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A wide range of blind source separation methods have been used in motor control
research for the extraction of movement primitives from EMG and kinematic data. Popular
examples are principal component analysis (PCA), independent component analysis (ICA),
anechoic demixing, and the time-varying synergy model (d’Avella and Tresch, 2002).
However, choosing the parameters of these models, or indeed choosing the type of
model, is often done in a heuristic fashion, driven by result expectations as much as
by the data. We propose an objective criterion which allows to select the model type,
number of primitives and the temporal smoothness prior. Our approach is based on a
Laplace approximation to the posterior distribution of the parameters of a given blind
source separation model, re-formulated as a Bayesian generative model. We first validate
our criterion on ground truth data, showing that it performs at least as good as traditional
model selection criteria [Bayesian information criterion, BIC (Schwarz, 1978) and the
Akaike Information Criterion (AIC) (Akaike, 1974)]. Then, we analyze human gait data,
finding that an anechoic mixture model with a temporal smoothness constraint on the
sources can best account for the data.

Keywords: motor primitives, blind source separation, temporal smoothing, model selection, laplace
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1. INTRODUCTION
In recent years substantial experimental evidence has been pro-
vided that supports the hypothesis that complex motor behavior
is organized in modules or simple units called movement prim-
itives (Flash and Hochner, 2005; Bizzi et al., 2008). In this
framework each module, or motor primitive, consists of a set
of movement variables, such as joint trajectories (Santello et al.,
1998; Kaminski, 2007) or muscle activations (d’Avella et al., 2006;
Chiovetto et al., 2010) acting synergistically over time. By com-
bination of small numbers of these primitives complex motor
behaviors can be generated. Several methods have been used so far
in the literature for the identification of motor primitives starting
from experimental data sets, which include both well-known clas-
sical unsupervised learning techniques based on instantaneous
mixture models, such as principal component analysis (PCA) and
independent component analysis (ICA) (Chiovetto et al., 2010;
Dominici et al., 2011), or even more advanced techniques that
include the estimation of temporal delays of the relevant mixture
components (d’Avella et al., 2006; Omlor and Giese, 2011). On
the one hand, all these approaches differ from each other in mul-
tiple aspects, such as their underlying generative models or the
specific priors imposed on the parameters. On the other hand,
however, for all of them the number of primitives to be extracted
and subsequently used to approximate the original data has to be
set a priori. To our knowledge only very few motor control studies
have so far addressed the problem of model selection in a prin-
cipled way, see e.g., Delis et al. (2013); Hart and Giszter (2013)
for notable exceptions. The existing generative models for the
extraction of motor primitives have indeed been demonstrated
to provide a low-dimensional decomposition of the experimen-
tal data, but no clear criterion has been developed to objectively

determine which model is best suited for describing the statistical
features of the data under investigation. We are concerned with
two types of statistical features:

• “hard” constraints, such as the number of primitives.
Determining this number is also known as “model order esti-
mation.”

• “Soft” constraints, e.g., regularity measures. In other words,
a constraint on a parameter is “soft,” if it expresses a prefer-
ence or expectation for the parameter’s value, but does allow
for deviation from this preference given sufficient evidence.
For example, when modeling human walking, we expect a
periodic movement with predominantly low frequency com-
ponents. However, higher frequency components might be
critical to capture specific, more complex movement primi-
tives. We therefore would like to allow for the possibility of
overriding our initial expectations if the data indicate that
this is appropriate. One such regularity measure, temporal
smoothness quantified by a kernel function, is a novelty of our
approach in the context of model selection for blind source
separation in motor control.

Concerning the model order selection, several criteria have been
developed. Most of them require the computation of the like-
lihood function (Schwarz, 1978; Akaike, 1987; Basilevsky, 1994;
Minka, 2000; Zucchini, 2000) and attempt to determine the right
model order as the one that offers the best trade-off between accu-
racy of data fitting and complexity of the model. Our approach
uses this trade-off in a more general setting. Such information
criteria were proven to identify with almost no error the model

Frontiers in Computational Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 185 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2013.00185/abstract
http://www.frontiersin.org/people/u/55148
http://community.frontiersin.org/people/EnricoChiovetto/60762
http://www.frontiersin.org/people/u/11058
mailto:dominik.endres@klinikum.uni-tuebingen.de
mailto:dominik.endres@klinikum.uni-tuebingen.de
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Endres et al. Model selection for the extraction of movement primitives

order of noisy data sets when these were corrupted with Gaussian
noise, but performances were shown to be noticeably worse when
data were corrupted with signal-dependent noise (Tresch et al.,
2006), which is actually thought to affect strongly the neural
control signals (Harris and Wolpert, 1998). In this article we
present a new objective criterion for model-order selection that
extends the other classical ones based on information-theoretic
and statistical approaches. The criterion is based on a Laplace
approximation of the posterior distribution of the parameters
of a given blind source separation method, re-formulated as a
Bayesian generative model. We derive this criterion for a range of
blind source separation approaches, including for the first time
the anechoic mixture model (AMM) described in Omlor and
Giese (2011).

We provide a validation of our criterion based on an artifi-
cial ground truth data set generated in such a way to present
well-known statistical properties of real kinematic data. We show
in particular that our method performs at least as well as other
traditional model order selection criteria [Akaike’s Information
Criterion, AIC (Akaike, 1974) and the Bayesian Information
Criterion, BIC (Schwarz, 1978)], that it works for both instan-
taneous and delayed mixtures and allows to distinguish between
these given moderately sized datasets, and that it can provide
information regarding the level of temporal smoothness of the
generating sources.

We finally apply the criterion to actual human locomotion
data, to find that, differently from other standard synchronous
linear models, a linear mixture of time shiftable components
characterized by a specific degree of temporal smoothness is a
better account of the data-generating process.

1.1. RELATED APPROACHES
The well-known plug-in estimators, BIC and AIC, have the
advantage of being easy to use when a likelihood function for a
given model is available. Hence, they are often the first choice
for model order estimation, but not necessarily the best one. In
Tu and Xu (2011) several criteria for probabilistic PCA (or fac-
tor analysis) models were evaluated, including AIC, BIC, MIBS
(Minka’s Bayesian model selection) (Minka, 2000) and Bayesian
Ying-Yang (Xu, 2007). The authors found that MIBS and Bayesian
Ying-Yang work best. The approach presented in Kazianka and
Pilz (2009) corrected the approximations made in MIBS, which
yielded improved performance on small sample sizes. This cor-
rected MIBS performed better than all other approaches tested in
that paper, including AIC and BIC.

The authors of Li et al. (2007) estimated the number of inde-
pendent components in fMRI data with AIC and minimum
description length [MDL, (Rissanen, 1978)], which boils down to
BIC. They showed that temporal correlations adversely affect the
accuracy of standard complexity estimators, and proposed a sub-
sampling procedure to remove these correlations. In contrast, we
demonstrate below how to deal with temporal dependence as a
part of our model. Another MDL-inspired approach, code length
relative to a Gaussian prior (CLRG) was introduced in Plant et al.
(2010) to compare different ICA approaches and model orders.
It was demonstrated to work well on simulated data without the
need of choosing additional parameters, such as thresholds, and it

was shown that it is able to recover task-related fMRI components
better than heuristic approaches.

Such heuristic approaches typically utilize some features of the
reconstruction error (or conversely, of the variance-accounted-for
(VAF)) as a function of the model order, e.g., finding a “knee”
(inflection point) in that function, a procedure which is inspired
by the scree test for factor analysis (Cattell, 1966). For exam-
ple, the authors of Cheung and Xu (1999) experimented with an
empirical criterion for ICA component selection. The indepen-
dent components were ordered according to their contribution
to the reduction of reconstruction error. Only those independent
components were retained that had a large effect on this error.
Similarly, the approach of Sawada et al. (2005) used “unrecov-
ered power,” which is basically reconstruction error, to determine
which components of a (reverberant) mixture are important.
The work in Valle et al. (1999) compared various criteria for
PCA component selection on real and simulated chemical reac-
tor data, finding that some of the heuristic reconstruction-error
based methods still perform well when PCA model assumptions
are violated by the data-generating process.

To distinguish convolutive (but undelayed) mixtures from
instantaneous ones, the work in Dyrholm et al. (2007) employed
the framework of Bayesian model selection for the analysis
of EEG data. Related to our approach, the authors of Penny
and Roberts (2001) derived Laplace approximations to the
marginal likelihood of several ICA model classes for model
selection and model order determination. Their work is con-
ceptually similar to our approach, but we also consider delayed
mixtures.

All approaches reviewed so far are deterministic in nature.
There are also sampling methods available for model selection
purposes, see Bishop (2007) for details. One example is e.g.,
the work of Ichir and Mohammad-Djafari (2005) which used
importance sampling and simulated annealing for model-order
selection of L1-sparse mixtures.

2. MATERIALS AND METHODS
We develop our model (order) criterion in the framework of
Bayesian generative model comparison Bishop (2007). Let D be
observable data, �M a tuple of model parameters for a model
indexed by M (the “model index”) and � a tuple of hyperparam-
eters. Using standard terminology, we denote

likelihood : p (D|�M,�, M) (1)

prior : p (�M |�, M) . (2)

The likelihood is the probability density of the data given
the model parameters, model index and hyperparameters. The
parameter prior is the probability density of the model param-
eters. Then the marginal likelihood of M, or model evidence for
M is given by

p(D|�, M) =
∫

d�Mp (D, �M |�, M)

=
∫

d�Mp(D|�M, �, M)p (�M |�, M) (3)
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where the second equality follows from the product rule for prob-
ability distributions. Strictly speaking, the � would have to be
integrated out as well after choosing a suitable prior for them.
However, to keep the problem tractable we determine their value
by maximizing the model evidence with respect to them, finding
that this yields sufficiently good approximations for our purposes.
Once we have evaluated Equation 3 for all M, we can select that
M which maximizes the model evidence, since we have no a-priori
preference for any M.

To apply this model selection framework, we reformulate three
popular blind source separation (BSS) methods, namely proba-
bilistic PCA (pPCA), ICA and anechoic demixing as generative
models in section 2.1. This reformulation allows us to evaluate
their likelihoods and parameter priors. We then use a Laplace
approximation (Laplace, 1774) to compute an approximation to
the marginal likelihood of each model. This approximation is
derived in section 2.2.

2.1. GENERATIVE MODELS OF BLIND SOURCE SEPARATION METHODS
The BSS methods we consider all assume a linear generative
model in discrete time, where observable data X can be written as
a linear superposition of sources S multiplied by weights W. Let
t = 1, . . . , t be the T (equally spaced) time points, i = 1, . . . , I
the source index, and j = 1, . . . , J the signal index. Note that J
could also be interpreted as a trial index, i.e., one signal repeated
J times, or any combination of trials and signals. For the mod-
els we consider, there is no formal difference between “trial”
and “signal,” as opposed to e.g., the time varying synergy model
(d’Avella et al., 2006). Then X is a (J × T) matrix, S is (I × T) and
consequently W must be (J × I) so that

X = WS + � (4)

�jt ∼ N (
0, σ2

n

)
(5)

where the entries of the noise matrix � are drawn independently
from a Gaussian distribution with zero mean and variance σ2

n. In
an anechoic (delayed) mixture, the sources additionally depend
on the signal index j (see section 2.1.3 for details).

The differences between the BSS approaches can be expressed
as priors on S and W, which we describe in the following.

2.1.1. Probabilistic PCA (pPCA)
PCA is one of the most widely used BSS approaches. In Tipping
and Bishop (1999), it was demonstrated how PCA results from
a probabilistic generative model: assuming the data have mean
zero (i.e., ∀j : ∑

t Xjt = 0), and using an independent zero-mean
Gaussian prior on the sources, i.e.,

Sit ∼ N (
μ = 0, σ2) (6)

the weights W which maximize the marginal likelihood of X after
integrating out S, are given by the scaled (and possibly rotated)
principal I eigenvectors of the (J × J) data covariance matrix,
1
T XXT . This model differs from PCA insofar as the sources will
only be equal to the PCA factors in the noise-free limit σn → 0,
and is hence referred to as probabilistic PCA (Tipping and Bishop,

FIGURE 1 | Graphical model representations of the blind source

separation algorithms for which we compute a model evidence

approximation. We follow standard graphical modeling terminology (see
e.g., Bishop, 2007). Open circles represent random variables, which may
also be random functions. Filled circles are parameters. Arrows denote
conditional dependencies. The plates (colored frames) indicate that the
enclosed structure is repeated as often as the corresponding letter
indicates. Enclosure in multiple plates indicates a product of repetitions. For
example, in panel (A) there are I × T random variables S which comprise
the source matrix. (A) Instantaneous, undelayed mixtures such as pPCA
(where λ = 0) and ICA. J × T signals X are computed by mixing I × T
sources S with J × I weights W . σw is the standard deviation of the
zero-mean Gaussian prior on the weights. σn is the noise standard
deviation. μ and σ are the parameters of the Gaussian part of the prior on
the sources, λ measures the deviation from Gaussianity. (B). Convolutive,
delayed mixtures, like the anechoic mixture of Omlor and Giese (2011) with
additional temporal smoothness constraints. I source functions S(t) are
drawn from a Gaussian process GP(μ(t), k(t, t ′)) with mean function μ(t)
and kernel k(t, t ′). These sources are shifted in time by J × I many delays
(one per trial and source) drawn from an exponential distribution with
parameter γ and mixed with J × I weights W which are drawn from a
zero-mean Gaussian distribution with standard deviation σw , to yield J
signals X (t). For details, see text.

1999). Similarly, when we put a prior on the weights

Wji ∼ N (
0, σ2

w

)
(7)

and integrate them out, we find that the best I sources S are
the principal eigenvectors of the (T × T) data covariance matrix
1
J XT X (assuming zero mean signals at every time step, i.e., ∀t :∑

j Xjt = 0). We will therefore use both priors for a completely

probabilistic pPCA model1.
A graphical model representation of pPCA is shown in

Figure 1A. Open circles represent random variables, which may

1We will refer to this model interchangeably by pPCA or just PCA in the
following.
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also be random functions. Filled circles are parameters. Arrows
denote conditional dependencies. The plates (colored frames)
indicate that the enclosed structure is repeated as often as the
corresponding letter indicates. Enclosure in multiple plates indi-
cates a product of repetitions. Thus, in a pPCA model, I × T
sources are a-priori drawn independently of each other (μ and σ

are parameters, not random variables), and source values have no
dependencies across time. Likewise, weights have no dependen-
cies across sources or signals. In contrast, data points depend on
both weights and sources, as indicated by the arrows converging
on X from S and W.

Given the generative model (Equation 4) and the prior spec-
ification (Equation 6 and Equation 7), we can now write down
the likelihood and prior terms which we need for the evaluation
of the model evidence (Equation 3). To this end, we identify the
number of sources I with the model index M, and (cf. Equation 3)

D = X (8)

�M = (W, S) (9)

� = (μ, σ, σw, σn) (10)

p (D|�M,�, M) =
exp

(
− 1

2σ2
n
‖X − WS‖F

)
√

2πσ2
n

JT
(11)

p(�M |�, M) =
exp

(
− 1

2σ2 ‖Sit − μ · 1IT‖F

)
√

2πσ2IT

×
exp

(
− 1

2σ2
w
‖W‖F

)
√

2πσ2
w

JI
(12)

where 1IT is an (I × T) matrix with every element being 1, and
‖A‖F is the Frobenius norm of matrix A.

2.1.2. Independent Component Analysis (ICA)
The term ICA refers to a variety of BSS methods which try
decompose signals into sources with two main goals:

1. The sources are as statistically independent as possible accord-
ing to some suitably chosen measure, and

2. the sources allow for a good reconstruction of the signals.

Infomax ICA (Bell and Sejnowski, 1995) tries to achieve these
goals by maximizing the mutual information (Cover and Thomas,
1991) between sources and signals, which clearly promotes the
second goal. The first one is promoted if the BSS system con-
tains an information bottleneck, e.g., fewer sources than signals.
In that case, maximizing mutual information amounts to maxi-
mizing the total source entropy, which is achieved if the sources
are independent.

The FastICA algorithm (Hyvarinen, 1999) aims directly at
minimizing the mutual information between the sources, thereby
promoting goal one. Goal 2 is achieved by constraining the (lin-
ear) transformation from signals to the sources to be invertible,
or at least almost invertible in the noisy or lossy case, such that
the signals can be reconstructed using the generative model above

(Equation 4). Mutual information is measured via negentropy,
which is the negative difference between the entropy of a source
and the entropy of a variance-matched Gaussian variable, i.e., it is
a measure of non-Gaussianity. Maximizing negentropy then min-
imizes mutual information. To measure negentropy, the authors
of Hyvarinen (1999) used the “contrast function” approach devel-
oped in Hyvärinen (1998). Contrast functions provide constraints
on expectations of probability distributions, in addition to the
mean and variance constraints of Gaussians. Consequently, the
maximum entropy distributions obeying these constraints have
the contrast function(s) as sufficient statistics, with an associated
natural parameter, which controls the deviation of the result-
ing distribution from a Gaussian. For a detailed derivation see
Hyvärinen (1998). This motivates the following source prior for
probabilistic ICA models: let G(.) be the contrast function, then

p (Sit) = 1

Z(μ, σ, λ)
exp

(
− 1

2σ2
(Sit − μ)2 + λG(Sit − μ)

)
(13)

where λ is the natural parameter associated with G(.). The nor-
malization constant Z(μ, σ,λ) can be evaluated by numerical
integration, since the prior is a density over a one-dimensional
random variable. Similar to pPCA, we use a Gaussian prior on the
weights. The graphical model representation of ICA is the same as
for pPCA (see Figure 1A), since there is no a-priori dependency
between sources or weights across time.

We can now identify the number of sources I with the model
index M, and furthermore (cf. Equation 3)

D = X (14)

�M = (W, S) (15)

� = (μ, σ, σw, σn,λ) (16)

p(D|�M,�, M) =
exp

(
− 1

2σ2
n
‖X − WS‖F

)
√

2πσ2
n

JT
(17)

p(�M |�, M) =
∏
i,t

p(Sit)

×
exp

(
− 1

2σ2
w
‖W‖F

)
√

2πσ2
w

JI
(18)

2.1.3. Anechoic mixture models (AMM) and smooth instantaneous
mixtures (SIM)

AMMs may be seen as an extension of the above BSS approaches
to deal with time-shifted sources (Omlor and Giese, 2007a). Such
time shifts are obviously useful in motor control, where coordi-
nated movement patterns, such as gaits, might be characterized
by opposite joints moving in a similar manner but time-shifted
against each other (e.g., the legs during walking); the well-known
time-varying synergy model (d’Avella et al., 2006) is a kind of
AMM. The generative models of AMMs are linear with additive
Gaussian noise (similar to Equation 4), but the sources Si(t) are
shifted by delays τji, which are the elements of a (J × I) matrix
τ. We draw these delays from an exponential prior with mean γ,
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which promotes delays that differ sparsely from zero.

Xjt =
∑

i

WjiSi(t − τji) + ηjt

=
∑

i

X̂ + ηjt (19)

ηjt ∼ N (0, σn) (20)

p(τji) = γ exp

(
−τij

γ

)
(21)

where we define the matrix of the reconstructed signals X̂ as X̂ji =∑
i WjiSi(t − τji) . Moreover, we impose soft temporal regularity

constraints on the sources. To this end, we draw the sources from
a Gaussian process (GP) (Rasmussen and Williams, 2006) with
mean function μ(t) and covariance (or kernel) function k(t, t′).
A GP is a prior over functions S(t) where the joint distribution of
any finite number of function values at times t1, . . . , tN follows a
multivariate Gaussian distribution i.e.,

�S = (S(t1), . . . , S(tN)) (22)

�μ = (μ(t1), . . . , μ(tN)) (23)

Kmn = k(tm, tn) (24)

�S ∼ N (�μ, K) (25)

Thus, the choice of kernel function determines how much the
function values at different points tend to co-vary a priori.
Throughout this paper, we will use kernel functions of the form

k(t, t′) ∝ sinc(2f0|t − t′|) = sin(2πf0|t − t′|)
2πf0|t − t′| (26)

which is also called wave kernel (Genton, 2001) in the machine
learning literature. This choice is motivated by the observation
that the inverse Fourier transform of an ideal low-pass filter with
cutoff-frequency f0 is proportional to this kernel. Thus, func-
tions drawn from a GP with this kernel will vary on timescales
comparable to f0, see Figure 2 for examples. Note, however, that
the regularization provided by the kernel is “soft”: when learn-
ing sources from small datasets, they will have the smoothness
properties given by the kernel. For large datasets, the kernel
regularization may be overridden by the data.

With this prior, the matrix of reconstructed signals X̂ and using
as model index the tuples M = (I, f0) we find

D = X (27)

�M = (W, τ, S1(t), . . . , SI(t)) (28)

� = (
μ(t), kf0(t, t′), σn, σw

)
(29)

p(D|�M,�, M) =
exp

(
− 1

2σ2
n
‖X − X̂‖F

)
√

2πσ2
n

JT
(30)

p(�M |�, M) = exp(− 1
2 SiK−1ST

i )
√

2π
T√|K|

∏
j,i

γ exp

(
−τji

γ

)

FIGURE 2 | Examples of kernel functions (left) and sources (right)

drawn from a Gaussian process prior with the corresponding kernel.

Throughout this paper, we use shift-invariant kernels of the form
k(t, t ′) ∝ sinc(2f0|t − t ′|). Top row: Kernel function for f0 = 1Hz (left) and
source function drawn from a Gaussian process with that kernel. The
source varies rather smoothly on a timescale comparable to f0. Bottom

row: Kernel function and source for f0 = 3Hz.

×
exp

(
− 1

2σ2
w
‖W‖F

)
√

2πσ2
w

JI
(31)

where Si is the i-th row of the undelayed source matrix, i.e., the
matrix of the source functions sampled at times t = 1, . . . , T. A
graphical model representation of AMM is shown in Figure 1B.

As a special case of the AMM model above, we consider the
case ∀i, j : τji = 0, i.e., a mixture without delays, but GP-induced
temporal regularization. In the following, we refer to this as the
smooth instantaneous mixture, or SIM.

2.2. LAPLACE APPROXIMATION
We now turn to the evaluation of the model evidence, Equation
3. The difficult part, as usual in Bayesian approaches, is the inte-
gral over the model parameters � (we drop the index M in the
following for notational simplicity, since we evaluate the model
evidence for each M separately). Instead of an exact solution,
we therefore resort to a Laplace approximation (Laplace, 1774;
Bishop, 2007). To use this approach, concatenate the � into a vec-
tor and then construct a saddle-point approximation (Reif, 1995)
of intractable integrals of the form

∫
d� exp

(−f (�)
)

(32)

assuming that f (�) has a single, sharply peaked minimum at
some �∗ = argmin�f (�) and is twice continuously differen-
tiable. In this case, only exponents close to the minimal exponent
f (�∗) will make noticeable contributions to the integral. Hence,
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we can approximate f (�) locally around �∗ by a Taylor expansion

f (�) ≈ f (�∗) + ∇�∗ f (�)T(� − �∗) + 1

2
(� − �∗)T H (� − �∗)

(33)
where

Huv = ∂2f (�)

∂θu∂θv

∣∣∣∣
�∗

is the Hessian matrix of the 2nd derivatives evaluated at �∗.
Since �∗ is the location of the minimum of f (�), it follows that
∇�∗ f (�)T = 0 and H is positive (semi-)definite. Thus

f (�) ≈ f (�∗) + 1

2
(� − �∗)T H (� − �∗) (34)

and we can approximate the integral as

∫
d� exp

(−f (�)
)

≈
∫

d� exp

(
−f (�∗) − 1

2
(� − �∗)T H (� − �∗)

)

= exp
(−f (�∗)

) ∫
d� exp

(
−1

2
(� − �∗)T H (� − �∗)

)

= exp
(−f (�∗)

) (2π)
F
2√|H|

where F = dim(�) is the dimensionality of �. For the derivation
of our model comparison criterion, we will need the logarithm of
this integral:

log

(∫
d� exp

(−f (�)
)) ≈ −f (�∗) + F

2
log(2π) − 1

2
log (|H|) .

(35)
In summary, the Laplace approximation replaces the intractable
integral with differentiation, which is always possible for the
models we consider.

To approximate the model evidence (Equation 3) in this
way, let

�∗ = argmin�

[− log(p(D|�,�, M)) − log(p(�|�, M))
]
(36)

in other words, �∗ are the parameters which maximize the like-
lihood subject to the regularization provided by the parameter
prior. Furthermore, denote

Huv = − ∂2 log(p(D|�,�, M))

∂�u�v

∣∣∣∣
�∗

− ∂2 log(p(�|�, M))

∂�u�v

∣∣∣∣
�∗

(37)

and thus

p(D|�, M) ≈ log(p(D|�∗,�, M))︸ ︷︷ ︸
log-likelihood

+ log(p(�∗|�, M))︸ ︷︷ ︸
log-prior

+ dim(�)

2
log(2π) − 1

2
log(|H|)︸ ︷︷ ︸

log-posterior-volume

(38)

which we will refer to as the LAP criterion for model compar-
ison: the larger LAP, the better the model. It comprises three
parts, which can be interpreted: the log-likelihood measures the
goodness of fit, similar to explained variance or VAF. The second
term is the logarithm of the prior, which corresponds to a regu-
larization term for dealing with under-constrained solutions for
� when the datset is small. Finally, the third part measures the
volume of the parameter posterior, since H is the posterior preci-
sion matrix (inverse covariance) of the parameters in the vicinity
of �∗, i.e., it indicates how well the data constrain the parame-
ters (large |H| means small posterior volume, which means � is
well-constrained).

We will compare the LAP criterion to two standard model
complexity estimators below (see section 3): BIC and AIC. BIC
is given by

BIC = −2

(
log(p(D|�∗,�, M)) − 1

2
dim(�) log(N)

)
(39)

where N is the number of data-points. The best model is found
by minimizing BIC w.r.t. M. BIC can be obtained from LAP in
the limit N → ∞, by dropping all terms from LAP which do not
grow with N and multiplying by −2. Assuming that the model
has no latent variables (whose number typically grows with N),
the terms to be dropped from Equation 38 are the log-prior, the
first term of the posterior volume, and the second term of the
Hessian (Equation 37). For i.i.d. observations, the determinant of

the first term of the Hesssian will typically grow like Ncdim(�)

where c is some constant independent of N. Hence, the BIC fol-
lows. While this reasoning is somewhat approximate (a rigorous
derivation can be found in Schwarz (1978)), it highlights that we
might expect LAP to become more similar to BIC as the dataset
increases.

AIC is originally derived from information-theoretic argu-
ments (Akaike, 1987): a good model loses only a small amount
of information when approximating (unknown) reality. When
information is measured by Kullback-Leibler divergence (Cover
and Thomas, 1991), AIC follows. Alternatively, it also obtained
by choosing a model complexity prior which depends on N and
dim(�) (Burnham and Anderson, 2004) and is given by

AIC = −2
(
log(p(D|�∗,�, M)) − dim(�)

)
. (40)

Like BIC, a good model has a low AIC score.

2.3. ASSESSMENT OF CRITERION PERFORMANCE
To validate our criterion we assessed its performance on syn-
thesized data sets with well-known statistical properties and on
actual kinematic data collected from human participants dur-
ing a free walking task. We also compared the results with those
provided by AIC and BIC. Before applying the model selection
criteria we factorized each available data set according to the
mixture models Equation 4 and Equation 19. The identification of
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the parameters � was carried out in two phases: first, we applied
singular value decomposition to identify the principal compo-
nents (for PCA), or fastICA (Hyvarinen, 1999) or the anechoic
demixing algorithm mentioned above (Omlor and Giese, 2011) to
yield weights and sources. Second, we used these solutions to ini-
tialize an optimization of the corresponding likelihood function,
to determine the optimal parameters �∗ and hyperparameters
� needed for the Laplace approximation. The optimization in
the second step was carried out using the L-BFGS-B routine in
the SciPy package (Jones et al., 2001) for �∗, � was then re-
estimated for fixed �∗. This second optimization was necessary
for two reasons: the statistical reformulations of pPCA and ICA
will yield solutions which are very similar, but not identical to
the original algorithms, and the AMM method from Omlor and
Giese (2011) can not handle temporal smoothness priors. The
number of components I identified ranged, for all algorithms,
from 1 to 8.

2.3.1. Ground-truth data generation
We simulated kinematic-like data (mimicking, for instance, joint-
angle trajectories) based on the generative models Equation 4
and Equation 19 that is linear combinations of I primitives that
could be synchronous (SIM) or shifted in time (AMM). For the
generation of each primitive Si(t) we drew 100 random samples
from a normal distribution (MATLAB (2010) function “randn”)
and then we low-pass filtered them with a 6th-order Butterworth
filter [MATLAB (2010) functions “butter” and “filtfilt”]. Two
cut-off frequencies were used for filtering, respectively, 5 and
10 Hz, to simulate data with two different frequency spectra.
Sampling frequency of the data was assumed to be 100 Hz. This
procedure allowed to generate band-limited sources mimicking
actual kinematic or kinetic trajectories of time duration T = 1 s.
We generated artificial mixture data by combining a number of
sources ranging from 1 to 4. Combination coefficients of the
mixing matrix W were generated from a uniform continuous
distribution in the interval [−10,10]. Temporal delays τji were
drawn, when needed, from an exponential distribution of mean
20. Sets of noisy data were generated by corrupting noiseless data
generated as described above with signal dependent noise. Noise
was drawn from a Gaussian distribution of variance σ = α |xi(t)|,
where α is the slope of the relationship between the standard
deviation and the noiseless data values xi(t) (Sutton and Sykes,
1967; Schmidt et al., 1979; van Beers et al., 2004). The slope α was
computed though an iterative procedure. Starting from α = 0, its
value was iteratively increased by a predefined increment until a
desired noise-level 1 − R2 was reached and stayed constant for
at least 10 consecutive computations of 1 − R2 given the same
value of α. We define R2 as follows: as the artificial noiseless data
sets and their corresponding noisy versions are multivariate time-
series, a measure of similarity (typically a ratio of two variances)
must be defined using a multivariate measure of data variabil-
ity. We used the “total variation” (Mardia et al., 1979), defined as
the trace of the covariance of the signals, to define a multivariate
measure as follows:

R2 = 1 −
∥∥Xnoiseless − Xnoisy

∥∥2

∥∥Xnoiseless − Xnoiseless

∥∥2
(41)

where Xnoiseless is the matrix of the noiseless data set, Xnoisy the
noisy data, and where Xnoiseless is a matrix with the mean val-
ues of the noiseless data over trials. For each noiseless data set,
two datasets were generated with 1 − R2 levels equal to 0.15 and
0.3, corresponding to approximate signal-to-noise ratios of 22 dB
and 15 dB, respectively. We thus generated 2 models (AMM/SIM)
x 2 cut-off frequencies (5 Hz/10 Hz) × 4 number of sources x 3
levels of noise = 48 different data sets. Each of those datasets
contained J ∈ {5; 10; 25} (data) trials. A “trial” (one row of the
matrix X in Equation 4) is a one-dimensional time-series sam-
pled at T points in time. For reliable averages, we drew 20 data
sets for each number of trials.

2.3.2. Actual kinematic data
We applied the model selection criteria to select also the model of
a second data set consisting of movement trajectories of human
actors walking neutrally, or with different emotional styles (happy
and sad). This data was originally recorded for the study presented
in Roether et al. (2008). The movements were recorded using a
Vicon (Oxford, UK) optoelectronic movement recording system
with 10 infrared cameras, which recorded the three-dimensional
positions of spherical reflective markers (2.5 cm diameter) with
spatial error below 1.5 mm. The 41 markers were attached with
double-sided adhesive tape to tight clothing, worn by the partic-
ipants. Marker placement was defined by the Vicon’s PlugInGait
marker set. Commercial Vicon software was used to reconstruct
and label the markers, and to interpolate short missing parts of
the trajectories. Sampling rate was set at 120 Hz. We recorded
trajectories from six actors, repeating each walking style three
times per actor. A hierarchical kinematic body model (skeleton)
with 17 joints was fitted to the marker positions, and joint angles
were computed. Rotations between adjacent body segments were
described as Euler angles, defining flexion, abduction and rota-
tion about the connecting joints. The data for the BSS methods
included only the flexion angles of the lower body joints, specif-
ically right and left pelvis, hips, knees and ankles, since the other
angles had relatively high noise levels. From each trajectory only
one gait cycle was extracted, which was time normalized. This
resulted in a data set with 432 samples with a length of 100
time points each. It was already shown previously (Omlor and
Giese, 2007a,b) that an anechoic mixture model is more effi-
cient than synchronous models for the representation of such
kinematic data. To test the capability of the new LAP criterion
to confirm such an observation we applied temporal shift to
each trajectory of the data set. Each delay corresponding to a
specific trajectory was drawn from a continuous uniform statis-
tical distribution in the interval [−20,20], the sign of the delay
determining the shift direction (forwards or backwards), signals
were wrapped around at the boundaries of the 100 time-point
interval.

3. RESULTS
We first present the evaluation of the three model selection crite-
ria, LAP, BIC and AIC on the ground truth data described above
in section 2.3.1. The evaluation is done with respect to three ques-
tions: how well can the generator type be detected (AMM or
SIM), how accurate is the number of sources I estimation, and
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whether the amount of temporal smoothness [i.e., f0 in Equation
26] can be determined. Second, we analyze the human gait data.

3.1. GROUND TRUTH EVALUATION
3.1.1. Model type detection
We measure the accuracy with which the generating model can be
detected by the classification rate, averaged across generating and
estimated number of sources, the estimated f0 and the 20 data sets
per condition. It is given by

classification rate = number of correct detections

total number of trials
(42)

The results are summarized inTable 1 for each number of trials J.
LAP clearly outperforms BIC and AIC, particularly for small J. To
understand where this difference comes from, Figure 3 shows a
detailed analysis of the results for J = 10 trials. The anechoic gen-
erator is correctly detected by both LAP and BIC in most cases,
whereas AIC often mistakes it for a pPCA model. The SIM gen-
erator, on the other hand, is only detected by LAP, both BIC and
AIC mistake it for a pPCA model. Hence, LAP achieves very high
classification rates, BIC is wrong about half the time, and AIC is
even worse. This is due to the terms in BIC and AIC which pun-
ish complex models (second terms in Equation 39 and Equation
40, respectively): they only depend on the number of degrees of
freedom and the number of data-points, but do not measure the
effects of any “soft” constraints. Since such soft constraints will
have a reducing effect on the likelihood, BIC and AIC will prefer
models without such soft constraints over those with constraints.
Consequently, BIC and AIC select pPCA over SIM. Note that in
the limit of f0 → ∞, the kernel of the SIM model will give rise to
a diagonal covariance matrix K, and thus uncorrelated sources,
whereas the K for finite f0 will impose a correlational constraint.
Thus, the SIM model will turn into a pPCA model in this limit.

In contrast, the LAP criterion measures the effect of the source
correlations via the log-prior and log-posterior-volume terms.
If the posterior is concentrated in a region of parameter space
where the prior is high, the effects of the reduced likelihood can
be counterbalanced. Since we evaluated the LAP criterion for
f0 ∈ {5 Hz,10 Hz}, one of the tested SIM models will match the
generator and have a correspondingly high LAP score.

3.1.2. Estimating the number of sources
Next, we looked at how well the criteria are suited for estimat-
ing the number of sources. Table 2 shows the average difference
between estimated and generating number of sources, averaged
across noise levels, number of generating sources and f0s. An
empty cell indicates that this model would have been picked by
the above model type detection only very infrequently.

Particularly for a small number of trials J, LAP is closer to the
correct number of sources than BIC or AIC. For larger number
of trials, the results between BIC and LAP become more simi-
lar, which is to be expected, even though BIC does not detect the
correct model type. Moreover, the average number of sources esti-
mated by LAP is always within one standard deviation of 0, and
these standard deviations are mostly smaller than those of BIC
and AIC.

Table 1 | Model type classification rates of the three tested criteria, for

number of trials between 5 (top) and 25 (bottom).

1 − R2 LAP BIC AIC

NUMBER OF TRIALS J : 5

0.00 �0.899 ± 0.017 0.003 ± 0.003 0.003 ± 0.003

0.15 �0.944 ± 0.013 0.003 ± 0.003 0.003 ± 0.003

0.30 �0.908 ± 0.016 0.003 ± 0.003 0.003 ± 0.003

NUMBER OF TRIALS J : 10

0.00 �0.947 ± 0.012 0.463 ± 0.028 0.214 ± 0.023

0.15 �0.981 ± 0.008 0.494 ± 0.028 0.189 ± 0.022

0.30 �0.972 ± 0.009 0.484 ± 0.028 0.342 ± 0.026

NUMBER OF TRIALS J : 25

0.00 �0.994 ± 0.004 0.500 ± 0.028 0.481 ± 0.028

0.15 �0.978 ± 0.008 0.484 ± 0.028 0.388 ± 0.027

0.30 �0.947 ± 0.012 0.469 ± 0.028 0.314 ± 0.026

1 − R2 is the noise level from Equation 41.

� indicates the best criterion for each row. LAP consistently outperforms BIC

and AIC, mostly because the latter two are unable to distinguish between

a smooth instantaneous mixture and a pPCA model (see also Figure 3).

Furthermore, for 5 trials BIC and AIC tend mistake an anechoic mixture for an

ICA model, leading to model type classification rates which are virtually zero.

The dependency of the estimated number of sources on the
noise level is depicted in Figure 4 for J = 10. Also unsurpris-
ingly, the estimated number of sources decreases with increasing
noise level, since noisy data contain less information about the
generating process.

3.1.3. Temporal smoothness constraints
In section 3.1.1, we showed that LAP is the only criterion which
can detect the presence of temporal smoothness constraints. Now
we investigate whether it can also identify the amount of smooth-
ness, i.e., f0 in Equation 26. To this end, we computed the LAP
score for 16 smoothness settings: {1Hz, 2Hz, . . . , 15Hz}, and also
without smoothness constraint (i.e., effectively a pPCA model).
We select the optimal smoothness setting for each dataset, and
compute the average deviation to the generator smoothness
(either 5 or 10 Hz) across all numbers of generating and esti-
mated sources. The results are summarized in Table 3 for all noise
levels, Figure 5 shows the detailed distributions for J = 10 tri-
als. Except for the noiseless anechoic case, the correct temporal
smoothness is found with average deviations near zero and stan-
dard deviations < 1.5Hz. We have as of yet no explanation for the
overestimation in the noiseless anechoic case, but speculate that it
is due to some jitter in the estimated delays of the anechoic model,
which can be “explained away” by allowing for high-frequency
components in the sources. As soon as noise is present in the data,
this effect disappears.

3.2. HUMAN GAIT ANALYSIS
Having confirmed the validity of the LAP criterion on the syn-
thetic ground truth, we now turn to real data. Since we are
interested in smoothness properties as well as model types, we
carried out a comparison between PCA and ICA; and SIM and
AMM models with different f0 ∈ {1Hz; . . . ; 12Hz}. The results
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FIGURE 3 | Determining if the model type is a smooth instantaneous

mixture (SIM) or an anechoic delayed mixture (AMM) from 10 trials,

after marginalizing the estimated number of sources. Top: Anechoic
ground truth. BIC and LAP perform comparably well, AIC often mistakes an
AMM for a pPCA model. Bottom: Ground truth from smooth instantaneous
mixture. Only the Laplace approximation criterion (LAP) correctly detects
the SIM model in the majority of cases, BIC and AIC confuse SIM with
pPCA due to their inability of handling soft constraints. For details, see text.

are summarized in Figure 6, top, where the simple “Anechoic”
model (dark blue) is an AMM without smoothness constraints.
As might be expected, AMMs are the best models (within our
tested models) for this kind of data. Furthermore, a correctly
chosen f0 increases the LAP score significantly, i.e., the soft con-
straint provided by the smoothing kernel is an important feature
of these kinematic data, see Figure 6, bottom. The best AMM has
3 sources, whereas the best SIM model needs 5, and has a lower
score (see Figure 6, bottom).

LAP is an approximation of the marginal log-probability of the
data [cf. Equation 3]. The best SIM model and the best AMM
differ by a LAP score of ≈ 46, which translates into a probability

ratio of
P(AMM)

P(SIM)
> 1019. The best PCA model (5 sources) has a

LAP score which is lower than the 7 Hz AMM score by ≈ 600.

Table 2 | Estimating the number of sources, marginalized across all

noise levels and cutoff frequencies f0.

Gen. Anal. LAP BIC AIC

NUMBER OF TRIALS J :5

AMM AMM −0.37 ± 0.91

AMM ICA 1.17 ± 1.58 1.17 ± 1.58

AMM PCA 2.15 ± 1.34 2.15 ± 1.34

AMM SIM 0.94 ± 1.30

SIM ICA 0.93 ± 1.55 0.93 ± 1.55

SIM PCA 1.88 ± 1.26 1.88 ± 1.26

SIM SIM −0.44 ± 0.76

NUMBER OF TRIALS J :10

AMM AMM �0.19 ± 1.11 −0.60 ± 1.13 1.06 ± 1.44

AMM PCA 3.44 ± 1.60

SIM PCA −0.48 ± 0.87 �0.21 ± 0.86

SIM SIM −0.04 ± 0.52 0.21 ± 0.65

NUMBER OF TRIALS J :25

AMM AMM �0.32 ± 1.34 −0.99 ± 1.37 2.11 ± 1.72

AMM PCA 5.31 ± 1.36

SIM PCA �−0.18 ± 0.91 5.26 ± 1.25

SIM SIM 0.69 ± 1.25

Shown is the difference between the best number of sources determined with

a given criterion (LAP, BIC, or AIC) and the number of sources in the generator.

Gen. is the generating model, either anechoic (AMM) or smooth instantaneous

(SIM) mixture. Anal. is the analysis algorithm. An empty cell indicates that a

model comparison criterion (LAP, BIC, AIC) would have picked the corresponding

analysis algorithm with a chance of less than 10% (cf. Figure 3 and Table 1). For

rows with more than one entry, � indicates best criterion.

Note that individual datasets consisted of J = 8 trials (one per
joint angle), therefore models with more than 8 sources are a
priori too complex. This fact is also detected correctly by LAP,
which assigns a roughly linearly decreasing score (exponentially
decreasing in marginal probability) to models with ≥ 8 sources.

4. DISCUSSION
In this study, we attempted to develop a more objective proba-
bilistic criterion for motor primitive model selection. Our crite-
rion turned out to be more reliable than other already existing
classical criteria (cf. sections 1.1 and 3) in selecting the genera-
tive model underlying a given data set, as well as in determining
the corresponding dimensionality. The criterion can moreover
provide accurate information about soft constraints, here the
smoothness of the temporal evolution of the signals.

We tested LAP performance on synthesized, kinematic-like
data and on actual motion capture trajectories. However, motor
primitives have also been identified at the muscle level (Bizzi et al.,
2008), where usually the signals are rectified after collection. As
we tested LAP only on data with unconstrained signs, its applica-
bility to positive-only data, such as EMG recordings, is a subject
for further investigations.

The application of the criterion to emotional gait trajectories
suggested the anechoic model as the most suitable description of
the data. This result is in agreement with previous findings from
our lab (Omlor and Giese, 2007b), where it was demonstrated
that the anechoic model can represent emotional gait data more
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FIGURE 4 | Estimating the number of sources in the ground truth from

J = 10 trials. �I =estimated-generating number of sources. 1 − R2: noise
level from Equation 41. Error bars are ± one standard deviation. Symbol
shapes stand for analysis algorithms, colors indicate the selection criterion.
Top panel: Anechoic generator. If an AMM is used for analysis, BIC and
LAP perform comparably well within the error bars, AIC tends to
overestimate. For incorrect analysis models (SIM/ICA/PCA), all criteria
overestimate the number of sources, since the extra variability provided by
the time shifts needs to be explained via additional sources in
instantaneous mixture models. Note, however, that a model type
determination step based on BIC or LAP would have ruled out an
instantaneous mixture with high probability (cf. Figure 3 and Table 2).
Bottom panel: For the instantaneous mixture (bottom panel) all three
criteria give good results when using PCA or SIM models.

efficiently (in terms of data compression) than other classical syn-
chronous models. Also the best number of primitives determined
by LAP is in line with Omlor and Giese (2007b), where three
components were found capable to explain about 97% of the
total data variation. Interestingly, the criterion suggested a tem-
poral smoothness regularization with f0 = 7 Hz. Such a value
may at first seem to be in contradiction with the step frequency
of normal walking behavior that tends to be around 2 Hz (Pachi
and Ji, 2005). The higher frequency value found by LAP can
however be justified by multiple reasons. First, our data com-
prised also happy walks, which are known to be characterized
by higher movement energy (Omlor and Giese, 2007b; Roether
et al., 2009) and higher average movement velocity when com-
pared to neutral or sad walks (Omlor and Giese, 2007a; Roether
et al., 2009). Therefore, the average frequency power spectrum of
the walking trajectories shows indeed considerable power within
the band ranging from 0 to 10 Hz, with a peak at 5 Hz. In addi-
tion, in Figure 6 the maximum LAP score occurs at f0 = 7 Hz.
However, taking the error bars into account, the LAP score asso-
ciated with the optimal frequency is not statistically different
from that associated with any score in the range [3 Hz, 10 Hz], in
agreement with the power spectrum. Another factor contribut-
ing to f0 = 7 Hz might be the tendency of LAP to overestimate

Table 3 | Mean temporal smoothness estimation accuracies and

standard deviations for LAP criterion, marginalized across number of

source of both generator and analysis model.

1 − R2

Gen. 0.00 0.15 0.30

NUMBER OF TRIALS J :5

SIM 0.526 ± 0.584 −0.171 ± 0.605 −0.526 ± 0.803

AMM 2.224 ± 1.793 0.137 ± 1.469 −0.553 ± 0.956

NUMBER OF TRIALS J :10

SIM 0.694 ± 0.487 0.019 ± 0.518 −0.325 ± 0.638

AMM 1.762 ± 1.656 0.275 ± 1.475 −0.346 ± 1.441

NUMBER OF TRIALS J :25

In 0.806 ± 0.494 0.275 ± 0.536 0.006 ± 0.553

An 2.150 ± 1.848 0.562 ± 1.288 0.106 ± 0.795

Estimation accuracy is given by best estimated f0 (see Equation 26) as deter-

mined by LAP minus actual cutoff frequency (either 5 or 10 Hz). Gen. is the

generative model: anechoic (AMM) or smooth instantaneous mixture (SIM).

1 − R2 is the noise level (Equation 41). Except for the zero-noise anechoic gen-

erator, f0 can be determined to within 1 Hz of its true value. For details, see

text.

the cutoff frequency slightly for nearly noise-free datasets,
see Figure 5.

Additional and more advanced models of motor primitives,
corresponding to a multivariate version of the anechoic mixture
model considered in this study, have been developed (d’Avella
et al., 2003, 2006) to describe the modular organization associ-
ated with EMG data sets. As we have not computed the LAP for
these models, they are not among the possible model selection
options yet. Future work will therefore aim to formulate the pri-
ors and generative models which would allow for the application
of LAP to EMG data.

An interesting feature of LAP is its capability to discriminate
between instantaneous vs. anechoic mixtures. The importance of
introducing temporal delays in the model of a motor behavior has
revealed to be crucial in some cases such as, for instance, in the
modeling of emotional movements or facial expressions (Roether
et al., 2008; Giese et al., 2012). LAP is to our knowledge the first
model selection criterion explicitly designed for this.

Another remarkable feature of LAP is its capability, thanks
to the addition a smoothness prior, to identify the amount of
smoothness in the data, in other words to select the frequency f0
in Equation 26 based on the available data. While a Fourier anal-
ysis would also reveal where the power spectrum drops off, LAP
has the advantage of providing a principled, quantitative trade-off
between smoothness and goodness-of-fit, which allows for a more
objective selection of f0. However, computing the power spectrum
could be a first step to determine the range of f0s across which to
search for the optimum.

Moreover, incorporating smoothness priors in time and/or
space might be a viable extension of LAP to make it suit-
able to distinguish between a low-dimensional generative model
based on time-invariant primitives vs. a model based on
space-invariant primitives. Muscle synergies, for instance, have
indeed been presented in the literature in those terms. Among
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FIGURE 5 | Estimating the best temporal smoothness regularization

cutoff frequency f0 (Equation 26) for J = 10 trials. Results obtained with
LAP criterion. This estimation can not be done with AIC or BIC: temporal
smoothness, while it reduces the effective degrees of freedom (DF),
cannot be expressed in BIC or AIC, because these criteria need an integer
number for the DF, which would not change with a continuous regularization
like smoothness. We tested 16 smoothness settings: {1Hz, 2Hz, . . . , 15Hz}
and no smoothness constraint, indicated by “∞” in the plots (this is
equivalent to a pPCA model). Left column: 5 Hz ground truth, right column:
10 Hz ground truth. Estimating the smoothness works well for both
anechoic (Top) and instantaneous (Bottom) mixtures, except for the
zero-noise anechoic case, where f0 is overestimated by ≈ 2 Hz on average.

them, “synchronous” synergies (Cheung et al., 2005; Ting
and Macpherson, 2005; Torres-Oviedo et al., 2006) have been
described as stereotyped co-varying groups of muscles activa-
tions, with the EMG output specified by a temporal profile
determining the timing of each synergy during task accomplish-
ment. This definition of synergies reflects the idea of invariance
across space (namely the space spanned by the muscles) men-
tioned above. “Temporal” synergies (Ivanenko et al., 2004, 2005;

FIGURE 6 | Top: Analysis of emotional gait data from Roether et al. (2008)
with PCA, ICA and Anechoic demixing for different numbers of sources. The
bars represent model evidences computed with Laplace approximation,
relative to the lowest observed model evidence (PCA, 1 source). The
anechoic analyses were carried out either without smoothing (black,
f0 → ∞) or with the optimal f0 = 7 Hz (blue) for the wave kernel (see
Equation 26). Error bars are standard errors, computed across trials. The
best model (highest evidence) is the anechoic mixture with three sources
and f0 = 7 Hz, followed by the SIM model with f0 = 7 Hz. PCA and ICA
are significantly worse for any number of sources. Bottom: Detailed cutoff
frequency analysis of the AMM model (left) and the SIM model (right), at
their respective best number of sources I. The LAP score (relative to the
SIM model with I = 1 set to 50) for both models peaks at f0 = 7Hz.
However, the best AMM model’s approximate posterior probability is larger
than the best SIM posterior by a factor of ≈ 1019. For details, see text.

Chiovetto et al., 2010, 2012), are instead defined as temporal
activation profiles that can be simply linearly combined together
to reconstruct the actual activity of each muscle. Such a defini-
tion of synergies is therefore incorporating a notion of invariance
across time. Also more “hybrid” definition of primitives have
been given. “Time-varying” synergies (d’Avella et al., 2003, 2006),
for instance, are defined as spatio-temporal pattern of muscle
activations, with corresponding EMG output determined by the
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scaling coefficients and time delays associated with each syn-
ergy. Chiovetto et al. (2013) already showed heuristically what
movement features these definitions of synergies are describing.
Although this knowledge can surely help to decide, dependent on
the kind of analysis that one needs to carry out, which kind of syn-
ergies to extract from a given EMG data set, it however, does not
provide a systematic criterion for such a decision. An extension of
LAP might help here, too.

To apply LAP to a given source extraction method, it is neces-
sary to (re)formulate this method in the language of generative
probabilistic models. Only when the joint probability of the
data and all latent variables (such as W or S) is available can
Equation 38 be evaluated. Furthermore, since LAP results from
a second-order approximation to the exponent of that joint prob-
ability, LAP will only yield (approximately) correct answers if
such an approximation is valid. While the possibility of refor-
mulating a given method can usually be decided a-priori, the
validity of the second-order approximation typically needs testing
on ground-truth data.

In conclusion, we presented an innovative and objective crite-
rion that can be used to reliably select an adequate factorization
model to explain the variance associated with kinematic/dynamic
data and its corresponding dimensionality. We showed LAP to
perform better than two plug-in estimators, BIC and AIC. It
needs, however, to be extended to be used in the future for
additional types of data, such as EMG data.
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