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To control targeted movements, such as reaching to grasp an object or hammering a nail,
the brain can use divers sources of sensory information, such as vision and proprioception.
Although a variety of studies have shown that sensory signals are optimally combined
according to principles of maximum likelihood, increasing evidence indicates that the CNS
does not compute a single, optimal estimation of the target’s position to be compared
with a single optimal estimation of the hand. Rather, it employs a more modular approach
in which the overall behavior is built by computing multiple concurrent comparisons
carried out simultaneously in a number of different reference frames. The results of
these individual comparisons are then optimally combined in order to drive the hand. In
this article we examine at a computational level two formulations of concurrent models
for sensory integration and compare this to the more conventional model of converging
multi-sensory signals. Through a review of published studies, both our own and those
performed by others, we produce evidence favoring the concurrent formulations. We
then examine in detail the effects of additive signal noise as information flows through
the sensorimotor system. By taking into account the noise added by sensorimotor
transformations, one can explain why the CNS may shift its reliance on one sensory
modality toward a greater reliance on another and investigate under what conditions
those sensory transformations occur. Careful consideration of how transformed signals
will co-vary with the original source also provides insight into how the CNS chooses one
sensory modality over another. These concepts can be used to explain why the CNS
might, for instance, create a visual representation of a task that is otherwise limited to
the kinesthetic domain (e.g., pointing with one hand to a finger on the other) and why the
CNS might choose to recode sensory information in an external reference frame.
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1. INTRODUCTION
Reaching to grasp an object requires that the CNS compare the
position and orientation of the object with the position and ori-
entation of the hand in order to generate a motor command that
will bring the hand to the object. Depending on the situation, the
CNS might use more than one sensory modality, such as vision
and proprioception, to sense the position and orientation of the
target and of the hand, with each source of information encoded
in its own intrinsic reference frame. This raises the question as to
how the CNS combines these different sources of information to
generate the appropriate motor commands.

One school of thought contends that processes of sensor fusion
for perception can be explained by the tenets of optimal esti-
mation and control. According to the principles of maximum
likelihood estimation, sensory signals that contain redundant
information should be combined based on the expected variabil-
ity of each so as to maximize the probability of producing a value
close to the true value of what is being measured. This concept
has been used with success in recent years to explain how humans
combine different sources of sensory information to generate
robust estimates of the position, size and orientation of external

objects (Landy et al., 1995; Ernst and Banks, 2002; Kersten et al.,
2004; Kording et al., 2007). Of greater interest for us, however, is
the task of reaching an object with the hand, which adds addi-
tional aspects to the process beyond that of simple perception.
The position and orientation of the object and of the hand must
be effectively subtracted at some level, be it to compute a move-
ment vector during task planning or to apply corrective actions
based on real-time feedback during the course of the move-
ment.This aspect of the task immediately brings to mind two
additional issues that must be resolved: (1) To compare the posi-
tion and orientation of two entities, sensory information about
each must be expressed in a common coordinate frame. What ref-
erence frame(s) are used to perform the requisite computations?
(2) The fusion of redundant sensory information might occur at
various stages in the perception-action cycle. Where and how are
the principles of maximum likelihood applied? In this article we
will contrast two possible models of sensor fusion, which we will
call convergent and concurrent, as illustrated in Figure 1 for the
task of hitting a nail with a hammer.

The convergent model shown in Figure 1A reflects the conven-
tional idea that the CNS constructs a single representation of the
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FIGURE 1 | Convergent vs. concurrent models of sensorimotor

integration. The two conceptual models are applied to a case in which
visual (V) and kinesthetic (K) information can be used to estimate the
positions of both the target (T) and the hand (H) that hold the hammer. Red
and blue colors correspond to information encoded in retinal and body
centered reference frames, respectively. (A) In the convergent model the
visual and kinesthetic information about the target (xT,V and xT,K,
respectively) are optimally combined to build a multimodal estimate of its
position (xT). Ditto for the hand/hammer position (xH). The two optimal
estimates are then compared (subtracted) to compute the movement
vector �x. (B) In the concurrent approach the positions of the target and
the hand/hammer are compared simultaneously in visual and kinesthetic
space. The two resulting unimodal movement vectors �xV and �xK are
then optimally combined to compute the multimodal movement vector �x.

target based on all available sensory information. In the example
of hammering a nail, this includes the position of the nail-head in
the visual field and the position of the fingertips holding the nail
as sensed by kinesthesia. Weighting can be used to privilege either
the visual or the kinesthetic information in the estimate of the tar-
get position; ditto for the estimation of the hammer’s position and
orientation, for which both visual and kinesthetic information
are available. The combined representations are then compared in
some reference frame that could be the reference frame intrinsic
to one of the sensory modalities, or it could be some other, more
generalized coordinate system. For instance, kinesthetic infor-
mation could be transformed into retinal coordinates, or both
visual and kinesthetic information could be transformed into a
common reference frame centered on the head or on the trunk
or referenced to external objects (McIntyre et al., 1997; Guerraz
et al., 1998; Henriques et al., 1998; McIntyre et al., 1998; Carrozzo
et al., 1999; Pouget et al., 2002a; Avillac et al., 2005; Obhi and
Goodale, 2005; Byrne et al., 2010). Under this scheme, the CNS
would combine all available sensory information about the target
into a single, optimal representation of its position and orienta-
tion. Similarly, sensory information would be combined to form
an optimal representation of the hand’s position and orientation
in the same general reference frame. The comparison of target
and hand would then be carried out within this general reference
frame and the difference between the two positions would be used
to drive the motor response.

Figure 1B shows the alternative hypothesis by which the CNS
performs a distributed set of concurrent comparisons within each
reference frame first, and then combines the results to form a
unique movement vector (Tagliabue and McIntyre, 2008, 2011,
2012, 2013; McGuire and Sabes, 2009, 2011; Tagliabue et al.,
2013). In the example of hammering the nail, visual information
about the nail-head is compared to visual information about the
hammer while at the same time kinesthetic information about the
hand holding the nail is compared with kinesthetic information
about the hand swinging the hammer. Each comparison is carried
out separately and thus may be carried out within the coordinate
system intrinsic to the corresponding sensory modality. Under
this formulation, a movement is programmed based on an opti-
mal combination of the different movement vectors within each
of the various reference frames. In this way the CNS accomplishes
multimodal sensorimotor coordination in a modular fashion by
performing a number of simpler target-hand comparisons in
parallel.

The purpose of this article is to examine in greater detail these
two hypotheses of convergent versus concurrent comparisons of
target and hand for reaching movements, both at a theoretical
level and through a targeted review of the pertinent literature.
In section 2 we differentiate further the two models at the con-
ceptual level by showing mathematically how the application of
optimal estimation differs between them. Using these equations,
we go on to present the experimental evidence supporting the
hypothesis that the CNS functions according to the concurrent
model. In section 3 we examine the conditions in which the CNS
will transform information from the intrinsic reference frame
of one sensor to the reference frame of another. Key to this
discussion is an assessment of how coordinate transformations
and memory processes affect the variability of the outcome, and
we explicitly take into account how co-variation of transformed
signals affects the choice of weighting. Section 4 examines the
time course of the underlying sensorimotor processes, providing
insight into when sensorimotor transformations are actually per-
formed and, as a corollary, indicating that not only does the CNS
perform multiple comparisons in parallel, it maintains parallel
memory traces in multiple reference frames as well. In section
5 we generalize the concepts of convergent and concurrent pro-
cesses to more than two sensory modalities, and in section 6 we
use these formulations to consider trade-offs between using sen-
sory information encoded in reference frames intrinsic to the
sensors themselves or with respect to extrinsic reference frames
such as the visual surrond or with respect to gravity. In the final
section we describe some specific predictions made by differ-
ent concurrent and convergent formulations and discuss how the
models might be differentiated experimentally.

2. MULTIPLE, CONCURRENT vs. MULTIMODAL,
CONVERGENT

The two models depicted in Figure 1 can be described mathemat-
ically, in the linear case, as a set of weighted sums and differences.
We use here linear formulations because they simplify the equa-
tions and are sufficient to make predictions about how the two
models might differ computationally and experimentally. The
main feature of the convergent model in Figure 1A is that a single
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representation of the target is compared to a single representation
of the hand in the common reference frame, and a movement is
performed that reduces the difference of these two estimates, �x,
to zero. The equation describing this formulation is:

�x = (
wT,VxT,V + wT,KxT,K

) − (
wH,VxH,V + wH,KxH,K

)
(1)

where xT,V and xT,K represent the position of the target detected
by vision and kinesthesia, respectively, xH,V and xH,K represent
the detected position of the hammer in each of those reference
frames, and wT,V, wT,K, wH,V and wH,K are the weights given to
each of these pieces of information. In the concurrent model of
Figure 1B, target and hand are compared in the reference frame
of each sensory modality first, and then the final movement vector
�x is computed as a weighted sum of the individual differences.
This process can be described by the equation:

�x = λV
(
xT,V − xH,V

) + λK
(
xT,K − xH,K

)
(2)

where λV and λK represent the weight given to the comparisons
carried out in each of the two sensory modalities. Common to
both Equations (1 and 2) is the idea that redundant information
from the various sensory modalities can be weighted differently
through the factors w and λ. In fact, Equation (2) is a special case
of Equation (1), with the added constraint that within each sen-
sory modality, signals about the target and the hand must have
the same weight:

wT,i = wH,i = λi (3)

In the linear formulation used here, therefore, the computational
difference between the two models is not so much in terms of the
order in which sensory information is added or subtracted, but
rather in terms of how the weighting factors w and λ are chosen.

The principles of maximum likelihood estimation (MLE) can
be applied to both Equations (1 and 2) to find weighting factors
that are in some sense optimal, although they differ in terms of
what is optimized. The optimal estimation of a parameter p given
noisy measurements (m1,. . . ,mn) corresponds to the value that
maximizes the probability distribution P(m1, . . . , mn|p) which
for independent measurements is equal to P(m1, . . . , mn|p) =∏n

i = 1 P(mi|p). If each measurement is considered to be governed
by Gaussian noise, the optimal estimate is analytically derived to
be the weighted average such that the relative weight given to any
one of the component quantities is equal to the inverse of it’s
variance relative to all the other quantities:

wmi = σ−2
mi

n∑
i = 1

σ−2
mi

(4)

where σ2
mi

is the variance of measurement mi. Thus, noisy vari-
ables are given less weight compared to those that are more
reliable (Ghahramani et al., 1997). If weighted in this manner, the
linear combination of different sources of information results in
a reduction of output variability (i.e., an increase in movement
precision) compared to the use of any one source of informa-
tion alone. For illustration purposes, therefore, we assume that

the noise exhibited by each sensory signal is Gaussian so that we
may apply the linear maximal likelihood solution (Equation 4) to
find the optimal weights.

For the convergent model in Figure 1A, applying MLE in order
to compute the weighting factors (w′s) in Equation (1) means that
an optimal estimate of the position of the hand, derived from
all available sensory feedback about the hand, will be compared
to (subtracted from) an optimal estimate of the target’s position,
similarly derived from all available sources of sensory information
about the target. Applying Equation (4) to the convergent model,
the sets of weights for i = K and i = V are:

wT,i = σ−2
T,i

σ−2
T,V + σ−2

T,K

and wH,i = σ−2
H,i

σ−2
H,V + σ−2

H,K

(5)

The computation of weighting factors (λ′s) for the parallel struc-
ture in Figure 1B is somewhat different. Here, target and hand
are compared in both sensory modalities in parallel (�xi =
xT,i − xH,i) and maximum likelihood then determines how much
weight should be given to each of these comparisons, based on the
expected variance of each of the computed differences. Given that
the variance of a difference is simply the sum of the variances of its
minuend and of its subtrahend (σ2

�i
= σ2

T,i + σ2
H,i) and applying

Equation (4), the weight given to each difference is computed as:

λi = σ−2
�i

σ−2
�V

+ σ−2
�K

(6)

Conceptually, therefore, the convergent and concurrent models
differ primarily in terms of what is optimized. For the conver-
gent model, an optimal estimate of the target and an optimal
estimate of the hand are computed and then used to compute a
movement vector. Under the concurrent model, multiple move-
ment vectors are computed and then these vectors combined in
an optimal fashion. Thus, even though Equations (1 and 2) are
algebraically very similar, the choice of what to optimize when
determining the various weights leads different results for the two
different models. Note that the neural system may not operate
in a strictly linear fashion, in which case differentiating between
the two model structures would be even more important in terms
of model predictions. But even the linear analysis presented here
allows one to draw a distinction between the convergent and con-
current models, both conceptually, as we have described here, and
experimentally, as we will show in the following paragraphs.

2.1. DISTINGUISHING BETWEEN MODELS
When both target and hand can be localized via all the same sen-
sory modalities, the convergent and modular formulations differ
very little in terms of the predicted outcomes. In the example of
hitting a nail with a hammer, this corresponds to the situation in
which one can simultaneously see and feel with the hand both
the hammer and the nail. In these circumstances, both models
predict that more weight will be given to the most reliable (e.g.,
the least noisy) sensory channels. However, when only a subset of
sensory information is available (e.g., only vision of the target or
only kinesthesia about the hand), the two different formulations
predict two substantially different outcomes.
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Consider the situation of a nail that is already imbedded in
the wall, such that it need not be held by the non-dominant
hand (Figure 2A). Information about the target would therefore
be limited to the visual domain. Compare this to hammering a
nail that is held by the non-dominant hand, but whose head is
obscured from view (Figure 2B). This example is perhaps not a
very wise thing to do in real life, but it illustrates the point. To
generalize, we will refer to these two types of tasks by the nota-
tion V-VK (visual target, visual and kinesthetic hand feedback)
and K-VK, respectively, and to the original case of hammering a
hand-held nail with full vision of both target and hands as a VK-
VK task. In the case of the convergent model (Figures 2C,D), the
lack of one source of information about the target simply means
that an optimal combination of the remaining sensory cues will
be used to localize the target. Thus, in V-VK, a representation
of the target based on visual cues, transformed into the com-
mon reference frame, will be compared with a representation of
the hand in that same reference frame derived from both visual
and kinesthetic feedback. Similarly, in K-VK a representation of
the target derived from kinesthetic information will be compared
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FIGURE 2 | Incomplete sensory information. The computational structure
of the convergent and concurrent models are compared for situations in
which the target position can be sensed through (A) visual (xT,V) or (B)

kinesthetic (xT,K) information only, whilst information from both sensory
modalities (xH,V and xH,K) can be use to estimate the effector/hand position.
Panels (C,D) represent how available sensory signals would be used
following the Convergent Model in each of the two situations, respectively.
Panels (E,F) illustrate the computational structure of the Concurrent Model
for the same two situations. Green arrows represent the cross-modal
sensory transformations that might be performed. Grayed out symbols
indicate sensory inputs that are absent, as compared to the situation
shown in Figure 1. All other notations and color conventions are the same
as in Figure 1.

with a representation of the hand that is based on an optimal
combination of visual and kinesthetic cues.

Applying the concurrent scheme to the situations shown in
Figures 2A,B, however, begs the question: What is to be done
with kinesthetic information about the hand when the target
is presented only visually (V-VK) and what is done with visual
information about the hand when the target is localized only
kinesthetically (K-VK)? One possibility (not shown) is that the
CNS simply ignores information about the hand in any sen-
sory modality that is not also used to localize the target, relying
only on sensory information that is directly comparable. Thus,
only visual information about the hand would be used in the
V-VK situation and only kinesthetic information about the hand
would be used in the K-VK situation. But by doing so, one
would forfeit the added precision that could be obtained by using
both sources of sensory information about the hand holding the
hammer. Alternatively, as illustrated in Figures 2E,F, the CNS
could reconstruct the missing sensory information about the tar-
get by performing a cross-modal sensory transformation (green
arrows). According to this arrangement, a kinesthetic representa-
tion of the target will be derived from visual information in V-VK,
allowing both the visual and the kinesthetic information from the
hand to be utilized. Analogously, the target can be reconstructed
in visual space in K-VK, again allowing the comparison of target
and hand to be carried out in both the visual and the kinesthetic
domains.

The difference between the convergent and concurrent formu-
lations becomes apparent if one compares the model predictions
for V-VK versus K-VK in terms of the relative weighting given
to visual or kinesthetic modalities. Consider first the concurrent
models in Figures 2E,F. When computing the optimal weights λV

and λK one must take into account not only the noise intrinsic to
the sensory inputs, but also the noise added by cross-modal trans-
formations (Soechting and Flanders, 1989; Tillery et al., 1991;
Schlicht and Schrater, 2007) when a sensory input missing in one
modality must be reconstructed from sensory signals in other.
Taking into account this additional noise when applying Equation
(6), one obtains for K-VK:

λV =
(
σ2

T,K + σ2
H,K

)
(
σ2

T,K + σ2
H,K

)
+

(
σ2

T,K + σ2
T,K�→V + σ2

H,V

)

λK =
(
σ2

T,K + σ2
T,K�→V + σ2

H,V

)
(
σ2

T,K + σ2
H,K

)
+

(
σ2

T,K + σ2
T,K�→V + σ2

H,V

)

(7)

and for V-VK:

λV =
(
σ2

T,V + σ2
T,V�→K + σ2

H,K

)
(
σ2

T,V + σ2
T,V�→K + σ2

H,K

)
+

(
σ2

T,V + σ2
H,V

)

λK =
(
σ2

T,V + σ2
H,V

)
(
σ2

T,V + σ2
T,V�→K + σ2

H,K

)
+

(
σ2

T,V + σ2
H,V

)

(8)
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where σ2
T,K�→V and σ2

T,V�→K represent the noise added when recon-
structing a visual representation of the target from kinesthetic
information and the noise added when reconstructing the tar-
get in kinesthetic space from visual information, respectively. One
can see from these sets of equations that changing what sen-
sory information is available about the target has the potential of
changing the weight given to each type of sensory feedback used
to guide the hand. Indeed, less weight (smaller λ′s) will be given
to the component comparisons that require the reconstruction of
sensory information, due to the noise that these reconstructions
add to the signals. In most cases, however, the weighting of the
two component comparisons will shift toward the visual infor-
mation when the target is visual (V-VK) and will shift toward
the kinaesthetic domain when the target is kinaesthetic (K-VK).
In the limit, if the transformation noise is very high compared
to the input noise, the comparison that requires a sensorimotor
reconstruction will be given zero weight, leaving only the direct
comparison to drive the response.

For the convergent model, there is no inherent need to recon-
struct sensory information that is not available. The CNS would
simply use all the available sensory information about the target
and all available sensory information about the hand in order
to compute an optimal estimate of the position of each. This
does not mean, however, that no sensorimotor transformations
are required to implement the concurrent formulation. On the
contrary, in order to combine spatial information from different
sources, the different pieces of information must be expressed in
a common reference frame R. Thus, for the convergent model,
coordinate transformations will be required even though no
“reconstruction” of missing sensory information is needed. These
transformations will also add noise which will affect the weight-
ing between the different inputs and should therefore be explicitly
considered when comparing the concurrent and convergent mod-
els. According to Equations (1 and 5), the estimate of the hand’s
position and orientation will be based on a weighted sum of the
visual and kinesthetic feedback, with the weight determined by
the variance of the two feedback signals and by the noise added
by the two sensorimotor transformations:

wH,V = σ2
H,K + σ2

H,K�→R

σ2
H,K + σ2

H,K�→R + σ2
H,V + σ2

H,V �→R

wH,K = σ2
H,V + σ2

H,V�→R

σ2
H,K + σ2

H,K�→R + σ2
H,V + σ2

H,V �→R

(9)

One can see that even if one considers noise added by sensorimo-
tor transformations, the convergent model, unlike the concurrent
model, predicts that the weighting of sensory information will
not change between V-VK and K-VK. Because the information
available about the hand is the same in both V-VK and K-VK, the
relative weight given to visual versus kinesthetic feedback about
the hand will be the same in both circumstances, regardless of the
sensory modality used to sense the target.

The convergent and concurrent models make two different
predictions, therefore, about what happens when the modality
of the target is changed while full feedback of the hand is avail-
able. These predictions allow one to differentiate between the two

hypotheses experimentally. Indeed, a number of studies that have
compared moving the hand to visual versus proprioceptive targets
provide support for the hypothesis of concurrent comparisons
shown Figure 1B. For instance:

• Sober and Sabes (2005) compared pointing to a visual target
versus pointing with the one hand to the unseen index fin-
ger of the other. They used virtual reality to introduce conflict
between visual and proprioceptive feedback about the initial
position of the pointing finger. By measuring the bias toward
the visual or the proprioceptive feedback about the position
of the finger, they found a significant difference in the relative
weighting of visual and kinesthetic hand feedback depending
on the modality of the target.

• Sarlegna and Sainburg (2007) also used a virtual-reality tech-
nique to dissociate visual and proprioceptive feedback about
the hand’s initial position. The choice of target modality (mov-
ing to a visual target versus moving to the position of the other,
unseen hand) had a significant effect on the contribution of
vision versus proprioception to the control of the amplitude of
rapid reaching movements.

• McGuire and Sabes (2009) made use of the well-known reti-
nal eccentricity effect (Bock, 1986) and imposed changes in gaze
direction to measure the reliance on visual versus kinesthetic
information. They found that when visual and kinesthetic
information about the hand was available, deviations due to
changes in gaze direction, which would indicate coding of the
movement in retinal space, depended on the target modality
(pointing to a visual target versus pointing to the unseen left
hand).

• Tagliabue and McIntyre (2011) asked subjects to align the
hand with a target in the fronto-parallel plane. They used a
virtual reality technique to introduce conflict between visual
and kinesthetic reference frames during a memory delay. In
these experiments the sensory modality used to present the
target orientation had a significant effect on the weight given
to visual versus kinesthetic comparisons when driving the
response, with a shift toward visual information when the tar-
get was visual and kinesthetic information when the target was
kinesthetic.

Because their data could not be reconciled with the encoding of
movement parameters exclusively in either retinotopic space or
kinesthetic space, the authors of the last two studies each pro-
posed versions of the concurrent structure depicted in Figure 1B.
The specifics of the models proposed by these different authors
differ slightly from each other (more on the similarities and
differences below) but both involve multiple comparisons in mul-
tiple reference frames and both can explain a shift in weighting
toward visual information when the target was visible and toward
kinesthetic information when the target was kinesthetic. Thus,
compared to the hypothesis of convergent, multi-modal sensory
integration shown in Figure 1A, the computational structure of
multiple, concurrent comparisons depicted in Figure 1B provides
a much more parsimonious explanation of the data reported from
a number of different tasks and experimental paradigms.
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3. TO RECONSTRUCT OR NOT TO RECONSTRUCT?
Inherent to the concurrent model is the concept of sensory recon-
struction. According to this idea, a visible target could be com-
pared with proprioceptive information about the location of the
hand if the visible information is transformed into propriocep-
tive space. Some such reconstruction would be necessary when,
for instance, reaching toward a visual target with the unseen hand
(V-K). The question remains, however, as to whether the visual
target should be transformed into kinesthetic space or whether
a visual representation of the hand should be constructed based
on proprioceptive information from the arm. Transforming target
information into kinesthetic space would be optional in a V-VK
situation, where a direct comparison of target and hand could be
carried out in visual coordinates. It would be even more super-
fluous to transform into visual space a purely kinesthetic (K-K)
task. Yet the implication of visual representations in purely kines-
thetic tasks is known to occur (Pouget et al., 2002b; Sober and
Sabes, 2005; Sarlegna and Sainburg, 2007; McGuire and Sabes,
2009; Jones and Henriques, 2010). A key question to be addressed,
therefore, is that of how the CNS chooses which comparisons to
apply to a given task, and how to weight the different compu-
tations to arrive at the overall response. Under what conditions
should information from one sensory modality be transformed
into the reference frame of another?

In our original publication (Tagliabue and McIntyre, 2011)
we argued that the CNS avoids sensory transformations, and
thus performs direct comparisons whenever possible. Indeed, we
observed that a V-VK task was carried out in visual coordinates
while the equivalent K-VK task was carried out in kinesthetic
space. (Note that we observed this result when subjects held their
head upright. We saw a somewhat different result when subjects
were asked to move their head during an imposed memory delay.
We will discuss these latter results further down in this section). In
our V-K and our K-V tasks, however, we observed that both visual
and kinesthetic comparisons were performed, even though just
one of these (and just one transformation) would have been suffi-
cient. For instance, in V-K, subjects could have performed a single
transformation of visual information into kinesthetic space, or
they could have only transformed the kinesthetic hand informa-
tion so as to perform the task in visual space. The fact that both
transformations and both comparisons were performed shows
that the CNS does sometimes perform “unnecessary” transfor-
mations beyond what would be minimally necessary to achieve
the task.

In order to explain our results, and others, we had to resort to
additional, albeit reasonable, assumptions that went beyond the
basic tenets of MLE. The first was that direct comparisons are
absolutely best, even though estimates of noise in the visual and
kinesthetic channels and the conventional application of maxi-
mum likelihood would predict a more graded weighting between
visual and kinesthetic information for the V-V and K-K tasks. The
second was that the necessity of a single transformation would
provoke the execution of a whole range of transformations into
a number of different reference frame or sensory modalities. This
could explain why the CNS would reconstruct a visual representa-
tion of a task that is otherwise purely kinesthetic, as was observed
in the studies mentioned above. In the discussion of our results,

we argued that this could be because a common neural network
might generate the same amount of noise, whether performing
one or many transformations. While this is a reasonable, and even
testable, hypothesis, it still remains unproven and thus still con-
stitutes, as of this writing, an ad hoc assumption that we had to
invoke in order to reconcile empirical data with MLE.

In a more recent study, however, we showed how MLE can
explain much, if not all, of the available data without these addi-
tional assumptions, if one properly accounts for co-variation of
noise in sensory signals that have been reconstructed in one sen-
sory modality from another (Tagliabue and McIntyre, 2013). The
issue of co-variation is important because it conditions how two
signals should be optimally weighted. If two signals are stochasti-
cally independent, the principle of maximal likelihood estimation
says that the two quantities should be weighted according to the
inverse of their respective expected variance. This weighted aver-
age will tend to reduce the effects of the independent noise in each
component. But if the noise in one is correlated with the noise in
the other, computing the weighted average will be less effective in
reducing the overall noise. In the limit, if the noise in the two vari-
ables in perfectly correlated, then computing the weighted average
will not reduce the overall noise at all.

To correctly compensate for covariance between two signals in
the computation of the optimal weights to be applied, one must
essentially take into account only the independent components of
noise within each variable. In the case of two non-independent
variables that exhibit Gaussian noise, the weighted combination
of x and y that will minimize the variance of the output:

z = λx + (1 − λ) y (10)

is given by the equation:

λ =
(
σ2

x − covx,y
)−1

(
σ2

x − covx,y
)−1 +

(
σ−2

y − covx,y

)−1
(11)

where covx,y is the covariance between x and y. Added insight
can be achieved if one considers two components x and y are
derived from two stochastically independent signals, p and q and
a common component c:

x = p + c

y = q + c
(12)

In this case, which is directly applicable to the sensorimotor trans-
formations that are being considered in this paper, the covariance
between x and y is precisely equal to the variance of the common
component c:

σ2
x = σ2

p + σ2
c

σ2
y = σ2

q + σ2
c

covx,y = σ2
c

(13)
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and Equation (11) reduces to:

λ = σ2
q

σ2
p + σ2

q

(14)

In other words, the optimal weighting of x and y depends only on
the variance of the independent components p and q.

One can see from Equation (14) that if one of the two con-
stituent signals presents only noise that is common to both
quantities x and y, e.g.,:

x = p + c

y = c
(15)

then the weight given to the constituent with the added noise
(x in the example) will be zero. This fact can be used to predict
when the CNS might reconstruct a representation of the task in
a reference frame different from that of either the target local-
ization or the feedback about the motor response. If the task
allows for a direct comparison of target and effector informa-
tion, e.g., when moving the hand to a remembered posture, the
reconstructed comparison will contain all the variability of the
kinesthetic inputs plus the noise added by the coordinate trans-
formations while the direct comparison will contain no noise that
is not also included in the reconstructed comparison:

σ2
�V = σ2

T,K + σ2
H,K + σ2

T,K�→V + σ2
H,K�→V

σ2
�K = σ2

T,K + σ2
H,K

(16)

Applying Equation (14) means that the comparison of the recon-
structed signals, �V will be given no weight compared to the
direct comparison �K. In other words, there is no advantage
to transforming the task into an alternate reference frame (e.g.,
in visual space) in this situation. On the other hand, if the tar-
get and hand are sensed in two different reference frames, such
that at least one sensory transformation is required, then recon-
struction into a third reference frame might be beneficial. For
example, if one is asked to reproduce with the right hand the
remembered orientation of the left, a transformation will have
to be applied to compare the hand orientation between the two
limbs (see Figure 3), leading to the equations:

σ2
�V = σ2

T,KL
+ σ2

H,KR
+ σ2

T,KL �→V + σ2
H,KR �→V

σ2
�KL

= σ2
T,KL

+ σ2
H,KR

+ σ2
H,KR �→KL

σ2
�KR

= σ2
T,KL

+ σ2
H,KR

+ σ2
T,KL �→KR

(17)

where KL and KR represent the kinesthetic information about
the left and right hand, respectively. In this situation, each rep-
resentation of the task, including representation that includes no
direct inputs (�V) includes at least one source of noise that is
independent from each of the others. Thus, one might expect
to find that the task is carried out simultaneously in the intrin-
sic reference frame of each arm, and also in visual space. Indeed,
when we compared precisely these two situations (matching the

H,KRT,KR

H,KLT,KL

KR

V

KL

T,V H,V

KR

V

KL

H,KRT,KR

H,KLT,KL

T,V H,V

INTRA-manual INTER-manual

FIGURE 3 | Direct vs. indirect comparisons (modified from Tagliabue

and McIntyre, 2013). The schematics represent the concurrent model
applied to two tasks that are both purely kinesthetic (K-K). In the
INTRA-manual task the subject feels the target position with the right hand
(T,KR) and reproduces it with the same hand (H,KR). In the INTER-manual
task the target is felt with the left hand (T,KL) and its position is reproduced
with the right (H,KR). As in Figures 1, 2, red and blue arrows represent
visual and kinesthetic signals, respectively, circular nodes represent
movement vectors computed in different reference frames and green
arrows represent sensory transformations. Each task can potentially be
carried out partially in visual space by reconstructing a visual representation
of the target (T,V) and a visual representation of the hand (H,V) from
available kinesthetic inputs. In the INTRA-, but not INTER-manual task, a
direct comparison between the kinesthetic signals about target and
response is possible. Taking into account co-variance between
reconstructed signals, only in the INTER-condition would a reconstruction
of an “unnecessary” visual representation reduce movement variability.
Grayed-out symbols represent sensory inputs that are absent in each task
while grayed-out green arrows depict sensory reconstructions that are
given no weight when MLE is applied.

posture of the right hand to the remembered posture of the left
versus matching the posture of the right hand to the remembered
posture of the right hand) we observed exactly this behavior.
The unilateral task showed no effect of deviations of the visual
field, while the bilateral task did. This same reasoning can also be
applied to a number of examples from the literature to explain
why subjects appeared to reconstruct a visual representation of a
task that could conceivably be carried out entirely in kinesthetic
space (Pouget et al., 2002b; Sober and Sabes, 2005; Sarlegna and
Sainburg, 2007; McGuire and Sabes, 2009; Jones and Henriques,
2010). Explicitly including the co-variation of reconstructed vari-
able therefore increases the predictive value of the model structure
depicted in Figure 1B.

4. THE TIMING OF SENSORY RECONSTRUCTIONS
If one accepts the idea that the CNS transforms sensory infor-
mation amongst multiple reference frames, one might also ask
the question, when do such transformations occur? A number of
studies have considered the performance of cross-modal trans-
formations for the computation of a movement vector during
planning (Sober and Sabes, 2003, 2005; Sarlegna and Sainburg,
2007; McGuire and Sabes, 2009; Burns and Blohm, 2010), but this
is not the only time when such transformations may be needed.
Sensory information about the target and limb continues to arrive
throughout the movement, and the same issues about reference
frames and sensor fusion arise when considering on-line correc-
tions that are made based on this information. This question is of
particular interest when one considers movements to memorized
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targets. In a V-K task, for instance, which is a task that requires
at least one cross-modal sensory transformation, what happens
if the target disappears before the reaching movement is started?
How is the information about the target stored? Is it encoded in
memory in visual space, to be transformed into kinesthetic space
for comparison with proprioceptive information from the arm?
Or is it immediately transformed into kinesthetic space and stored
during the memory delay for later use?

The results of one of our recent experiments (Tagliabue
et al., 2013) can be used to address this question. In that study
we analyzed the V-K tasks alluded to above and illustrated in
Figure 4. We asked subjects to perform this task in two different
conditions, which differed only in terms of the timing of head
movements. In one condition (U-T) subjects memorized the
target with the head upright and produced the motor response
with the head tilted. In the other condition (T-U) they memo-
rized the target with the head tilted and moved the hand with the
head upright. The rationale for performing this experiment with
head tilted at different times is based on the notion that trans-
formations between visual and kinesthetic space are disrupted
(noisier) when the head is not aligned with gravity (Burns and
Blohm, 2010; Tagliabue and McIntyre, 2011). This assumption
is supported by a study of orientation matching between a
visual and haptic stimuli (McIntyre and Lipshits, 2008). Whereas
tilting the subject’s entire body had no effect on visual-visual
and haptic-haptic comparisons, responses were more variable

Head Tilt
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H
an

d
H

an
d

 Tilted - Upright (T-U)

 Upright - Tilted (U-T)

Ta
rg

et
Ta

rg
et

Memorization Response Information flow model
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B

FIGURE 4 | Experimental manipulation of transformation noise

(modified from Tagliabue et al., 2013). Two different experimental
conditions are illustrated in which the subjects were asked to memorize the
orientation (θ) of a visual target (red bar) and to reproduce it, after a delay,
with their unseen hand. (A) In one condition (U-T) subjects memorized the
target with the head upright and responded with the head tilted. (B) In the
other condition (T-U), the target was memorized with the head tilted and
the hand oriented with the head upright. On the right side of the figure are
depicted the predictions of the Concurrent Model for each of the two
experimental conditions. As in Figures 1, 2, and blue arrows represent
visual and kinaesthetic signals, respectively and green arrows represent
cross-modal transformations. Gray symbols represent sensory inputs that
are absent. Because having the head tilted (yellow areas) causes
cross-modal transformations to be significantly noisier, comparisons
requiring such transformations are given less weight (faded green arrows)
and comparisons for which sensory reconstructions are performed with the
head upright are privileged.

in the case of a visual-haptic comparison when the body was
tilted versus when it was upright. The fact that the inter-modal
comparison became more variable, but not the intra-modal ones
indicates that it is the transformation between sensory modalities,
and not the actual sensory inputs, that are noisier when tilted
with respect to gravity. In light of this fact, the relative weight
given to visual information (λV) in our more recent experiment
and the overall variance (σ2

�) will depend on whether each trans-
formation is performed with the head upright or with the head
tilted.

One can therefore differentiate between the different hypothe-
ses Figure 4 as follows. For a V-K task we have:

σ2
�V = σ2

T,V +σ2
H,K + σ2

H,K�→V

σ2
�K = σ2

T,V + σ2
T,V�→K +σ2

H,K

(18)

Taking into account the co-variation between a transformed sig-
nal and its source, as described in section 3, one can compute the
weight given to the visual comparison:

λV = σ2
T,V�→K

σ2
T,V �→K + σ2

H,K�→V

(19)

and given the formula for the variance of a weighted sum of two
variables that are not independent:

σ2
ax+by = a2σ2

x + b2σ2
y + 2 ab covx,y (20)

the overall variance of the optimal estimate will be:

σ2
� = λ2

Vσ2
�V + (1 −λV)2 σ2

�K + 2λV(1 − λV) cov�V,�K (21)

= σ2
T,V + σ2

H,K + λ2
Vσ2

H,K�→V + (1 − λV)2 σ2
T,V�→K (22)

= σ2
T,V + σ2

H,K + σ2
T,V�→Kσ2

H,K�→V

σ2
T,V�→K + σ2

H,K�→V

(23)

Now assume that the noise added when transforming from
visual to kinesthetic or from kinesthetic to visual is the
same, for a given orientation of the head, and that head tilt
has the same additive effect on all transformations, i.e., we
define:

σ2
T,V�→K = σ2

H,K�→V = σ2�→ (24)

when the transformation is performed with the head upright,
and:

σ2
T,V �→K = σ2

H,K�→V = σ2�→ + σ2
// (25)

when the transformation is performed with the head tilted to
the side. Combining Equations (18–25), one can see that tilting
the head will have no effect on λV if both transformations are
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performed with the head upright or both are performed with the
head tilted:

λV|up,up = σ2�→
σ2�→ + σ2�→

= 1

2

λV|tilt,tilt = σ2�→ + σ2
//

σ2�→ + σ2
// + σ2�→ + σ2

//

= 1

2

λV|up,up = λV|tilt,tilt

(26)

Performing both transformations with the head upright or both
with the head tilted will, however, have an effect on the overall
variability:

σ2
�|up,up = σ2

T,V + σ2
H,K + σ2�→σ2�→

σ2�→ + σ2�→

= σ2
T,V + σ2

H,K + σ2�→
2

σ2
�|tilt,tilt = σ2

T,V + σ2
H,K +

(
σ2�→ + σ2

//

) (
σ2�→ + σ2

//

)

σ2�→ + σ2
// + σ2�→ + σ2

//

= σ2
T,V + σ2

H,K + σ2�→ + σ2
//

2

σ2
�|tilt,tilt = σ2

�|up,up + σ2
//

2

σ2
�|tilt,tilt > σ2

�|up,up

(27)

On the other hand, if one of the transformations is performed
with the head upright, and the other with the head tilted, the
opposite pattern should be observed. The weight given to visual
information will depend on whether the transformation T,V �→
K is performed with the head upright and the transformation
H,K �→ V is performed with the head tilted (up,tilt), or vice versa
(tilt,up):

λV|up,tilt = σ2�→
σ2�→ + σ2�→ + σ2

//

= 0 asσ2
// → ∞

λV|tilt,up = σ2�→ + σ2
//

σ2�→ + σ2
// + σ2�→

= 1 as σ2
// → ∞

λV|up,tilt < λV|tilt,up

(28)

while one would expect to see similar levels of overall vari-
ability between the two conditions, because in both cases one

transformation is performed with the head tilted and one with
the head upright:

σ2
�|up,tilt = σ2

T,V + σ2
H,K +

σ2�→
(
σ2�→ + σ2

//

)

σ2�→ + σ2�→ + σ2
//

σ2
�|tilt,up = σ2

T,V + σ2
H,K +

(
σ2�→ + σ2

//

)
σ2�→

σ2�→ + σ2
// + σ2�→

σ2
�|up,tilt = σ2

�|tilt,up

(29)

Note that the results remain valid even if σ2
T,V�→K �= σ2

H,K�→V, for

plausible values of σ2
T,V�→K, σ2

H,K�→V, σ2
T,V, σ2

H,K and σ2
//.

Using these mathematical considerations and the results of our
experiment, one can distinguish between the three hypotheses
about the timing of sensory reconstructions shown in Figure 5.
If the movement vector is computed while the target is still visible
(Figure 5A), then both transformations (T,V �→ K and H,K �→
V) will be performed with the head upright in the U-T con-
dition and both will be performed with the head tilted in the
T-U condition. According to Equations (26 and 27), the relative
weight given to visual information should not change between
the U-T and T-U conditions, while the overall variance should
be greater for T-U than for U-T. Neither of these predictions is
consistent with our empirical results in which we observed a sig-
nificantly greater weight given to visual information in the T-U
condition, compared to U-T, and similar levels of overall vari-
ability for both (Tagliabue et al., 2013). Note that this hypothesis
can also be rejected by the strong effect of response modality
that we observed in our previous study (Tagliabue and McIntyre,
2011). In all conditions tested in that study (K-K, K-VK, K-V, V-
K, V-VK, and V-V) the subject’s hand was outside the field of view
during the time when the target was being presented. Therefore in
all conditions the information available about the hand’s orienta-
tion during target observation was de facto the same. If Figure 5A
were correct, we would not have observed the strong effect of
response modality on the weight given to visual versus kinesthetic
information.

Figure 5B depicts an alternative hypothesis by which the CNS
performs the requisite coordinate transformations starting at
movement onset, relying on visual memory of the target after
it disappears. In this case both transformations (T,V �→ K and
H,K �→ V) would be performed with the head upright in the T-U
condition and with the head tilted in the U-T condition. Applying
once again Equations (26 and 27), one would expect to see sim-
ilar weight given to visual information in both conditions and a
significant difference in the overall variability, although according
to this hypothesis, the higher variability would occur for U-T. As
before, the empirical observations (Tagliabue et al., 2013) do not
match the predictions of Figure 5B.

Our experimental findings can, however, be reconciled with a
hypothesis by which cross-modal reconstructions of target and
hand occur continuously, but only long as the sensory input to be
transformed is present (Figure 5C). When the target disappears, as
in our experiments, further reconstruction of its kinesthetic ori-
entation from visual information is halted, and the remembered
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FIGURE 5 | Timing of cross-modal reconstructions. Hypotheses
concerning the time course of sensorimotor reconstructions are represented
for the task depicted in Figure 4. The visibility of the target (purple bar) and
the tilt of the head (yellow bar) are shown as time progresses from left to
right. The hand moves only after the rotation of the head is terminated.
Horizontal lines represent internal representations of the target (θT,V and θT,K)
and of the hand (θH,V and θH,K). Gray symbols indicate sensory inputs that are
absent, while green arrows indicate cross-modal reconstructions that may be
performed. Vertical arrows and nodes indicate when the comparisons of
target and hand are carried out, according to three hypotheses: (A)

Cross-modal reconstructions and concurrent target-hand comparisons
(�θV,�θK) are performed while the target is visible and the resulting

movement vector (�θ) is maintained and updated through the end of the
movement. (B) Cross-modal reconstructions are performed during
movement execution, relying on sensory inputs about the target stored in
memory. (C) Cross-modal reconstructions are performed continuously as
long as the sensory input is present; direct and reconstructed target
representations are maintained in memory in parallel through the end of the
movement. Faded nodes indicate target-hand comparisons that are noisier
because they rely on cross-modal reconstructions that were performed with
the head titled. Hypotheses (A,B) predict similar weighting of visual and
kinesthetic information, and thus partial deviations of the response in both
the U-T and T-U conditions, while hypothesis (C) predicts a significantly larger
weighting of the visual comparison in the T-U than in the U-T conditions.

orientation is maintained in both spaces. Transformation of the
continuously available hand kinesthesia into the visual domain
proceeds, however, through the end of the movement. Here we
fall into the situation in which the sensory transformations poten-
tially used to control the movement do not all occur with the head
at the same orientation. In the U-T condition, the last transfor-
mation of the target into kinesthetic space will occur with the
head upright, while the latest transformations of the hand into
visual space will occur throughout the movement, i.e., with the
head tilted. Conversely, in the T-U condition, the last transforma-
tion of the target will occur with the head tilted, and the latest
transformations of the hand with the head upright. Applying
Equations (28 and 29), one expects to see a greater reliance on
visual information in T-U than in U-T, with similar levels of
overall variability between the two conditions, precisely as we
observed (Tagliabue et al., 2013).

To summarize, we have shown that the reconstruction of
sensory signals in alternate reference frames appears to occur
only while the primary sensory input is available. An important

corollary to this conclusion is that the CNS will also store spa-
tial information concurrently in multiple reference frames, a
prediction that can, in theory, be tested experimentally.

5. GENERALIZED CONVERGENT AND CONCURRENT
MODELS

In the preceding sections we have discussed how the CNS
might benefit from performing multiple, concurrent compar-
isons when, for instance, bringing the hand into alignment with
a target. This discussion has highlighted a number of pertinent
issues, including the evidence for single versus multiple com-
parisons, the importance of considering co-variation of signals
when computing weights based on maximum likelihood and the
timing of inter-modal transformations. The preceding sections
leave open a number of questions, however, about when the var-
ious input signals are combined and about how to extend these
concepts to situations where more than two sensory modalities
may be involved. In this section we will formalize the distinction
between convergent versus concurrent structures. In the section
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that follows we will show how the various computational con-
cepts can be broadened to include questions such as how the CNS
makes use of intrinsic versus extrinsic reference frames.

5.1. FULLY CONVERGENT MODEL
Figure 6A shows the computational structure of the fully con-
vergent model. A maximum likelihood estimate is made from
all available inputs about the target’s position and a similar pro-
cess is applied to all available information about the position
of the hand. As pointed out in section 2.1, the various sources
of information must be transformed into a common reference
frame in order for these optimal estimates to be computed and
these transformations add noise. The calculations that describe
the convergent model are therefore given by:

�x =
n∑

i = 1

wT,i�i→r
(
xT,i

) −
m∑

j = 1

wH,j�j→r
(
xH,j

)
(30)

where xT,i and xH,j are the sensory inputs about the target
position in reference frame i and the hand position in reference
frame j. Each input is associated with its own intrinsic variability
(σ2

T,i or σ2
H,j). The operator �a→r represents the a transformation

of a position value from some reference frame a into the common
reference frame r. Applying �a→r to an input value expressed in
its intrinsic coordinate frame a creates a new value in the reference
frame r with noise equal to the sum of the variance of the input
(e.g., σ2

T,a) and the variance added by the transformation (σ2
a→r).

Note that the common reference frame r could be some abstract
reference frame that is independent from any given sensory frame,
or it could be one of the n reference frames intrinsic to the sensory
modalities used to sense the target position or one of the m ref-
erence frames used to sense the hand position. In this latter case,
no transformation will be required for at least one sensory input,
and we define �r→r(x) = x and σ2

r→r = 0.

5.2. HYBRID CONVERGENT/CONCURRENT MODEL
According to the model presented in Figure 6B, it is presumed
that the CNS will use all available information to represent the
task in each of the component reference frames, and will then
concurrently compare the target to the hand within each reference
frame, before combining the results of each comparison to drive
the motor response. We base this formulation on the model pro-
posed by McGuire and Sabes (2009) for the combination of visual
and kinesthetic information. From their discussion: movements
are always represented in multiple reference frames, and from the
Methods: the model first builds internal representations of fingertip
and target locations in both retinotopic and body-centered reference
frames. These representations integrate all available sensory sig-
nals, requiring the transformation of non-native signals. Extending
these concepts to more than two sensory modalities and reference
frames, the equation describing this formulation is:

�x =
N∑

i = 1

λi

⎛
⎝

n∑
j = 1

wi,T,j�j→i
(
xT,j

)−
m∑

j = 1

wi,H,j�j→i
(
xH,j

)
⎞
⎠(31)
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FIGURE 6 | Generalized models. Three possible formulations of the
sensorimotor integration model, all based on principles of maximum
likelihood. (A) Fully-convergent model: first, the position of the target and
hand are optimally estimated independently; then, these optimal
estimations are compared in a unique reference frame to compute a single
movement vector �x. Green arrows represent the sensory transformations
necessary to encode the signals in a common reference frame before they
can be combined. (B) Hybrid-convergent/concurrent model: available
sources of information about the target are combined to build optimal
estimations of its position in different reference frames. Ditto for the
available hand information. Target-hand comparisons are then performed in
each of these reference frames (�xV and �xK) and the results of these
comparisons are optimally combined to produce the net movement vector
(�x). (C) Fully-concurrent model: available sources of information about
target and hand are used to build concurrent target-hand comparisons in
various reference frames. Information directly available in a given reference
frame can be compared with both information directly available in the same
reference frame and with information reconstructed from signal initially
encoded in a different reference frame. It follows that, for each reference
frame, all combinations between direct (d ) and reconstructed (r ) signals
may be used to perform comparisons: �Vdd , �Vdr , etc.

where N is the total number of reference frames for which the
comparison between target and hand will be made, n � N is
the number of reference frames in which target information is
directly available and m � N is the number of reference frames
in which hand feedback is available. Implicit in this formulation
is the idea that the CNS will always reconstruct sensory sig-
nals across modalities, even when sensory information is directly
available within a given modality. One can see that this formu-
lation allows for two sets of weights, those that determine the
weight given to direct and reconstructed inputs within each ref-
erence frame [wi,T,j and wi,H,j, comparable to the weights w
described in the convergent model of Equation (1)] and those
used to combine the results of the differences computed in each
reference frame [comparable to the weights λ in the concur-
rent model of Equation (2)]. So, for instance, if both visual and
kinesthetic information is available about the target, both the
direct visual input and a transformed version of the kinesthetic
information will be used to construct a representation of the tar-
get in visual space. Similarly, both the direct sensory input and
the reconstructed visual input will be used to construct a rep-
resentation of the target in kinesthetic space. The weight given
to each source of information, however, will take into account
the noise added by the cross-modal transformations. Thus, the
representation of the movement in visual space will give more
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weight to the direct visual input than to the visual representation
that is reconstructed from kinesthetic signals, etc. According to
this model, the CNS will read out the desired movement vector
by combining the differences computed concurrently in each ref-
erence frame, also according to the expected variance of each of
the differences.

5.3. A FULLY-CONCURRENT MODEL
Here we propose a third formulation, shown in Figure 6C, based
on the concept that individual comparisons form the build-
ing blocks for multisensory control of hand-eye coordination.
According to this proposal, each available sensory input may be
transformed into any and all other potential reference frames,
as in the hybrid model described above. The two models differ,
however, in terms of how the various reconstructions are handled
within each reference frame. According to the fully concurrent
model, the direct and reconstructed signals are not combined
into a single representation of the target and of the hand within
each reference frame. Rather, the CNS would compute individ-
ually the differences between all possible permutations of target
and hand representations, both direct and reconstructed, within
each reference frame, on a pair-by-pair basis. Only then would
the results of all the individual differences be combined through
a weighted average according to MLE in order to compute the
movement vector. The computations that describe such a fully
distributed, concurrent model, based on individual differences
can be described by:

�x =
N∑

i = 1

n∑
j = 1

n∑
k = 1

γi,j,k
(
�j→i

(
xT,j

) − �k→i
(
xH,K

))
(32)

A simple mathematical convenience serves to adapt Equation (32)
to situations where direct sensory inputs about the target or the
hand are missing in one or more of the n sensory modalities.
According to MLE, a given signal is weighted according to the
inverse of its expected variance. If the quantity 1/σ2 is a measure
of the confidence that one has in a given signal—i.e., the greater
the variability, the lower the confidence—one can therefore assign
to a missing sensory input an infinite variance, in the sense that
the confidence in a missing signal will be 1/σ2 = 1/∞ = 0. By
doing so, the weight given to a missing input, or to a transformed
version of a missing input will automatically fall to zero in the
calculations derived from MLE.

Note that Model 6C is “fully connected”, allowing for the
possibility that, for instance, the CNS will reconstruct and com-
pare kinesthetic signals in a visual reference frame even though
both target and hand may be visible. This means that there
may be multiple comparisons of the target and hand within
any one reference frame due to the reconstruction from more
than one other reference frames. Nevertheless, given the noise
inherent to the reconstruction, the application of MLE will favor
the comparison of the directly sensed visual signals within the
each reference frame, when such direct information is avail-
able. Indeed, some components may drop out of the equation
because MLE gives them a weight of zero, as we will see in the
following.

6. EXTRINSIC REFERENCE FRAMES
In the examples given above we have focused mainly on intrinsic
reference frames native to the sensory modalities used to local-
ize the target and the hand. This is due in part to the fact that
the most widely documented studies of sensor fusion for eye-
hand coordination, including those cited above, have considered
two main reference frames: retinal for visual information and
body centered for kinesthetic (a.k.a. proprioceptive) informa-
tion. Depending on the task, however, other non-native reference
frames are almost certainly of interest. For instance, ample evi-
dence exists for the encoding of limb movements (Soechting and
Ross, 1984; Darling and Gilchrist, 1991; Borghese et al., 1996;
Luyat et al., 2001; Darling et al., 2008) or visual stimuli (Asch and
Witkin, 1948b; Luyat and Gentaz, 2002) in a gravitational refer-
ence frames, as well as the encoding of information with respect to
visual landmarks (Asch and Witkin, 1948a). In the following we
examine the question of whether or not to make use of extrinsic
reference frames in the context of each of the three models shown
in Figure 6.

The convergent model of Figure 6A can accommodate the
recoding of a sensorimotor task by realizing a change in the
common reference frame r. Thus, the CNS may choose to com-
bine sensory inputs in one possible reference frame or another,
depending on the task conditions. Nothing in Equation (30),
however, says anything about how r is chosen. Additional rules,
not specified in Equation (30), would have to be found to resolve
this outstanding question. As such, Model 6A is incomplete.
Models 6B,C provide more elegant solutions to this question. An
astute reader will have noticed the distinction between the lower-
case n and m in Equations (31 and 32), representing the number
of sensory inputs, from the uppercase N indicating the num-
ber of reference frames in which the comparison of target and
hand is performed. These numbers could all be the same, but the
two formulations allow for the use of additional reference frames
not directly linked to a sensory input as well. According to these
equations, each sensory input may be reconstructed in additional,
non-native reference frames. Candidates include other, derived
egocentric references such as the head or the shoulder or with
respect to external references such as gravity or visual landmarks.

From the perspective of minimizing variability, however,
recoding of sensory information in a non-native reference frame
would not necessarily be advantageous, because the transforma-
tion of the information from a native to a non-native reference
introduces additional noise. For instance, the variability of a
visual target encoded with respect to gravity will include the vari-
ability of both retinal signals and of graviceptors. Moreover, all the
variance of the target-hand comparison in the retinal reference
frame will be included in the comparison encoded in the external
reference frame. According to the analysis presented in section
3 the weight given to the external representation would drop to
zero. One might therefore surmise that the recoding of spatial
information in non-native reference frames will be avoided, when
possible, in deference to direct comparisons of sensory informa-
tion within the intrinsic reference frame of the different neural
receptors. As we will show in the following examples, however,
the native sensory representations may be affected by additional
sources of noise, depending on the circumstances. The principle

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 8 | Article 1 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Tagliabue and McIntyre Modular theories of sensorimotor integration

of maximum likelyhood coupled with the concurrent structures
of Models 7B,C, can then predict which of the N reference frames,
intrinsic or extrinsic, come into play in any given situation.

6.1. EXTERNAL REFERENCE FRAMES
Figure 7 shows an example of how the concurrent models may be
applied to the question of whether or not to make use of an exter-
nal reference frame for a given task. The model predicts that if
the target and the hand can be sensed through the same modality
and no movement of the sensor occurs between target memoriza-
tion and response (Figure 7A), the brain should privilege a direct
egocentric encoding of the movement. Since the transformation
into the alternative reference frame would add noise, maximum
likelihood will give the most weight to the direct comparison. This
effect is amplified if one considers the co-variation between direct
and reconstructed signals. Because a comparison performed in
any other reconstructed reference frame would co-vary precisely
with the inputs to the direct comparison, performing these addi-
tional encodings would not reduce the variability of the move-
ment at all. On the other hand, if a movement occurs after the
target is stored in memory (Figure 7B), an egocentric memory
of the target would need to be updated to account for the sen-
sor displacement (Droulez and Berthoz, 1992; Duhamel et al.,
1992; Medendorp et al., 2008). In this situation, reconstructing
additional, external encodings of the movement becomes advan-
tageous, because the noise added by the updating of the intrinsic
representation becomes comparable to the noise added when
reconstructing in an external reference frame. This is especially
true when the noise in the information used to update the ego-
centric representation of the target and the noise in the signals
used as external references are independent.

The parallel structures of Models 6B,C are interesting because
they provide a theoretical basis for using a combination of
intrinsic and extrinsic reference frames, which appears to well
correspond to behavioral (Burgess et al., 2004; Vidal et al., 2004;
Burgess, 2006; Byrne et al., 2010) and physiological (Dean and
Platt, 2006; Zaehle et al., 2007) evidence. Indeed, in a task of
reaching with the outstretched hand for a visual or kinesthetic
target, with visual or kinesthetic feedback about the response, or
both, we were unable to reconcile empirical data with a com-
putational model that relied on intrinsic reference frames alone
(Tagliabue and McIntyre, 2012). We surmised that due to the
movement of the head in our experiment, subjects encoded the
task in external reference frames as well. Psychophysical studies
have also shown that subjects tend to use egocentric represen-
tations if they remain stable after memorization, but they com-
bine egocentric and external representations if their body moves
(Burgess et al., 2004; Burgess, 2006). Similarly, during reaching to
visual targets, external visual landmarks appear to be neglected if
the hand visual feedback is reliable; whilst they are integrated to
build an allocentric representation of the movement if the hand
visual feedback was absent or unpredictable (Obhi and Goodale,
2005; Neely et al., 2008).

6.2. MEMORY
The need to store target information in memory for some time
before the movement occurs can also motivate the transformation
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FIGURE 7 | External reference frames. Example of how external sources
of information, such as gravity and the visual scene, can be combined to
build external encodings of initially retino-centric signal about the target,
xT,V and the hand, xH,V. Open circular and square nodes represent the
recoding of information with respect to an external reference (circles) or the
updating of egocentric information to account for movements of the body.
All other symbols for inputs and transformations are as defined in previous
figures. (A) If no movement occurs after the memorization of the retinal
information about the target, its direct comparison with the retinal signal
about the hand is possible, therefore encoding these signal with respect to
the external gravitational and scene references would not reduce
movement variability. (B) If the head moves in space, or if the eye moves
within its orbit, a direct comparison between retinal signals about the target
and hand is not possible, because the retinal information about the target
must be updated to take into account the sensor movement. In this case,
encoding the initially retino-centric signals with respect to the gravity and
visual scene become advantageous, because the egocentric and the
external encodings become partially uncorrelated.

of sensory information into a non-native reference frame. In
eye-hand tasks with imposed memory delays, the variability of
responses tends to increase with the length of the delay (McIntyre
et al., 1997, 1998). Thus, the simple act of storing spatial informa-
tion in memory adds noise. According to the hypothesis related
in section 4, the target location will be stored in memory simulta-
neously in more than one reference frame. Assuming that each
representation of the remembered target position will degrade
independently (i.e., each will accumulate noise that is stochasti-
cally independent from the other), it becomes more and more
interesting, a maximum likelihood perspective, to make use of
the non-native representations, despite the added cost of recon-
structing those representations in the first place. This reasoning
is supported by a study in which subjects were asked to point
to targets located along a straight line in 3D space (Carrozzo
et al., 2002). As the memory delay increased, patterns of vari-
ability of the pointing position were more-and-more constrained
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by the extrinsic reference provided by the direction of the line
in 3D space. This can be interpreted as a shift in weighting
between egocentric and allocentric reference frames, even when
the body does not move. By simply substituting “memory pro-
cesses” for “head/eye movement”, however, Figure 7 can be used
to understand why the CNS may rely more on the encoding of
a task in a external reference frame when memory processes are
involved.

7. DISCUSSION
In this paper we have described three analytical models (see
Figure 6) that share a number of defining features. One of these,
the idea that the CNS can express spatial information in multiple
reference frames while transforming information between them,
is a common theme that is supported by numerous theoretical
and experimental studies. To cite a few examples, Droulez and
Cornilleau-Peres (1993) proposed a distributed model of “coher-
ence constraint” by which spatial information may be encoded
in reference frames intrinsic to each sensor and they described
a computational structure by which information from one sensor
can be reconstructed based on redundant information from other
sensors when the primary source is not available. Bock (1986)
identified a phenomenon of bias when pointing to targets that lie
at a location peripheral to the center of gaze. This phenomenon
has been used in a number of studies to argue that whether point-
ing to visual, auditory or even proprioceptive targets, the CNS
carries out the task in retinotopic coordinates (Enright, 1995;
Henriques et al., 1998; Pouget et al., 2002b). These observations
can be linked to neural properties through models that solve the
problem of recoding information in different reference frames
by using basis functions and attractor dynamics (Pouget et al.,
2002a) or restricted Boltzmann machines (Makin et al., 2013).

The premise that the CNS combines sensory information
based on relative variance has also found considerable experimen-
tal support: van Beers et al. (1996) showed that the precision of
pointing movements increased when the subject could use both
visual and kinesthetic feedback signals, compared to when only
one sensory feedback modality was available. They also showed
that the relative weight given to the two sensory signals depended
on their relative variability (van Beers et al., 1999). Ernst and
Banks (2002) varied experimentally the noise in the sensory sig-
nals available to subjects when they grasped a virtual object
that provided both visual and haptic cues about size. Using ver-
bal judgments, they showed how the overall perceptual response
shifted toward the haptic information when the precision of the
visual inputs was degraded. Smeets et al. (2006) assumed that
the CNS maintains both a visual and a kinesthetic representation
of targeted movements. When vision of the hand was allowed,
this sensory modality dominated due to its higher precision. But
when vision of the hand was occluded and subjects were asked
to make consecutive movements, the authors observed a grad-
ual shift toward a reliance on proprioceptive information, as
indicated by gradual drift in the direction of biases that are specif-
ically associated with this modality. They attributed this shift to
a re-weighting toward proprioceptive information as the visual
representation of the occluded hand degrades over the course of
sequential movements.

These themes of transformations and maximum likelihood
come together when one considers the noise added when con-
verting sensory information from one reference frame to another.
As alluded to in section 2.1, the added noise inherent to sen-
sory information that is reconstructed from other sources will
cause a shift toward the alternative, directly sensed information.
This principle has given rise to other empirical manifestations:
Sober and Sabes (2003, 2005) postulated that the CNS combines
visual and proprioceptive information at two different stages in
the planning of targeted hand movements. First, the movement
vector is calculated in visual space as the difference between the
position of the visual target and the initial position of the hand.
Kinesthetic information about the hand’s position is also used
at this stage, but because it must be transformed into visual
space, it is given much less weight, in accord with MLE. At a
second stage, the visual movement vector is converted into a
motor vector, based primarily on proprioceptive information, but
also accommodating a weaker influence of visual information
about the target, hand and limb configuration transformed into
motor coordinates. Burns and Blohm (2010), using the same
model structure as Sober and Sabes, observed a reduction of
the weight given to proprioceptive information in the calcula-
tion of the movement vector during planning when the head was
tilted in a V-VK task. They attributed the shift to the fact that
(a) the movement vector was calculated in visual space, requir-
ing that the proprioceptive information about hand position be
transformed in order to be useful and (b) tilting the head with
respect to gravity increases the noise added by manual-to-visual
transformations, thus further decreasing the weight given to the
reconstructed signals. Tagliabue et al. (2013) examined the effects
of head tilt on the weighting of sensory information. In a V-K task
(Figure 4), if the head was tilted during target acquisition, but
not the motor response, the CNS gave greater weight to the visual
representation, presumably because transforming the visual tar-
get into kinesthetic space with the head tilted would be much
noisier than transforming kinesthetic information about the hand
into visual space with the head upright. Conversely, if the head
was held upright when the target was acquired, but the head
was tilted during the motor response, then the task was carried
out in kinesthetic space so as to avoid the kinesthetic-to-visual
transformation that would have to occur while the head was tilted.

Although the three computational models of Figure 6 share
a number of features, as described above, they vary in terms
of the level of convergence or parallelism in the processing of
sensory information. Model 6A presents the highest level of con-
vergence, combining all available inputs about the target and all
available inputs about the hand before calculating a movement
vector based on the two optimal estimates. Model 6A provides no
clue, however, as to what is the common reference frame for any
given task, nor how the common reference frame might change
from one task to another. Models 6B,C provide more elegant
solutions to this question by allowing the comparison of target
and hand to be carried out simultaneously in multiple reference
frames. The same rules that determine which sensory inputs will
dominate in any given situation (maximization of likelihood) also
determine the weight given to the comparison carried out in each
of the component reference frames. The computational scheme
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depicted in Figure 6B combines features of both the convergent
model of Figure 1A and the concurrent model of Figure 1B.
Whereas multiple comparisons of target and hand are performed
in different reference frames, one can see nevertheless that there
is a convergence of multimodal sensory signals about the target
and about the hand before these two quantities are compared
(subtracted) within each reference frame. In contrast, Model 6C
combines the results of binomial comparisons of a single sensory
input about the target (direct or reconstructed in another ref-
erence frame) with a single sensory input about the hand (also
direct or reconstructed). Model 6C is the least convergent of the
three and as such, lends itself to a modular approach to sensory
integration for the coordination of eye and hand.

7.1. MODEL PREDICTIONS
Which of the three models depicted in Figure 6 best represents
human sensorimotor behavior and the underlying neurophysiol-
ogy? The three computational structures that we have compared
here can be distinguished on theoretical grounds and the dif-
ferences between them lead to testable hypotheses, both at the
behavioral level and in terms of the neural implementation as
measured by electrophysiological or other methods.

7.1.1. Fully convergent vs. concurrent
The question as to whether sensory signals are combined in
a unique reference frame that is defined a priori (i.e., in line
with Figure 6A) prior to performing the comparison between
hand and target has received considerable attention in recent
years and can, perhaps, already be rejected. From a Bayesian
perspective, it can be argued that it is advantageous to main-
tain multiple representations of movement parameters, expressed
in diverse reference frames, in order to optimize motor perfor-
mance. Electrophysiological evidence also supports the notion
that motor planning and execution is carried out in multi-
ple reference frames in parallel, both across different regions
of the brain and within a single cortical area (Buneo et al.,
2002; Beurze et al., 2010; Buchholz et al., 2013; Maule et al.,
2013; Reichenbach et al., 2014). At the behavioral level, the
fully convergent model depicted in Figure 6A cannot predict cer-
tain experimentally observed characteristics of movement plan-
ning and execution. As explained in the earliest sections of
this article (2–2.1), such a computational model cannot explain
why sensory information about the hand is weighted differently
between K-VK and V-VK tasks, nor would Model 6A be able
to predict why the CNS would reconstruct a visual represen-
tation of kinesthetic pointing task when the task is bilateral,
but not when it is unilateral (Tagliabue and McIntyre, 2013).
Moreover, the combination of parallel comparisons in a vari-
ety of coordinate systems gives meaning to the concept of a
hybrid reference frame (Carrozzo and Lacquaniti, 1994). Rather
than considering that the task is executed in some abstract ref-
erence frame that has little or no physical meaning, one can
instead understand that the characteristics of a so-called hybrid
reference frame may in fact be the manifestation of a paral-
lel, weighted combination of individual target-hand comparisons
carried out in reference frames tied to identifiable objects or
sensors.

Studies that have explicitly considered sensor fusion in the case
of reaching or pointing tasks have often assumed, implicitly or
explicitly, the fully convergent computational structure depicted
in Figure 1A. One such example is the work carried out by van
Beers et al. (1996, 1999) who postulated that a minimization of
motor variability could be the driving factor behind the choice
of one motor plan over another. They explicitly refer to a con-
vergent maximum likelihood model structure along the lines of
Equation (1). The work by Smeets et al. (2006) included the
assumption that the CNS maintains both a visual and a propri-
oceptive representation of the hand and of the target, but did not
include any explicit consideration of the transformation of visual
information into proprioceptive space or vice versa. Furthermore,
the equations that the authors used to make the model pre-
dictions in that study would appear to adhere to the computa-
tional structure evoked by the convergent model described by
Equation (1). Nevertheless, the structure of concurrent compar-
isons described by Equation (2) can also accommodate both of
these studies, without contradiction. Thus, even though Equation
(1) has been used on occasion to explain the results of a number
of studies, the ability of Equation (2) to explain those studies,
and to also explain the effects of target modality that cannot
be explained by Equation (1) means that Equation (2) pro-
vides a more parsimonious explanation of human sensorimotor
behavior.

7.1.2. Hybrid concurrent/convergent vs. fully concurrent
Experiments testing the two concurrent hypotheses
(Figures 6B,C) have been performed by various groups and
reported in the literature. We believe that the hybrid formulation
of Equation (31) is representative of the model proposed by
McGuire and Sabes (2009). These authors used a more sophisti-
cated Bayesian analysis to formulate their hypothesis, but as they
point out, the convolutions required to represent a coordinate
transformation in Bayesian notation are simply additions or
subtractions and if there is no prior to be taken into account, the
posterior is proportional to the likelihood. This model has been
used to interpret a number of empirical results (McGuire and
Sabes, 2009, 2011; Burns and Blohm, 2010). In our own studies
and publications, we have implicitly used the computational
structure of Equation (32) to interpret the results of a series
of experiments on multi sensory integration (Tagliabue and
McIntyre, 2008, 2011, 2012, 2013; Tagliabue et al., 2013). But
whereas both models have been used with success to explain a
wide range of empirical results, the differentiation between the
hybrid concurrent/convergent formulation of Figure 6B and
the fully concurrent formulation in Figure 6C has not, to our
knowledge, been explicitly taken up in the literature. Yet it should
be possible to distinguish between the two mechanisms, both in
terms of potential theoretical advantages of one computational
scheme over the other and in terms of empirical results, as we
will discuss below.

One key difference between Figures 6B,C is that of when the
difference between target and hand is actually computed. In a lin-
ear system, this distinction is not very important, since Model
6B can be rearranged algebraically to match Model 6C, and vice
versa. But evidence suggests that the combination of sensory
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signals occurs in a non-linear fashion, in part as a means to deal
with sensory signals that may or may not come from the same
stimulus or event (Roach et al., 2006; Knill, 2007; Hospedales
and Vijayakumar, 2009). If sensory signals are separated in dis-
tance or in time, the Bayesian optimal may be to rely fully on
one signal or the other, rather than an weighted sum of the two.
A corollary of these non-linear processes is that as two redun-
dant signal become more separated, the combined estimate may
become noisier (Wallace et al., 2004). Model 6C has an advan-
tage over 6B in this respect. By combining sensory signals only
after computing the movement vector, disparity between refer-
ence frames will drop out, provided that the disparity is the same
for the target and for the hand. One might therefore test this
hypothesis by artificially modulating the disparity between refer-
ence frames. The prediction of Model 6C is that such an operation
will not affect motor precision.

The question of how the CNS takes into account covariance
between signals could also provide the basis for favoring one
model over the other. In Model 6B, the combination of visual and
kinesthetic information about the target are combined by using
a “local” optimality criterion, that is by taking into account the
variability of the signal to be combined (including the necessary
cross-modal transformations), but neglecting how the resulting
optimal estimation will be used in later stages. In particular, this
local optimal weighting of the target information neglects the
consequences of any covariance that may be generated between
the two concurrent comparisons �V and �K. The very same
considerations are valid, of course, for the hand information. It
follows that the brain could tend to over-estimate the benefit of
weighting a given signal, because, although it would “locally”
provide a more precise estimation of the target and of the hand
positions, “globally” it would increase the covariance between
�V and �K, and if not corrected, will increase the variance of
the final output. In other words, generating optimal estimates
of target and hand does not necessarily lead to optimal targeted
hand movements. Model 6C, on the other hand, is based on the
combination of pairwise comparisons of target and hand, with
maximum likelihood being applied to minimize the variability
of the combination of multiple movement vectors. Through this
more modular approach, it is potentially easier to identify and
adjust for co-variation between movement vectors.

An example of this is shown in Figure 8, in the case of a V-VK
task. The hybrid model predicts that both visual and kinesthetic
information about the hand will be used to construct representa-
tions of the hand in each of the two reference frames (Figure 8A).
Due to the inter-modal transformations, the comparison carried
out in kinesthetic space will be correlated with the comparison
carried out in visual space. The optimal combination of �V and
�K will need to be modified to take into account the resulting
co-variation. Model 6C applied in this situation instead predicts
that comparison of the visual target position, reconstructed in
kinesthetic space, with the representation of the hand, recon-
structed from visual information, will simply drop out, due to
the co-variance with the direct comparison of target and hand in
visual space (Figure 8B). One might therefore ask the question,
will the CNS, like Penelope waiting for Ulysses with her weaving
(Homer, VIII century BC), perform cross-modal reconstructions,

only to undo their effects at a later stage (Figure 8A)? Or, by
maintaining a more modular approach, can the CNS more effi-
ciently achieve the optimal solution by performing only those
transformations and comparisons that are beneficial in any given
situation (Figure 8B)?

Of course the ultimate test of the hypotheses presented here
would be to find correlates of models 6B or 6C in electrophysio-
logical studies of neuronal activity. Model 6B predicts that one
should find neurons that respond to multiple sensory inputs
about the target and similar neurons encoding information about
the hand. Model 6C makes a novel prediction that certain cells
will be sensitive to inputs about the target in one (and only
one) sensory modality but that the spatial information will be
expressed in the coordinate frame of another. For example, Model
6C predicts the existence of a cell that encodes the movement
vector in visual space, even though the cell may be sensitive to
modulation of proprioceptive, but not visual, signals. This would
not be the case for Model 6B, where sensory signals from each
available sensory modality are expected to converge prior to the
computation of the movement vector.

8. CONCLUSIONS
In this article we have formulated computational models that
rely on multiple concurrent computations carried out in multi-
ple reference frames in order to optimally drive the hand to a
target. We have compared these concurrent models to the more
conventional viewpoint that presupposes the use of a single,
common reference frame for combining multi-sensory infor-
mation. The concurrent models are attractive because of their
modular structure and because they better explain a variety of
empirical studies. Moreover, they place the question of how to
combine sensory information and how to choose the reference
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FIGURE 8 | Hybrid convergent/concurrent versus full concurrent.

Information flow predicted by the hybrid convergent/concurrent (A) and
fully-concurrent (B) models for a V-VK condition in which the target can be
sensed only visually, but the subject has both visual and kinesthetic
information about the hand. Missing sources of information are
represented by faded colors. Dashed lines represent sensory
transformations and comparisons that can be neglected without a decrease
in motor performance, given the extent to which the noise in these
calculations correlates with the other comparisons. The fully-concurrent
model, but not the Hybrid model, predicts that in the V-VK condition the
reconstruction of the kinesthetic representation of the hand from visual
feedback can be avoided.
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frame(s) for any given task into a common theoretical frame-
work, that of maximum likelihood estimation. They also make
specific, testable predictions about the sensory transformations
that are performed and the representations of target and hand
that are maintained in working memory during the performance
of sensorimotor tasks. In the spirit of this special issue on mod-
ularity in motor control, we therefore propose that the CNS
performs multisensory integration in a highly modular fashion,
building up the required motor commands for targeted move-
ments from a principled combination of elementary target-hand
comparisons.
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