f to be a vector instead of scalar. This
presents some difficulties in implementation which we discuss in
the section. The examples we consider will have 2 or 3 sources of
heterogeneity, primarily in the parameters I, g and d.

Recall that MFII is given by the Equations (50—-54). The main
difficulty in dealing with MFII lies with the integral terms, which
are now multiple integrals. For example:

<Ri>=fﬁl fﬁz.../sp<Ri|ﬁ>pa<ﬁl,sz,...sp)dsp...dﬁzm (78)

where p is the number of heterogeneous parameters. In order to
numerically integrate or carry out bifurcation analysis on MFII,
these multiple integrals must be evaluated. We have found that
this is most easily done using a Monte—Carlo numerical inte-
gration scheme. Once this is implemented, bifurcation diagrams
can be generated exactly as for the case of one parameter het-
erogeneity: the equilibrium points and smooth limit cycles are
continued using MATCONT, while the non-smooth limit cycles
are generated using numerical simulations.

The integral term in MFIII can be dealt with in a similar way as
to that for MFIL Once this is implemented, the steady states and
network properties can be determined as described in section 3.2,
while numerical simulations can be used to follow stable periodic
solutions. We will use this approach later on in our case study on
adaptation induced bursting.

Mean-field IIT can also be used to determine steady state fir-
ing rates following the procedure in section 3.2.2, however, one
now has to discretize the equations over a multi-dimensional
mesh. While this approach is feasible, we found it is more efficient
to predict the steady state firing rates of the individual neurons
through the following interpolation scheme. Given knowledge of
the parameter distribution, we generate sample points §; from
this distribution. We then generate a steady state firing rate for
each sample point, R; = g(B;), where g is determined from MFIII
as described in section 3.2.2. We interpolate over the (§;, R;)
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ordered pairs to determine the firing rates of the individual neu-
rons, given knowledge of their parameter values. If we only need
the distribution of the firing rates, then the distribution of the
R; is an estimate of this, without need for interpolation. This
approach has been applied to a network of 1000 Izhikevich neu-
rons with three simultaneous sources of heterogeneity, as shown
in Figure 12.

The one application we found difficult to extend to the case
of multiple sources of heterogeneity was the mapping of the
distribution of steady state firing rates to the distribution of
parameters. There is a fundamental difficulty with this inversion
problem: the firing rate distribution is one-dimensional, but the

A 1><10'3
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I,
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) : ‘ "
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Resulting firing rate distributions

FIGURE 12 | A bimodal distribution in lypp together with unimodal
distributions in gsyn and Wjymp as shown in (A) yields a unimodal
distribution in the firing rate [dashed curve in (B)]. The mean-field
equations give a good estimate of this distribution [solid curve in (B)].
Simulations are for network of 1000 neurons. parameter given in Table 1
except /, g, and W mp. These are distributed with oy, = 50, (Wjymp) = 200,
ag =50, (gsyn) =200, m = 0.5, (lapp,1) = 7500, o/ 1 = 200, (/app,2) = 5500,
o/, 2 = 500. Other combinations of bimodal and unimodal parameter
distributions may yield bimodal firing rate distributions. Note that this is
different than the situation shown in Figure 9, where a single bimodal
source of heterogeneity yielded a bimodal firing rate distribution.

distribution of parameters is multidimensional. Thus, we leave
further investigation of this problem for future work.

3.3.1. Bifurcation analysis with multiple sources of
heterogeneity—case study

To conclude our work, we consider a realistic model for a CA3
hippocampal network of pyramidal cells. Hemond et al. (2008)
classify CA3 pyramidal cells into three types: weakly adapting,
strongly adapting and intrinsically bursting. We will focus on the
effect on network bursting of having two subpopulations: one
strongly adapting and one weakly adapting. We use the Izhikevich
model (Equations 4-6) with the parameters set up by Dur-e-
Ahmad et al. (2012) (see Table 1), but include heterogeneity in
ILipp» &yn and the adaptation parameters Wjump, Tw. The param-
eter distributions are generated through distribution mixing (see
Appendix B) of normal distributions with the parameters given
in Table 2. We have treated the mean values of I, and geyn from
the strongly adapting subpopulation as the bifurcation parame-
ters. We also varied the proportion of strongly adapting neurons
in the population, i.e., parameter p in Equation (A8).

The 0 and 100% bursting contours for simulations over the
two parameter mesh in the (lapp), (gsyn) are shown in Figure 13
for both the full network (Figure 13A) and MFIII (Figure 13B).
Numerical bifurcation analysis of MFII (not shown) confirms
that the bifurcations are similar to when I, was the only source
of heterogeneity, in particular, on the left boundary of the burst-
ing region the Hopf bifurcation is supercritical, while on the right
it is subcritical.

As shown in Figure 13, when the proportion of strongly adapt-
ing neurons is decreased, the bursting region decreases. However,
unlike previous results (Nicola and Campbell, 2013, Figure 10),
the decrease seems to be more pronounced in the high gy, region.
This is likely due to having truly heterogeneous distributions
of parameters, as opposed to splitting a network into two dif-
ferent homogeneous subpopulations as was done in Nicola and
Campbell (2013). In all cases, it appears that heterogeneity shifts
the bursting region to higher values of gsx,, outside the range
of biologically plausible conductances described in our previous
work (Nicola and Campbell, 2013).

4. DISCUSSION
Building on the mean-field framework for networks of homo-
geneous oscillators, we extended the mean-field approach to

Table 2 | Table of parameters for the strongly and weakly adapting
heterogeneous subpopulations.

Parameter Strongly adapting Weakly adapting
(Gsyn) 0-600nS 200nS

<09> O-5<gsyn> 50nS

(lapp) 1000-4000 pA 1200 pA

gy 500 pA 500 pA

{(Wump) 200 pA 100 pA

oW, 50 pA 20 pA

(tw) 200ms 50 ms

Or, 50ms 10ms
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FIGURE 13 | Case study: the proportion of bursting neurons in a
network with both strongly adapting and weakly adapting neurons.
Parameters are as in Table 1 except the lapp, gsyn, Wiump. and Ty which
have bimodal distributions generated by distribution mixing with
parameters given in Table 2. The parameter psy represents the proportion
of strongly adapting neurons in the network (see Equation A8). The dashed
line is the 0% bursting contour, while the dotted line is the 100% bursting
contour. As shown in both the network (A) and MFIII (B), the bursting
regions becomes significantly smaller when the proportion of strongly
adapting neurons decreases. In all cases, the curves are smoother spline
fits to the actual contours.

networks of heterogeneous oscillators. This was accomplished
through the derivation of three separate mean-field systems,
MFI, MFII, and MFIII, with differing applications and regions
of validity. We successfully applied numerical bifurcation anal-
ysis to MFI and MFII to aid in the understanding of the dif-
ferent behaviors that heterogeneous networks can display, and
how they transition between these different types of behav-
iors. More importantly, however, we have surpassed the natural
limitation of mean-field systems: that they can only provide
information about the first moments. With a few additional
tools, we used MFIII to derive information about distributions

of firing rates, and even parameters, given some basic
knowledge.

Other researchers (Hansel and Mato, 2003; Vladimirski et al.,
2008; Hermann and Touboul, 2012) have derived firing rate dis-
tributions for heterogeneous networks, however, these have been
derived under differing assumptions. For example, the heteroge-
neous mean field systems studied by Hansel and Mato (Equations
(5.5-5.7) in Hansel and Mato (2003)) and Hermann and Touboul
(Equations (1, 2) in Hermann and Touboul (2012)) have similar
integral terms to our MFII, however, they are firing rate models.
Our models are current/conductance based models. The differ-
ence between these two types of equations arises from which time
scale is the fastest, that of the synaptic current, or the firing rate.
If the firing rate time scale is assumed to be the fastest, then a dif-
ferential equation for the synaptic current can be obtained (as in
our case). If the time scale of the synaptic current is assumed to
be the fastest, then one obtains firing rate equations, as in Hansel
and Mato (2003) and Hermann and Touboul (2012). The fact
that these two different limits result in different kinds of equa-
tions were first highlighted in Dayan and Abbott (2001) (section
7.2). Additionally, no adaptation is contained in the rate models
in Hansel and Mato (2003) and Hermann and Touboul (2012).
Finally, it is likely that the firing rate models shown in Hansel
and Mato (2003) cannot display period doubling bifurcations as
they have a similar structure to MFII, which misses out on the
more complicated bifurcations of the actual network that MFIII
can reproduce, due to its PDE nature. The firing rate models
in Hermann and Touboul (2012) have a complicated bifurca-
tion structure as they involve two subpopulations (excitatory and
inhibitory) leading to a four dimensional ODE system.

The model of Vladimirski et al. (2008) is formulated in terms
of an input—output relation for the synaptic conductance, so has
a different structure than ours. It involves a distribution of the
synaptic depression variable so has some aspects similar to our
MFIII, however, no PDE governing the evolution of this variable
is derived.

Dur-e-Ahmad et al. (2012) studied adaptation induced burst-
ing in a network of homogeneous Izhikevich neurons, with
parameters determined from experimental data on CA3 pyrami-
dal neurons. They showed that, if the adaptation is strong enough,
network bursting occurs in large regions of the parameter space
consisting of the synaptic conductance, gyn, and the applied cur-
rent, Iypp. In Nicola and Campbell (2013) we showed that the
transition from tonic firing to bursting involves a saddle-node
bifurcation of non-smooth limit cycles, followed by a grazing
bifurcation and a subcritical Hopf bifurcation. For fixed Ipp
greater than rheobase but sufficiently small, there is one transi-
tion from tonic firing to bursting at a low g, value and another
from bursting back to tonic firing at a higher gsn value. Thus
the bursting region is a closed semi-circular region in the gyn,
Ipp parameter space. In Nicola and Campbell (2013) we showed
that the size of this bursting region is reduced if the network is
split into two homogeneous subnetworks, one strongly adapting
and one weakly adapting. Here, we used the tools we developed
to investigate how this adaptation induced network bursting is
affected by heterogeneity in the parameters. Somewhat surpris-
ingly, we have found that adaptation induced network bursting
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is not very robust to heterogeneity. This has been confirmed by
direct simulations of the full network, bifurcation analysis using
MFII and analysis of the proportion of bursting neurons in the
network using MFIIL. This lack of robustness is caused by two
changes to the homogeneous case:

1. The low gyn Hopf bifurcation point moves toward higher
values, thereby decreasing the size of the bursting region.

2. The low gsyn Hopf bifurcation switches from subcritical to
supercritical. This has two effects:

e The bifurcation direction changes, eliminating the bursting
at conductance values less than the bifurcation value.

e The initial limit cycles created by the bifurcation are small
amplitude oscillations in the firing rate as opposed to full
bursts, thus the transition to bursting moves to even higher
conductance values.

Further, in networks with both weakly and strongly adapting neu-
rons, heterogeneity caused the high gy, Hopf bifurcation value
to decrease when the proportion of strongly adapting neurons is
reduced.

Let us now put our results in the context of experimental
results on the CA3 region. Bursting is often seen in these stud-
ies (Andersen et al., 2006, section 5.3.5). When the neurons have
their synaptic inputs blocked, however, the majority (~80%) of
these pyramidal neurons do not display bursting, but different
degrees of spike frequency adaptation (Hemond et al.,, 2008).
Thus, it would seem that adaptation induced network bursting
should play a role in the CA3 network. However, the biophysi-
cally important part of the parameter region is in the low goyn
region (Nicola and Campbell, 2013). When this fact is taken in
conjunction with our results described above, this would seem to
weaken the case that adaptation induced network bursting is the
only source of bursting in CA3 networks. Some other mechanism
seems necessary.

In their study of hippocampal CA3 pyramidal neurons,
Hemond and colleagues note that roughly 20% of pyramidal
neurons were intrinsically bursting. That is, the neurons burst
without any synaptic input for some input current. It may by pos-
sible that a small subpopulation of intrinsically bursting neurons
can facilitate bursting in the rest of the network, however, this
would depend on the conductance values connecting this partic-
ular subpopulation to the rest of the network. This hypothesis can
be tested relatively easily using a mean-field approach. All that is
required is to fit a two-dimensional adapting model to the intrin-
sically bursting neurons. This is feasible, as has been previously
noted, all the two-dimensional adapting neurons can be turned
into intrinsically bursting neurons by simple parameter changes
(Izhikevich, 2003). The conductance parameter connecting this
subpopulation to the rest is best treated as a bifurcation param-
eter, with some estimate of the range in which it lies in from
physiological data.

While an intrinsically bursting subpopulation is the most
promising avenue of study with regards to hippocampal burst-
ing, synaptic depression has also been shown to induce bursting
in oscillators that cannot otherwise display this behavior. In a

model of the developing chick spinal cord, Vladimirski et al.
(2008) found that heterogeneity actually makes the bursting more
robust, as opposed to less as we have found. Thus it is possible the
synaptic depression induced bursting is more robust to hetero-
geneity than adaptation induced bursting. However, in this study
the heterogeneity was via a uniform distribution in the applied
current (as opposed to the Gaussian distributions we consider)
and typically (I.pp) was close to rheobase, which could also be
factors in their results.

In addition to area CA3 in the hippocampus, adaptation
induced bursting has also been suggested as a possible mechanism
for the generation of velocity controlled oscillators (VCO?’s) in the
entorhinal cortex by Zilli and Hasselmo (2010). The VCO’s burst
at frequencies that vary with the velocity of the animal. When
a subset of VCO?’s signals are linearly added to a readout neu-
ron, an interference pattern emerges and a grid cell is formed.
Zilli and Hasselmo (2010) use a recursively coupled network of
homogeneous Izhikevich neurons with adaptation variables given
by Wjump = 100 and 1/tw = 0.03, parameters values such that
adaptation induced bursting can occur. The network acts a sin-
gle velocity controlled oscillator with the burst frequency varying
with the velocity of an animal. This is done by fixing the gsn
parameter at a specific value and inverting the F(I) curve, where
F is the frequency of bursts and I is the homogeneous applied
current to each neuron. Grid cells can be generated by using
multiple networks and linearly adding their output currents to a
read-out neuron. This was done under uncorrelated noisy inputs
arriving to each neuron. However, Zilli and Hasselmo (2010)
state that synchrony in the noise (which can come from the
animals velocity signal for example) coming to each VCO net-
work can disrupt grid-cell formation. Here, we have shown that
a heterogeneous network of oscillators can still maintain a net-
work level oscillation rate, even if the individual neurons have
different behaviors. The network level behaviors are predicted
from the mean-field systems. Given the fact that the individual
neurons are heterogeneous, any synchronized noise input into
the individual neurons should become increasingly desynchro-
nized by the differing responses of the individual neurons. As a
network level oscillation exists and the heterogeneity will likely
desynchronize any noise coming to the individual oscillators, this
is a plausible means of generating velocity controlled oscilla-
tors. We leave this particular application of mean-field theory for
future work.

In either of these applications, a mean-field system may
yield valuable insights as to the mechanisms of bursting and
the parameter regions where they occur. By carefully choos-
ing the appropriate bifurcation parameters and accounting for
the level of heterogeneity in the neurons in the network, one
can determine the bifurcation types and behaviors neurons
in these different networks display, in addition to estimates
of the different distributions to yield insights about the real
cells.
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APPENDICES

APPENDIX A: COMPUTING (V) AND (V/|B)

When the quasi-steady state approximation is applicable, a very
convenient method emerges for computing the moments of v. In
particular, the quasi-steady state approximation not only yields
the steady state flux, but it also yields the steady state density:

J((w), s)

PO = F(v) — (w) +gs(e, —v) + 1

where J((w), s) is the steady state flux ((R;(¢)) for H({w), s) > 0).
Obviously with the density, we can compute the moments of any
arbitrary function of v. For example, (v) is given by

if H((w),s) > 0(Al)

) / J((w), s)vdv
V) =

v F(v) — (w) +gs(e, —v) +1
However, once we cross the switching manifold, Equation (A1) is
no longer valid. An approximation has to be made to compute (v)
in this region. In particular, we will assume that (F(v)) = F({v))
and that the dynamics of (v) are fast relative to s and (w). If so,
then the dynamics of (v) are approximately given by

WY ~ F((v)) — (w) + gs(e; — () + I (A2)

and we can solve the steady state equation for (v)
F((v)) — (w) +gs(e, — (v)) +1=0

However, we have to be careful here. Based on the assumptions
on F(v) we know that there are only two solutions to this system,
and we need to solve for the stable one. For the Izhikevich neuron
for example, this is given by

_atgs

> (A3)

(v-) —V—H(w),s)

Computation of the integral for the Izhikevich neuron, in con-
junction with Equation (A3) yields the following equation for (v)
over the entire (w), s plane:

(Ri() (Vpeak— “5E)2 +H((w),5) atgs .
2 log((vrem—“;g‘>2+H(<w>,s) g HW) 920

(v) =
—H({w), s) cH({w),s) <0
(A4)
The same formulas can actually be used for (v|B), with the inter-
pretation that they are now explicit functions of § In particular,
one can show that under tonic firing, (v|B) is given by the same
formula as (v) when H({w), s, ) > 0. Additionally, the formula
for (v) for H({w), s, B) < 0 is also a satisfactory approximation
for (v|B). To once again reiterate that while the formula for the
mean (v|B) under heterogeneity is the same as the formula for (v)
under homogeneity, this does not imply that (v) = (v|B). In fact,
to compute (v), one has to compute the traditional integral for it:

atgs
2

) = fs (vB) o3 (B) dB

APPENDIX B: COMPUTING THE PROPORTION OF BURSTING NEURONS

IN DIRECT SIMULATIONS

Performing direct simulations of a network is fairly straight
forward, but it is somewhat difficult to use the results of the sim-
ulations to automatically classify a given neuron, let alone the
entire network, as bursting or tonically firing. We considered var-
ious classifiers and opted to use the ratio of the largest to the
smallest interspike interval for a neuron when the network has
reached steady state. For a bursting neuron, the ratio of its largest
interspike interval (which is the interburst interval) to its small-
est interspike interval should be large. Thus for the ith neuron we

define
max IS
A= — (A5)
min IS

where the max/min is determined after a suitable time period of
steady state behavior (either bursting or tonically firing). We set
a critical ratio, A, and classify neuron i as bursting if X; is higher
than this ratio. The critical ratio is typically taken to be 2. This is
the single neuron classifier. We use the single neuron classifier to
make an estimate for the total proportion of bursting neurons in
the network as follows

1
Pburst = ﬁ Z h(ki —Ae) (A6)

i=1

where h is the Heaviside function. We can use ppyrs to classify
a network by picking some specific critical value of ppyrst as a
threshold for a classifier, however, it is more informative to simply
plot the contours of pp,s for a set of simulations run over a mesh
in the bifurcation parameters of interest.

APPENDIX C: MULTIPLE SUBPOPULATIONS VIA MIXED
DISTRIBUTIONS OF HETEROGENEITY
In Nicola and Campbell (2013) we considered multiple sub-
populations for heterogeneous networks by simulating discrete
homogeneous subpopulations within a network. For example, we
simulated two subpopulations with two different sets of param-
eters corresponding to weakly adapting and strongly adapting
neurons as a first attempt at studying inhomogeneous networks.
However, a more realistic way of analyzing subpopulations in het-
erogeneous networks, is through the use of mixed distributions.
A mixed random variable Z is a function of two or more ran-
dom variables. For example, if X and Y are random variables with
probability density functions fx and fy, respectively, then
P iX w?th probab?l%ty P (A7)
Y with probability 1 — p

is a mixed random variable with probability density function

f2(@) = pfx (@) + (1 — p)fy (2). (A8)
Now consider a network where the adaptation jump size Wjump
comes from two different subpopulations. In one subpopulation,
(Wjump) is large, and in the other, (Wjuymp) is small. We can sim-
ulate these two subpopulations within an individual (all-to-all)
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coupled network using heterogeneity and the density function

fwjump (W) = psafsa(w) + (1 — psa)fwa(w). (A9)
Here pss denotes the proportion of strongly adapting neurons,
SA denotes the strongly adapting subpopulation and WA denotes
the weakly adapting subpopulation. Note that these densities have
higher moments than simply (wjump). It is the magnitude of these
moments that determine whether or not the density in the het-
erogeneous parameter we are considering is bimodal, indicative
of multiple subpopulations. Using this approach we can analyze
how the bimodality affects the steady state distribution properties.
We can also use more of the data gained from real networks for
the purposes of simulation, as opposed to arbitrarily classifying
neurons as strongly adapting or weakly adapting. The parameters
of the individual density functions can be approximated, along
with p, using standard statistical approaches (maximum likeli-
hood estimation, for example). More importantly, however, the
same mean-field equations apply to a unimodal or a multimodal
distribution of heterogeneity.

APPENDIX D: DIFFERENTIATION AND NUMERICAL INVERSION OF
PARAMETER DISTRIBUTIONS

The procedure in section 3.2.2 requires not only the estimation of
(R;|B), but also the calculation of its inverse and the derivative of
this inverse. To calculate (R;|B) the mean field equations (56-58)
are discretized in B and the resulting equations are numerically
integrated to steady state, which yields the steady state value of
(R;|B)) at each mesh point, f;. The inverse g~ 1(r) is calculated via
numerically inverting the steady state (R;|B;) as a function of f;
as follows. The MATLAB function interp1 is used to interpolate
values of § given values of R using the steady state ({R;|;), B;)

mesh points. The derivative of the inverse is calculated using a
finite-difference approximation over the mesh:

g~
dr |, _

r=t;

GV ()
fit1 =

This is then used to find pr(r) at each mesh point via Equation
(61).

To implement the computations in section 3.2.3, Equations
(76, 77) are discretized in  and numerically integrating to com-
pute the steady state value of (R;|B) at each mesh point, (R;[f;).
This is then used to compute d% (RIB) through a first order
finite-difference approximation over the discrete mesh:

d(R,-|B)| __ (RilBj 1) — (RilB;)
ap P=P Biv1—8

These two quantities are then used as approximations of g(8)
and ¢’'(B) in Equation (71) to find pg(B) at each mesh point.

To estimate the parameter values for individual neurons, we
take the discretized steady state firing rate, (R;|B;), calculated
as indicated above. We then invert the functional relationship
between (R,-|ﬁj) and Bj, and interpolate the f values of the indi-
vidual neurons using their firing rate, i.e., we treat (Rilﬁj) and B;
as the (xj, y;) points to be interpolated. This yields an estimate
of the parameter values for each individual neuron, unlike in the
approach for section 3.2.2 which yielded an estimate of the overall
distribution. Note that all that is required for this computation is
knowledge of the steady state firing rate for each neuron. We use
the griddata and the interpl functions in MATLAB to perform
the interpolation.
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