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Bursts of action potentials within neurons and throughout networks are believed to serve
roles in how neurons handle and store information, both in vivo and in vitro. Accurate
detection of burst occurrences and durations are therefore crucial for many studies. A
number of algorithms have been proposed to do so, but a standard method has not been
adopted. This is due, in part, to many algorithms requiring the adjustment of multiple
ad-hoc parameters and further post-hoc criteria in order to produce satisfactory results.
Here, we broadly catalog existing approaches and present a new approach requiring the
selection of only a single parameter: the number of spikes N comprising the smallest
burst to consider. A burst was identified if N spikes occurred in less than T ms, where
the threshold T was automatically determined from observing a probability distribution of
inter-spike-intervals. Performance was compared vs. different classes of detectors on data
gathered from in vitro neuronal networks grown over microelectrode arrays. Our approach
offered a number of useful features including: a simple implementation, no need for ad-hoc
or post-hoc criteria, and precise assignment of burst boundary time points. Unlike existing
approaches, detection was not biased toward larger bursts, allowing identification and

analysis of a greater range of neuronal and network dynamics.
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INTRODUCTION

Bursts of action potentials within neurons and throughout net-
works are believed to serve roles in how neurons handle and
store information, both in vivo and in vitro. Accurate detection of
burst occurrences, durations, and boundaries are therefore cru-
cial for many studies. In vivo studies have linked bursting, also
referred to as “up states” in some cases, to oscillations travel-
ing through brain regions, encoding of sensory input, assisting
transmission of neural information, and markers of disease states
such as epilepsy (Lisman, 1997; Izhikevich et al., 2003; Staley and
Dudek, 2006). The prominent feature of primary central nervous
system cells, cultured in vitro, is global network bursts, which are
interspersed by tonic activity of varying degrees within a portion
of neurons. Burst statistics have been used, for example, to study
how information could become encoded after applying electrical
(Madhavan et al., 2007) or chemical (Eytan et al., 2004; Selinger
et al., 2004) stimulation to induce network plasticity. They have
also been used to judge in vitro developmental stage, whereby
networks transition from sparse uncorrelated spiking until dis-
playing synchronized and aperiodic network bursts of various
magnitudes in a “mature” network after 3—4 weeks (Van Pelt et al.,
2004; Wagenaar et al., 2006). Both in vivo and in vitro, finite and
repeating sets of activity, variously termed motifs or songs or
assemblies, have been identified and proposed to be substrates to
store memory traces (Baruchi and Ben-Jacob, 2004; Tkegaya et al.,

2004; Segev et al., 2004; Harris, 2005; Eytan and Marom, 2006;
Rolston et al., 2007; Kumar et al., 2010).

While a standard method to identify and detect network bursts
has not been adopted, a number of algorithms were proposed
for both in vivo (Legendy and Salcman, 1985; Cocatre-Zilgien
and Delcomyn, 1992; Kaneoke and Vitek, 1996; Elias et al., 2007;
Gourevitch and Eggermont, 2007; Ji and Wilson, 2007; Ko et al.,
2012) and in vitro spike trains (Mukai et al., 2003; Xia et al.,
2003; Segev et al., 2004; Turnbull et al., 2005; Wagenaar et al.,
2005; Selinger et al., 2007; Pasquale et al., 2010; Tokdar et al.,
2010; Pimashkin et al., 2011; Kapucu et al., 2012; Weihberger
et al., 2013). Our working definition of a burst will be a period
of high-frequency occurrences of multiple action potentials inter-
spersed by periods of lower frequency tonic activity. We consider
a network burst as synchronous spikes spatially distributed across
multiple recording channels, including cases when few spikes
occurred per channel. Burst detectors aim to build a border
separating the higher and lower activity regimes. A difficulty
arises because clear borders are not necessarily apparent and
vary between, and even within, preparations. Many detection
algorithms therefore require adjusting multiple ad-hoc param-
eters and further post-hoc criteria in order to produce visually
acceptable results.

The various burst detection algorithms can be broadly cat-
egorized into two classes: (1) those setting a rate-threshold to
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detect bursts whenever the activity rate exceeds a specific value;
(2) those setting an inter-spike-interval or ISI-threshold to detect
bursts whenever the ISI between consecutive spikes is less than
a specific value. Rate-threshold detectors simply bin together
the spike times from all recording channels within a specified
time window in order to create a firing rate histogram. In its
most basic implementation, two parameters need to be set: the
time window and the activity rate threshold. A bursting regime
is then identified whenever the number of spikes exceeds the
threshold (Mukai et al., 2003; Xia et al., 2003; Ji and Wilson,
2007; Pimashkin et al., 2011) or, similarly, whenever the num-
ber of active electrodes exceeds the threshold (Segev et al., 2004).
This method works better for detecting multi-channel network
bursts. This is due to the fact that network-wide spike trains
provide higher signal-to-noise ratios than single-channel spike
trains: spike counts from merged single-channel spike trains sum-
mate to multiplicatively larger values in time windows including
bursts than those during non-bursting periods. The parameters
are usually chosen empirically, in part, because the distribution
of histogram peaks is often continuous. However, for a given time
window, a rate threshold can be automatically set as the spike (or
electrode) count value that separates the peaks in a bimodal prob-
ability distribution of firing rates (Ji and Wilson, 2007), also called
a “discharge density” (Kaneoke and Vitek, 1996). Burst bound-
ary time points are approximated at detection threshold crossings
or via additional threshold settings. Histogram peaks and thresh-
old crossings have been more precisely found by convolving spike
times with Gaussian kernels, a decay function, or other smooth-
ing methods (Xia et al., 2003; Segev et al., 2004; Ji and Wilson,
2007). The tendency to choose “safe” thresholds favors the detec-
tion of larger bursts, which underestimates burst number and
duration.

ISI-threshold detectors consider that periods of low and high
ISIs correspond to spikes occurring within and outside of bursts,
respectively, and analyzing peaks in the probability distribution of
the ISIs can identify appropriate thresholds (Cocatre-Zilgien and
Delcomyn, 1992). The ability to assign boundary time points to
specific spikes offers an advantage over rate-threshold detectors.
At its most basic implementation, the ISI threshold is the only
parameter required and can be automatically selected (Pasquale
et al., 2010). A number of simple and complex methods to guide
ISI threshold selection have been proposed. These are commonly
based on finding valleys in the distributions of plain ISIs or
the logarithm of ISIs or from the discharge density (Kaneoke
and Vitek, 1996; Wagenaar et al., 2005; Selinger et al., 2007;
Pasquale et al., 2010; Kapucu et al., 2012). The latter, actually,
transforms the spike count value separating bimodal probabil-
ity distributions of firing rates, as opposed to that of ISIs, to
an ISI threshold by multiplying its inverse by the time window
used to calculate the firing rates. Often however, a number of
post-hoc criteria are introduced to better fit the data, includ-
ing reintroducing rate-based metrics such as minimum spike
counts or number of channels activated. A separate important
branch of ISI threshold detectors statistically compares recorded
ISIs to what would be expected assuming spike activity behaved
following a model distribution. Burst regimes are then identi-
fied whenever activity exceeds expectations, termed a “surprise.”

The famous Poisson Surprise method was introduced many
decades ago (Legendy and Salcman, 1985) and amended variously
into non-parametric Rank Surprise (Gourevitch and Eggermont,
2007), Robust Gaussian Surprise (Ko et al., 2012), and Pause
Surprise (Elias et al., 2007) methods. Unlike rate-threshold detec-
tors, ISI-threshold detectors typically operate on single-channel
spike trains. Single-channel burst events detected in the first-stage
are then combined together in order to identify network bursts, a
process requiring additional parameters (Wagenaar et al., 2005;
Pasquale et al., 2010). A main reason for the first-stage detection
is because cumulative ISI distributions from multiple channels
tend to average out peaks that would be apparent in probabil-
ity distribution plots of single-channel spike trains. This obscures
the choice of ISI threshold. Any method using a first-stage iden-
tification of single-channel bursts will also be biased toward the
detection of large network bursts: network bursts composed of
synchronized spikes, but with only one or a few spikes per chan-
nel, will be missed during the first-stage. Smaller “spatial” bursts
of action potentials are reminiscent of the concepts of neuronal
assemblies and synfire chains (Abeles et al., 1994; Kumar et al.,
2010), and their detection may therefore be useful.

Our goal was to develop a simple yet robust network burst
detector that does not depend on ad-hoc or post-hoc detection
criteria and is able to detect smaller network bursts. Therefore,
we built an ISIn-threshold detector, where ISIy is the inter-spike-
interval between every N spike instead of every consecutive
spike. The key simple consideration is the fact that the time points
of a set of N consecutive spikes will give a better representation
of a network’s firing rate status than 2 consecutive spikes (i.e.,
ISI). Only one detection parameter is set: the number of spikes N
that compose the smallest network burst to consider. N = 10 was
used throughout this paper and corresponds to approximately
0.1 spikes per recording channel for our setup (126 channels).
However, ISIy-threshold detection can be performed for a wide
range of N for both single-channel and cumulative network spike
trains. Peaks in the probability distribution of ISIy represent-
ing bursting and non-bursting regimes become more and more
apparent for increasing N. The border between burst regimes is
again automatically assigned at the valley between the (logarith-
mic) ISIy peaks. Compared to an ISI threshold, an ISIy threshold
will be easier to identify, produce fewer false-positive detections,
maintain precise assignment of burst boundary time points, and
allow simplification of the detection algorithm. Post-hoc ver-
ification conditions are not required, and, like rate-threshold
detectors, detection can be performed directly on the cumula-
tive network spike train. ISIn-threshold detection is notated as:
if Tir(v—1)—T; <ISIy-threshold, then spikes S; to S;; (w—1) are in
the same burst, where T; is the time of spike S;; Matlab code is
provided as Supplementary Material.

We applied the ISIy-threshold detector to data gathered from
cultures of rat primary neurons and glia grown over complemen-
tary metal-oxide-semiconductor (CMOS)-based microelectrode
arrays (MEA), although the specific choice of recording device
was not critical. From our judgment (see Discussion), the detec-
tor performed well and avoided biasing identification toward
larger bursts. In many cultures, a clear distinction between large
bursts across the majority of channels and smaller bursts across
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a subset of channels was apparent from observing distributions
of the number of spikes or number of contributing channels in a
burst. On the other hand, a continuum of smaller network bursts
existed without a clear cutoff between bursting and non-bursting
regimes. Such bursts would not be reliably identified with existing
detectors, and much diversity in network information processing
may be overlooked if smaller bursts are not considered. While the
ISIy-threshold detector performed well by setting only a single
parameter, additional criteria can improve performance. In par-
ticular, large amounts of intermittent tonic spiking will degrade
the performance of most detectors, and a method to identify
and exclude such channels in an optional preprocessing step is
presented.

METHODS

CELL CULTURING

Techniques have been developed to maintain neural cultures
and conduct experiments for many months (Hales et al., 2010;
Bakkum et al, 2013). Briefly, E18 Wistar rat cortices were
dissociated using trypsin and mechanical trituration. 20k—40k
neurons and glia were seeded over an area of ~12mm? on
top of the CMOS chip. Layers of poly(ethyleneimine) followed
by laminin were used to adhere cells. Plating media consisted

of Neurobasal-B27 supplemented with 10% horse serum and
0.5mM GlutaMAX during the first 24h. Growth media con-
sisted of DMEM supplemented with 10% horse serum, 0.5 mM
GlutaMAX, and 1 mM sodium pyruvate. Cultures matured for
about 1 month prior to experimentation, and experiments were
conducted inside an incubator to control of environmental con-
ditions (36°C and 5% CO,). Burst detection was performed on
9 cultures from 4 platings. Typical network activity is depicted in
Figure 1.

CMOS-BASED MEA AND RECORDING OF NETWORK ACTIVITY

Cortical networks were grown for many weeks over 11,011-
electrode CMOS-based MEAs (Frey et al., 2010; Livi et al,
2010), which provide enough spatial and temporal resolution
to detect action potentials from any neuron lying on the array:
1.8 x 2.0mm? area containing 8.2 x 5.8 um? electrodes with
17.8 wm pitch (3150 electrodes per mm?), sampled at 20 kHz.
Subsets of 126 electrodes can be read-out (and/or stimulated)
at one time, and electrode selection can be re-configured within
a few ms. Custom software on a personal computer, includ-
ing modified Meabench code, a field-programmable gate array
(FPGA), and a microcontroller embedded in a custom circuit
board were used to acquire data (Wagenaar et al., 2005; Muller
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FIGURE 1| (A) Network bursts (indicated in red) of varying durations (channels with gray dots). (B) Locations of the recording electrodes
of coincidental APs (raster dots) recorded across multiple channels. selected in the CMOS-based MEA (see Methods). Gray triangles
The majority of neurons mainly fired together within network bursts  correspond to the channels with gray dots in (A). Scale bar:
(columns of dots), but some also fired “tonically” outside of bursts 200 wm.
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et al., 2013). To identify the locations of neurons growing over
the array, a sequence of about one hundred recording config-
urations were scanned across the whole array while recording
spontaneous activity. To sample network activity, 126 recording
electrodes were arbitrarily selected. Because an action potential
from a single soma can be detected on multiple nearby elec-
trodes, caution is required if configured electrodes are close to
each other: activity from a single soma could be falsely detected
as a small network burst. This case was avoided by maintaining
a minimum inter-recording-electrode distance exceeding the spa-
tial spread of somatic signals (about 40 pm). Alternatively, this
case could be avoided by transforming channel spike trains into
neuronal spike trains via spike sorting techniques (Franke et al.,
2012a,b; Jackel et al., 2012). Matlab R2012a was used for data
analysis.

PROPOSED NETWORK BURST DETECTION ALGORITHM

The proposed ISIy-threshold method to detect bursts is depicted
in Figure2, and Matlab code is provided as Supplementary
Material. To summarize, bursting (low ISIy) and non-bursting
regimes (high ISIy) typically formed two peaks in a histogram
of the base-10 logarithm of ISIy. ISIy is the inter-spike-interval
between every Nth spike in the network. The time points from
all spikes on all channels were combined into a single train and
input to the detector; spatial information about electrode loca-
tions was not incorporated. Negative signals exceeding 5 standard
deviations of the noise were considered to be spikes arising from
somatic action potentials. The border between regimes, or ISIy
threshold, was chosen as the valley between the peaks (or the first
minima for multiple peaks). Setting histogram bin widths to be
equally spaced on a logarithmic scale increases the height of the
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FIGURE 2 | ISl thresholds and burst detection. (A) The probability of sample (50 ws) in order to better visualize the contribution from low ISls.
elapsed times between consecutive spikes (black; ISI) and every Nth spike These would otherwise be plotted on top of each other in discrete lines
(gray) up to every 10th spike (red) are plotted. Elevated firing during network corresponding to multiples of the sampling rate. The inset pie chart shows
bursting corresponds to lower IS|, and the red arrow indicates the threshold the percentage of spikes in each quadrant. Symbols match the spike markers
for burst detection used in Figure 1. (B) The elapsed time between in (C). (C) Detector performance for a segment of network activity. Black
consecutive spikes is plotted vs. the elapsed time between every 10 spikes. pluses and blue squares indicate spikes that would be classified in bursts (red
Histograms correspond to the black and red probability distributions in (A), bars) using an ISIy—1o threshold. Black pluses and cyan circles indicate spikes
and the red and black arrows correspond to the ISl and ISly thresholds in (A).  that would be classified in bursts according to an ISIy—; threshold. Green
For (A) and (B), ISls were jittered by a random value between zero and one triangles indicate spikes outside of bursts for either case.
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non-bursting (high ISIy) peak, providing better discrimination
(Selinger et al., 2007; Pasquale et al., 2010). The user must choose
a single parameter: the number of spikes N that compose the
smallest network burst to consider. Detection is simply: If N con-
secutive spikes occur within a time period equal to or less than the
ISIy threshold, the spikes are assigned to a burst. The burst ends
when this condition is no longer met. Since all spikes are assigned
to be within or outside of a burst, specific time points for the first
and last spikes in a burst are assigned. For this paper, we chose
N = 10 spikes, and identified ISIy thresholds from 1h record-
ings. Channels with high levels of tonic spiking were excluded
prior to analysis as depicted in Figure 5. This corresponded to
between 2 and 10 percent of the recording channels (indicated
by gray markers in raster plots).

EXISTING BURST DETECTION ALGORITHMS USED FOR COMPARISON
Rate-threshold detector

A rate-threshold detector algorithm was adapted from the work of
Ji and Wilson (2007). Specifically, a network burst was detected
if a firing rate histogram with 50 ms or 5ms time windows
exceeded N spikes. Rate-thresholds, N, were automatically set
at the valley between peaks in the spike count (or electrode
count) probability distributions. A 50 ms time window corre-
sponds to the choice by Mukai et al. (2003), who used a sim-
ilar preparation to ours. A shorter time window (e.g., 5ms)
may allow more precise identification of burst start and end
times.

ISI-threshold detector

An ISI-threshold detector algorithm was adapted from pseudo
code provided in a recent and thorough publication by Pasquale
etal. (2010), who also used a similar preparation. In the first-stage
single-channel burst detection, ISI thresholds were automatically
set at a valley between peaks in the (logarithmic) ISI probability
distribution and capped at maximum value of 100 ms. A single-
channel burst was detected if the ISIs of 5 consecutive spikes were
each less than the ISI threshold. Network bursts, or a “burst of
bursts,” were detected using the same algorithm but on burst
events instead of spikes. A post-hoc criterion of a minimum num-
ber of activated channels per network burst was specified as 20%
of the recording channels. This corresponds to 25 channels in our
array, but a value of 10 channels was used to improve consistency
with the ISIy—1o-threshold detector.

Rank surprise detector

The non-parametric Rank Surprise algorithm was acquired from
Matlab code provided with the original publication by Gourevitch
and Eggermont (2007). As data in the original paper were
recorded in the cortex of an anesthetized cat in vivo, two default
parameters were changed to improve consistency with the other
detectors: The minimum number of spikes and maximum ISI
within a burst were changed to 5 spikes and 100 ms, respectively.
However, the default values of 3 spikes and the 75th percentile
of ISI produced similar results. A method to identify network
bursts was not provided. Therefore, we identified a network burst
simply whenever at least 10 single channel bursts overlapped
temporally.

RESULTS

Bursts were identified in 1-h recordings of spontaneous activity
from primary cortical cultures using the ISIy-threshold detec-
tor with N = 10 (see Methods). Figure 1 shows typical neuronal
network activity. Bursts showed a variety of sizes and inter-
burst-intervals. Tonic activity commonly occurred in a subset
of channels to varying degrees. Some channels showed elevated
tonic activity throughout the duration of a recording, while oth-
ers showed intermittent tonic activity. Recording channels were
ordered by the overall firing rate in order to better observe the
occurrence of bursts, indicated by the columns of spikes in the
raster plot.

Channels with action potentials

Network burst width [ms]
=)

10 .1 I2 I3
10 10 10

Network burst size [spikes]

FIGURE 3 | Distribution of burst sizes. Increasing burst size correlated to
increasing number of contributing channels (A) and increasing burst width
(B). Larger bursts covering the majority of channels and smaller bursts
covering a subset of channels are clearly distinguishable by observing
valleys in each of the three histograms.
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The method to find the ISIy—;o threshold used to detect
bursts in Figurel is depicted in Figure2. The deflection in
the probability curve suggests the existence of more than one
type of activity state, such as bursting (low ISIy) and non-
bursting (high ISIy; contributions from tonic activity) regimes.
Increasing N increased the amount of deflection in the curve
(Figures 2A, 4). This will add precision when determining a
threshold and improve performance at the expense of increas-
ing the criterion for the minimum number of spikes per burst.
The ISIn=1¢ threshold was 50 ms for the represented data and
150 &+ 100 ms (mean £ SD) across 9 cultures. For compari-
son, an ISIy—, threshold was approximately 20 ms (Figure 2A,
large black arrow) and 35 £ 45ms (mean + SD) across 9 cul-
tures. The probability distributions and thresholds will depend
on the overall number of neurons and their firing profiles, which
may vary in time. The additional spikes that would be classi-
fied as composing a burst for ISIy—, but not for ISIy=j¢ are
presented as cyan circles in Figures 2B,C. While some of these
spikes appear to be false positives, the close alignment of others
may represent bursts, or perhaps assemblies, with fewer than 10
spikes.

In 6 out of 9 cultures, a clear distinction between large bursts
covering the majority of channels and smaller bursts covering
a subset of channels was apparent from observing distributions
of burst size (number of spikes or elapsed time) or the num-
ber of contributing channels (Figure 3). Small bursts averaged
less than 1 spike per recording channel, indicating they would
be difficult to identify using existing detectors. A continuum of
smaller bursts existed without a clear cutoff between bursting and
non-bursting regimes. This suggests using caution when mak-
ing assumptions about burst dimensions or “surprise” criteria for
burst detection. Considering the small bursts represented 80 per-
cent of all bursts and 10 percent of the spiking for this culture,
much diversity in network information processing may be over-
looked if only large bursts are detected and analyzed. Small bursts

in the other 5 cultures represented 76, 45, 26, 25, and 12% of
all bursts for each culture. From an information theory perspec-
tive, the extreme cases of no neuron or all neurons firing (i.e., the
largest bursts) provide no information content, or only 1 bit if
combined as on and off states. Smaller bursts then theoretically
hold more information content. A previous experiment demon-
strates the utility of small bursts, where electrically evoked bursts
were used to instruct motor output in an embodied cultured
network (Bakkum et al., 2008). Successful goal-directed behav-
ior, based on plasticity in the spatio-temporal burst structure,
was possible only when using a stimulation electrode that evoked
small bursts.

While the ISIy-threshold detector was robust in the pres-
ence of tonic activity, which in fact helped to form the sec-
ond peak and valley in the logarithmic ISIy histograms that
were used to determine the ISIy threshold (Figure4), strong
tonic firing on too many channels may compromise detection
performance. For example, sustained tonic spiking could cause
neighboring bursts to be falsely identified as a single burst.
Also, tonic spiking on multiple channels could produce false-
positive bursts. In any case, channels exhibiting high tonic activity
are readily apparent from a visual inspection of raster plots
(Figure 1). As an optional pre-processing step, these channels
can be excluded. To make exclusion less subjective and more
automated, a method to quantify the amount of tonic activ-
ity on a given recording channel is depicted in Figure 5. Here,
a “tonic firing rate” was calculated by enforcing an arbitrarily
chosen refractory period of 250 ms, whereby any spike follow-
ing within the refractory period was excluded. This filtered out
most spikes occurring during bursts while preserving much of the
tonic spiking occurring between bursts. Channels with high tonic
firing rates corresponded well to visual observations (Figure 5).
A suitable choice of refractory period is longer than the aver-
age ISI of a neuron and shorter than the average inter-burst-
interval.

Excluding tonic channels

Probability [%]

107 10° 10" 10° 10° 10* 10
Network ISL, T, - T,_,_,, [ms]

FIGURE 4 | Valleys in the bimodal ISly probability distributions deepen
with increasing N (light gray to dark gray) or with the inclusion of
channels exhibiting tonic spiking (right panel). The distributions (black,
red, light gray to dark gray) correspond to N equal to 2, 10, 50, 100, 250, 500,
1000, 2000, and 4000. The first peak disappears as N, the minimum burst size

Including tonic channels

Probability [%]

10° 10'_ 10° 10 10
Network ISI, T, - T__,, [ms]

threshold, approaches the maximum burst size (~4000 spikes), which
represents the trivial case of no spikes being within a burst. 8 out of 102
channels were identified as tonic according to the method presented in
Figure 5. The inclusion of tonic channels can improve valley identification with
a tradeoff of increased risk of identifying consecutive bursts as a single burst.
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FIGURE 5 | Quantifying levels of tonic activity. (A) Example network
activity exhibiting bursting (red bars) and channels with high levels of tonic
spiking (gray triangles). Spikes on all other active channels are indicated by
black pluses. (B) The same network activity after introducing an artificial
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refractory period of 250 ms. Spikes during bursting became preferentially
removed. (C) For each channel, the tonic (from B) vs. total (from A) firing rate
is plotted. Channels with elevated tonic firing (gray triangles) match visual
observations in (A) and (B).

DISCUSSION

COMPARISON TO EXISTING DETECTORS

Figures 6, 7 provide a comparison of the ISIy-threshold detec-
tor with detectors representative of the rate-threshold, ISI-
threshold, and surprise methods by Ji and Wilson, Pasquale
et al, and Gourevitch and Eggermont, respectively (Mukai
et al.,, 2003; Gourevitch and Eggermont, 2007; Ji and Wilson,
2007; Pasquale et al., 2010). While the rate-threshold and ISIy-
threshold methods operated directly on the cumulative network
spike train, the ISI-threshold and the Rank Surprise meth-
ods required a first-stage single-channel burst detection step
prior to identification of a network burst (Figures 6B,C). The

ISIy=10 threshold was equal to 140 ms in Figure 6 and 50, 250,
and 350 ms in Figures 7A—-C, respectively. The rate threshold
for a 50ms time window was equal to 8 spikes in Figure 6
and 160, 80, and 10 spikes in Figures 7A—C, respectively. Rate-
threshold detector performance was similar for a 5ms time
window (see Figure8). Refer to the Methods for implemen-
tation details. To compare performance in different culture
preparations, Figure7 contains data from 3 cultures whose
small bursts were, according to the ISIy—jo-threshold detec-
tor, 80, 12, or 0% of the total number of bursts per each
culture. Data from the culture in Figure7A is also presented
in Figures 1-3.
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FIGURE 6 | Performance of the ISIy_1o-threshold detector compared detectors were performed directly on the network spike train. The
to example rate-threshold, ISI-threshold, and Rank Surprise ISI-threshold and Rank Surprise detectors were performed on
detectors. (A) Burst times and durations for each detector (color bars single-channel spike trains in a first stage. The respective single-channel
and legend) applied to the network activity presented in the raster plot burst events in (B) and (C) were then combined in a second stage to
(each marker is one spike). The ISIy—qo-threshold and rate-threshold identify network bursts as described in the Methods.

All methods detected the largest network bursts, and the
ISIy-threshold detector also detected smaller network bursts
(Figures 7A—C; left column). In Figure 7A, 20% of the bursts
detected by the ISIy—jo-threshold method were considered to
be large bursts (c.f. Figure 3). This is consistent with the ISI-
threshold, rate-threshold, and Rank Surprise methods detecting
18, 16, and 11% of the total bursts identified by the ISIn=o-
threshold method, respectively. For Figure 7B, the values were:
88% large bursts; 90, 90, and 76% of the total detected. For
Figure 7C, the values were: 100% large bursts; 100, 100, and
93% of the total detected. The ISI-threshold detector strug-
gled with tonic activity, whereby some bursts had artificially
extended durations that sometimes merged neighbored bursts
(Figure 6). The authors of the ISI-threshold detector acknowl-
edged this situation (Pasquale et al., 2010), and they and others
provided a post-hoc solution described below. Merged bursts
are also possible with the ISIy-threshold detector, especially
when the ISIy threshold is relatively large. The rate-threshold

detector performed well. However, burst durations were con-
sistently underestimated (Figures 7A—C; right column), and the
smallest bursts in a more challenging dataset were not detected
(Figure 8, Supplemental Figure 1). Furthermore, the inability to
accurately assign burst boundaries can be a drawback for some
applications. Interestingly, rate-threshold detection with a shorter
5ms time window underestimated burst duration to a greater
extent (Figure 8). A rate-threshold detector based on the number
of electrodes or the number of (spike-sorted) neurons displaying
activity, as opposed to the number of spikes recorded, produced
similar results (Figure 8, Supplemental Figure 1). Rate-threshold
detector performance will improve with increasing numbers of
recording channels: time windows that contain bursts will sum-
mate to multiplicatively larger values than windows containing
lower frequency tonic activity.

The Rank Surprise method detected the fewest bursts and most
underestimated burst duration (Figure 7). A commonly touted
advantage of surprise methods over other methods is their ability
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FIGURE 7 | An ISly-10-threshold detector identified small-sized bursts, chosen as a reference (x-axis). In this manner, the same burst will be plotted
and measured burst durations were shorter for a firing-rate-threshold or at the same x-location, and its occurrence can be compared across detectors.
a rank surprise detector. (A-C) Each method was applied to 1-h long Detected bursts had shorter durations for the firing-rate-threshold and rank
recordings from 3 cultures that each had different amounts of small bursts. surprise detectors. This was especially noticeable for cases with fewer
The percentage of small bursts out of the total number of bursts, accordingto  short-duration small bursts in (B) and (C) (right column and D). Arrows in (B)
the ISIy=10-threshold detector, were 80, 12, and 0% for (A-C), respectively. correspond to examples of a large and a small burst in (D). (D) Plotted in (D)
Each detector identified the largest bursts, and the 1SIy_1o-threshold are durations of identified network bursts using each method (colored bars;
detector identified smaller bursts (left column). Since different detectors top) and identified first-stage single-channel bursts using the ISI and Rank
assign different durations to the same burst, one detector (ISly_19) was surprise methods (colored raster plots; each dot is a spike).

to assign significance values to each burst. This is indeed a desir-
able feature if detection performs adequately. However, underesti-
mating the number and duration of bursts appears to be inherent
to the algorithm: The underlying Poisson or rank distribution,
or what is “unsurprising,” is created including the “surprising”
spikes that are in bursts. Therefore, spikes in the tails of bursts,
where ISIs are longer than in the burst core, will no longer be “sur-
prising.” In Figures 6, 7D, the tails of bursts are clearly excluded.
This effect will be amplified for preparations with large percent-
ages of spikes occurring within bursts, such as in vitro networks

(90 £ 12% of spikes were within network bursts according to the
ISIy=10-threshold detector; mean + SD, 9 cultures). Lowering
the default threshold for what would be surprising entailed the
detection of more spikes in bursts. However, the smallest bursts
were still not detected, and, at the same time, wide stretches of
tonic activity were now erroneously identified as bursts. Perhaps
improved performance could be achieved by considering more
than one distribution, with one representing a bursting regime,
and then measure “surprise” with respect to modeled ISI distri-
butions of the non-bursting regimes. The durations of the bursts
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FIGURE 8 | Rate-thresholds and burst detection for data presented in
Figure 2. The probability distributions of (A) the total number of spikes or
(B) the total number of electrodes that detected a spike within a time
window between 5 and 50 ms in duration (lines) are plotted. Elevated firing

during network bursting corresponds to higher spike or electrode counts, and
the large arrows indicate the rate-threshold for burst detection used in (C).
(C) Detector performance for a segment of network activity (black dots).
Colored bars indicate detected bursts for each burst detector.

detected with the Rank Surprise and rate-threshold detectors were
35 4+ 15% and 49 + 15%, respectively, of the durations of the
same bursts identified by the ISIy—;9-threshold detector (mean
=+ SD for 9 cultures).

In their most basic form, rate-threshold and ISIy-threshold
(including ISI-threshold) methods offer two sides of the same
coin. The former measures the number of spikes detected within
a fixed window of time while the latter measures how much
time elapsed for a fixed number of spikes to occur. To empha-
size the point, the rate-threshold detector in Figure 6 is related
to an ISIy-threshold detector having an ISIy—g threshold equal
to 50 ms. The choice of number of spikes or time window as a
threshold is arbitrary, but the former creates artificial time points
for burst boundaries at threshold crossings, while the latter allows

the assignment of specific time points for the first and last spike
in putative bursts.

The “discharge density” histograms (i.e., probability distribu-
tions of firing rates) (Kaneoke and Vitek, 1996; Ji and Wilson,
2007) provide a means to flip the coin and automatically deter-
mine both thresholds. By using a fixed firing-rate histogram time
window, the threshold N (number of spikes) was selected at the
valley separating high and low firing rate peaks in the discharge
density plot (c.f. Figure 8). Flipping the coin, the method pre-
sented here can use the N found above to select an ISIy threshold
(c.f. Figure 2). In turn, the ISIy threshold can update the time
window of a new discharge density histogram in order to update
N, thus continuing an iterative process. For our data, N and
the ISIy threshold converged, but whether or not these values
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are optimal for burst detection is debatable. For example for
data presented in Figures1 and 6, the values converged to an
ISIny—260 threshold equal to 200 ms and an ISIy—;7 threshold
equal to 220 ms, respectively. Detection appeared to work well.
However, the small bursts in Figure1 (i.e., less than N = 260)
could no longer be detected, and longer ISIy thresholds led to
some merged bursts. For data in Figure 1, the process appeared to
find the border between large and small bursts (c.f. compare N =
260 to Figure 3). Alternatively, the simultaneous use of multiple
pairs of N and ISIy thresholds is expected to improve detection
performance. A simple example is given in the next paragraph,
where an additional ISIy—, threshold helped to reduce the num-
ber of merged bursts. As a last note, the valleys in the probability
distribution histograms provided an intuitive choice for a bor-
der but are not necessarily optimal. Finding optimal borders,
and similarly precise measures of performance, requires having
a ground truth about when bursts occur, which, unfortunately,
does not exist.

Tonic activity can merge neighboring bursts for ISIy-
and ISI-threshold detectors. Excluding tonic channels in a
pre-processing stage, as discussed in the Results, offers one
solution. Alternatively, merged bursts could be separated in a
post-processing stage by finding time points of lowest firing
between putative bursts as described by (Wagenaar et al., 2005;
Pasquale et al., 2010); this technique is inherently done by rate-
threshold detectors. However, whether or not putative bursts are
distinct or different phases of the same burst was not always
apparent. A further alternative that avoids pre- or post-processing
steps is to introduce a second parameter during burst detection.
For example, an ISIy—, threshold of 20ms (50Hz) effectively
broke into pieces the tonic spike trains, which did not sustain
50 Hz firing rates. Since an ISIy—, threshold may be difficult to
identify (c.f. Figure 2A), such a threshold may need to be adjusted
in an ad-hoc manner for different preparations.

CONCLUSION

A network burst was defined as a period of elevated firing within
or across multiple channels. Creating a network burst detec-
tor then consists of finding appropriate thresholds to separate
periods of low and high firing states. We proposed an ISIy-
threshold burst detector, where ISIy is the inter-spike-interval
between every Nth spike in the network. The ISIy-threshold burst
detector performed well with our data, but we acknowledge that
other detectors may be better suited for other types of data. For
example, the ISIy-threshold burst detector struggled most when
multiple channels exhibited intermittent and irregular activity.
For single neuron bursts, an ISI-threshold burst detector (ISIn=;)
sufficiently distinguishes bursting regimes (Pasquale et al., 2010).

Our approach offered a number of useful features including:
a simple and computationally efficient implementation, no need
for ad-hoc or post-hoc criteria, and precise assignment of burst
boundary time points. The choice of N is not obvious, however,
and could be considered to be an ad-hoc decision based on famil-
iarity with the structure of the spike trains. We chose N = 10 as
it was large enough to demonstrate a deepening of valleys in the
probability distributions (Figure 2A) and small enough to allow
a wide range of burst sizes to be detected. Choosing N equal to

the minimum burst size would give the least sensitivity to tonic
or noisy channels, but a minimum burst size may not be obvi-
ous (c.f. Figure 3). On the other hand, choosing the smallest N
that provides easily separable peaks in the ISIy probability distri-
bution would not bias detection toward larger bursts, allowing
identification and analysis of a greater range of neuronal and
network dynamics.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/Computational
Neuroscience/10.3389/fncom.2013.00193/abstract

Supplemental Figure 1 | Rate-thresholds and burst detection for
spike-sorted data presented in Figures 2 and 8. The probability
distributions of (A) the total number of neurons spiking or (B) the total
number of electrodes that detected a spike within a time window
between 5 and 50 ms in duration (lines) are plotted. Elevated firing during
network bursting corresponds to higher neuron or electrode counts, and
the large arrows indicate the rate-threshold for burst detection used in (C)
and (D). Hundred and two electrodes detected spikes, and from these, 62
individual neurons were manually identified (spike-sorted) based on having
distinct spatio-temporal activity profiles (Franke et al., 2012a). (C)
Histograms of neuron or electrode counts for 5 or 50 ms time windows
for the network activity presented in (D). The rate-thresholds detected in
(A) and (B) are plotted as dotted lines, and a burst is detected whenever a
count exceeds the rate-threshold. (D) Detector performance for a
segment of network activity (black dots). Colored bars indicate detected
bursts for each burst detector.

Supplementary Code | | Matlab code for creating ISly histogram plots in
order to choose an ISly threshold.

Supplementary Code Il | Matlab code for ISly burst detection.
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