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Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution
in a dynamical system with translation invariant structure, is a well-studied phenomenon
in neuronal network dynamics, specifically in neural field models. These are population
models to describe the spatio-temporal dynamics of large groups of neurons in terms of
macroscopic variables such as population firing rates. Though neural field models are often
deduced from and equipped with biophysically meaningful properties, a direct mapping to
simulations of individual spiking neuron populations is rarely considered. Neurons have
a distinct identity defined by their action on their postsynaptic targets. In its simplest
form they act either excitatorily or inhibitorily. When the distribution of neuron identities is
assumed to be periodic, pattern formation can be observed, given the coupling strength
is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly
dependent on the characteristics of the neuronal input, i.e., depends on whether neurons
are mean- or fluctuation driven, and different limits in linearizing the full non-linear system
apply in order to assess stability. In particular, if neurons are mean-driven, the linearization
has a very simple form and becomes independent of both the fixed point firing rate and
the variance of the input current, while in the very strongly fluctuation-driven regime
the fixed point rate, as well as the input mean and variance are important parameters
in the determination of the critical weight. We demonstrate that interestingly even in
“intermediate” regimes, when the system is technically fluctuation-driven, the simple
linearization neglecting the variance of the input can yield the better prediction of the
critical coupling strength. We moreover analyze the effects of structural randomness by
rewiring individual synapses or redistributing weights, as well as coarse-graining on the
formation of inhomogeneous activity patterns.

Keywords: pattern formation, spiking neurons, linear model, mean-driven, fluctuation driven, ring networks,

small-world networks

1. INTRODUCTION
Understanding the dynamics of neuronal networks and its depen-
dence on connection topology, weight distribution or input
statistics is essential to understand network function. One very
successful field in uncovering structure-dynamics relationships
are so-called neural field models (see e.g., Beurle, 1956; Wilson
and Cowan, 1972; Amari, 1977; Ermentrout and Cowan, 1979a;
Ben-Yishai et al., 1995; Ermentrout, 1998; Coombes, 2005). In
these models the positions of neurons in space are substituted by
densities and their respective coupling is described by coupling
kernels depending on pairwise spatial distance. Given certain
symmetries such as translation invariance, and homogeneous
input the resulting non-linear dynamics is often reduced to a
low-dimensional system that can be studied analytically. Such sys-
tems can produce various spatio-temporal phenomena, such as

traveling waves, activity bumps and formation of periodic pat-
terns, which can be linked to activity in biological systems, e.g.,
visual hallucinations, feature selectivity, short term memory, or
EEG rhythms (see e.g., Ermentrout, 1998; Coombes, 2005 and
references therein).

However, when thinking of actual neuronal tissue, the symme-
try requirements and continuity assumptions apply on a rather
macroscopic scale, when neuron densities are high and hetero-
geneities are negligible. Moreover, such rate-based models cannot
fully resolve the statistics of synaptic input currents, but it is
well-known that neurons and neuronal populations react quite
strongly to changes in the statistics of incoming currents in
terms of mean, auto- and cross-covariance (see e.g., Mainen and
Sejnowsky, 1996; Silberberg et al., 2004; Fourcaud-Trocmé and
Brunel, 2005; De la Rocha et al., 2007; Boucsein et al., 2009;
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Tchumatchenko and Wolf, 2011). Finally, it is often unclear how
to quantitatively interpret the parameters of abstract field models,
especially when compared to spiking network simulations.

Along these lines, Usher et al. (1995) demonstrated
numerically how periodic pattern-formation takes place in
a two-dimensional toroidal network of excitatory and inhibitory
pulse-coupled integrate-and-fire oscillators. The bifurcation
occurs when the relative surround inhibition reaches a certain
threshold that is determined from the Fourier-transform of the
effective coupling matrix (dispersion relation). In their study,
Usher et al. (1995) moreover observed that the dynamics of the
emerging pattern depends on the average external input current,
with slowly diffusing hexagonally arranged activity bumps for
low input current, over stationary bumps for intermediate input
strength, to coherently moving bumps for strong external input.

In a later study, Bressloff and Coombes (1998, 2000) showed
rigorously how periodic orbits in networks of pulse-coupled
inhibitory and excitatory neurons with Mexican-hat topology
indeed undergo a discrete Turing-Hopf-bifurcation, if the system
is coupled strongly enough.

Roxin et al. (2005) studied a neuronal field model with partic-
ular emphasis on the role of delays. Similar to earlier studies of
neuronal field models, (see e.g., Ben-Yishai et al., 1995; Compte
et al., 2000; Shriki et al., 2003) neurons were distributed along
a ring and coupling was distance-dependent. In particular, the
coupling kernel was of the form J(|x − y|) = J0 + J1cos(x − y),
where x and y are neuron positions in space and J0 and J1 are cou-
pling strength coefficients. Depending on the choice of J0, J1 and
the delay the system can show a plethora of activity states such
as traveling waves, stationary or oscillatory bumps, and also ape-
riodic behavior. However, this choice of interaction between two
neurons is rather qualitative. It is usually symmetric and changes
sign with distance, properties that are not in line with the biology
of individual neurons and synapses.

Thus, to compare the field-model results to simulations of net-
works of excitatory and inhibitory spiking neurons, Roxin et al.
(2005) set up a model where the same number of excitatory and
inhibitory neurons were uniformly distributed across two rings
and were coupled by sinusoidally modulated connection prob-
ability. This set-up resulted in an effectively one-dimensional
model where at each position excitation and inhibition combine
to a net-coupling comparable to the field model, and spatio-
temporal patterns qualitatively matched the field-model predic-
tions. The parameters in the spiking model were chosen with
regard to biophysically plausible values, and the non-linearity of
the current-to-rate transduction in the field model was chosen as
threshold linear in an ad-hoc manner, however a direct quantita-
tive mapping between neuronal network and field model was not
tried.

Here, we investigate the dynamics of identical leaky integrate-
and-fire neurons that are arranged on ring and grid networks
where both inhibitory and excitatory neurons are uniquely
assigned positions in space rather than representing a density.
No two neurons can be at the same position, and this is thus
a step toward spatially embedded networks of spiking neu-
rons instead of neuronal populations with possibly ambiguous
coupling weights. Instead, individual neurons have a distinctive

identity in that they act either excitatorily or inhibitorily on all
their post-synaptic targets (Dale’s principle) and the coupling
between any two neurons is usually not symmetrical. This is
important since neglecting the identity of a neuron can lead to
dramatically different dynamics (Kriener et al., 2008, 2009). If the
system is translation-invariant, a Turing-instability occurs for a
critical synaptic coupling strength Jc, such that there is a bista-
bility between the spatially homogeneous firing rate distribution
and an inhomogeneous periodic spatial pattern, similar to what
was described before (Usher et al., 1995; Bressloff and Coombes,
1998, 2000).

We find that the value of Jc depends strongly on the statistics
of the neuronal input: if neurons are mean-driven, i.e., receive
suprathreshold input, the instability occurs for much smaller cou-
pling strength than when neurons are in the strongly fluctuation-
driven regime, where the mean input is subthreshold and spikes
are evoked by spontaneous suprathreshold fluctuations. The latter
is the key mechanism in explaining asynchronous-irregular firing
in balanced neuronal networks.

In assessing stability of an invariant network state to perturba-
tions the usual modus operandi is to linearize around the fixed
point (see e.g., Ermentrout and Cowan, 1979a,b, 1980; Usher
et al., 1995; Bressloff and Coombes, 1998, 2000; Coombes, 2005),
implying crucially the derivative of the neuronal input-output
function. In the fluctuation-driven regime the input-output func-
tion depends on both the mean and variance of the input current
and thus both respective derivatives are expected to influence the
quantitative prediction of linear fixed point stability (Amit and
Brunel, 1997; Tetzlaff et al., 2012; Helias et al., 2013). Indeed, in
the strongly fluctuation-driven regime, such that the standard-
deviation of the input current is much larger than the average
distance to firing threshold, the correct critical coupling strength
is derived by linearization with respect to both mean and vari-
ance around the fixed point. In the mean-driven regime, on
the other hand, the linearization becomes independent on the
input current variance, and the derivative with respect to the
mean is constant over wide ranges of working points implying
independence on the exact location of the rate fixed point. In
this regime pattern formation typically occurs for considerably
smaller coupling strength than in the fluctuation-driven regime.
Interestingly, if the input current is in an intermediate regime
with both moderate subthreshold input mean, yet considerable
variance the linearization independent of the input variance can
give a better estimate than the one taking it into account. We will
see that usually, the true critical coupling strength will lie inbe-
tween both estimates, with Jc generally closer to the mean-driven
regime prediction.

Moreover, in order to relate our ring model to the earlier find-
ings of pattern formation in the classical Ermentrout-Cowan net-
works (Ermentrout and Cowan, 1979a,b, 1980) we also introduce
a coarse-grained network that maps to a two-dimensional system
which is formally identical to Ermentrout-Cowan networks, but
lacks some of the details of the full, effectively five-dimensional
ring network considered here.

Finally, we study the role of robustness of pattern formation to
randomness: first, structural randomness is caused by the intro-
duction of short-cuts which move the ring topology into the
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so-called small-world regime (Watts and Strogatz, 1998); sec-
ondly, we also discuss the effect of randomness in the weight
distribution introduced by lifting the constraint that neurons are
either fully excitatory in their action or fully inhibitory (Dale’s
principle).

2. MATERIALS AND METHODS
2.1. NEURON AND NETWORK MODEL
We study ring networks of N leaky integrate-and-fire (LIF) neu-
rons with current-based synapses. NE = βN, β ∈ [0, 1], of all
neurons are excitatory, the residual NI = N − NE neurons are
inhibitory. The membrane potential Vi(t) of neuron i is governed
by the differential equation

τm
dVi(t)

dt
= −Vi(t) + RIs,i(t − d) + RIx,i(t) , (1)

where the membrane potential Vi(t) is reset to Vres whenever
it reaches the threshold potential Vthr and a spike is emitted.
The neuron is then refractory for a time τref. τm denotes the
membrane time constant, RIs,i(t − d) = τm

∑N
j= 1, i �= j Wijsj(t −

d), where Is is the input current received from the local net-
work, and sj(t) =∑k δ(t − tj,k) is the spike train produced by
some neuron j. d is the transmission delay, and W is the coupling
matrix, with entries that are either zero (no synapse present), JE =
J (excitatory synapse) or JI = −gJ (inhibitory synapse). To keep
spiking activity from entering a high rate state, we assume that
the recurrent input Is is net inhibitory by choosing g > NE/NI.

Ix denotes the external input current that is modeled as
stationary Poisson noise injected via current-based synapses
of strength Jx (for details, see below), and R is the membrane
resistance. Such leaky integrate-and-fire neurons were extensively
studied in various input (see e.g., Amit and Tsodyks, 1991; Amit
and Brunel, 1997; Lindner, 2004; Fourcaud-Trocmé and Brunel,
2005; De la Rocha et al., 2007; Vilela and Lindner, 2009; Helias
et al., 2010) and network settings, especially in the context of
balanced random networks (Brunel, 2000; Tetzlaff et al., 2012).
Here, we consider ring networks of LIF neurons, such that each
fifth neuron is inhibitory and the coupling matrix W is given by
(cf. Figure 3A)

Wij =

⎧⎪⎨
⎪⎩

J if j excitatory, |i − j|mod N ≤ κ/2 and i �= j

−gJ if j inhibitory, |i − j|mod N ≤ κ/2 and i �= j

0 otherwise

.

(2)

Thus, each neuron is connected to its κ nearest neighbors, where
we assume κ = 0.1N. We note that the network layout chosen
here is motivated by an actual embedding of individual neu-
rons into some space, in contrast to earlier studies of pattern
formation in spiking neuron networks where inhibitory and exci-
tatory neurons are often distributed in equal numbers along two
identical rings, and where the main difference lies in the spa-
tial interaction ranges. These systems are usually motivated by
population-density descriptions and can often be reduced to a

two-dimensional model (see e.g., Ben-Yishai et al., 1995; Compte
et al., 2000; Shriki et al., 2003; Roxin et al., 2005). As we will
demonstrate in section 3.2, the network studied here leads to an
effectively five-dimensional model. In section 3.4 we will discuss
a reduction to a two-dimensional model that however already
deviates noticeably in its details from the full five-dimensional
network.

2.2. CONSTANT EXTERNAL INPUT IN THE MEAN-DRIVEN AND
INTERMEDIATE REGIME

In the case of the mean-driven (μ[RI] ≥ Vthr − Vres) and inter-
mediate regimes, which will be discussed later, the external
current is purely excitatory, such that RIx(t) = τmJxsx(t) with
Jx > 0 and rate νX = E[sx(t)], where E[.] denotes the expec-
tation value. To quantify the effective strength of the external
input, we express νX = ηθ/Jxτm, i.e., the parameter η gives the
strength of the external drive in terms of the excitatory rate nec-
essary to reach threshold. Assuming stationary spiking activity
with rate νo for both the excitatory and inhibitory population,
i.e., νE = E[sE(t)] = νo and νI = E[sI(t)] = νo respectively, the
mean and variance of the total input RI = R(Is + Ix) are thus
given by

μ [R (Is + Ix)] =
∑

j∈ {E,I,X}
τmνjJj = κτmνoJ(β − g(1 − β))

+ τmνXJx (3)

σ2 [R (Is + Ix)] =
∑

j∈ {E,I,X}
τmνjJ

2
j = κτmνoJ2(β + g2(1 − β))

+ τmνXJ2
x .

For stronger local coupling strength J the negative mean recur-
rent contribution μ[RIs] to the total input is stronger, while the
variance σ2[RIs] increases. For the networks we consider here,
for small J the network activity is thus typically driven by the
mean μ[RI] of the total input, while for larger J the variance
σ2[RI] has a notable impact. Moreover, the network firing rate
νo depends on J.

2.3. EXTERNAL INPUT ADJUSTED TO ENSURE CONSTANT TOTAL
CURRENT IN THE STRONGLY FLUCTUATION-DRIVEN REGIME

The strongly fluctuation-driven regime is characterized by
subthreshold mean total input, μ[RI] < Vthr − Vres, but high
variance σ2[RI], such that spikes are initiated by transient
input fluctuations. To guarantee that we are in the high
variance regime for all J, we inject excitatory and inhibitory
external currents with rates νEx, νIx, such that the total
input current mean and variance, i.e., μ[RI] and σ2[RI],
stay the same when varying the local coupling strength J.
This is achieved by adapting μ[RIx] = μ[RI] − μ[RIs] and
σ2[RIx] = σ2[RI] − σ2[RIs] as a function of νEx, νIx. The
external current injected into each local neuron by current-
based synapses of strengths JEx = Jx and JIx = −gJx is thus
given by
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RIx(t) = τmJx(sEx(t) − gsIx(t)) (4a)

with νEx := E[sEx(t)] = 1

τmJx(1 + g)

(
σ2[RIx]

Jx
+ gμ[RIx]

)
(4b)

and νIx := E[sIx(t)] = 1

τmJxg(1 + g)

(
σ2[RIx]

Jx
− μ[RIx]

)
.

(4c)

Because the variance of the recurrent input σ2[RIs] increases
quickly with increasing J, the total variance σ2[RI]– in
order to keep it fixed for all J– usually needs to be cho-
sen quite large in order to avoid non-sensical rates νIx < 0.
This moreover implies that this approach of choosing

the external input is not useful for the mean-driven
scenario.

For all neurons we set θ = Vthr − Vres = 20 mV, τm = 20 ms,
and R = 80 M�. The excitatory synaptic coupling strengths J, Jx,
the relative strength of inhibition g, as well as τref and d will be
specified individually. The model and parameters are listed in
Table A1 in Appendix A1. All simulations were carried out with
NEST (Gewaltig and Diesmann, 2007).

3. RESULTS
For small coupling strength J and large mean current input
μ[RI] = E[R(Ix + Is)] the spiking dynamics of the ring net-
works is characterized by locally clustered activity on the spa-
tial scale of the footprint κ, cf. Figures 1A,G (Kriener et al.,
2009). For increasing J, however, a clear spatial pattern emerges,

350
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0
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0

FIGURE 1 | Pattern formation in a ring network of 2500 neurons

with g = 6 and varying absolute coupling strength parameter J .

(A–C) Show the mean-driven case, where the external input is given by
Poissonian input spikes with rate νx = 10θ/Jxτm and amplitude
Jx = 0.1 mV, resulting in an excitatory input current of amplitude
Ix = 2500 pA. The critical coupling strength Jc for the spatially
homogeneous rate distribution to become bistable with a spatially
modulated pattern is around 0.5 mV. (D–F) Show the same network in
the fluctuation driven regime, where mean and variance of the external
input current Ix were chosen such that mean and standard deviation of
the total input current I = Ix + Is were fixed at μ[RI] = 5 mV and
σ[RI] = 60 mV, cf. Equation (4). (G–I) Show the corresponding plots for
an intermediate input regime, where the external input current was

Poissonian with rate 3.5θ/Jxτm and amplitude Jx = 0.1 mV, resulting in
an input current of amplitude Ix = 875 pA. Here, refractory time constant
τref and delay d were chosen to be 0.1 ms to minimize loss of input
current and avoid pronounced delay oscillations in the mean-driven case
(Helias et al., 2013). As we will demonstrate in section 3.2, eigenvalue
analysis predicts an instability of an eigenmode with non-zero
wavenumber �c > 0 (here, �c = 13) for coupling Jmd

c ≈ 0.5 mV in the
mean-driven case, and Jfd

c ≈ 0.9 mV in the fluctuation-driven case. We
see that already for J � Jc there can be deviations from the spatially
homogeneous mode � = 0 due to the fluctuating nature of the activity
and selective amplification (Dayan and Abbott, 2001), especially in the
fluctuation-driven case. For larger J the pattern becomes more
prominent and finally some neurons fall completely silent (C,F,I).
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cf. Figures 1C,F. Since all neurons receive by construction sta-
tistically identical input, all neurons should fire at the same
rate. But there is a distinct critical coupling strength Jc beyond
which the homogeneous distribution of firing rates becomes
unstable and the system enters a spatially inhomogeneous state
after sufficient perturbation (Bressloff and Coombes, 1998). We
note that the spatio-temporal spiking activity can be quite rich
in networks with translation-invariant symmetry, as discussed
for example in (Ben-Yishai et al., 1995; Usher et al., 1995;
Bressloff and Coombes, 1998, 2000; Shriki et al., 2003; Roxin
et al., 2005; Marti and Rinzel, 2013). Here, we do not system-
atically analyze the temporal aspects of the activity in terms
of traveling waves or oscillations, but focus on the onset of
periodic pattern formation in space as a function of coupling
strength.

What determines this critical coupling strength Jc where the
bistability of the homogeneous spatial rate distribution and the
spatially modulated distribution occurs? We find that Jc depends
strongly on the input regime the neurons operate in: if neurons
are driven predominantly by the mean of the input current, i.e.,
if μ[RI] ≥ θ, we find that Jc is much smaller than if neurons
are strongly fluctuation-driven, i.e., μ[RI] < θ with large enough
variance of the input current to occasionally drive the membrane
potential to threshold, cf. Figure 1.

In the following we present two different linear rate models
of the integrate-and-fire dynamics that explain and predict the
respective occurrence of the pattern formation.

3.1. TWO LINEARIZATIONS FOR THE SELF-CONSISTENT RATE IN
NETWORKS OF LIF-NEURONS

The analysis of the stability of spatially homogeneous activity
dynamics to spatial perturbations follows a simple concept: first,
the stationary, homogeneous state is determined in a mean-field
approximation. In particular, in the diffusion limit, i.e., under
the assumption that the coupling strength J is small compared
to the distance between reset and threshold θ and that all neurons
receive statistically identical input, the stationary firing rate νo of
the neurons can be derived self-consistently as a function of mean
and variance of the input current (a solution of the mean first-
passage-time problem first derived by Siegert (Siegert, 1951), but
also see e.g., Amit and Tsodyks, 1991; Brunel, 2000), such that

ν−1
o = τref + τm

√
π

∫ Vthr −μo
σo

Vres −μo
σo

exp
[
x2] (1 + erf[x]) dx, (5)

where μo =∑i∈ {E,I,X} Jiνi,oτm and σ2
o =∑i∈ {E,I,X} J2

i νi,oτm are
the self-consistent input mean and variance. Because all neu-
rons receive statistically identical input, in absence of symmetry-
breaking the firing rate distribution is spatially homogeneous,
i.e., νo,i ≡ νo for all i. To assess simple stability of the homoge-
neous state to spatial perturbations, we need to perform linear
perturbation analysis. The critical eigenvector of the resulting
linear stability operator then determines the spatial pattern that
develops.

We will show that the exact nature of the appropriate lineariza-
tion depends critically on the input current regime, and derive the

respective linearization in the limits of subthreshold mean input
with fluctuation-driven spiking in section 3.1.1, and of domi-
nant suprathreshold mean total input current μ[R(Ix + Is)] > θ

in section 3.1.2. In the fluctuation-driven regime a quantitative
approximation is obtained from the modulation of both mean
and fluctuations of the synaptic input to the neurons, while in the
mean-driven regime we recover the intuitive result that the sys-
tem is governed by the noise-free input-output relation given by
the f -I-curve of the individual neuron. In general, the full spiking
dynamics will lie somewhere in between these two limiting cases,
the case we call “intermediate.”

3.1.1. Linearization of the input-output relation in the
fluctuation-driven regime

We first discuss the case when the system is fluctuation-driven,
i.e., the average input current is subthreshold (μ[RI] < θ) and
spikes are induced by membrane-potential fluctuations.

To assess linear stability in this regime we need to derive
a linear model that self-consistently describes the dynamics of
the fluctuations ui(t) = 〈si(t) − νo〉 = νi(t) − νo of the activity of
neuron i around its mean firing rate or working point νo. Treating
the response of integrate-and-fire neurons by first order pertur-
bation theory is a well-established method first introduced in
Abbott and van Vreeswijk (1993) for the perfect integrator and in
Amit and Brunel (1997); Brunel and Hakim (1999) for the leaky
integrate-and-fire neuron.

The dynamics of u(t) can then be written in the form

u(t) � h(t) ∗ [u(t) + x(t)] , (6)

where h(t) is a linear filter and x(t) is a white noise imitating
the spiking nature of the signal. In the Fourier-domain Equation
(6) becomes the simple product U(ω) = H(ω)[U(ω) + X(ω)],
where the capitalizations indicate the Fourier-transforms of h(t),
u(t) and x(t). Pattern formation is typically a slow process and
the transfer function H(ω) of leaky integrate-and-fire neurons
is dominated by low-pass behavior 1. In order to assess stability,
we therefore estimate H(ω) in the low-frequency limit, i.e.,

H(0) = ∫∞0 h(t) dt. With
dμo,i

dsj
= τmWij and

dσ2
o,i

dsj
= τmW2

ij as

well as
dσ2

o,i
dsj

= 2σo,i
dσo,i
dsj

, we obtain (see also Amit and Brunel,

1997; Tetzlaff et al., 2012; Helias et al., 2013 for details) the
effective coupling matrix W̃ of the system as the local derivative
of the input-output-curve given by Equation (5):

W̃ij(Wij) =
∫ ∞

0
hij(t) dt = ∂νo,i

∂sj
(7a)

= ∂νo,i

∂μo,i
τmWij + ∂νo,i

∂σo,i

τm

2σo,i
W2

ij (7b)

1Note, that for exponential response kernels h(t) = τ exp[−t/τ] the response
is structurally equivalent to a linear first order differential equation, though it
has been demonstrated that in ring networks this response kernel can be sub-
stantially different from exponential and even contain oscillatory components
(Lindner and Schimansky-Geier, 2001; Pernice et al., 2012).
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= (νoτm)2√π
Wij

σo,i

(
f (yθ,i)

(
1 + Wij

2σo,i
yθ,i

)

−f (yr,i)

(
1 + Wij

2σo,i
yr,i

))
, (7c)

with

f (y) = ey2
(erf[y] + 1), yθ = θ − μo

σo
, and yr = Vres − μo

σo
.(8)

The effective coupling matrix W̃(Wij) is thus structurally identi-

cal to W given by Equation (2), with W̃ij = W̃(J) if j is excitatory,

and W̃ij = W̃(−gJ) if j is inhibitory, yielding an effective rela-

tive inhibitory strength g̃ := ∣∣W̃(−gJ)/W̃(J)
∣∣. The zero frequency

mode U(0) therefore fullfills the equation

U(0) = [I − W̃
]−1

X(0) . (9)

We expect linearity to break down if W̃ has any eigenvalue with
real part larger than unity. The critical coupling strength Jfd

c
for which this is the case can be determined implicitly from
Equation (7).

3.1.2. Linearization in the low input current noise limit
Here, we discuss the linearization in the case that neurons are
mean-driven, i.e., when the mean of the input current μ[RI] is
suprathreshold, while the variance of the input is negligible [see
also Amit and Tsodyks (1991) for analogous arguments]. In this
case, the input-output-relation of the neuron becomes effectively
linear in μ[RI] until it reaches saturation at νmax = 1/τref (Amit
and Tsodyks, 1991; Salinas and Sejnowsky, 2000). This can be seen

by considering the input-output relation of an individual neuron
in response to a constant current, i.e., the f -I-curve

ν(I) =
[
τref − τmLog

[
1 − θ

RI

]]−1

. (10)

For RI � θ, i.e., θ
RI � 1 and negligible τref, it holds (see

Appendix A2 for details)

ν(I)
.= RI

τmθ
− 1

2τm
. (11)

This linear-threshold-type relationship ν(I) =
[

RI
τmθ

− 1
2τm

]
+ fits

that observed in simulations very well, cf. Figures 2A,B.
To derive a rate equation for the full spiking network dynam-

ics, we first define the instantaneous rate of neuron i as

νi(t) = E�t[si(t)] := lim�t→0
1

�t

∫ �t/2

−�t/2
E[si(t)] dt , (12)

where E[.] is the average over realizations.
Substituting the spike trains by their respective firing rates, the

input to neuron i takes the form RIi = τm
∑

j Wijνj + RIx. If we
only consider networks with rates νi ≥ 0 and approximate the fir-
ing rate of neuron i by the linear expression (11), we arrive at the
linear equation

νi = − 1

2τm
+ 1

θτm

⎛
⎝τm

∑
j

Wijνj + RIx

⎞
⎠ ⇔

τmν = [θI − W]−1 (RIx − θ/2) . (13)

A B C

FIGURE 2 | (A) Demonstrates that the input-output-relation of the LIF neuron
Equation 5 indeed gets linear in the strongly mean-driven regime. The light
gray line shows the f -I-curve in the noise-less case [Equation (10)], dark gray
corresponds to its linear approximation Equation (11), while the red curve is
the corresponding self-consistent rate given by Equation (5) in the low-noise
limit σ[RI] → 0. (B) Shows the output rates as a function of network coupling
strength J as they are actually obtained from network simulations averaged
over 10 trials (blue dotted curve) vs. the prediction from Equation (5) (gray
left-pointing triangles), as well as the linear model prediction Equation (13)

with E[V (t)] = θ/2 (dark gray triangles). Also shown is the prediction from
solving Equation (14) self-consistently with V̄ = ∫ θ

−∞ VP(V ) dV [with
stationary membrane potential probability density function P(V ) as derived in
Brunel (2000); gray right-pointing triangles], as well as from using the

estimated average membrane potentials E[Vi (t)] obtained from simulations
(black asterisks). The vertical red line represents the expected critical
coupling strength Jmd

c for the mean-driven regime. The external drive is
constant Poissonian noise (η = 3.5), while the local network coupling
strength J, and hence μ[RIs] and σ[RIs], vary. In this setting the system
undergoes a regime change from the mean-driven to the fluctuation-driven
scenario. This is demonstrated in (C), where the total mean and standard
deviation of RI = R(Ix + Is) are shown as function of J in black and gray,
respectively. The red dashed line corresponds to that in (B), while the black
dashed line indicates the critical Jfd

c expected from Equation (9). The
corresponding spike activity is shown for three exemplary cases in
Figures 1G–I. Other parameters in (B,C) are N = 2500, κ = 250, θ = 20 mV,
τm = 20 ms, τref = 0.1 ms, and g = 6.
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Indeed, if τref is negligible, Equation (1) can be rewritten as
(Kriener et al., 2008)

τm
dVi(t)

dt
= −Vi(t) − τmθsi(t) + τm

N∑
j= 1, i �= j

Wijsj(t − d) + RIx,i .

(14)
Equation (13) can then be derived analogously by tempo-
ral averaging, assuming stationarity d E�t[V(t)]/dt ≡ 0, i.e.,
E�t[V(t)] ≡ const, and thus E�t[ν(t)] = const = νo. For high
rates in response to large μ[RI] we expect E[V(t)] ≈ (Vthr −
Vres)/2 = θ/2, as the voltage passes through the interval
between reset and threshold with approximately constant velocity,
leading to

0 = −θ/2 − τmθνi(t) + τm

∑
j

Wijνj + RIx,i, (15)

which is identical to (13). We note, that the self-consistent solu-
tion of Equation (15) yields the correct quantitative rates over
a wide range of relative input magnitude, if instead of θ/2
the actual E[Vi(t)]-values measured in simulations are inserted.
If all neurons are identical and receive statistically identical
input, this mean value can be obtained from ∀i E[Vi(t)] ≡ V̄ :=∫ θ

−∞ VP(V) dV , where P(V) denotes the stationary membrane
potential probability density function as e.g., derived in Brunel
(2000). All output-rate predictions are compared to the out-
come from simulations in Figure 2B. Aside from the prediction
that assumes E[V(t)] = θ/2 (dark gray triangles) and underes-
timates the true rate, all predictions fit the simulation results
(blue dots) very well. In particular, the Siegert equation (5)
coincides perfectly with the linearized rate Equation (14) if we
assume E[V(t)] = V̄ (light gray triangles), while the best fit is
obtained with Equation (14) and the actual measured E[Vi(t)]
(black asterisks).

The stability of the fixed point rate to small perturbations is
determined by the largest real part of all eigenvalues of W/θ. If
one eigenvalue λc has real part larger than unity, we expect the
corresponding eigenvector vc to grow exponentially, only limited
by the non-linearities due to rate-rectification for small rates, and
the saturation because of neuronal refractoriness for high rates.
This determines the critical coupling strength

Jmd
c = 1

Re[λc] (16)

that in this limit is independent of the exact working point νo > 0.
Even though for coupling strengths J > Jmd

c the rate instability
can lead to pattern formation such that individual neurons fire
at quite different rates, the population rate is still captured well
by the firing rate predictions assuming homogeneous rates across
neurons, see Figure 2B.

Finally, we note that for the constant external drive scenario
considered here the mean and variance of the total input cur-
rent vary with varying J. In particular, for increasing J the system
undergoes a cross-over from the mean-driven to the fluctuation-
driven regime, see Figure 2C.

3.2. EIGENSYSTEM OF DALE-CONFORM TRANSLATION-INVARIANT
RING NETWORKS

In this section we will analytically derive the eigenvalue spec-
trum of the ring networks under consideration that yields the
critical eigenvalue and thus the critical coupling strength Jc with
respect to the two linearizations Equation (9) and Equation (13).
As described in section 2 we consider ring networks of size N
with regular connectivity, in that each neuron is connected to
its κ nearest neighbors, κ/2 on each side of the neuron but
not to itself. Inhibitory neurons shall be distributed periodically
across the network as illustrated in Figure 3A, where the ratio
between excitation and inhibition is 4 : 1 (β = 0.8). This is in line
with the observed frequencies of excitatory and inhibitory cells

A

DC

T

E

B

F

..

i=0

i=N−2
i=N−1

i=1

.

FIGURE 3 | (A) Sketch of the neuron layout on the ring topology. Each
neuron is connected to its κ nearest neighbors. A shift in neuron label by
five yields the same ring as before and is formally expressed by the shift
operator T� with � = 5. (B) Shows the coupling matrix W of the ring: black
squares depict inhibitory, white squares excitatory, and gray squares zero
coupling from j to i (N = 60, κ = 30). (C) Eigenvalue spectrum of a ring
matrix W /θ with N = 2500, κ = 250, J = 1 mV, and g = 6. (D) The two
eigenvectors belonging to the twice degenerated eigenvalue from (C) with
largest real part λc . (E) The eigenvalues form five bands and are shown as a
function of the wavenumber. The black curve depicts the band containing
the critical (maximal) eigenvalue λc which here corresponds to wavenumber
�c = 13, so the two crictical eigenvectors have 13 major peaks (cf. D,F). (F)

The rate as a function of the neuron index in a simulation of N = 2500
integrate-and-fire neurons with J = 1 mV and Ix = 750 pA. Note that the
spectra (shown in C) look slightly different in the fluctuation-driven case,
because the absolute amplitude of the entries |W̃ij | �= |Wij |, and also the
balance between positive and negative entries g̃ �= g. The maximum of the
dispersion relation and the eigenvectors are, however, the same.
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in cortex (Schüz and Braitenberg, 1994). The ring can thus be
divided into structurally identical elementary cells of four exci-
tatory neurons and one inhibitory neuron. We choose κ as an
integer multiple of the size � of an elementary cell (here � =
5, κ mod � = 0), such that it moreover divides the total num-
ber of neurons N (N mod κ = 0). The resulting coupling matrix
is sketched in Figure 3B, where black squares depict inhibitory
weights, white depict excitatory weights and gray denotes the
lack of a connection. In this way all neurons receive the exact
same amount of inhibition and excitation, and the translation
invariant mode (1, 1, · · · , 1)� is an eigenvector of the coupling
matrix with eigenvalue μ = κJ(β − g(1 − β)). To keep network
activity balanced, inhibitory synapses are assumed to be g-times
stronger, with g > 4, cf. Equation (2). Hence, the local network is
inhibition dominated.

To compute the eigensystem of the N-dimensional system we
make use of its symmetry properties. The coupling matrix com-
mutes with the unitary operator that shifts all neuron indices by
multiples of � = 5. Hence, we can diagonalize both in the same
eigenbasis and moreover reduce the problem to an effectively five-
dimensional one as outlined in Appendix A3. Figure 3C shows
the exemplary eigenvalue spectrum of in this case the rescaled
coupling matrix W/θ of a network of size N = 2500 with absolute
coupling strength J = 1 mV and relative strength of inhibition
g = 6. Thus, the eigenvalue λc of W/θ with largest real part will
exceed unity, if the amplitude of the absolute coupling strength J
exceeds Jmd

c = 1/Re[λc], cf. Equation (16), here Jmd
c ≈ 0.5.

The corresponding critical weight Jfd
c for the fluctuation-

driven case is obtained by the identical eigenvalue decomposition
of W̃ as defined by Equation (7). Since W̃ depends non-trivially
on the self-consistent working point νo of the system, the critical
coupling strength Jfd

c is the solution of

Jfd
c := J such that maxi

[
Re[λi

(
W̃(νo, J)

)]] ≡ 1 , (17)

where λi, i ∈ {1, . . . , N} are the N eigenvalues of W̃ . If J > Jmd/fd
c

(depending on the regime), the spatially homogeneous rate distri-
bution becomes unstable to perturbations in favor of the fastest
growing eigenmode vc, which only depends on the symmetry
properties of the matrix as long as g and g̃ are larger than
four, and it is hence the same irrespective of the input regime,
cf. Figures 1C,F,I. The spatial frequency of the emerging spa-
tial pattern (see Figure 3), i.e., the number of maxima of the
rate distribution along the ring, is thus given by the wavenum-
ber � (see Appendix A3) that corresponds to the respective
λc := maxi

[
Re[λi]]. We note, that the eigenvalue spectra in the

fluctuation-driven case look slightly different from those in the
mean-driven case (cf. Figure 3C) because of the in general dif-
ferent scaling g̃ �= g between positive and negative entries in W̃ .
The maximum of the dispersion relation determining �c and the
eigenvectors are, however, usually the same.

Figure 4 shows the critical eigenvalue λc as a function of J
for the linearizations Equation (9) (gray lines) and Equation
(13) (red line) in the constant external drive regime, parameter-
ized by η. The critical eigenvalue Jc is given by the intersection
with the horizontal line at one. As was pointed out in sec-
tion 3.1.2, in the noiseless approximation Equation (13) the

FIGURE 4 | Eigenvalue of W /θ (red) and W̃ (varying gray levels) with

largest real part λc in dependence of J and external drive η (increasing

η = {3.5, 5, 10, 15, 20, 30, 40} from dark to light gray). The eigenvalues
of W /θ do not depend on η and thus the Jc value such that λc = 1
[indicated by red circle, cf. Equation (13)] holds uniquely for Jmd

c = 0.506.
The gray lines show the dependence of λc of W̃ as obtained from Equation
(7) with both contributions from dν/dμ, dν/dσ (solid lines) and with the
dν/dμ contribution only (dashed, here for clarity we just plot the curve for
η = 3.5). The black triangle and the gray asterisk indicate the respective
predictions of Jfd

c = 1.54 and Jmd,dν/dμ
c = 0.89 for η = 3.5. For comparison,

the blue line depicts the J-dependence in the input scenario with fixed total
input current mean and variance, i.e., μ[RI] = 5 mV and σ[RI] = 60 mV,
independent of changes in J. In that case, the self-consistent population
firing rate is expected to be constant and thus Equation (7) is of the form
W̃ = c1Wij + c2W 2

ij , with constants c1, c2. For large σ and c1 > c2 the
curve is dominated by the linear weight dependence. For the parameters
shown here, the expected Jfd

c = 0.905 mV (cf. Figure 1).

eigenvalues of the linear operator do not depend on the work-
ing point, and thus the critical weight Jmd

c is unique for all η

such that νo > 0 (here, critical Jmd
c = 0.506 indicated by red

circle).
For the linearization Equation (9), and taking into account

both μ and σ in Equation (7b) (solid lines), the criti-
cal weight Jfd

c is strongly dependent on the value of η =
{3.5, 5, 10, 15, 20, 30, 40} (increasing from dark to light gray),
and never comes close to the prediction of the noiseless lineariza-
tion Jmd

c . In particular, for larger η Jfd
c increases again.

If we neglect the σ-dependence in Equation (7b), and just
take into account dνo/dμo = dνmd

o /dRI = 1/τmθ as given by
Equation (11), Equation (7) is linear in Wij and we recover the
linear noiseless approximation Equation (13) for Equation (9).
We might thus expect that Equation (9) in general will give a Jfd

c -
prediction close to Jmd

c if we neglect the σ-dependent quadratic

term in Equation (7b). Although the prediction of this Jfd|dνo/dμo
c

becomes smaller (cf. black triangle for Jfd
c = 1.54 mV vs. the gray

asterisk for Jfd|dνo/dμo
c = 0.89 mV for η = 3.5) it never becomes

as small as Jmd
c . This is because every change in μo will also

influence σo via its impact on νo, and thus dνo(μo, σo)/dμo �=
dνmd

o (RI)/dRI.

We note that the observation Jfd
c > Jfd,dνo/dμo

c is explained by
the fact that W̃(Wij)|dνo/dμo is linear in Wij, and thus the ratio
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g̃ = |W̃(−gJ)/W̃(J)| = g, while for the full Equation (7), W̃(Wij)

is quadratic in Wij, yielding a g̃ < g. Evaluating Equation (A20)
in Appendix A3 shows that the critical eigenvalue λc in both lin-
earizations is a linearly increasing function of g, g̃, respectively,
and Jc is thus decreasing as a function of g, g̃.

For comparison, Figure 4 also shows the J-dependence of the
real part of the critical eigenvalue λc in the strongly fluctuation-
driven regime (μ[RI] = 5 mV, σ[RI] = 60 mV, blue line), with
the critical Jc indicated by the crossing of the unity-line (blue
triangle).

3.3. LINEAR STABILITY IN DEPENDENCE OF THE INPUT CURRENT
REGIME

We will now compare the general performance of the lineariza-
tions Equations (9) and (13) and in particular the resulting
predictions of the critical coupling strength Jc with the actual
onset of pattern formation as observed in simulations. Figure 1
demonstrates how the identical ring network structure undergoes
pattern formation at very different values of network coupling
strength J depending on the input current regime. In particular,
pattern formation sets in later if the system is in a fluctuation-
driven regime. This can be understood in the two limit-cases that
were analyzed in sections 3.1.1 and 3.1.2.

But what determines pattern formation onset in intermediate
cases that comprise the most interesting and relevant cases? As we
saw in section 3.1.2, the network will even undergo a crossover
from the mean-driven to a more fluctuation-driven regime, if the
external input is kept constant and not adapted to counterbal-
ance the changes in recurrent input structure for changing J, see
Figure 2C. Also, due to the spiking nature of the activity, even in
a strongly mean-driven scenario there will always be a consider-
able amount of variance which might change the onset of pattern
formation with respect to Jmd

c .
To give more insight into the actual onset of pattern formation,

useful reduced measures are the variance and kurtosis of the dis-
tribution of firing rates over neurons, cf. Figure 5. Figures 5A–C
show the histogram of rates, and the variance and kurtosis of
these histograms for various J-values in the mean-driven regime
averaged over 10 trials each. Figures 5D–F show the same for
the fluctuation-driven case and Figures 5G–I for the intermediate
case, all for the same parameters as in Figure 1.

When the system is still well in the linear regime J < Jc the
distribution is approximately Gaussian with small variance and
a kurtosis close to zero (cf. Figures 5A,D,G, light gray curves),
while once the critical weight Jc is surpassed the variance increases
strongly (cf. Figures 5B,E,H) and the kurtosis becomes negative
(platycurtic), indicating the broadening of the distribution due
to the inhomogeneous rate per neuron (cf. Figures 5C,F,G and
5A,D,G, dark gray curves). The respective critical weights are
indicated by vertical dashed lines in Figures 5B,E,H and C,F,I for

visual guidance (red: Jmd
c , black: Jfd

c , gray: Jfd|dνo/dμo
c ).

The onset of pattern formation in the strongly fluctuation-
driven regime at Jfd

c is more shallow than in the mean-driven
regime at Jmd

c . This might be due to deviations of the input spike
statistics from the asynchronous-irregular activity assumption
underlying the linear response derivation of Jfd

c : the standard-
deviation of the input is extremely large at σ = 60 mV. This

implies that the membrane-potential will be hyperpolarized for
long times, while at other times it is highly depolarized, and
several spikes are emitted in short succession. This typically
leads to higher coefficients of variation, i.e., more irregular fir-
ing than expected for Poisson spike statistics [see also Brunel
(2000) and supplementary material section S1]. Also, even in the
highly fluctuation-driven regime there may be residual correla-
tions between spike trains. Lastly, the increased network coupling
strength might lead to deviations from the Gaussian white noise
approximation of input currents underlying Equation (5) and the
linear response theory yielding Equation (7) (see supplementary
material section S1 for an analysis). How such deviations of the
input statistics can indeed change the spike response behavior of
LIF neurons was studied, e.g., in Moreno et al. (2002); Renart et al.
(2007); Moreno-Bote et al. (2008); Helias et al. (2010).

However, another contributing factor, and more likely the rea-
son for the shallow transition at Jfd

c , is the degeneracy of the
maximal eigenvalue, see Figures 3D,E. In the fluctuation-driven
regime the system is subject to strong perpetual perturbations
that lead to a switching between the two dominant eigenvectors
depicted in Figure 3D in the transition regime Jfd

c ± �J. Indeed,
as can be seen from Figure 1E, the periodic pattern is already
clearly distinguishable at Jfd

c over several hundred milliseconds,
but the average activity depicted in the histogram is still quite
flat, yielding smaller variance and kurtosis of the respective rate
distribution.

Finally, Figures 5D–F demonstrate clearly how pattern for-
mation occurs for intermediate J-values Jmd

c � Jinter
c < Jfd

c if the
system is neither clearly in the mean- nor strongly fluctuation-
driven regime, and even changes from one to the other regime
with increasing coupling strength, cf. Figure 2C. As we demon-
strate in the supplementary material section S1, most input and
network settings have pattern formation onsets that usually agree
much better with the Jmd

c prediction than with Jfd
c . This is a very

consistent finding, even in cases where neurons are well in the
fluctuation-driven regime in terms of subthreshold mean and
pronounced input variance.

As we discuss in the supplementary material section S1 the rea-
son for this finding lies in an asymmetry between the excitatory
and inhibitory compound input current statistics. The excitatory
subpopulation tends to be synchronized, even in the presence of
strong balanced external noise, while inhibition actively decor-
relates itself. The explanation for this effect lies in the local
connectivity of ring networks, leading to a population-specific
pattern of correlations already below the critical coupling: excess
synchrony of the excitatory population will reinforce further spik-
ing, while spikes from the inhibitory population decreases the
instantaneous firing probability [see also Helias et al. (2013) for a
related discussion of this effect in the framework of balanced ran-
dom networks]. Near synchrony is thereby effectively enhanced
in the excitatory population and suppressed in the inhibitory
one. Volleys of excitatory input spikes act like compound pulses
with large amplitude (on the order of up to θ) in an otherwise
balanced asynchronous background activity. At these amplitudes
the effective gain Equation (7) derived from linear response the-
ory becomes linear in J with a slope proportional to 1/θ, i.e.,
the slope of the linear model Equation (11), see supplementary
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FIGURE 5 | The histograms of rates, variance and kurtosis for various

weights J in a network of N = 2500, κ = 250, and g = 6 averaged

over 10 trials. (A–C) Shows the mean-driven case (Ix = 2500 pA
delivered as Poisson noise with external synaptic strength Jx = 0.1 mV),
(D–F) the fluctuation-driven case (Poisson noise adapted s. t. μ[RI] = 5 mV
and σ[RI] = 60 mV) and (G–I) an intermediate case, where the external
input was Poisson noise (current-amplitude 875 pA, Jx = 0.1 mV). For
subcritical J < Jc the distributions are approximately Gaussian with small
variance and kurtosis close to zero. For supracritical weight the
distributions become broader and platykurtic, indicated by the negative
kurtosis. The vertical dashed lines in (B,C) and (E,F) mark the respective

critical weights, i.e., Jc = 0.506 mV [red, using Equation (13)] for the
mean-driven, and Jc = 0.905 mV for the strongly fluctuation-driven case
[black, using Equation (9)]. The dashed vertical lines in (H,I) mark the
respective predictions for the critical weight by Equation (13) (red,
independent of η), and by Equation (9) with only the contribution of
∂ν/∂μ (gray) and both linear and quadratic contributions ∂ν/∂μ, ∂ν/∂σ

(black) for the estimation of the effective coupling strengths, cf. Equation
(7b). The increase in the kurtosis and decrease in the variance for very
large J in (B,C) and (H,I) is due to the rectification of rates that leads to
increasing mass at zero. Note that sampling is denser around the
expected Jc -value in the first two rows.

material section S1. This explains the fact that Equation (13) has
better predictive power also in the intermediate or—comparably
weakly—fluctuation-driven scenarios. Moreover, the fluctuation-
driven prediction only becomes valid if the additional external
noise sufficiently dilutes residual synchrony, such as it is the case
for μ[RI] = 5 mV and σ[RI] = 60 mV.

3.4. COARSE-GRAINED RING NETWORK
In section 3.2 we saw that the full system can effectively be reduced
to a five-dimensional system. However, the computation of eigen-
systems (cf. Appendix A3) is still quite involved. In this section we

study how well a further simplified system that is formally identi-
cal to the well-known Ermentrout-Cowan networks [Ermentrout
and Cowan (1979a,b, 1980) and supplementary material section
S2] predicts the dynamics of the full network.

We coarse-grain the system and combine groups
of � = N/NI neurons, such that they contain four
excitatory and one inhibitory neuron (� needs to
be odd in the following), as indicated in Figure 6.
The neurons ic ∈ {0, . . . , � − 1} within each cell
c ∈ {0, . . . , C − 1}, C = N/�, are connected to every other
neuron within their cell c but not to themselves. Moreover, all
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FIGURE 6 | We coarse-grain the system by introduction of cells

containing four excitatory neurons and one inhibitory neuron

[indicated in (A) by the dashed line]. The coarse-grained system is
invariant to three symmetry operations. (A) T� is a translation of the cell by
� = 5, (B) R is the mirror symmetry of two neighboring excitatory neurons
within each cell, and (C) S is the mirror symmetry of the two pairs of
neighboring excitatory neurons within each cell.

neurons within one local cell c are connected to all neurons within
the K < C/2 neighboring cells to the left and to the right, i.e.,
{(c − K) mod C, . . . , (c − 1) mod C, (c + 1) mod C, . . . , (c +
K) mod C}. The computation of the eigensystem is outlined in
Appendix A4. Due to the two mirror symmetries corresponding
to exchange of neurons within the unit cell (with corresponding
eigenvalues r, s ∈ {−1, 1}) and the translational symmetry with
the eigenvalue determined by the wavenumber α, the system can
be reduced to effectively two dimensions.

3.4.1. Coarse-grained network dynamics
In the coarse-grained system we only need knowledge about two
elements of the ring, one excitatory and one inhibitory neuron
within the same cell (arbitrarily chosen as v0, v(�−1)/2 in c = 0,
without loss of generality). For a fixed set of eigenvalues r, s, α,
the activities of all remaining neurons are then uniquely deter-
mined. The homogeneous mode νo(t) couples to the symmetric
subspace r, s = 1 only and we can write νo(t) thus as a linear com-
bination of the two eigenvectors vI

α0
and vE

1,1,α0
, where α0 = 0 (cf.

Appendix A4).
To analyze the stability of this mode with respect to spatial

perturbations we write the population activity as a linear combi-
nation of eigenvectors with non-zero wavenumbers αi, vE

1,1,αi
, vI

αi
,

such that

ν(t) =
C − 1∑
i= 0

ai(t)
(
vE

1,1,αi
+ vI

αi

)
. (18)

Then, for all neurons n ∈ {0, . . . , N − 1} the input, (W ν(t)) [n],
in the reduced system becomes

(W ν(t)) [n] =
(J [n]+K) mod C∑

c = (J [n]−K) mod C

�− 1∑
j= 0

(
Wn,(c� mod N+j) ν(t)

)
[J [n]� mod N + j

]
(19)

= J

(
K∑

c =−K

Tc
�(1 + R)(1 + S)

C − 1∑
i= 0

ai(t) vE
1,1,αi

)

[J [n]� mod N]

− gJ

(
K∑

c =−K

Tc
�

C − 1∑
i= 0

ai(t)vI
αi

)

[J [n]� mod N + (� − 1)/2]

= 4J

(
C − 1∑
i= 0

K∑
c =−K

eiαic ai(t) vE
1,1,αi

)
[J [n]� mod N]

− gJ

(
C − 1∑
i= 0

K∑
c =−K

eiαic ai(t)vI
αi

)

[J [n]� mod N + (� − 1)/2]

= 4J

(
C − 1∑
i= 0

�[αi] ai(t) vE
1,1,αi

)
[J [n]� mod N]

− gJ

(
C − 1∑
i= 0

�[αi] ai(t)vI
αi

)
[J [n]� mod N

+ (� − 1)/2]

with J [n] := �n/��. In the first identity we made use of the
operators R, S and T� to express the input-connectivity of the net-
work. The second identity follows from the linearity of the sum
over eigenmodes and the respective eigenvalues of the operators
R, S and T�. We excluded synaptic self-coupling, so we need to
subtract that input of the cell to itself, i.e.

J

(
C − 1∑
i= 1

ai(t)vE
1,1,αi

)
[n] · (1 − δn,J [n]� mod N + (�− 1)/2)

−gJ

(
C − 1∑
i= 1

ai(t)vI
αi

)
[n] · δn,J [n]� mod N + (�− 1)/2.

Leaving out one inhibitory input if the receiving neuron is
inhibitory, and one excitatory input if the receiver is excita-
tory leads to an asymmetry in the total input of excitatory and
inhibitory neurons. This implies that the spatially homogeneous
mode is not an eigenmode of the system anymore. To compensate
for this the weights are rescaled such that the input per neu-
ron equals that in the full (non-coarse-grained) system, i.e., to
μ = κJ(β − g(1 − β)). Hence,

W ′
ij|i∈E = Wij|i∈E

μ

J((3 + 8K) − g(2K + 1))
=: μEWij|i∈E (20)

W ′
ij|i∈I = Wij|i∈I

μ

J(4 + (4 − g)2K)
=: μIWij|i∈I

Note, that if we do not exclude synaptic self-coupling in the
coarse-grained system the eigensystem looks dramatically differ-
ent from that of the full system. In particular the eigenvalues
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are nearly fully real and the critical eigenvalue is much smaller
implying a higher critical weight.

In the homogeneous mode the input to each neuron n ∈
{0, . . . , N − 1} is completely identical, all neurons fire at the same
rate νo given by the self-consistent solution

(
τmνo[0]
τmνo[2]

)
=
[(

−θ 0

0 −θ

)
− J

(
4μE�[α] − 1 −gμE�[α]

4μI�[α] −gμI(�[α] − 1)

)]−1

(
RIx − θ/2

RIx − θ/2

)

where �(α) := sin(α(K+1/2))
sin(α/2)

. The eigenvalues of the reduced
rescaled coupling matrix

W ′

θ
= J

θ

(
4μE�[α] − 1 −gμE�[α]

4μI�[α] −gμI(�[α] − 1)

)
(21)

then determine for which parameters g, J the spatially homoge-
neous state becomes unstable and which wavenumber �i(αi) will
grow fastest and define the spatial pattern. The critical eigenvalue
for the coarse-grained system is thus given by the eigenvalue of
W ′
θ

with largest real part that will cross unity from below first, i.e.

λc(g, J) = max
i∈ {0,...,C−1}

{ μ

2θμIμE

(
μI(4�[αi] − 1) − gμE (�[αi] − 1)

+
√

4gμIμE (1 − 5�[αi]) + (μI(4�[αi] − 1) − gμE (�[αi] − 1))2
)}

(22)

In the fluctuation-driven regime J and g in Equation (21) need
to be substituted by J̃ := W̃(J) and g̃, such that the critical
eigenvalue is given by λfd

c (g̃, J̃).
On a mesoscopic level the coarse-grained and full sys-

tem give rise to very similar activity patterns—differences
become apparent in the fine-scale features, e.g., the full
analysis of a network of 2500 neurons with 10% con-
nectivity and g = 6 predicts destabilization of wavenum-
ber 14 in both mean- and fluctuation-driven regime, while
the coarse-grained model predicts 13, see also Figure 7.
We note that the coarse-grained model presented in this section
is formally identical to the linearization derived in Ermentrout
and Cowan (1980) in the context of a neural field ring model
if one assumes a boxcar-footprint. We summarize the respective
derivation in the supplementary material section S2.

3.5. SENSITIVITY TO RANDOMNESS
To conclude, we study how robust the findings of the previ-
ous sections are to effects of randomness in either structure or
weight distribution. Though we again only show the eigenvalue
spectra for the synaptic coupling matrix W/θ, that is the rel-
evant linear operator in the mean-driven case, all results map
straight-forwardly to the fluctuation-driven regime with appro-
priate rescaling of J and g.

3.5.1. Small-world networks: structural noise
First, we will study the effect of the introduction of structural
randomness by rewiring individual connections with proba-
bility pr [for details see Kriener et al. (2009)] such that the

DC

FE

A B

T

c=C−1

..
c=0

.

FIGURE 7 | (A) Sketch of the layout of the coarse-grained system. Each
neuron is connected to the L − 1 other cells within its cell and to all neurons
in its 2K nearest cell neighbors. A shift in neuron label by five yields the
same ring as before and is formally expressed by the shift operator T� with
� = 5. (B) Shows the coupling matrix W of the ring: black squares depict
inhibitory, white squares excitatory, and gray squares zero coupling from j
to i (N = 60, κ = 30). (C) Eigenvalue spectrum of a scaled ring matrix W /θ

with N = 2500, κ = 250, and g = 6. (D) The two eigenvectors belonging to
the twice degenerated eigenvalue from (C) with largest real part, λmd

c . (E)

Five bands of eigenvalues as a function of the wavenumber. The black line
depicts the band containing λmd

c . The inset shows the critical bands of the
system in section 3.2 (black circles, cf. also Figure 3) vs. the critical band in
the coarse-grained system (gray triangles). The critical wavenumber differs
by one. (F) The corresponding rate per neuron in a simulation of N = 2500
integrate-and-fire neurons with J = 1 mV and Ix = 750 pA.

input composition from the network to every neuron stays con-
stant at μ. The random rewiring procedure means that each
realization of a network will be different and moreover lacks
invariance to T� such that the eigensystems of individual cou-
pling matrices need to be computed numerically. For low pr

the rate model for the translation-invariant network still gives
very good results and the patterns that form for large J are
indeed strongly correlated with the critical eigenvector vc, see
Figure 8. For higher pr predictions become worse and more than
one vector can contribute to the pattern (e.g., Figures 8C2,C3).
For low rewiring probability pr < 0.02 we can still analyt-
ically estimate the critical eigenvalue by employing a mean
field model (Grabow et al., 2012) for small-world networks
in which we rewire “on average,” cf. Appendix A5 and
Figures 8A2–C2,A4–C4. Hence, also for small-world networks
of excitatory and inhibitory spiking neurons, rates and linear
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FIGURE 8 | Effect of rewiring of edges on the eigenvalue distributions

(row 1), the mean-field density of the real parts of eigenvalues (row 2),

the crictical eigenvectors of the specific realization (row 3) and the

mean-field system (row 4) and the rate per neuron (row 5) in

small-world networks for three different rewiring probabilities

pr = 0.01, 0.03, 0.05 in (A,B,C), respectively (cf. Watts and Strogatz,

1998; Kriener et al., 2009). While in (A3,B3) it is the dominant eigenmode vc

that correlates strongest with the actual rate distribution [(A5,B5), Pearson

correlation coefficients of c = 0.967 and c = 0.945, respectively], in (C3) the
linear combination of the two leading eigenvectors correlates best with the
actual rates [(C5), vc has c = 0.68 while the combination of the two leading
modes gives c = 0.91]. The inset in (A2) shows the estimate for the critical
weight Jc as a function of pr in the mean field model (MF, black) and as an
average of 50 network realizations (SW, gray). Parameters: N = 2500,
J = 1 mV and Ix = 750 pA. During rewiring the number of excitatory and
inhibitory inputs was kept constant.
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stability can be estimated from the translation-invariant network
rate model if pr is small. The results of the mean-field model are
slightly worse than for unweighted networks (cf. Grabow et al.,
2012) because of the two qualitatively different types of edges
in the networks considered here (excitatory and inhibitory). For
the small number of edges κ we assume in Figure 8 it can occur
that for very small pr no inhibitory edges are rewired at all, while
the mean-field model still reassigns inhibitory connection den-
sity. We find the mean field to work better for denser or larger
networks, and if the excitatory and inhibitory input per neuron is
kept the same during rewiring (not shown).

If the constant input per neuron constraint is dropped, the
homogeneous mode (1, ..., 1)� is not an eigenmode anymore and
also the prediction of stability fails in large parts. On the one hand
there are activity inhomogeneities forming out simply due to the
fact that some areas on the ring will by chance get more or less net
inhibitory input, and hence some neuronal subpopulation will be
driven to zero rates, while others—lacking net inhibitory input
from these rectified neurons—will have very high rates. Similar
effects arise when the distribution of inhibitory neurons is not
periodic anymore, but, e.g., distributed randomly along the ring.

3.5.2. Ring networks not conform with Dale’s principle
Finally, if Dale’s principle—i.e., the biological fact that each neu-
ron can only either depolarize or hyperpolarize all its postsynaptic
targets, but never both at the same time—is violated, both the
eigensystem (Figure 9A), as well as the spiking dynamics looks
akin to that of a random network, even if the underlying topol-
ogy is a ring, cf. Figures 9B,C. Hence, the identity of neurons in
terms of being excitatory or inhibitory is a necessary condition
for the formation of structured patterns in the case of identical
footprints for inhibition and excitation considered here.

Even though in all cases pattern formation is either strongly or
completely impaired, the prediction Equation (14) of individual
rates in the low coupling regime is excellent, also in inhomoge-
neous networks, where different neurons receive very different
inputs, given the individual mean membrane potentials 〈Vi(t)〉t

are used in Equation (15).

4. DISCUSSION
In this paper we analyzed the dynamics of pattern formation
in networks of excitatory and inhibitory spiking neurons that
are embedded on a ring architecture. In particular, we studied
the dependence of the underlying bifurcation on the input cur-
rent statistics and structural noise, and derived a coarse-grained
system that is formally analogous to the classical Ermentrout-
Cowan networks. To conclude, we will summarize and discuss our
findings.

4.1. IMPACT OF INPUT CURRENT STATISTICS
The very nature of spiking neuron networks leads to consider-
able input current fluctuations, and hence in general both mean
μ[RI] and standard deviation σ[RI] of the input will shape the
output rate of the neuron. For leaky integrate-and-fire neurons
the output rate as a function of μ[RI] and σ[RI], assuming sta-
tionary Poisson-like uncorrelated input spike trains and weak
synaptic coupling J, is given by the Siegert equation (5) (Amit and
Tsodyks, 1991; Amit and Brunel, 1997). Thus, in order to analyze
the linear stability of this self-consistent solution, in general the
derivatives with respect to both μ[RI] and σ[RI] need to be taken
into account, cf. Equation (7).

We analyzed two different ways to drive the networks: in the
first all neurons in the network were driven with the same exci-
tatory Poisson-noise νX, independent on the recurrent coupling
strength J. In this case the total input RI the neurons receive, i.e.,
the external input RIx together with the recurrent input RIs from
the network, changes with increasing J, such that the mean μ[RI]
decreases, while the standard deviation σ[RI] increases.

In the second input scenario, we corrected for the change
in recurrent input contributions with changing J by adminis-
tering compensating inhibitory and excitatory external Poisson
input νIx, νEx. Thus, μ[RI] and σ[RI], and hence also νo are
approximately constant with increasing J.

We find that in the first input scenario the critical Jc as
observed in simulations deviates strongly from the one predicted
by Equations (7),(9), which are derived from the self-consistent
solution Equation (5) by linear response theory. In particular,

B CA

FIGURE 9 | (A) Eigenvalue distribution in the complex plane of a ring network
with random assignment of weights, irrespective of the identity of a neuron,
hence each existing synapse has weight J with probability β and −gJ with
probability (1 − β). These ring coupling matrices have eigenvalue spectra very
akin to those of corresponding random networks and most of the
eigenvalues adhere to the circle law prediction (Girko, 1984) for random

networks r = √Np(β + g2(1 − β)) − μ2/N (dark line). Only a few singular
eigenvalues on the left of the center indicate the underlying ring topology.
The eigenvectors of such “hybrid” ring matrices have no apparent structure
and no pattern formation occurs when the system becomes supracritical, as
clearly visible from the spiking activity (B) and the rates per neuron (C). Here,
Jc ≈ 0.44 mV, simulation parameters J = 0.6, g = 6 and N = 2500.
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for the mean-driven regime, where μ[RI] > Vthr, Jmd
c becomes

basically independent of the rate νo as well as of σ[RI], irre-
spective of its yet considerable magnitude. Instead, a very simple
linearization derived from the noiseless f -I-curve Equation (10)
applies. The Jmd

c derived from this linearization is always con-
siderably smaller than the prediction by Equations (7), (9). For
intermediate cases where neurons are neither mean- nor strongly
fluctuation-driven, the critical coupling strength lies in between
the two predictions, and often closer to Jmd

c .
Possible reasons for the failure of the prediction of Equations

(7), (9) in the constant external drive scenario (parameterized
by η, cf. section 2) are the break-down of the weak-coupling
assumption, as well as the uncorrelated Poisson assumption for
the input spike trains in the recurrent contribution. In line with
earlier findings (Tetzlaff et al., 2012), we could not identify devi-
ations with respect to coupling strength, however, we observed
clear deviations from the Poisson assumption.

If spiking is Poissonian we expect the interspike intervals to
be distributed exponentially, and the coefficient of variation (CV)
of the interspike intervals (ISI) to be unity. A smaller CV indi-
cates more regular, a larger one more irregular spiking. As can be
seen from Figures 1A–C and 1G–I, activity is spatio-temporally
structured, with locally clustered spiking that can induce signifi-
cant pairwise correlations, and low coefficients of variation of the
interspike intervals for small J (cf. also supplementary material
section S1, Figures S1B,C). In effect, these deviations from uncor-
related Poisson spiking lead to deviations from the Gaussian white
noise approximation underlying the derivation of Equations (5)
and (9), especially for increasing J.

We observe that in particular the excitatory subpopulation
tends to synchronize because of the highly recurrent local struc-
ture and positive feedback, while the inhibitory population
actively desynchronizes itself due to negative feedback (see sup-
plementary material section S1, Figures S3, S4, and Helias et al.
(2013) for a related discussion). Thus, high amplitude volleys of
excitatory input in a balanced background comprised of asyn-
chronous inhibition and external Poisson-drive move the net-
work in a regime that is better captured by the mean-driven
low-noise approximation Equation (11).

Activity in the strongly fluctuation-driven regime, on the other
hand, is much more asynchronous and irregular by construc-
tion, cf. Figures 1D–F with CV[ISI] of unity and larger (see
supplementary material, section S1, Figures S1B,C). When in this
scenario σ[RI] is very large, while μ[RI] is sufficiently subthresh-
old, the prediction for the critical coupling strength Jfd

c from
Equations (7), (9) for linearity to break down indeed appears to
be correct, or even seems to underestimate the actual onset of
pattern formation.

This shallow transition around Jfd
c can be explained by slow

noise-induced transitions between the two degenerate eigenvec-
tors which grow quickest once pattern formation takes place.
However, the fact that the CV is larger than unity will also lead to
deviations from the prediction. In a series of papers Moreno et al.
(2002); Renart et al. (2007) and Moreno-Bote et al. (2008) stud-
ied the impact of deviations of the Poisson-assumption of input
spike trains on the firing rates of neurons. They studied the effect
of positive and negative spike train auto- and cross-correlations

parametrized by the Fano-factor F = σ2[counts]/μ[counts] of
spike counts on the output firing rate of current-based LIF neu-
rons in both the fluctuation- and the mean-driven regime. For
renewal processes the CV of interspike intervals is directly related
to the Fano-factor of counts by F = CV2 (Cox, 1962). In Moreno
et al. (2002); Renart et al. (2007); Moreno-Bote et al. (2008) it
was shown that in the fluctuation-driven regime output rates are
quite sensitive to input noise correlations (parameterized by the
Fano factor), while in the mean-driven regime sensitivity is less
pronounced.

In simulations of ring networks in the strongly fluctuation-
driven case we observe that rates decrease with increasing cor-
relations, while in otherwise equivalent random networks, rates
increase (not shown). So the different recurrent input structure
plays a crucial role for the effective input current and thus net-
work dynamics properties. These differences are often, as here for
ring and grid networks, a direct consequence of complex network
topology, and it is thus important to understand how connectivity
structure translates to single neuron activity, as well as collective
network states. A more thorough analysis of such effects in the
context of firing rate stability in random and spatially structured
networks will be subject of subsequent research.

4.2. IMPACT OF FINITE TIME SCALES
We assumed throughout the manuscript that the system has a
negligible refractory time constant, small delays and instanta-
neous post-synaptic currents (δ-synapses). If these assumptions
are dropped we observe differences especially for the mean-driven
case: for larger delays d in the order of several milli-seconds,
pronounced oscillations can occur that tend to synchronize the
system locally on the order of the footprint (Kriener et al., 2009),
or for very strong external drive also on a population-wide level
(Brunel, 2000). A systematic study of the complex effects of delays
on pattern formation in neural-field-type ring networks of spik-
ing neurons was presented in Roxin et al. (2005). In the network
we analyzed here, noisy delay oscillations mainly perturb develop-
ing patterns and can thus shift the onset of clear pattern formation
to larger Jc.

Similar effects arise in the case of finite refractory time τref.
A larger τref, especially in the presence of oscillations, i.e., highly
coincidental input spiking, decreases the effective network input,
in particular if τref > d, and thus also shifts the input regime. This
can be compensated for by explicitly taking into account τref in
the derivation of the noiseless linearization.

Finally, if synaptic time constants are finite, while total input
currents stay the same, delay oscillations can be smoothened out,
and the effect of absolute refractoriness is decreased. Increasing
synaptic time constants can thus counteract the effect of finite τref

and d.

4.3. SPIKING NETWORKS vs. NEURAL FIELD MODELS
Pattern formation, such as activity bump formation or peri-
odic patterns, is a well-studied phenomenon in ring and toroidal
networks (see e.g., Ermentrout and Cowan, 1979a,b; Ben-Yishai
et al., 1995; Usher et al., 1995; Bressloff and Coombes, 1998, 2000;
Shriki et al., 2003; Marti and Rinzel, 2013). Earlier studies of
periodic pattern formation in spiking neuron networks already
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showed that ring- and grid-networks of mean-driven neurons can
undergo a Turing-bifurcation (Usher et al., 1995; Bressloff and
Coombes, 1998, 2000). In particular, Usher et al. (1995) observed
a dependence on the input level. For weaker, yet suprathreshold
mean input current, activity patches diffuse chaotically across the
spatial extend of the system, while for stronger inputs a stable
spatial pattern develops that relates to the critical eigenmode. We
observe similar dynamics in the networks considered here as well,
if the system is in the intermediate regime. This can be understood
as follows: if the noise component is relatively strong, it shifts
the actual critical coupling strength Jmd

c to higher values Jinter
c

inbetween Jmd
c and Jfd

c . If the system is thus effectively slightly
sub-critical in terms of Jinter

c , input-noise can transiently excite
eigenmodes close to effective criticality, due to Hebbian (Dayan
and Abbott, 2001) or non-normal amplification (Murphy and
Miller, 2009).

To compare our results to the classical work on neural field
models on ring topologies (Ermentrout and Cowan, 1979a,b,
1980) we moreover studied a coarse-grained model that reduces
the N-dimensional system to an effectively two-dimensional one
that is structurally equivalent to the linearized two-population
model presented, e.g., in (Ermentrout and Cowan, 1980) (see
supplementary material section S2) which, however, allows for a
direct quantitative mapping to the spiking network dynamics.

Because of the coarse-graining some of the connectivity details
get lost and thus the critical eigenmode is not identical with that
of the original ring network. Moreover, we observe the impor-
tance of excluding self-coupling in the coarse-grained model: if
that is not excluded the resulting eigensystem looks dramatically
different with nearly completely real-valued eigenvalues.

4.4. IMPACT OF STRUCTURAL NOISE
For the translation-invariant distribution of inhibitory neurons
across a ring topology the eigensystem, and hence the respective
linear stability, can be computed analytically. If inhibitory neu-
rons are however randomly distributed, some parts of the ring will
have a higher, others a lower density of inhibitory neurons, such
that these networks form an ensemble of possible realizations,
most of which are not invariant to translations. The resulting
inhomogeneous rate per neuron in the subcritical regime can still
be predicted well from the linear rate model. However, even when
knowing the dominant eigenvector, it will usually not be peri-
odic, and due to the inhomogeneous input per neuron different
neurons will be at quite different working points. There is inter-
ference between the rate distribution and the dominant mode.
Thus, the activity pattern that evolves in the supracritical regime
is not straightforward to predict.

If the weights are distributed fully randomly across the whole
ring topology irrespective of the identities of the neurons, i.e., in
violation of Dale’s principle, the resulting eigensystems look very
similar to those of corresponding networks with random topolo-
gies. Only a few surviving singular eigenvalues serve to distinguish
the underlying ring from the random topology. This directly
translates to the spiking dynamics: the activity is much more asyn-
chronous than that of Dale-conform networks and most of all
pattern formation can not take place due to the effective lack of
lateral inhibition.

4.5. IMPACT OF NETWORK SIZE
If κ/N is kept constant when varying the network size N the
critical coupling strength in both the mean- and the fluctuation-
driven regime decreases. For example, for N = 10000 and κ =
1000 the critical coupling strength becomes Jmd

c ≈ 0.2 mV for
the mean-driven, and Jfd

c ≈ 0.32 mV for the fluctuation-driven
regime. If the number of synapses per neuron κ is fixed when N
increases, both Jmd

c and Jfd
c hardly change because the maximal

eigenvalue is approximately unaffected by network dilution.
We emphasize that the analysis presented here can be extended

to two-dimensional grid networks in a straightforward manner,
see supplementary material section S3. We conclude by remarking
that the rate model Equation (13) is also a valuable tool to study
the rate dynamics of spatially embedded spiking neuron networks
with e.g., inhomogeneous neuron distribution and distance-
dependent connectivity in the mean-driven regime, allowing for a
treatment of more general networks than commonly studied ran-
dom networks or neural field models. The presented model is in
conclusion a further step in the efforts to find and understand
appropriate descriptions of the high-dimensional spiking activity
in structured networks.
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A. APPENDIX
A1. MODEL AND SIMULATION DESCRIPTION

Table A1 | Model description, simulation paradigm and parameters.

A MODEL SUMMARY

Populations Three: excitatory, inhibitory, external input

Connectivity Ring connectivity with excitatory and inhibitory neurons arranged on the same ring, such that each fifth neuron is inhibitory;
same connection footprint for both populations

Neuron model Leaky integrate-and-fire (LIF), fixed voltage threshold

precise spike timing (Hanuschkin et al., 2010)

Synapse model δ-current inputs (discontinuous voltage jumps)

Input Independent Poisson spike trains

B POPULATIONS

Name Elements Size

E LIF neuron NE = 4NI

I LIF neuron NI

Ex excitatory Poisson input generator one realization per neuron

Ix inhibitory Poisson input generator (only for the fluctuation-driven case) one realization per neuron

C CONNECTIVITY

Name Source Target Pattern

EE E E connect to all excitatory neurons within a given distance on the ring, weight J, delay d

IE E I connect to all excitatory neurons within a given distance on the ring, weight J, delay d

EI I E connect to all excitatory neurons within a given distance on the ring, weight −gJ, delay d

II I I connect to all excitatory neurons within a given distance on the ring, weight −gJ, delay d

Ex Ex E ∪ I independent Poisson spike trains, weight Jx, rate νEx

Ix Ix E ∪ I independent Poisson spike trains, weight −gJx, rate νIx

(Continued)
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Table A1 | Continued

D NEURON AND SYNAPSE MODEL

Name LIF neuron

Type Leaky integrate-and-fire, δ-current input

Subthreshold dynamics τmV̇ (t) = −V (t) + RI(t) if t > t∗ + τref

V (t) = Vres else

RI(t) =
∑N+Next

j=1,i �=j
τmWij

∑
k

δ(t − ti,k − d) + RIx(t) , Wij ∈ {−gJ, 0, J}

Spiking If V (t−) < θ ∧ V (t+) ≥ θ

1. set t∗ = t

2. emit spike with time-stamp t∗

E INPUT

Type Description

Poisson generators Rate νEx, νIx, each generator projects independent realizations to all neurons

A2. APPROXIMATION OF THE SIEGERT FORMULA BY AN
AFFINE-LINEAR INPUT-OUTPUT RELATION

For strong mean drive μ[RI] � θ we can approximate the input-
output relation (10) by an affine linear relationship. In the follow-
ing we assume the firing rate 0 < ν � 1/τref, which is the case for
all relevant regimes, so we can neglect the effect of the refractory
time τref. We use the Ansatz

ν(I) = − (τmLog [1 − θ/(RI)]
)−1 .= a + bRI (A1)

⇔ −τmLog [1 − θ/(RI)]
.= (a + bRI)−1

By taking the derivative with respect to RI on both sides of the last
expression we obtain

− τm

1 − θ/(RI)
θ/(RI)2 = −b (a + bRI)−2 (A2)

θτm

θRI − (RI)2
= −1

a2/b + 2aRI + b(RI)2

Equating the terms in proportion to (RI) and in proportion to
(RI)2 in the denominator fixes the parameters a = − 1

2τm
and

b = 1
θτm

, leading to the approximation

ν(RI)
.= − 1

2τm
+ 1

θτm
RI (A3)

Indeed, to show that for θ � RI

− 1

τmLog
[

1 − θ
RI

] .= − 1

2τm
+ 1

θτm
RI . (A4)

we introduce the auxiliary variable θ/RI =: (1 − x) and compute
the limit

lim
x↗ 1

[
1

Log[x] +
1

1 − x

]
= lim

x↗ 1

[
1 − x + Log[x]
Log[x](1 − x)

]
. (A5)

Both numerator and denominator of this expression tend to zero,
thus we apply L’Hôpital’s rule and obtain for (A5)

lim
x↗ 1

[
1/x − 1

1/x − 1 − Log[x]
]

. (A6)

Again, numerator and denominator tend to zero, thus we apply
L’Hôpital’s rule again and obtain for (A6)

lim
x↗1

[
1/x2

(1 + x)/x2

]
= lim

x↗1

[
1

1 + x

]
= 1

2
. (A7)

This yields (A4).
As a heuristic observation, we note moreover, that in the large-

σo-limit , i.e., σo � μo, the integrand of Equation (5) becomes
basically unity, and the integral thus scales as ν−1

o ∼ √
πτmθ/σo.

In particular we observe that the input-output-relation Equation
(5) for Vres = 0 takes the following linear form in σo:

νo(σo,μo) = 1

τm
√

π

(
σo + μo

θ
− 1

π

)
. (A8)

The input-output-relation of the LIF is thus also linear in σo for
σo � μo, see supplementary material section S4.

A3. EIGENSPECTRUM OF THE RING GRAPH WITH EQUIDISTANT
INHIBITORY NEURONS

We consider graphs, in which each neuron i is connected to
neurons i − κ/2 to i + κ/2, κ even, but not to itself. To keep
analysis simple, we assume that each �-th neuron, N mod � = 0
is inhibitory.
Define T� as the translation operator that shifts all neuron indices
by � such that for every vector v we have

T� v = T�(v0, v1, v2, ..., vN−1)
�

= (v�, v�+1, v�+2, ..., vN−1, v0, ..., v�−1)
� (A9)
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i.e., for the node index n

T�[n] = (n + �) mod N , n ∈ {0, ..., N − 1} . (A10)

T� is a unitary operator and has eigenvalues ϕl and eigenvectors
wl, such that

T�wl = ei αl wl =: ϕlwl , (A11)

with

TN/�
� wl = wl ⇒ αl = 2πl�/N , l ∈ {0, ..., N/� − 1} . (A12)

Hence the N/� �-fold degenerated eigenvalues of T� are ϕl =
ei2πl�/N , l ∈ {0, ..., N/� − 1}. The eigenvectors wl are discrete
harmonics and fullfil

wl(i+�) mod N
= ϕl wli mod N

. (A13)

We define

C
� � w̃ = (w0, w1, w2, w3, ..., w�−1)

T (A14)

and the map η that embeds the C
� as a subspace into the C

N

η : C
� → C

� ⊂ C
N , w̃  →

�−1∑
i= 0

w̃iei =: ṽ , (A15)

where ei, i ∈ {0, ..., N − 1} are the N canonical basis-vectors
of the R

N and w̃i ∈ C is the i-th vector component of w̃. We
moreover define the operator family Pl, l ∈ {0, ..., N/� − 1}

Pl : C
� ⊂ C

N → C
N , ṽ  →

N/�−1∑
j= 0

T
j
� e−i2πjl�/N ṽ . (A16)

We see that (Pl ◦ η) indeed projects into the eigenspaces and is an
isomorphism

Pl ◦ η : C
� → Eig(T�,ϕl) ⊂ C

N (A17)

as can be readily checked:
We see that for each l ∈ {0, ..., N/� − 1}

T�(Pl ◦ η) = T�

N/�−1∑
j= 0

T
j
� e−i2πjl�/N =

N/�−1∑
j= 0

T
j+1
� e−i2πjl�/N

(∗)= ei2πl�/N
N/�−1∑

k= 0

Tk
� e−i2πkl�/N = ϕl(Pl ◦ η), (A18)

where in the equation marked by (∗) we performed an index shift
and used (e−iαT�)

N/� = (e−iαT�)
0.

Linearity:

∀v, w∈C�, a∈C (Pl ◦ η)(a w) = a (Pl ◦ η)w and (Pl ◦ η)(w + v)

= (Pl ◦ η)w + (Pl ◦ η)v (A19)

Injectivity:
Ker (Pl ◦ η) = {0}

Surjectivity:

dim [(Pl ◦ η)(C�)] = dim [Eig(T�, ϕj)] = � .

Now, we can calculate the spectrum of W . Due to [W , T�] = 0, i.e.,
W and T� commute, we can diagonalize both matrices, such that
they have a common system of eigenvectors. Hence, it is sufficient
to reduce the problem to the �-dimensional vector-space embed-
ded in C

N , spanned by eigenvectors of Eig(T�, eiϕl )|C� , i.e., w̃l, l ∈
{0, ..., N/� − 1}. To obtain the eigenspaces Eig(W ,λl i) we only
need to solve the diagonalization problem for the corresponding
(� × �)-matrices η−1 ◦ W ◦ Pl ◦ η = (Pl W)|C�×� :

(η−1 ◦ W ◦ Pl ◦ η)w̃ = λw̃ (A20)

Once we got the � eigenvalues and eigenvectors {λl,i, w̃l,i} of W
in the respective sub-spaces, the operator Pl ◦ η generates the
corresponding N-dimensional eigenvector wl.

A4. EIGENSYSTEM OF THE REDUCED RING SYSTEM
We now consider a coarse-grained network model where con-
nectivity is defined between C = N/� cells of � neurons each as
depicted in Figure 6A. Each neuron is connected to all other � − 1
neurons within the cell it resides in, as well as to all neurons in
the neighboring 2K = pC cells, yielding block-wise connectivity
matrices as indicated in Figure 7B. We introduce a new global
neuron labeling such that

n = c � + ic, c =
⌊n

�

⌋
, and ic = n mod � (A21)

Symmetries:
The system in invariant to shifts about elementary cells, i.e., for
the cell index n we have again invariance to the operation

T�[n] = (n + �) mod N . (A22)

Moreover, there are two mirror symmetries R and S within each
cell (cf. Figures 6B,C), such that

Rw[n] = Rw[(c�+ic) mod N] =

⎧⎪⎨
⎪⎩

w[(c�+(1−ic)) mod N] if ic ≤ 1

w[n] if ic > 1

(A23)

Sw[n] = Sw[(c�+ic) mod N] = w[(c�+�−1−ic) mod N] (A24)

R and S are operators, such that for the eigenvalues rj and sj,
and for the eigenvectors vj and wj we have R2vj = r2

j vj = vj and

S2wj = s2
j wj = wj. Hence, rj, sj ∈ {−1, 1}. We have three com-

muting operators T�, R, S, i.e.,

[T�, R] = [T�, S] = [S, R] = 0 .
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So, we can find a common basis of eigenvectors to span the com-
plete system. For each wavenumber �i = αiN/2π� one eigenvec-
tor is obviously given by

vI
αi
:=

N/�−1∑
c=0

(e−iαi T�)
cv(�−1)/2 e(�−1)/2 (A25)

where e(�−1)/2 is the (� − 1)/2-th canonical basisvector of the R
N

and (� − 1)/2 is the index of the first inhibitory neuron on the
ring enumerated as in Figure 6, since this dimension does not
couple to either R or S. To get the residual N − NI eigenvectors,
we choose

vE
r,s,αi

:=
C − 1∑
c = 0

(e−iαi T�)
c(1 + sS)(1 + rR)v0 e0 (A26)

with first canonical basis vector e0.
Indeed, we see again that for each c ∈ {0, ..., N/� − 1}

T�(e−iαT�)
c = e−iαc Tc+1

� = eiαe−iα(c+1) Tc+1
� (A27)

= eiα(e−iαT�)
c+1

and (e−iαT�)
C = 1 ,

and

X (1 + xX ) = X + xX 2 = X + x1 = x(xX + 1)

= x(1 + xX ) (A28)

with x ∈ {r, s} and X ∈ {R, S}, so vr,s,α are eigenvectors with
eigenvalues r, s, α. Evaluation of the eigenvectors for the two

possible eigenvalues of R, S each yields

vE
1,1,α =

C − 1∑
c = 0

(e−iαT�)
c((v0, v0, 0, v0, v0, 0, . . . , 0)�

)

vE−1,1,α =
C − 1∑
c = 0

(e−iαT�)
c((v0,−v0, 0,−v0, v0, 0, . . . , 0)�

)

vE
1,−1,α =

C − 1∑
c = 0

(e−iαT�)
c((v0, v0, 0,−v0,−v0, 0, . . . , 0)�

)

vE−1,−1,α =
C − 1∑
c = 0

(e−iαT�)
c((v0,−v0, 0, v0,−v0, 0, . . . , 0)�

)
(A29)

A5. MEAN-FIELD APPROXIMATION OF SMALL-WORLD NETWORKS OF
EXCITATORY AND INHIBITORY NEURONS

Analogous to the mean-field approach developed in (Grabow
et al., 2012) for unweighted networks we will now compute the
eigensystem of the mean-field small world network derived from
the ring network with equidistant inhibition by random rewiring
of edges (Kriener et al., 2009). In this case instead of assigning
explicit weights Wij ∈ {0, J,−gJ} to individual entries of the cou-
pling matrix, all possible connections carry their expected weight
as a function of the rewiring probability pr such that all weights
within the original ring neighborhood are scaled by p1(pr), and all
weights that were 0 in the original ring are set to Wij = p2(pr) J if
j is excitatory, and Wij = −p2(pr) gJ if j is inhibitory, where (cf.
Kriener et al., 2009; Grabow et al., 2012)

p1(pr) = (1 − pr) + p2
r κ

(N − 1 − κ(1 − pr))
(A30)

p2(pr) = pr

(N − 1 − κ(1 − pr))

The resulting average coupling matrix is again invariant with
respect to T� and the eigensystem can be determined exactly as
described in Appendix A3.
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