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Analyses of experimental data acquired from humans and other vertebrates have
suggested that motor commands may emerge from the combination of a limited set of
modules. While many studies have focused on physiological aspects of this modularity,
in this paper we propose an investigation of its theoretical foundations. We consider the
problem of controlling a planar kinematic chain, and we restrict the admissible actuations
to linear combinations of a small set of torque profiles (i.e., motor synergies). This
scheme is equivalent to the time-varying synergy model, and it is formalized by means
of the dynamic response decomposition (DRD). DRD is a general method to generate
open-loop controllers for a dynamical system to solve desired tasks, and it can also
be used to synthesize effective motor synergies. We show that a control architecture
based on synergies can greatly reduce the dimensionality of the control problem, while
keeping a good performance level. Our results suggest that in order to realize an effective
and low-dimensional controller, synergies should embed features of both the desired
tasks and the system dynamics. These characteristics can be achieved by defining
synergies as solutions to a representative set of task instances. The required number
of synergies increases with the complexity of the desired tasks. However, a possible
strategy to keep the number of synergies low is to construct solutions to complex tasks by
concatenating synergy-based actuations associated to simple point-to-point movements,
with a limited loss of performance. Ultimately, this work supports the feasibility of
controlling a non-linear dynamical systems by linear combinations of basic actuations,
and illustrates the fundamental relationship between synergies, desired tasks and system
dynamics.
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1. INTRODUCTION
Richness, flexibility, and adaptability characterize the generation
of movements in many animal species. During the last cen-
tury these features have fascinated many scientists, who started
to investigate the possible mechanisms underlying the observed
motor performance. Although many questions remain open,
today there is a large consensus that motor skills may arise from
a modular and hierarchical organization of the movement sys-
tem (Kargo and Giszter, 2000a,b; Hart and Giszter, 2004; Ting
and McKay, 2007; Bizzi et al., 2008; Kargo and Giszter, 2008;
d’Avella and Pai, 2010). This idea was initially introduced by
Bernstein (1967) in the context of motor redundancy, and it
has then evolved into different, yet related, concepts (Flash and
Hochner, 2005; Giszter et al., 2010). The common denominator
of these ideas is that motor actions emerge from the combination
of a limited set of modules. This strategy would reduce the num-
ber of variables to be controlled, and therefore it might simplify
motor control and learning.

One of the proposed forms of modularity are the so-called
muscle synergies, coordinated activations of groups of mus-
cles (Tresch et al., 1999; Saltiel et al., 2001; d’Avella et al., 2003).

Hypothetically, the central nervous system (CNS) encodes a parsi-
monious set of synergies and combines them in a task-dependent
fashion to generate appropriate motor commands. This hypothe-
sis is typically evaluated by analyzing the spatio-temporal regular-
ities of electromyographic signals (EMG) recorded from a group
of subjects. Decomposition-based techniques, such as principal
component analysis (PCA) or non-negative matrix factorization
(NMF), are used to extract the components that best recon-
struct the recorded dataset. In many cases these components (i.e.,
synergies) appear very similar across different experimental con-
ditions, and therefore they are regarded as an indirect evidence
of the hypothesized neural modularity. This methodology has
been successful in explaining muscle contractions across a wide
range of complex tasks (e.g. running, walking, keeping balance,
reaching and other combined movements) in humans (Ivanenko
et al., 2005; Cappellini et al., 2006; d’Avella et al., 2006, 2008,
2011; Torres-Oviedo and Ting, 2007, 2010), in frogs (Giszter
et al., 1993; Mussa-Ivaldi et al., 1994; Kargo and Giszter, 2000b,
2008; Mussa-Ivaldi and Bizzi, 2000), cats (Ting and Macpherson,
2005; Torres-Oviedo et al., 2006), monkeys (Overduin et al., 2008,
2012), and other species (Dominici et al., 2011). However, the
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results are often descriptive in nature and they do not offer a prin-
cipled investigation of the hypothesized synergy-based control
strategy (Alessandro et al., 2013).

The implementation of muscle synergies within the CNS is
currently under investigation (Bizzi and Cheung, 2013). Recently,
Hart and Giszter (2010) have provided direct evidence that ded-
icated sets of spinal interneurons are associated to the temporal
activations of synchronous synergies in frogs. Experiments with
monkeys (Overduin et al., 2012) and humans (Cheung et al.,
2009b; Clark et al., 2010) suggest that synergies may be organized
in the spinal cord and in the cortico-spinal divergent connectivity,
and that the motor cortex modulates their recruitment. For visu-
ally guided tasks, time-varying synergies might be represented
also at the cortical level; their spatial structure might derive from
divergent corticospinal connectivity or from spinally organized
modules, and their temporal characteristic may originate from
the activation dynamics of the motor cortex (d’Avella et al., 2006,
2008, 2011).

While these studies focus on physiological aspects of the
muscle synergy hypothesis, very little research addresses the the-
oretical foundation of the proposed modular controller. Which
synergies should be employed to execute the desired motor tasks?
How many synergies are needed? How does the dynamics of the
system to be controlled affect the synergy-set? Is there a relation
between the desired tasks and these elementary control modules?
Addressing these theoretical questions would certainly provide a
better understanding of the muscle synergy hypothesis, and might
eventually lead to a computational model to explain the exper-
imental data. In this paper we analyze these aspects from the
perspective of controlling an idealized arm. We formulate con-
trol signals for a planar kinematic chain as linear combinations
of a small set of predefines actuations (i.e., synergies) in accor-
dance with the model of time-varying synergies (d’Avella et al.,
2003). For this purpose we propose the dynamic response decom-
position (DRD), a general tool to find the open-loop controllers
that enable a dynamical system to solve desired tasks (Alessandro
et al., 2012; Carbajal, 2012). Our method initially solves the task in
state variables by interpolation; then, it identifies the combination
of synergies (i.e., actuation) that leads to the closest kinematic
trajectory to the computed interpolant. Additionally we propose
a procedure to synthesize a limited set of effective synergies. In
this manuscript we apply the DRD to point-to-point reaching
tasks, and to via-point movements. Within the latter class of tasks
we analyze two specific scenarios: (1) moving to a desired target
and coming back to the initial posture (i.e., reversal task) and (2)
reaching a desired location, passing though a given via-point (i.e.,
via-point reaching). Our theoretical analysis is independent of
the biological implementation details of muscle synergies; i.e., we
employ a kinematic chain instead of a biologically plausible mus-
culoskeletal model, and DRD is currently not proposed as a model
of the CNS mechanisms underlying muscle synergies. However,
we believe that our results have a general validity as they interpret
the fundamental problem of controlling a non-linear dynamical
system by means of a modular synergy-based controller.

Reversal and via-point reaching movements can be subdivided
in two distinct kinematic phases: from the initial to the inter-
mediate point, and from the intermediate to the final point.

A possible strategy to solve these tasks is therefore to concate-
nate the actuations associated to the two phases; each actuation
is in turn realized as a combination of synergies. This idea is
related to another form of modularity, the composition of move-
ments into sequences of kinematic primitives, or strokes (Flash
et al., 1992; Novak et al., 2003). While this segmentation explains
a vast amount of experimental data, there is no consensus on
whether such strokes effectively reflect a segmented control strat-
egy (Fishbach et al., 2005, 2007). Alternatively they could just
emerge as a result of a possible trajectory optimization (Dagmar
and Schaal, 1999), or even be artifacts of the data analysis.
In these latter cases the actuation could be computed in its
entirety without concatenation. In this manuscript we analyze
both strategies: the concatenation of simple synergy-based con-
trol signals, and the computation of a synergy-based actuation for
the whole task. This investigation provides some computational
insights on the advantages and the disadvantages of these two
approaches, and it offers a proof of concept on how muscle syner-
gies and kinematic modularity might be integrated into a unified
framework.

This paper is organized as follows. In section 2 we intro-
duce the mathematical formulation of DRD, the method that
we employ throughout the paper to synthesize synergies and to
compute task solutions. Section 3 presents the results obtained
for reversal and via-point reaching tasks. Such results are fur-
ther discussed in section 4, where we additionally summarize and
speculate on important aspects of the muscle synergy hypothesis
that are highlighted by DRD; finally we provide some concluding
remarks.

2. METHODS
In this section we introduce the mathematical details of the
dynamic response decomposition (DRD). After some definitions,
we present the core element of the method: a general procedure
to compute actuations that solve generic reaching tasks (see sec-
tion 2.1). Subsequently, in section 2.2, we show how DRD can be
used for the synthesis of a set of synergies.

Let us consider a differential equation modeling a physical
system

D (
q(t)

) = u(t),

where D is a differential operator, q(t) represents the time-
evolution of the configuration variables (their derivatives with
respect to time are q̇(t)), and u(t) is the actuation applied.
Inspired by the hypothesis of muscle synergies, we formu-
late the actuation as a linear combination of predefined motor
co-activation patterns:

u(t) =
Nφ∑

i = 1

φi(t)bi := �(t)b, (1)

where the Nφ functions φi(t) ∈ � are called motor synergies, and
are modulated by the weighting coefficients bi. The notation
�(t) describes a formal matrix where each column is a differ-
ent synergy, and the column vector b encapsulates the weighting
coefficients. If we consider a time discretization, �(t) becomes a
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N dim(q)-by-Nφ matrix, where N is the number of time steps and
dim(q) is the dimensionality of the configuration space. Equation
(1) is essentially equivalent to the model of time-varying syner-
gies (d’Avella et al., 2003), however, in this paper we neglect the
possibility to modulate the onset time of each synergy.

We define dynamic responses (DR) of the set of synergies the
responses θi(t) ∈ � of the system to each synergy (i.e., forward
dynamics):

D(θi(t)) = φi(t) i = 1...Nφ. (2)

with initial conditions chosen arbitrarily.

2.1. THE DYNAMIC RESPONSES DECOMPOSITION
A generic reaching task consists in reaching a final state

(
qT, q̇T

)
from an initial state

(
q0, q̇0

)
in a given amount of time T satis-

fying intermediate constraints called via-points. In the case of a
single via-point defined at time tv, the task can be formalized as
follows:

q(0)
.= q0, q̇(0)

.= q̇0,

q(tv)
.= qv, q̇(tv)

.= q̇v,

q(T)
.= qT, q̇(T)

.= q̇T,

(3)

where
.= indicates a prescribed value, i.e., a point constraint.

Depending on the desired task, more or less requirements can
be imposed. For example a simple point-to-point reaching task
consists only of the constraints defined at t = 0 and t = T.
Furthermore, one could formulate via-point tasks without pre-
scribing any velocity. This would define a class of tasks where the
system is free to traverse the desired positions with any veloc-
ity. In addition, it is also possible to constrain higher order time
derivatives of the configuration vector, e.g. acceleration, jerk, etc.

Controlling a system to perform a given task amounts to
finding the actuation u(t) that leads to an evolution of the
system-variables that fulfills the point constraints (Equation 3).
Specifically, assuming that the synergies are known, the goal is
to identify the appropriate synergy combination coefficients b.
The DRD procedure consists of, first, solving the problem in
kinematic space (i.e., finding an appropriate q(t)), and then com-
puting the corresponding actuation. From the kinematic point
of view, solving the task can be seen as an interpolation prob-
lem; i.e., a set of functions is used to generate a trajectory q(t)
that interpolates the points {qk(tk), q̇k(tk)}k = 0,v,T associated to
the task-constraints (Equation 3); the idea is not to track a desired
trajectory defined a priori, but to find any trajectory that passes
through the points defined by the task. To build this interpolant
one could employ orthonormal polynomials, trigonometric or
Gaussian functions, to mention just a few possibilities. One of the
most salient properties of DRD is that it employs the dynamic
responses of the synergies (given by Equation 2), that is:

q(t) =
Nθ∑

i = 1

θi(t)ai := �(t)a. (4)

The quality of the DRs as building blocks for the interpola-
tion was evaluated in our previous works on planar kinematic

chains (Alessandro et al., 2012) and other dynamical systems
(Carbajal, 2012). As we mentioned before, if time is discretized,
�(t) becomes a N dim(q)-by-Nθ matrix, where Nθ is the num-
ber of dynamic responses. The vector of combination coefficients
a is chosen such that the task constraints are satisfied, obtain-
ing one out of the myriad of possible trajectories that solve the
task. Specifically, this vector is computed by solving the following
linear system of equations:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ1(0) . . . θNθ
(0)

θ1(tv) . . . θNθ
(tv)

θ1(T) . . . θNθ
(T)

θ̇1(0) . . . θ̇Nθ
(0)

θ̇1(tv) . . . θ̇Nθ
(tv)

θ̇1(T) . . . θ̇Nθ
(T)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

a = Ma =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q0

qv

qT

q̇0

q̇v

q̇T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= P. (5)

The matrix M in the left-hand side is called alternant matrix; the
solvability of the problem depends on its rank. If the matrix has
full row rank, any point constraint can be solved. Otherwise, the
possibility to find an exact solution (as opposed to an approxima-
tion) becomes strictly dependent on the specific task. According
to the Rouché-Capelli theorem, if the rank of the alternant matrix
(not necessarily equal to number of rows) is equal to the rank
of the augmented matrix [M|P], where P is the vector of point
constraints, the specific problem can be solved exactly. Section 3
presents some examples. These observations, and their implica-
tions for the hypothesis of muscle synergies, are further discussed
in section 4.

Once a kinematic solution has been found (as a linear combi-
nation of DRs), the corresponding actuation ũ(t) can be obtained
by applying the differential operator (i.e., inverse dynamics);

D (�(t)a) = ũ(t).

Finally, the vector b can be computed by projecting ũ(t) onto the
linear span of the synergy set �. If ũ(t) does not belong to the
linear span of �, the solution can only be approximated in terms
of a defined norm (e.g. Euclidean):

b = arg min
b

||ũ(t) − �(t)b||. (6)

When time is discretized, all functions of time become vectors and
this problem can be solved explicitly using the psuedo-inverse of
the matrix �(t),

�+ũ = �+D (�a) = b. (7)

This equation highlights the mapping between the kinematic
combination coefficients a (kinematic solution) and the synergy
combination coefficients b (dynamic solution):

F = �+ ◦ D ◦ �, (8)

where ◦ denotes composition. Generically, this operator rep-
resents a non-linear mapping F : R

Nθ → R
Nφ , and it will be

discussed in section 4.3.
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To assess the quality of the solution we define the following
measures:
Interpolation error: measures the quality of the interpolant �(t)a
with respect to the task-constraints.

errI =
√∑

k∈K

e2
IPk + e2

IVk

eIPk = ||qk − �(tk)a|| eIVk = ||q̇k − �̇(tk)a||
K = {0, v1, . . . , vn, T}

(9)

where || · || denotes the Euclidean norm, and the difference
between angles are mapped to the interval (−π,π]. The subindex
k identifies the point constraint, i.e., k = 0 for the initial con-
dition, k = vi for the i-th via-point, and k = T for the final
condition. In this work we consider tasks with a single or with
no via-points, i.e., K = {0, v, T} and K = {0, T}, respectively (the
latter case corresponding to simple point-to-point tasks). Note
that errI is not a tracking error with respect to a predefined trajec-
tory, but a measure of the distance between �(t)a and the points
{qk(tk), q̇k(tk)} defined by the tasks.
Projection error: measures the distance between the actuation ũ(t),
that solves the task, and the control signal obtained by the linear
combination of the synergies �

errP =
√∫ T

0
||ũ(t) − �(t)b||2dt. (10)

This error represents the loss caused by projecting the actuation
ũ(t) onto the linear span of the synergies, and is zero only when
the calculated actuation is an element of this span.
Forward dynamics error: measures the quality of the trajectory
q̃(t, b), obtained by applying the actuation �(t)b to the dynam-
ical system (i.e., forward dynamics), with respect to the task
constraints

errF =
√∑

k∈K

e2
FPk + e2

FVk

eFPk = ||qk − q̃(tk, b)|| eFVk = ||q̇k − ˙̃q(tk, b)||
K = {0, v1, . . . , vn, T}

(11)

Similarly to the interpolation error, errF is not a tracking error
with respect to a desired trajectory, but a measure of the distance

between q̃(t, b) and the points defining the tasks. Replacing q̃, ˙̃q,
qk and q̇k with their corresponding end-effector values provides
the forward dynamics error of the end-effector.

Note that the quantities errI and errF provide a cumulative
evaluation of the DRD solution with respect to all the task-
constraints. Mathematically, they represent the Euclidean dis-
tance between the DRD solution and the points characterizing
the task. Since these errors are defined as a sum over quanti-
ties with different units, it could be hard to interpret them from
a physical point of view. To overcome this problem, we present
our results in two ways. On one hand, we present them in terms
of error measures above, which provide a cumulative assessment

of the results simplifying the explanation. On the other hand,
we report the results in terms of the quantities eIPk, eIVk, eFPk,
eFVk, which represent interpolation and forward dynamics errors
with respect to position and velocity constraints independently,
and therefore are susceptible to a physical interpretation. These
quantities will be normalized by factors that provide references
to the obtained results, and that will be defined in the next
sections.

2.2. SYNTHESIS AND DEVELOPMENT OF SYNERGIES
The synthesis of synergies is carried out in two phases: exploration
and reduction. The exploration phase consists in actuating the
system with an extensive set of motor signals �0 to obtain the
corresponding DRs �0. The reduction phase consists in solving
a small set of tasks (that we call proto-tasks, and are defined as
a set of point constraints) in kinematic space, and then comput-
ing the corresponding actuations. The elements of the set �0 are
used to interpolate the proto-tasks as described in Equations (4)
and (5); the obtained trajectories are taken as the elements of the
reduced set �. Finally, the synergy set � is computed by applying
relation (Equation 2), i.e., inverse dynamics, to these kinematic
trajectories. As a result, there will be as many synergies as the
number of proto-tasks (i.e., Nφ = Nθ).

In a nutshell, the synthesized synergies are the actuations solv-
ing the proto-tasks. A legitimate question is: “how do we choose
the proto-tasks?” In principle, the DRD method does not impose
any restriction. However, in order to obtain satisfactory per-
formance, synergies should be able to approximate the desired
actuations. Since the control signals corresponding to similar
tasks are likely to be characterized by similar features, a reason-
able choice is that the proto-tasks belong to class of the desired
tasks (e.g. reversal, via-point reaching). In such a case, the syn-
thesized synergies are actuations solving instances of the desired
class of tasks, and therefore they embed the characteristic features
of the desired control signals. Thus, we expect that appropriate
linear combinations of these synergies are able to approximate the
other actuations belonging to the desired set. In general, the more
similar the proto-tasks are to the tasks to be solved (in terms of
Equation 3), the better the performance of the corresponding syn-
ergies. Section 3.4 provides some examples and addresses these
issues in detail.

Two other aspects that directly influence the quality of the
synergy-based controller are the number of proto-tasks and
their particular instances. To obtain good performance in a
wide variety of tasks, the constraints defining the proto-tasks
should cover relevant regions of the state space. Clearly, an
increasing number of (different) proto-tasks corresponds to a
gradual improvement of the overall performance. However, it
also systematically expands the synergy-set, thus affecting the
dimensionality of the controller. In order to tackle this trade-
off, we propose a procedure that parsimoniously adds a new
proto-task only when and where it is needed: if the perfor-
mance in a desired task is not satisfactory, we add a new
proto-task in one of the regions of the state-space with the
highest projection error. In other words, the new proto-task
is the task with the worst approximated actuation. Note that
the procedure to evaluate the projection error in the entire
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workspace does not involve any actual task execution nor for-
ward dynamics integration, and therefore it is relatively light in
calculation.

3. RESULTS
We apply the methodology described in section 2 to a simulated
planar kinematic chain modeling a human arm [see (Hollerbach
and Flash, 1982) for model details]. In the exploration phase,
we employ an extensive set of motor signals �0 to actuate the
arm model and generate the corresponding dynamic responses
�0. The nature of these signals has a marginal role and it does
not affect the quality of the obtained results (Alessandro et al.,
2012; Carbajal, 2012). Here we use a set of 90 low-pass filtered
uniformly random signals (butterworth with cutoff frequency
of 0.314 rad). We test the performance of the method on three
classes of tasks: point-to-point (section 3.1), reversal (section 3.2),
and via-point-reaching (section 3.3).

3.1. POINT-TO-POINT TASKS
A point-to-point reaching task consists in reaching a final state
from an initial state in a given amount of time. Thus, a task
instance is specified by four two-dimensional point constraints:
initial and final joint angles and velocities. In this section we
restrict our analysis to the subclass of tasks that are character-
ized by the initial position qc (red cross in Figure 1), and that
impose initial and final velocities equal to zero, i.e., q̇T = q̇0 = 0.
The only unspecified constraints are the joint-coordinates of the
target; i.e., since the kinematic chain has two degrees of freedom
(DoF) there are two free task-parameters. Essentially the arm is
required to start from the configuration qc and reach a desired
target with zero velocity. Note that the velocity constraints are
added just to restrict the class of desired tasks, and therefore to
simplify the explanations throughout the paper. The method is
mathematically general, and therefore can also be used to solve
tasks in which these constraints are not imposed.

FIGURE 1 | Salient points of the testing-tasks in end-effector space.

The solid line delimits the workspace of the kinematic chain. For
point-to-point testing tasks, the red cross represents the initial position of
the arm, and the blue dots indicate the final targets. For reversal tasks, the
red cross represents the initial and final position of the arm, and the blue
dots illustrate the intermediate targets. Finally, for the via-point reaching
tasks the red cross indicates the location of the via-point, and the blue dots
represent the initial and the final positions of the arm. In the text, the joint
configuration vector corresponding to the red cross is referred as qc .

After the reduction phase the linear system in Equation (5)
becomes:

⎛
⎜⎜⎝

qc . . . qc

θ1(T) . . . θNθ
(T)

0 . . . 0
0 . . . 0

⎞
⎟⎟⎠ a =

⎛
⎜⎜⎝

qc

qT

0
0

⎞
⎟⎟⎠ , (12)

where θ are the reduced DRs, and qT is the target posture (that
uniquely defines a desired task instance as qc is a fixed value).
Since each element is a two-dimensional column vector, the
extended matrix consists of four non-zero rows; the first two
rows consist of repetitions of the same numerical values (the
components of qc). As a result, an exact kinematic solution is
guaranteed if the rank of the alternant matrix is equal to 3;
i.e., there should be at least three linearly independent columns.
This poses a lower bound on the minimum required number of
DRs and therefore of synergies. However, a higher number of
synergies might be necessary to achieve satisfactory approxima-
tions of the desired actuations, and ultimately to fulfill the task
requirements.

Notice that in order to obtain the alternant matrix described
in Equation (13), the proto-tasks should belong to the same
class of the desired tasks (i.e., point-to-point, starting at qc).
Additionally, the exploration DRs �0 should be able to gen-
erate kinematic solutions that fulfills all the constraints of the
proto-tasks (i.e., zero interpolation error). As it was shown by
Carbajal (2012), for systems with non-linear dynamics this is
likely to happen as the 8-by-90 alternant matrix, built from the
exploration DRs, most probably contains more than eight lin-
early independent columns. Thus any point-to-point task could
be solved.

Figure 2A shows the distribution of the projection error for
an increasing number of synergies, and exemplifies the proposed
procedure to incrementally add new proto-tasks. Initially, two
targets are chosen randomly (top left panel); subsequent targets
are added in the regions characterized by higher projection error.
As it can be seen, the introduction of new proto-tasks leads to
better performance on wider regions of the space, and eventu-
ally the actuations needed to solve any point-to-point task can
be reasonably approximated (errP < 10−2 Nm with seven syn-
ergies). The bottom right panel shows the distribution of the
forward dynamics error of the end-effector obtained with seven
proto-tasks. Comparing this panel with the bottom center one
(projection error with seven proto-tasks), it can be seen that the
forward dynamics error reproduces the distribution of the pro-
jection error, rendering the latter a good estimate of the relative
forward performance across tasks. However, it is important to
stress that, due to the non-linearity of the dynamical system, the
projection error serves only as an heuristic estimate of the actual
error made when executing the task.

Figure 2B shows the trend of the average projection error
(across the targets distributed in the workspace) as a function of
the number of proto-tasks. Depending on the precision required,
more or less proto-tasks can be used. Here we employ seven
proto-tasks to obtain an average projection error < 10−2 Nm.
This means that the actuations to solve any point-to-point task
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FIGURE 2 | Results of point-to-point tasks. (A) Selection of proto-tasks
based on projection error. Each panel shows the kinematic chain in its
initial posture (straight segments), and the distribution of the projection
error over the end-effector space (colored region). The color of each
point indicates the projection error produced to reach a target in that
position. The bottom right panel shows the distribution of the forward
dynamics error of the end-effector using seven proto-tasks (seven
synergies). (B) Average projection error (across targets distributed in the

workspace) as a function of the number of synergies. (C) Evaluation of
the reduction phase for the testing point-to-point tasks. Comparison
between the synthesized synergies (filled circles) and subsets randomly
selected from the exploration-actuations (box-plots). (D) Actuation that
solves the task (continuous lines) and projected (dashed lines) torque,
and interpolated (continuous lines) and executed (dashed lines) joint
trajectories for the tasks with the highest projection error (i.e.,
target 11).

(starting at qc) can be approximated by combining only seven
synergies. The average forward dynamics error errF using seven
synergies amounts to ≈10−2. These results show that a set of
“good” synergies can drastically reduce the dimensionality of the
controller, while maintaining satisfactory performance. Note that
the controller has to “choose” the values of two joint-torques at
each time-step, thus its dimensionality is much higher than the
number of DoF of the system (in fact it is infinite dimensional
if we consider actuations as continuous vector-valued functions
of time). Hence, seven synergies contribute a dimensionality
reduction even if the system has two DoF (Alessandro et al.,
2013).

To further demonstrate that the reduction phase is not trivial,
we compare the errors resulting from the set of seven syn-
thesized synergies, with the errors corresponding to 100 ran-
dom subsets of size seven drawn from the exploration signals.
The testing point-to-point tasks are identified by the 13 tar-
gets depicted in Figure 1. Figure 2C shows that the errors of
the random subsets (box-plots) are always orders of magnitude
higher than the errors of the synergies resulting from the reduc-
tion phase (filled circles). The seven reduced DRs lead to an
alternant matrix with rank equal to 3, therefore any point-to-
point constrain-vector of this class can be interpolated exactly.
As a result, in contrast to the case of random DRs, the obtained
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interpolation error is negligible for all the testing tasks (errI �
10−15 ∼ 0). In terms of projection and forward dynamics error,
the reduced synergies perform about 2–3 orders of magni-
tude better than any random subset. Additionally, they lead to
high task performance (forward dynamics errors in the range
[10−3, 10−2]), yet greatly reducing the dimensionality of the
controller.

Figure 2D exemplifies these results for the testing tasks charac-
terized by the highest projection error (target 11). The difference
between the torque that solves the task ũ(t) (continuous lines)
and that obtained as a linear combination of synergies �b (dashed
lines) is negligible. Similarly, there is negligible difference between
the kinematic solution obtained as a linear combination of DRs
(continuous lines) and the trajectory resulting from the projected
actuation (dashed lines).

A more detailed evaluation of the obtained results is summa-
rized in Table 1, which presents the normalized values of inter-
polation and forward dynamics errors for each task-constraint
separately at the target points (i.e., k = T, see Equations 9
and 11). The errors in position (eIPT and eFPT) are normal-
ized to ||ePM || = 5.02 rad, where ePM is a vector contain-
ing the angular ranges of the two joints (therefore encoding
the maximum position error possible); the errors in velocity
(eIVT and eFVT) are normalized to ||eVM || = 5.70 rad/s, where
eVM contains the peak angular velocities of the two joints
across the kinematic solutions to the 13 testing tasks. As it
can be seen, the very satisfactory maximum normalized val-
ues are 3.62 × 10−4 (i.e., 0.0002 rad, task 12) for position, and
5.13 × 10−3 (0.03 rad/s, task 11) for velocity forward dynamics
errors.

Table 1 | Normalized interpolation (int) and forward dynamics (fwd.

dyn.) errors for each task-constraint of the testing point-to-point

tasks.

Task intT (×10−16) fwd. dyn.T (×10−4)

Pos Vel Pos Vel

1 1.77 2.91 0.23 1.80

2 0.99 3.77 1.14 4.50

3 0.99 0.75 1.34 1.27

4 4.51 0.97 0.96 8.45

5 3.78 2.45 0.22 4.20

6 0.91 1.70 0.64 7.23

7 1.59 3.66 0.48 1.91

8 1.76 2.41 0.86 2.87

9 5.59 2.02 1.13 6.47

10 4.53 6.56 1.05 7.93

11 0 2.98 3.38 51.3

12 0.88 0.25 3.62 2.38

13 2.21 5.39 1.37 28.9

The normalization factors are ||ePM || = 5.02 rad and ||eVM || = 5.70 rad/s for

position and velocity errors, respectively; the rationale behind these factors is

discussed in section 3.1. The errors are evaluated at the time of the target con-

straint T . The expressions pos and vel identify position and velocity constraints,

respectively.

3.2. REVERSAL TASKS
A reversal task consists in reaching a desired target and com-
ing back to the initial position. The tasks considered in this
subsection are characterized by zero velocity at the time of the
constraints, i.e., q̇(0) = q̇(tv) = q̇(T) = 0, and by the initial (and
final) posture placed in the center of the operational space, i.e.,
q(0) = q(T) = qc (red cross in Figure 1). Thus, the only free task-
parameters are the joint-coordinates of the intermediate target
(two parameters). In other words, the agent is required to reach a
certain location with zero velocity (i.e., the via-point), and return
to its initial posture. These reversal tasks have relevance as they
resemble the motion performed for carrying objects to and from
the agent, e.g. reaching for food and bringing it to the mouth, or
picking up a salient object and moving it closer for examination.

After the reduction phase, the linear system of Equation (5)
becomes:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

qc . . . qc

θ1(tv) . . . θNθ
(tv)

qc . . . qc

0 . . . 0
0 . . . 0
0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

qc

qv

qc

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

where θ are the reduced DRs, and qv is the intermediate desired
position (that uniquely defines the specific task instance). For the
same rationale discussed in section 3.1, to guarantee the existence
of an exact kinematic solution for any reversal task belonging to
this class, the rank of the alternant matrix, and therefore the min-
imal number of DRs, should be equal to 3. However, the number
of synergies required to obtain satisfactory values of projection
and forward dynamics errors might be higher.

Like in the case of point-to-point movements, proto-tasks
belong to same class of the desired tasks (i.e., reversal, q0 = qT =
qc), and they are added incrementally. Since the position of the
desired intermediate target is the only unknown, the newly added
proto-task is identified by placing the via-point in the region of
the operational space with the highest projection error. As shown
in Figure 3A, this strategy aims at decreasing the projection error
over the entire configuration space, such that eventually the actu-
ations necessary to solve any reversal task can be approximated
satisfactorily. In particular, eight synergies are enough to obtain
an average projection error errP < 10−2 Nm (see Figure 3B, blue
line), and an average forward dynamics error of ≈ 10−2.

The reduced synergies are compared to 100 subsets of 8 actua-
tions, randomly chosen from the exploration motor signals. The
testing reversal tasks are identified by the 13 intermediate tar-
gets depicted in Figure 1. The results shown in Figure 3C provide
additional evidence that the reduction phase identify effective
synergies: the mean errors of the random subsets (boxplot) are
orders of magnitude higher than those corresponding to the
reduced synergies (filled circles), and the forward dynamics errors
lie in the range [10−3, 10−2], meaning that the 13 approximated
actuations lead to good task performance. Figure 3D depicts the
DRD solution of the task with highest projection error (target 11).
The difference between computed and projected torques, as well
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FIGURE 3 | Results of reversal tasks. (A) Selection of proto-tasks
based on projection error. Each panel shows the kinematic chain in its
initial posture (straight segments), and the distribution of the projection
error over the end-effector space (colored region). The color of each
point indicates the projection error produced to reach that position and
to go back to the initial posture. The bottom right panel shows the
distribution of the forward dynamics error of the end-effector using
eight proto-tasks (eight synergies). (B) Averaged projection error as a
function of the number of proto-tasks for increasingly general classes
of via-point tasks. The least general tasks are reversal motions (blue
continuous line), characterized by two free task-parameters (i.e.,
configuration of the intermediate target). An increase in generality

consists in fixing only the initial posture, while intermediate target and
final position represents free task-parameters (red dotted line). Finally
the most general class (green dashed line) does not fix any posture
(six free task-parameters). The number of synergies required to achieve
the same error increases with the generality of the class of tasks.
These results are discussed in section 3.4. (C) Evaluation of the
reduction phase for the testing reversal tasks. Comparison between the
synthesized synergies (filled circles) and subsets randomly selected from
the exploration-actuations (box-plots). (D) Actuation that solves the task
(continuous lines) and projected (dashed lines) torque, and interpolated
(continuous lines) and executed (dashed lines) joint trajectories for the
tasks with the highest projection error (i.e., target 11).

as the difference between computed and executed trajectories are
negligible, showing the quality of the synthesized synergies.

The values of the normalized interpolation and forward
dynamics error for each task constraints are summarized in
Table 2. The normalization factors, computed as in section 3.1,
are ||ePM || = 5.02 rad, and ||eVM || = 8.20 rad/s, for position and
velocity errors, respectively. The maximum normalized values
of the errors are 1 × 10−3 (i.e., 0.005 rad, task 12, k = T) for

position, and 2.5 × 10−3 (0.02 rad/s, task 11, k = T) for velocity
forward dynamics errors.

3.2.1. Concatenation of point-to-point actuations
Reversal tasks are composed by two kinematically different
phases: from the initial point to the target (center-out), and from
the target back to the initial position (out-center). Therefore,
it should be possible to generate suitable control signals by
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Table 2 | Normalized interpolation (int) and forward dynamics (fwd. dyn.) errors for each task-constraint of the testing reversal tasks.

Task intv (×10−16) fwd. dyn.v (×10−4) intT (×10−16) fwd. dyn.T (×10−4)

Pos Vel Pos Vel Pos Vel Pos Vel

1 1.82 0.86 0.63 0.98 1.78 1.90 4.62 1.31

2 4.42 2.79 0.27 1.25 4.29 3.14 2.76 7.40

3 2.74 1.52 1.18 2.16 3.96 2.13 8.29 10.55

4 1.77 0.20 0.63 0.38 0.66 1.69 5.93 5.82

5 0.99 1.58 0.91 1.47 0.66 2.63 4.13 4.29

6 1.78 0.29 0.80 0.83 2.74 2.24 7.00 4.77

7 2.21 3.15 0.91 1.71 3.45 3.04 3.88 6.83

8 1.98 1.02 0.50 0.57 1.98 0.39 4.08 1.26

9 0.99 1.79 0.46 2.30 6.38 6.50 0.67 2.90

10 0.75 3.21 0.13 2.23 2.43 3.23 1.43 2.08

11 0.46 1.58 1.51 14.05 5.93 7.73 3.92 25.60

12 0.88 2.45 1.44 9.53 4.17 4.74 10.02 5.34

13 1.33 2.23 1.45 2.25 2.69 6.06 5.75 16.55

The normalization factors are ||ePM || = 5.02 rad and ||eVM || = 8.20 rad/s for position and velocity errors, respectively. The errors are evaluated at the via-point (k = v)

and at the final point k = T . The expressions pos and vel identify position and velocity constraints, respectively.

concatenating the actuations associated to the individual point-
to-point tasks. Each of these subtasks are solved by means of DRD.
In the following we explore this possibility, and we compare the
obtained solutions to the results of applying DRD to the entire
reversal tasks.

In order to produce a meaningful solution from the concatena-
tion, at the beginning of the out-center movement all the system
variables (positions, velocities and accelerations) should match
the values obtained at the end of the center-out phase. This con-
dition can be enforced by imposing additional constraints on the
acceleration of the joints. Here we prescribe zero velocity and
acceleration at the end of the center-out tasks, at the beginning
of the out-center, as well as at the target-point of the reversal
tasks. Clearly, any other value would represent an equally suit-
able choice. Additionally, we assign zero velocity at the beginning
and at the end of the reversal movements. Formally, the tasks are
defined as follows:

Center-out

q(0) = qc, q̇(0) = 0,

q(tv) = qv, q̇(tv) = 0, q̈(tv) = 0
(14)

Out-center

q(tv) = qv, q̇(tv) = 0, q̈(tv) = 0,

q(T) = qc, q̇(T) = 0
(15)

Reversal

q(0) = qc, q̇(0) = 0,

q(tv) = qv, q̇(tv) = 0, q̈(tv) = 0,

q(T) = qc, q̇(T) = 0.

(16)

The synthesis of the synergies for each class of tasks follows
the same procedure described in section 2.2 and exemplified in

Figure 3A. We choose the number of synergies for the point-to-
point (six synergies) and for the reversal tasks (seven synergies)
in order to achieve comparable average projection errors across
the 13 testing targets (0.011 for center-out, 0.014 for out-center,
0.016 for reversal tasks as computed by DRD, and 0.013 for the
concatenation of DRD point-to-point solutions). The individual
projection errors are depicted in Figure 4A. For the targets 1–8,
10, and 13, the actuations provided by the concatenation of point-
to-point DRD solutions are better suited than those computed by
applying DRD to the entire tasks. However, the forward dynamics
errors do not always follow the same relation (Figure 4B). As an
example, for the targets 2–7, the entire DRD solution performs
better than the concatenation of the point-to-point actuations.
The relation is, however, kept for targets 1, 8, 10, 11, and 12.
Although these results might seem counter intuitive, they can be
explained by analyzing the forward dynamics errors of the single
center-out and the out-center tasks. It can be noticed that when
the error of the entire DRD reversal solution is lower than any
of the point-to-point errors, the former solution is preferable to
the concatenation-based trajectory (targets 2–7, 9, 11–13). On the
other hand, when the forward errors of both point-to-point tasks
are lower than the error of the entire reversal solution, concate-
nation seems to be a better strategy (targets 1, 8, 10). In most of
the cases, the forward error of the concatenation errFcoc is almost
close to the “sum” of the single point-to-point errors, errFco and
errFoc. In order to conform to the definition of the error (see

Equation 11), this sum is computed as errFcoc =
√

err2
Fco + err2

Foc.

The relation between the forward error of the concatena-
tion and the forward errors of the individual point-to-point
DRD solutions is, in reality, far from trivial. The scenario is
depicted schematically in Figure 5, where the red line repre-
sents a possible solution to a reversal task. Trivially, in the
first part of the movement the trajectory obtained from the
concatenation strategy (dashed line) corresponds to the DRD
solution to the center-out task (dashed green). The actuation
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FIGURE 4 | Comparison between the DRD solutions to the entire testing

reversal tasks (green triangles) and the concatenation of DRD

point-to-point solutions (blue crosses) in terms of projection (A) and

forward dynamics errors (B). The plot also indicates the performance of the
individual center-out (magenta circles) and out-center tasks (red squares), and
the sum of their corresponding errors (black Xs).

corresponding to the out-center task is then applied. Since the
first submotion is affected by errors (i.e., forward error of the
center-out task, eco(tvp)), the system does not lie in the ini-
tial conditions associated to the out-center task (yellow line).
This initial error propagates over the course of the movement
according to the dynamical properties of the system (dashed blue
line), and affects the state at the end of the motion. The resul-
tant final error ecoc(T) is in general different from the forward
error of the DRD out-center solution eoc(T). As a result, the
overall forward error of the concatenation can be higher (e.g.
target 11) or lower (e.g. target 9) than the “sum” of the point-
to-point errors. In theory, due to this effect, applying DRD to
the entire task could lead to better performance than concate-
nating DRD point-to-point actuations even if the error of the
entire solution is higher than both the errors of center-out and
out-center tasks. Such a scenario is, however, not very likely if
the error associated to center-out task is very low (as in our
examples).

In general terms, none of the two methods seems to be
better than the other, however, the following conclusions can
be drawn. The concatenation-based solution accumulates the
errors of the single movement phases. Furthermore, this strat-
egy requires additional conditions on the kinematic variables to
enable the compatibility between the two point-to-point trajec-
tories. On the other hand, the application of DRD to the entire
reversal task requires the definition of adequate proto-tasks. If
these details are not available (the class of desired tasks is too gen-
eral, see section 3.4), the concatenation method might be a viable
alternative. Table 3, summarizes the results of this and the next
sections.

3.3. VIA-POINT REACHING
In this section we show the performance of DRD to solve
via-point reaching tasks. These motions require the agent to
reach a desired final position, passing through a given via-
point. Specifically, in this section we set the via-point to be
the center of the operational space qc (red cross in Figure 1),
and the initial, intermediate, and final velocities to be equal
to zero. The joint-coordinates of initial and final postures,

FIGURE 5 | Schematic representation of the concatenation of DRD

point-to-point solutions. The red line represents a possible exact
solution to a reversal task. The first part of the concatenation-based
trajectory (until the time of the via-point tvp) corresponds to the
individual center-out solution (dashed green line), which is affected by
the forward dynamics error eco(tvp). This error propagates over the
course of the second submovement (dashed blue line), leading to the
final error ecoc(T ). The latter is in general different from the final
forward dynamics error eoc(T ) of the individual out-center movement
(orange continuous line).

Table 3 | Mean projection errors obtained for the testing instances of

reversal and via-point reaching tasks using Nφ synergies.

Reversal Via-point reaching

Error (×10−2 Nm) Nφ Error (×10−2 Nm) Nφ

1st phase 1.1 6 1.2 6

2nd phase 1.4 6 1.4 6

Concatenation 1.3 12 1.5 12

DRD 1.6 7 1.3 17

See text for more details.

q0 and qT , represent the free task-parameters as they can be
chosen arbitrarily to instantiate specific tasks (four parame-
ters). Finally, we prescribe acceleration equal to zero at the
via-point. As described in the previous section, this enables
us to generate meaningful task solutions by concatenating the
actuations corresponding to the two phases of the movement.
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Formally, the desired class of tasks can be described as
follows:

q(0) = q0, q̇(0) = 0,

q(tv) = qc, q̇(tv) = 0, q̈(tv) = 0

q(T) = qT, q̇(T) = 0.

(17)

The synergies are synthesized as described in section 2.2. Since
the parameters q0 and qT can be chosen arbitrarily, the parame-
ter space is four-dimensional. This condition does not affect the
general procedure; i.e., proto-tasks are sequentially added in the
point of the space characterized by the highest projection error.
Figure 6A depicts the averaged projection error (across the targets
distributed in the parameter space) as a function of the number
of synergies.

The synthesized synergies are tested on 18 tasks, the initial and
final positions of which are drawn from the targets in Figure 1.
Figure 6B reports the errors obtained by using 17 reduced syn-
ergies (upward green triangles), and the performance of 100 sets
of size 17 drawn from the exploration signals (box-plots). The
interpolation errors corresponding to the synthesized synergies
are lower than, but comparable to, the mean errors of the ran-
dom sets (≈10−14). This is not surprising since 17 random signals
are likely to produce an alternant matrix with full row-rank, thus
any desired constraint vector can be obtained with negligible
interpolation error. However, it is interesting to notice that the
information added by the reduction phase leads to lower inter-
polation errors. In relation to projection and forward dynamics
errors, the synthesized synergies perform about two orders of
magnitude better than the random signals, providing further evi-
dence that the reduction phase is a valuable procedure. Figure 6C
shows the DRD solution of the via-point reaching task with the
highest projection error (starting at point 10 and arriving at
point 5). Similarly to point-to-point and reversal movements,
the difference between computed and projected actuations, and
the difference between interpolated and executed trajectories are
negligible.

The detailed values of normalized interpolation and forward
dynamics errors are summarized in Table 4. Similarly to the posi-
tion and velocity errors, the acceleration errors are defined as

eIAk = ||q̈k − �̈(tk)a|| and eFAk = ||q̈k − ¨̃q(tk, b)|| (interpolation
and forward dynamics, respectively). The normalization factors,
computed as in section 3.1, are ||ePM || = 5.02 rad, and ||eVM || =
7.05 rad/s, for position and velocity errors, respectively; the errors
in acceleration are normalized to ||eAM || = 61.5 rad/s2, where
eAM contains the peak angular accelerations of the two joints
across the kinematic solutions to the testing tasks. The maximum
normalized values of the errors are 4.2 × 10−3 (i.e., 0.021 rad,
task 10-3, k = T) for position, 6.4 × 10−3 (0.046 rad/s, task 13-1,
k = T) for velocity, and 2.03 × 10−6 (1.2 × 10−4 rad/s2, task 2-8,
k = v) for acceleration forward dynamics errors.

Finally, we compare the use of DRD for solving the entire tasks,
to the concatenation of individual DRD point-to-point solutions.
In the same vein of the reversal tasks, the considered via-point
reaching movements can be composed of an initial out-center
motion (from q0 to qc), followed by a center-out movement (from

qc to qT). The number of synergies is chosen to obtain a compa-
rable mean projection error across the 18 testing tasks. We used
six synergies for both out-center and center-out tasks, and 17
synergies for via-point reaching, leading to the following aver-
age errors: 0.012 Nm for center-out, 0.014 Nm for out-center,
0.013 Nm for via-point reaching as solved by DRD, and 0.015 Nm
for the concatenation. Table 3 summarizes these results.

The yellow downward triangles in Figure 6B indicate the per-
formance of the concatenation strategy. In line with the rationale
in section 3.2.1, this method accumulates the errors of the sequen-
tial point-to-point solutions, resulting in higher values of forward
dynamics and interpolation error. From the point of view of
dimensionality reduction, the concatenation strategy might be
convenient as the number of synergies reduces from 17 to 12 (six
for each movement phase) with a small loss of performance (see
Table 3).

3.4. TASK GENERALITY AND NUMBER OF SYNERGIES
The obtained results show that via-point reaching tasks require a
higher number of synergies than reversal tasks. To achieve a mean
projection error <10−2 Nm, via-point reaching needs at least 17
synergies, and the reversal tasks at least 7. In this section, we pro-
vide a plausible interpretation of this difference, accompanied by
additional results to support our rationale.

For the sake of clarity let us first define the generality of a
class of tasks as the number of its free task-parameters. As dis-
cussed above, the desired class of tasks can be defined by imposing
certain values to the state variables and their derivatives. For
example, the reversal tasks presented in section 3.2 impose zero
velocities, and additionally fix initial and final postures to a spe-
cific point of the configuration space, qc. Although they are
essentially via-point tasks, each instance is defined only by the
position of the desired intermediate target. Thus the generality
of this class of task is 2 as the target is specified by two values (i.e.,
its joint-coordinates). Via-point reaching tasks, as defined in sec-
tion 3.3, fix the position of the via-point to qc, and impose initial,
intermediate and final velocities equal to zero; each task instance
is therefore defined by the desired initial and final postures, thus
the generality of this class of tasks is 4.

The lower the generality of the desired class of tasks, the lower
the variability of the control signals. This observation is exem-
plified in Figure 7, which shows the actuations associated to the
reversal (panel A) and the via-point reaching testing tasks (panel
B). As expected, the actuations in panel A are more regular than
those in panel B. Quantitatively, the mean correlations between
the (absolute values of the) control signals of the shoulder are
0.97 and 0.67 for reversal and via-point reaching, respectively, and
the correlations between the actuations of the elbow are 0.70 and
0.53. The regularities that can be observed in the first phase of
the via-point reaching movements are simply due to the fact that
groups of testing tasks are characterized by the same initial posi-
tion (see the abscissas label of Figure 6B). If this was not the case,
the corresponding mean correlation values would be even lower.

The number of required synergies is strictly related to the pre-
vious observations. Since the proto-tasks belong to the desired
class of tasks (see section 2.2), the reduced synergies are elements
of the set of desired actuation. If the desired control signals are
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FIGURE 6 | Results of via-point reaching tasks. (A) Average
projection error (across via-point reaching tasks with initial and final
positions distributed in the workspace) as a function of the number
of synergies. (B) Evaluation of the reduction phase for 18 testing
via-point reaching tasks; “Start” and “End” indicate the indexes of
the initial and final points, respectively (see Figure 1). The plots also

present the errors obtained by concatenating individual out-center and
center-out DRD solutions (yellow downward triangles). (C) Actuation
that solves the task (continuous lines) and projected (dashed lines)
torque, and interpolated (continuous lines) and executed (dashed lines)
joint trajectories for the tasks with the highest projection error (i.e.,
Start 10, End 5).

characterized by a low degree of variability (e.g. reversal case),
their essential features can be captured by a handful of elements.
Otherwise, a higher number of synergies is required.

To further test the validity of our rationale, we consider three
increasingly more general classes of tasks. The first class (a) con-
sists of the reversal tasks described in section 3.2, in which the
only free task-parameters are the joint-coordinates of the via-
point. The second one (b) fixes only the initial position, while
via-point and final posture can be chosen arbitrarily. Finally,
the third class of tasks (c) does not impose any fixed posture.
Figure 3B shows the trends of the average projection errors as
a function of the number of synergies for the three cases (blue
continuous, red dotted, and green dashed lines, respectively). As
expected, the number of synergies that are needed to obtain a
certain degree of performance increases with the generality of
the class of tasks. The projection error is meaningful only if the
kinematic solution fulfills the task constraints, thus the trends
in Figure 3B should be considered starting from the minimum
number of proto-tasks that guarantees this condition (i.e., three,
five, and six synergies). The oscillations that can be observed for a

smaller number of synergies can therefore be ignored as they are
not representative of task performance in any way.

The effectiveness of the reduction phase is strictly related to the
generality of the desired class of tasks. Very general classes lead
to weakly correlated control signals. Thus, the reduction phase
becomes less useful, and the synthesized synergies will embed
regularities that are solely due to the dynamics of the system.
Additionally, in order to obtain good performance in all the
desired tasks, a large number of synergies will be required. As a
direct consequence, the performance of the synthesized synergies
will approach the performance of generic actuations. To illus-
trate this concept we compare the synergies synthesized for each
of the previous classes of tasks with random sets of exploration
actuations. The latter control signals are not generated through
the process of reduction, and therefore they are not expected to
embed any information about the tasks to be solved. We choose
the minimum number of synergies that guarantees a mean pro-
jection error <10−2 Nm, i.e., 8, 18, and 24 for classes (a), (b),
and (c), respectively (see Figure 3B). Then we use these groups of
synergies to solve the 13 reversal testing tasks. Figure 8 depicts the
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Table 4 | Normalized interpolation (int) and forward dynamics (fwd. dyn.) errors for each task-constraint of the testing via-point reaching

tasks.

Task intv (×10−16) fwd. dyn.v (×10−4) intT (×10−16

Pos Vel Acc Pos Vel Acc Pos Vel Pos Vel

13 − 9 4.85 6.34 3.73 1.58 17.86 0.0127 1.59 7.90 8.19 38.26

2 − 4 5.16 4.12 0.27 11.79 24.88 0.0201 2.50 4.02 19.53 17.86

10 − 5 3.43 3.66 0.66 10.90 19.31 0.0117 1.33 5.20 35.56 28.91

12 − 6 3.65 0.78 2.67 9.87 12.55 0.0051 3.32 2.60 5.71 11.39

3 − 5 2.66 2.09 0.57 3.41 1.12 0.0001 2.50 2.91 10.93 9.66

1 − 9 3.19 1.42 2.17 3.41 5.05 0.0011 0.88 7.14 8.94 21.68

13 − 7 6.38 6.13 1.78 1.33 10.89 0.0065 1.82 3.59 4.71 5.62

2 − 12 5.93 4.24 1.91 7.20 11.63 0.0042 2.70 5.28 22.32 13.66

10 − 3 2.59 3.47 0.80 11.64 24.35 0.0189 1.11 9.02 42.07 61.72

12 − 2 2.83 2.88 2.58 1.70 17.67 0.0099 1.77 5.78 11.47 15.36

3 − 8 4.42 2.24 0.48 7.42 8.21 0.0023 1.11 1.76 3.54 4.99

1 − 7 0.22 3.02 0.54 0.71 7.84 0.0019 2.38 3.81 15.40 6.14

13 − 1 6.53 6.39 2.34 2.63 20.00 0.0190 4.53 4.86 31.77 64.69

2 − 8 6.25 4.53 0.47 11.59 25.12 0.0203 3.07 2.69 5.25 4.44

10 − 11 1.89 3.20 2.68 8.71 14.96 0.0073 0.83 17.83 18.40 22.30

12 − 4 2.59 0.76 2.11 10.23 11.06 0.0039 3.32 7.12 5.50 10.91

3 − 11 5.16 1.69 3.13 2.26 3.76 0.0005 1.25 9.98 5.42 4.22

1 − 10 2.50 3.77 1.01 1.93 1.25 0.0001 4.45 5.00 11.79 34.46

The normalization factors are ||ePM || = 5.02 rad, ||eVM || = 7.05 rad/s and ||eAM || = 61.5 rad/s2 for position, velocity and acceleration errors, respectively. The errors are

evaluated at the via-point (k = v) and at the final point k = T . The expressions pos, vel, and acc identify position, velocity, and acceleration constraints, respectively.

difference between the mean projection errors obtained by using
the random sets eri, and the projection errors corresponding to
the three sets of synergies esi (i.e., Ii = eri − esi for each class i).
As expected, this difference reduces for increasingly more general
tasks.

4. DISCUSSION
We performed an analysis of the muscle synergy hypothesis from
a computational perspective; i.e., the control of a planar kine-
matic chain through linear combinations of a limited set of torque
profiles (motor synergies). We proposed the DRD as a tool to
generate appropriate synergy-based controllers and to synthesize
an effective set of synergies; such a tool has been tested to solve
point-to-point and via-point tasks. DRD generates a kinematic
solution by combining the dynamic responses of the synergies,
and it employs inverse dynamics to compute the corresponding
actuation; this control signal is finally approximated by a linear
combination of synergies. The problem of finding a kinematic
solution is therefore reduced to a simple interpolation, and the
associated combination of synergies is obtained by projection.
The quality of the obtained controller (and ultimately the task
performance) depends on the set of synergies used.

Although our approach involves many assumptions and sim-
plifications, we believe that it highlights important theoretical
aspects of the muscle synergy hypothesis. First, we have pro-
vided direct evidence to the possibility of controlling a non-linear
dynamical system by linear combinations of a parsimonious set
of basic actuations; these scheme can result in good performance
across many instances of the desired class of tasks. Hence, we

support the paradigm of muscle synergies as a possible CNS
principle to simplify motor control and learning. Furthermore,
our results suggest that, in order to realize an effective and low-
dimensional controller, synergies should embed features of the
system dynamics and the desired class of tasks. Within the DRD,
the information on the system dynamics is captured by the DRs
(i.e., trajectories of the system variables under the actuation of
each synergy), and that on the desired class of tasks is obtained
by means of the reduction procedure (i.e., solving a represen-
tative set of proto-tasks). The beneficial effect of this approach
is visible from two perspectives: at the kinematic level, it leads
to an alternant matrix that can generate the desired constraint
vectors (see Equations 12 and 13); at the actuation level, it pro-
vides samples of the desired control signals (see Figure 7). As a
result, the obtained synergies over-perform hundreds of arbitrary
choices of basic controllers taken from the exploration motor
signals.

The number of required synergies to achieve a given perfor-
mance depends on the generality of the desired class of tasks
(i.e., number of free task-parameters); general tasks (e.g. via-
point reaching) require more synergies than highly specific ones
(e.g. reversal). These considerations further confirm that syner-
gies are strictly tailored to the class of tasks to be solved. The
mathematical formulation of DRD shows a clear non-linear rela-
tionship between kinematic and actuation modularity, that is
directly intertwined to the dynamics of the system. Our analysis
on the concatenation of synergy-based controllers to solve via-
point tasks is directly related to the notion of kinematic primitives
(Flash et al., 1992), and it represents a control scheme that, for the
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FIGURE 7 | Actuations corresponding to the testing reversal and

via-point reaching tasks. Since the via-point task is more general, the
corresponding control signals (right) are less correlated than the reversal
ones (left). This is particularly visible in the second phase of the movement
(after the dashed vertical line that marks the time of the via-point). See text
for more details and for the values of the correlation.

FIGURE 8 | Difference between the mean projection errors obtained by

using the random sets, eri, and the projection errors corresponding to

three sets of synergies, esi (i.e., Ii = eri − esi for each set i), for solving

the reversal testing tasks. The sets of synergies correspond to
increasingly more general classes of tasks; i.e., two, four, and six free
task-parameters (right diagonal blue, green, and left diagonal red bars,
respectively). This difference reduces for increasingly more general tasks,
showing that the effectiveness of the reduction phase decreases as the
actuations become less regular.

first time, integrates this form of modularity together with muscle
synergies. The obtained results show that the concatenation
method accumulates the errors of the individual submotions. On
the other hand, the application of DRD to the entire via-point task
requires the definition of well specified proto-tasks. If the class
of task is too general, concatenation could be a viable strategy to
keep the number of synergies low (see Table 3).

The usage of a kinematic chain rather than a muscle-driven
skeletal model is a simplification in our work that is worth

discussing. This simplification implies the definition of control
signals (and therefore synergies) in the space of joint torques, and
not in muscle activation space. In a musculoskeletal system, the
non-linear relation between torques and kinematic variables is
complemented by the additional non-linear dynamics that trans-
lates muscle activations into joint torques. The total mapping
between muscle activations and kinematic variables is non-trivial.
The chain of the two non-linear relations might either compen-
sate each other, resulting in overall milder non-linearities, or
form an even stronger one. A more detailed model could also
bring into play other effects, for example the preflex dynami-
cal properties of muscles, which might themselves correct mild
external disturbances, stabilizing the overall system. In any case,
our mathematical framework aims at capturing the fundamen-
tal theoretical problem behind the muscle synergy hypothesis;
i.e., the possibility of controlling the output variables of a non-
linear dynamical system (i.e., kinematic chain or musculoskeletal
model) by means of a linear input strategy (i.e., linear combi-
nation of torque or muscle synergies). Thus, although muscle
synergies may emerge from the interaction between neural as
well as biomechanical constraints (Ting and McKay, 2007), we
believe that the findings of this work (see section 4.1) are qualita-
tively valid also for realistic musculoskeletal models. Nevertheless,
quantitative details such as the obtained number of synergies and
their waveforms are strongly intertwined to the dynamical system
used. We intend to evaluate DRD in more biologically plausible
systems in future developments of our work. In what follows we
are going to discuss our work in relation to the current debate on
muscle synergies (sections 4.1 and 4.2), and to the field of robotics
(section 4.3).

4.1. COMPUTATIONAL INSIGHTS ON THE MUSCLE SYNERGY
HYPOTHESIS

Many studies in experimental neuroscience analyze the validity
of the muscle synergy hypothesis solely in terms of the accuracy
in approximating recorded EMG signals (d’Avella et al., 2003;
d’Avella and Bizzi, 2005; Torres-Oviedo and Ting, 2007; Cheung
et al., 2009a; Torres-Oviedo and Ting, 2010). This measure is
equivalent to our projection error, and it does not explicitly quan-
tifies the quality of the synergy-based controller. The introduction
of complementary measures, similar to the forward dynamics
error, would provide a direct evaluation of task performance,
and therefore they could shed new lights on the hypothetical
modularity of the CNS (Alessandro et al., 2013; Delis et al., 2013).

In this vein, some researchers introduced the concept of func-
tional synergies, i.e., the components of an extended dataset that
includes muscle activations as well as measurements of task vari-
ables (e.g. joint angles, end-limb force) (Torres-Oviedo et al.,
2006; Chvatal et al., 2011). As a result, each component consists
of two elements: a pattern of muscle contractions, and the cor-
responding evolution of the task variables. Such an approach is
not too different from the idea behind DRD: synergies are asso-
ciated to their DRs (i.e., biomechanical functionalities), which
are linearly combined to obtain the kinematic solution of the
task. However, the identification of functional synergies by means
of non-negative matrix factorization (NMF), implies that mus-
cle synergies and their biomechanical functionalities are scaled
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by the same coefficients. This contrasts with our theoretical
results, which show a non-linear relationship (the mapping F ,
see Equation 8) between the mixing weights of the synergies
and those of the DRs. Ideally, one should go beyond the use of
NMF, and develop novel techniques that do not impose a linear
mapping between the two sets of coefficients.

The mapping F points out a fundamental non-linear relation-
ship between kinematic and actuation modularity. More gener-
ally, this result applies to any groups of variables that are related
to each other by a non-linear differential operator like D (e.g.
kinematic and muscle variables, muscle excitation and activation,
neural and muscle activation). However, linear forms of modu-
larity have been investigated both at the kinematic (Berret et al.,
2009) and at the muscle activation level (d’Avella et al., 2006).
Our result suggests that these modularities cannot coexist; i.e.,
if one level of variables is bounded to a linear set (e.g. kine-
matic variables in our work), the other level of variables can at
most be approximated linearly, but they intrinsically belong to a
non-linear space (e.g. torque). Alternatively, additional processes
might linearize the system dynamics as suggested by Berniker
et al. (2009) and Nori (2005).

The fact that synergies and DRs are related through the
dynamics of the system has another important implication. Since
the former are feasible kinematic solutions to the proto-tasks,
the obtained synergies can always be realized as actuations. The
same cannot be said, in general, for synergies identified from
numerical analyses of biomechanical data. Though some studies
have verified the feasibility of the extracted synergies as actuations
(Neptune et al., 2009; McGowan et al., 2010; Allen and Neptune,
2012), biomechanical constraints are not explicitly included in
the extraction algorithms. Additionally, Equation (2) provides an
automatic way to cope with smooth variations of the agent mor-
phology. That is, both the synergies and their dynamic responses
evolve together with the body. In line with Nori (2005), these
considerations highlight the importance of the body in the hypo-
thetical modularization of the CNS.

The mathematical formulation of DRD, and in particular the
system of linear equations (5), shows a clear relation between
the minimum number of synergies and the difficulty of the task.
To guarantee the existence of a kinematic solution, the alternant
matrix should be full-row rank. In other words, the minimum
number of proto-tasks, and therefore of synergies, should cor-
respond to the dimensionality of the task-constraint vector. For
a two-DoF kinematic chain, general via-point tasks consist of
three position and three velocity constraints (each of them is
two-dimensional); thus, at least 12 DRs are required to be able
to solve any task in kinematic space. A highly specified class of
tasks reduces the minimum number of required synergies. For
example, point-to-point and reversal tasks, that are characterized
by two free task-parameters (i.e., location of the target), require
three DRs (instead of 12); for via-point reaching this number
increases to 5 (see section 3). Note that these bounds are solely
based on kinematic considerations; since the dynamical system is
non-linear, they do not necessarily guarantee low values of projec-
tion and forward dynamics error. In fact, as shown in section 3,
the number of synergies that is required to obtain satisfactory per-
formance is certainly higher than the theoretical kinematic-based

estimation. However, this number still follows the principle that
more general tasks require a higher number of synergies (see
Figure 3B and section 3.4).

Our method to synthesize synergies might be interpreted
from a developmental perspective. Initially, the agent explores its
sensory-motor system employing a variety of actuations. Later, it
attempts to solve the first tasks (proto-tasks), perhaps obtaining
weak performance as the exploration phase may not have pro-
duced enough responses yet (see the box-plots in Figures 2C, 3C,
and Figure 6B). If the agent finds an acceptable solution to
a proto-task, such a solution is used to generate a new syn-
ergy (populating the set �), otherwise it continues with the
exploration. The failure to solve important tasks for its sur-
vival, could motivate the agent to include additional proto-tasks;
Figures 2A, 3A illustrate this mechanism. The development of
the synergy-set incrementally improves the overall abilities of the
agent. Alternatively, existing proto-tasks could be modified. It has
to be clear that we are not arguing in any way that this procedure
resembles the mechanisms involved in the motor development
of biological organisms. It is, however, interesting that our pro-
cedure facilitates the autonomous generation of new synergies,
and the possible adaptation of the existing ones to cope with the
changes in the body dynamics (see Equation 2). These features are
in line with the recent findings by Dominici et al. (2011). An alter-
native strategy for synergy development (not implemented in this
paper) might be the concatenation of movement chunks. If the
agent has already developed the synergies to solve point-to-point
tasks, via-point proto-tasks could be solved by the concatena-
tion of point-to-point actuations. As shown in Figures 4B, 6B the
results might not be as good as if the solution were computed ad
hoc (i.e., for the entire via-point proto-tasks). However, inspired
by Sosnik et al. (2004) and Rohrer et al. (2004), one could imag-
ine that such solutions might improve with practice, eventually
leading to appropriate via-point modules.

The concatenation of point-to-point control signals to solve
via-point tasks is based on the observation that movements can
be composed by sequences of kinematic strokes, or submove-
ments. The relation between this form of planning modularity
(Morasso and Mussa-Ivaldi, 1982) and muscle synergies is still
under debate. Possibly, as implemented in our formulation, each
kinematic stroke translates into a combination of time-varying
synergies, and therefore the final movement plan corresponds to
a sequence of mixing patterns. This strategy would be in line with
the hypothesis of an intermittent controller that sequentially ini-
tiates discrete movement primitives (Fishbach et al., 2005; Loram
et al., 2010; Squeri et al., 2010; Karniel, 2013). Submovements
might be combined in time succession (Soechting and Terzuolo,
1987; Meyer et al., 1988), or based on the vectorial summation
of overlapping preplanned trajectories (Flash and Henis, 1991;
Henis and Flash, 1995; Novak et al., 2003; Roitman et al., 2004;
Pasalar et al., 2005). In this manuscript we have exemplified the
former approach; the analysis of the latter by means of DRD is
non-trivial, and it is therefore left for future work. As shown by
recent experimental studies (d’Avella et al., 2011), such a strategy
might enable reusing synergies underlying point-to-point kine-
matic trajectories to generate more complex trajectories involved
in reaching a jumping target. Finally, it is important to notice that
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the kinematic solution to a via-point task appears to be composed
of different movement-chunks even when it is obtained from a
single composition of highly specified synergies. This observa-
tion supports the idea that strokes could just emerge as a result
of the trajectory optimization (Dagmar and Schaal, 1999) or even
be data analysis artifacts.

Our work analyzes the theoretical aspects, rather than the
implementation details, of the muscle synergy hypothesis. As such
DRD does not represent a model of the neural substrates involved
in muscle synergies, and we do not claim that DRD is somehow
implemented within the CNS. In fact, the biological mechanisms
involved in muscle synergies are probably very different from
the mathematical techniques used in this paper. For example,
in our method synergies can be obtained simply by computing
the solution to the proto-tasks; on the contrary, the biological
process of synergy development is very likely to be incremen-
tal, and it spans several years of development (Dominici et al.,
2011). However, some of the functionalities of DRD are not bio-
logically implausible. The computation of a kinematic solution
to a task (see Equation 8) can be regarded as a form of kine-
matic planning, and can be performed by means of a recurrent
neural network (Cichocki and Unbehauen, 1992a,b) that com-
putes the DRs mixing weights a. Interestingly, DRD suggests
that, although muscle synergies are defined at the motor com-
mand level (i.e., muscle activation), they could also be related to
kinematic planning, and that the planning process might be car-
ried out by exploiting knowledge of the system dynamics (in our
framework embedded in the DRs). The non-linear function F is
a mapping between two finite dimensional sets of variables (the
DR weights, expression of the planned trajectory, and the synergy
weighting coefficients b), therefore it can be encoded by means of
a feedforward neural network. Conceptually, this function rep-
resents the neural pathways between the cortical areas related
to planning (Buneo and Andersen, 2006) and the neural sub-
strate where synergies are supposedly located; the outputs of this
function represent the descending neural commands that mod-
ulate synergy recruitments (Ivanenko et al., 2003; Torres-Oviedo
et al., 2006; Ting, 2007; Ting and McKay, 2007; Torres-Oviedo and
Ting, 2010). As a matter of fact, F is a compact form of inverse
dynamical model. Thus, its hypothetical neural implementation
may involve the primary motor cortex (M1), which is know to be
related to dynamical features of the movements (and in particular
to inverse dynamics) (Kalaska, 2009), and the cerebellum, which
is supposedly involved in the neural representation of internal
models (Kawato, 1999; Diedrichsen et al., 2005; Bursztyn et al.,
2006). These considerations are supported by the recent hypoth-
esis suggesting that muscle synergies might be organized both
at the spinal (Hart and Giszter, 2010) and at the cortical level
(Overduin et al., 2012); their spatial structure might derive from
divergent corticospinal connectivity or from spinally organized
modules, and their temporal characteristic may originate from
the dynamics of the recurrent connections of the motor cortex
(d’Avella et al., 2006).

4.2. COMPARISON WITH OTHER COMPUTATIONAL STUDIES
While many studies try to validate or falsify the hypothesis
of muscle synergies, only a few researchers have focused on

developing and testing control architectures based on this con-
cept. Some of these works aim at proposing novel techniques for
robot control, other intend to analyze the hypothesized modular-
ity from a computational point of view. Our work falls into the
second category; in this section we briefly compare it to similar
contributions, in particular to those studies that provide a pos-
sible interpretation of muscle synergies. The reader is referred to
Alessandro et al. (2013) for a more comprehensive review.

Inspired by the original work by Mussa-Ivaldi (1997), Nori
and Frezza (2005) developed a control architecture for non-
linear systems based on the idea of spinal force fields (Giszter
et al., 1993; Mussa-Ivaldi et al., 1994; Mussa-Ivaldi and Bizzi,
2000; Nori, 2005). Relying on the technique of feedback lin-
earization, the method yields a set of synergies that is able to
generate a complete repertoire of movements (i.e., the system can
reach any arbitrary state in an arbitrary amount of time). Thus,
the authors interpreted muscle synergies as a basis of the entire
control action space. Berniker et al. (2009) defines synergies as
the smallest set of input vectors that influences the output of a
reduced-order model of the agent, and that minimally restrict
the commands useful to solve the desired tasks. Practically, this
set is found by optimizing the synergies against a representative
dataset of desired sensory-motor signals. Similarly, Todorov and
Ghahramani (2003) employ an unsupervised learning procedure
to identify muscle synergies from a collection of sensory-motor
data, which is obtained by actuating the robot with random sig-
nals. Their work proposes that synergies are a constituent part of
an inverse model of the sensory-motor system. Another interpre-
tation is given by Marques et al. (2012), who suggest that synergies
solely reflect the biomechanical constraints of the agent.

Similar computational approaches have also been used to test
whether a given model of muscle synergies (or more generally,
a primitive-based controller) is competent to reproduce exper-
imental observations. The comparison between simulated and
experimental data is often performed both at the kinematic and at
the muscle activation level. Furthermore, the role of biomechani-
cal constraints is explicitly taken into account. Hence, employing
biologically plausible models of the musculoskeletal apparatus
becomes necessary. Kargo et al. (2010) have demonstrated that the
model of premotor drives accounts for the kinematic trajectories
and the isometric force fields observed in frog wiping reflex-
ive behaviors (Kargo and Giszter, 2008). In particular they have
showed that realistic wiping trajectories can be obtained simply
by modulating the amplitudes and the phase-shifts of the activa-
tion pulses, without altering the muscle activation balance of each
synchronous synergy. Similar studies have been carried out in the
context of human walking (Neptune et al., 2009; McGowan et al.,
2010; Allen and Neptune, 2012) and balancing in cats (McKay and
Ting, 2008, 2012).

Unlike all those studies, the work presented herein does not
aim at reproducing experimental data, rather it provides a the-
oretical investigation of motor synergies. As discussed in sec-
tion 3.4, our work suggests that synergies can be obtained by solv-
ing well defined control problems. Similar ideas have already been
proposed (Chhabra and Jacobs, 2008; Todorov, 2009; Alessandro
and Nori, 2012; Thomas and Barto, 2012). However, these studies
do not investigate which class of problems are best suited for this
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purpose. In this manuscript we show that these problems (i.e.,
proto-tasks) should belong to the same class of the desired tasks;
this would lead to a compact set of synergies that capture features
of the system dynamics and the desired class of tasks, and there-
fore result in good task performance. Additionally we show a clear
relation between the number of synergies and two characteris-
tics of the task: generality (i.e., number of free task parameters),
and difficulty (i.e., number of constraints). Further, we propose a
possible integration scheme between kinematic stroke and muscle
synergies; to the best of our knowledge no other synthetic study
has tested this idea.

4.3. THE DRD METHOD AND ITS RELEVANCE TO ROBOTICS
In robotics an active field of research focuses on novel mecha-
nisms to generate trajectories (e.g. kinematic patterns or motor
commands) and to learn their representations from given sam-
ples. The frameworks of Dynamic Movement Primitives (DMPs)
(Ijspeert et al., 2013) and Stable Estimator of Dynamical
Systems (SEDS) (Khansari-Zadeh and Billard, 2011) have recently
received particular attention for their stability and invariance
properties. Both methods encode desired trajectories in the
attractor landscapes of appropriately tuned autonomous dynam-
ical systems. While in DMPs this is obtained by modifying the
dynamics of a well known system by mean of a learned forcing
term, SEDS employs Gaussian mixture models (GMM) to iden-
tify the desired attractor landscape from scratch. Also the DRD
can be interpreted as a method to generate kinematic trajectories
and control signals. The former are obtained by linearly com-
bining the DRs (i.e., kinematic solutions to the proto-tasks), and
the latter by linearly combining the synergies (i.e., projections of
the actuations that solve the proto-tasks onto the synergy-span).
A quantitative comparison between our method and dynami-
cal system-based architectures is out of the scope of this paper,
however, the following considerations can be made.

DMPs and SEDS employ advanced machine-learning tech-
niques to learn a representation of externally provided desired
trajectories (e.g. via imitation learning). In contrast, DRD is not
only limited to represent task solutions, but it also provides a
strategy to self-generate them (i.e., planning). Given a set of con-
straints defining the task, DRD finds both a kinematic solution
by interpolation, and the corresponding actuation by projection.
As a result, no desired trajectory has to be provided externally
nor any complex learning procedure is required, instead simple
algebraic operations are used to solve the control problem. These
features are possible mainly for two non-trivial results: (1) the
dynamic responses of non-linear systems are good basis functions
to build interpolant trajectories and (2) the actuations solving the
proto-tasks (i.e., synergies) span a representative set of control
signals.

In terms of generalization, the spatial invariance property of
DMP can be exploited to generate only scaled versions of the
learned movement kinematics (e.g. point-to-point reaching and
reversal tasks). This is not the case for combinations of DRs,
which, for example, can generate via-point reaching movements
that share the same initial and intermediate points, but have dif-
ferent targets (see section 3.3). This kind of generalization could
be obtained by shaping the dynamics of the DMPs by means

of appropriate basis functions that capture common features of
the desired tasks (Rückert and d’Avella, 2013). This idea is in
spirit similar to solving proto-tasks, however, it requires a com-
putationally intense learning phase if compared to our method
to synthesize synergies. The same drawback is experienced by
using SEDS. Furthermore, synergies embed essential features of
the desired control signals, and therefore, unlike DMP and SEDS,
DRD can generalize also at the actuation level.

The main disadvantage of DRD is its explicit time-indexing;
as a result it does not provide an easy strategy to modulate the
velocity of a given movement, and it leads to controllers that are
not robust to time-perturbation. Moreover, at the current stage
DRD does not provide proved stable controller, a feature that can
be enjoyed in DMP and SEDS. These drawbacks could be avoided
by encoding synergies and DRs by means of DMPs. In a sim-
ilar vein, techniques based on mixture of DMPs have recently
been proposed to improve generalization. Outstanding results
have been obtained, however, each primitive has to be learned by
demonstration (Muelling et al., 2010). Using DRD such primi-
tives could be self-generated by means of the procedure to solve
proto-tasks, and then they could be translated into dynamical sys-
tems. In conclusion, DRD and DMP could be combined into a
unified powerful technique that inherit the advantages of both
approaches, rendering the two methods more complementary
than competitive.

In the DRD method, once the task is solved in kinematic space,
the corresponding actuation can be computed using the explicit
inverse dynamical model of the system (i.e., the differential oper-
ator D). It might appear that there is no particular advantage in
projecting this solution onto the linear span of the synergy set.
However, the differential operator might be unknown or affected
by errors; this is very often the case in robotics, where learning
inverse models is still a hot topic of research (Nguyen-Tuong and
Peters, 2011). A synergy-based controller would enable to com-
pute the appropriate actuation by evaluating the mapping F on
the vector a, hence obtaining the synergy combinators b. Since F
is a mapping between two finite low-dimensional vector spaces,
estimating this map may turn out to be easier than estimating
the differential operator D. In order to estimate the map F , the
input–output data generated during the exploration phase (i.e.,
�0 and �0) could be used as learning data-set. The obtained rela-
tion could be instrumental to estimate a first guess of the synergy
set;F and � could then be iteratively modified until convergence.
Further work is required to test these ideas.

5. CONCLUSIONS
The current work analyzes the hypothesis of muscle synergies
from a computational perspective; i.e., the control of a planar
kinematic chain through linear combinations of a limited set
of torque profiles (motor synergies). The proposed DRD is able
to generate effective synergies, greatly reducing the dimension-
ality of the problem, while keeping a good performance level.
In order to obtain good performance across a variety of task
instances, synergies should capture the essential features of the
tasks to be solved, and take the system dynamics into account.
The number of required synergies increases with the generality
of the desired class of tasks. Nevertheless, to keep the number
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of synergies low, solutions to general tasks can be obtained by
concatenating the synergy-based controllers associated to simple
point-to-point movements with a limited degradation of task per-
formance. Overall our work serves as a proof of concept for the
notion of muscle synergies, showing that linear combinations of
actuation modules can be used to control a non-linear dynamical
system. This paper highlights the advantages and the limitations
of this approach, and it draws attention to important aspects that
are not easily accessible in experimental studies.

The future developments of this research point toward dif-
ferent directions. The relations between muscle synergies and
kinematic submovements will be further investigated. In particu-
lar, we will analyze the idea of overlapping point-to-point strokes
(Flash et al., 1992). Another interesting line of investigation is the
validation of our method against biological data, paving the way
toward a predictive model of the muscle synergy hypothesis. To
this end, a first step will be the evaluation of DRD on realistic
musculoskeletal models. From the theoretical point of view, we
are currently studying the mathematical properties of the syn-
ergies synthesized by means of the reduction procedure. Finally,
we plan to tackle the challenge of learning the mapping between
kinematic and synergy coefficients.

The software used to produce all the results reported in this
paper is available as a GNU Octave package under free and open
source license1. The reader is encouraged to download, test, report
bugs and submit improvements to the algorithm.
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