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Synchrony in a presynaptic population leads to correlations in vesicle occupancy at the
active sites for neurotransmitter release. The number of independent release sites per
presynaptic neuron, a synaptic parameter recently shown to be modified during long-term
plasticity, will modulate these correlations and therefore have a significant effect on the
firing rate of the postsynaptic neuron. To understand how correlations from synaptic
dynamics and from presynaptic synchrony shape the postsynaptic response, we study
a model of multiple release site short-term plasticity and derive exact results for the
crosscorrelation function of vesicle occupancy and neurotransmitter release, as well as
the postsynaptic voltage variance. Using approximate forms for the postsynaptic firing
rate in the limits of low and high correlations, we demonstrate that short-term depression
leads to a maximum response for an intermediate number of presynaptic release sites,
and that this leads to a tuning-curve response peaked at an optimal presynaptic synchrony
set by the number of neurotransmitter release sites per presynaptic neuron. These effects
arise because, above a certain level of correlation, activity in the presynaptic population
is overly strong resulting in wastage of the pool of releasable neurotransmitter. As the
nervous system operates under constraints of efficient metabolism it is likely that this
phenomenon provides an activity-dependent constraint on network architecture.

Keywords: long-term plasticity, short-term plasticity, synaptic depression, correlations and synchrony, voltage

fluctuations

1. INTRODUCTION
Synapses play a key role in transmitting and processing infor-
mation throughout the nervous system and long-term shifts in
synaptic efficacy are believed to underpin learning and memory
(Hebb, 2002; Markram et al., 2011). Synapses function through
release of neurotransmitters that then bind to receptors on the
postsynaptic cell and transiently alter the membrane conduc-
tance. Neurotransmitters in the presynaptic terminal are stored
and transported in vesicles (Fox, 1988; Hu et al., 2008). A num-
ber of vesicles are positioned at active sites where they have a
certain probability of being released when the presynaptic cell
spikes. Empty release sites are restocked after a variable period,
with an overall rate of a few Hz (Südhof, 2004). Both the number
of contacts per presynaptic cell and the activity in the presynaptic
network can generate correlations in the release of neurotrans-
mitter at synapses onto a single neuron; we demonstrate that
postsynaptic activity is governed by a balance between these two
sources of correlation.

The usage of vesicles due to presynaptic firing and stochas-
tic replenishment means that the number of vesicles available
for release is a highly dynamic quantity that is dependent on
the history of afferent activity. In the immature cortex, the rel-
atively high release probability and limited availability of vesicles
causes a progressive reduction in synaptic efficacy during a period

of sustained neuronal activity (Reyes and Sakmann, 1999; Chen
and Buonomano, 2012). This short-term reduction in synaptic
strength is known as vesicle depletion depression: an unstocked
active site cannot induce a postsynaptic response to any inci-
dent action potential (Abbot, 1997; Tsodyks and Markram, 1997;
Zucker and Regehr, 2002). The phenomenon is believed to play
a role in gain control (Abbot, 1997; Abbott and Regehr, 2004;
Rothman et al., 2009), information transmission (Zador, 1998;
Kilpatrick, 2012; Scott et al., 2012), and adaptation to sensory
stimuli (Furukawa et al., 1982; Hallermann and Silver, 2012).
The synaptic plasticity models introduced by Abbot (1997) and
Tsodyks et al. (1998) capture short-term depression accurately;
they match empirical data and allow a richness of network behav-
ior (Tsodyks et al., 1998) to emerge beyond that predicted by static
synapses. Such models consider the mean efficacy of the synapse,
averaged across several presentations of the same presynaptic
stimulus; the predicted postsynaptic response therefore varies
continuously. Several recent studies have considered a quantal
model of synaptic function incorporating short-term depres-
sion, with probabilistic vesicle release and replacement to reflect
trial-to-trial variability (Fuhrmann et al., 2002; de la Rocha and
Parga, 2005; Rosenbaum et al., 2012). The impact of stochas-
tic vesicle dynamics is particularly marked when mean synaptic
drive is insufficient to bring the postsynaptic neuron to threshold
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and spiking activity is governed by fluctuations in the system
(Gerstein and Mandelbrot, 1964; Kuhn, 2004). To induce post-
synaptic firing in such a system it is necessary for the variable
synaptic drive to exhibit coincidences; this occurs most regularly
when that drive is correlated.

Correlations in neurotransmitter release between different
sites can arise from two sources: from multiple contacts onto a
postsynaptic neuron from the same presynaptic cell and from syn-
chronous activity across the presynaptic population. The number
of sites between a pair of neurons is fixed over short timescales,
unlike the number of vesicles ready to release from the sites, but
can vary widely over longer periods (Loebel et al., 2013) following
potentiation or depression. Connections between neurons poten-
tiate and depress in the long term chiefly through changes in this
synaptic parameter—the number of independent release sites can
be seen as a fundamental unit of memory. Synchronous firing in
the presynaptic population emerges from the connectivity of neu-
ronal networks (Aertsen et al., 1989) and has relevance for encod-
ing sensory information (von der Malsburg, 1981; deCharms and
Merzenich, 1996; Averbeck et al., 2006), motor control (Baker
et al., 2001; Capaday, 2013) and decision making (Cohen and
Newsome, 2008; Cain and Shea-Brown, 2013). Recent work sug-
gests that modulation of correlations can be more significant for
neuronal coding than alterations in the presynaptic firing rate
(Seriès et al., 2004; Mitchell et al., 2009; Cohen and Kohn, 2011).
Population synchronization is a transient phenomenon relative to
the structural changes underlying long-term plasticity.

A detailed stochastic model of neurotransmitter dynamics at
the presynaptic terminal is required to analyze the effects of presy-
naptic synchrony, particularly when long-term plasticity varies
the structure of synapses through altering the number of release
sites. It can be noted that multiple contacts between cells and
transient correlations within a presynaptic population are likely
to introduce considerable redundancy in the usage of vesicles:
correlated events may lead to EPSPs many times larger than that
required to reach threshold. However, evidence points to the ner-
vous system operating under constraints of efficient metabolism
(Levy and Baxter, 2002; Taschenberger et al., 2002; Savtchenko
et al., 2012) suggesting such wastage would not commonly arise
in vivo. It is therefore of interest to examine the effect on the post-
synaptic cell of the interaction of partially synchronized afferent
drive with multiple contacts per presynaptic cell. To this end, we
analyze a model of a postsynaptic cell receiving input from a pop-
ulation of release sites distributed between different numbers of
presynaptic neurons and with different levels of synchrony.

Following the basic model definitions, we first derive exact
forms for the crosscorrelations of vesicle occupancies and release
at multiple contacts from the same and different presynaptic cells.
These correlations were previously derived by Rosenbaum et al.
(2012) using a diffusion and additive-noise approximation, and
our results show that this earlier method gave exact results for
these quantities. We then go on to calculate the exact voltage mean
and variance and, through comparison with the typical EPSP
amplitude, argue that synaptic noise can become significantly
non-Gaussian. We then derive two approximate limiting forms
for the firing rate for low and high correlations and demonstrate
that the postsynaptic response is optimal at intermediate levels of

afferent correlations. We finally show that this effect is robust for
neurons in which there is some level of synaptic homeostasis or
soft limit on the total number of release sites.

2. METHODS
We consider a population of N presynaptic neurons synapsing
onto a single postsynaptic neuron. A presynaptic neuron makes
synapses with n vesicle occupancy sites from each of which neu-
rotransmitter may be independently released with a probability
p on the arrival of a presynaptic action potential, occurring at a
constant Poissonian rate Ra. In between presynaptic action poten-
tials, empty release sites are restocked independently at a constant
Poissonain rate Rr . Initially, we consider that the total number of
release sites onto the postsynaptic cell is fixed at M = nN (exam-
ple configurations are provided in Figures 1A–C). The number
of independent release sites n was recently shown (Loebel et al.,
2013) to be the synaptic parameter most closely correlated with
the structural changes arising from long-term plasticity and so
we will consider the effects of varying n (while initially keeping M
constant) on the postsynaptic response. The binary variable x will
be used to signify vesicle release-site occupancy: x = 1 if present
or x = 0 if absent. The evolution of vesicle occupancy is given by
the stochastic differential equation

dx

dt
= (1 − x)

∑
m

δ(t − tm)−
∑

k

�k(x)δ(t − tk) (1)

where m counts the restock events occurring at a rate Rr and k
counts the presynaptic action potentials occurring at a rate Ra.
The binary random variable �k(x) signifies whether a release was
successful at the kth action potential: if x = 1 then �k(x) = 1 with
probability p to model a successful release of neurotransmitter,
and is 0 otherwise to model a failed release from a stocked site;
if x = 0 then no release is possible and �k(x) = 0. The δs are

FIGURE 1 | We consider a population of N presynaptic neurons each

featuring n independent release sites onto a single postsynaptic cell.

(A) The stochastic dynamics are illustrated from left to right: if a vesicle is
present it is released (with probability p) when an action potential arrives
(Poissonian rate Ra); an empty release site; and restock of an empty
release site (Poissonian rate Rr ). (B,C) examples with M = nN = 9 with
(B) n = 1, N = 9 and (C) n = 3, N = 3 contacts and presynaptic neurons,
respectively. (D) Example spike trains for M = N = 6 correlated presynaptic
neurons that feature S = 3 synchronous spikes.
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Dirac delta functions and whenever a delta function multiplies a
dynamic variable it is assumed that the value of the variable used
is that immediately before the delta event occurs. In other words,
the equations are non-anticipating and should be interpreted in
an Itō sense (Gardiner, 2010).

2.1. CORRELATIONS FROM STRUCTURE
When a presynaptic neuron spikes, available vesicles at each of
the n sites release their contents independently with probability
p, and so the total number of release events is binomially dis-
tributed. Note that because these sites receive the same incoming
action potentials correlations will arise despite the independent
conditional release and restock events at each site. Globally, we
first hold the total number of release sites, given by M = nN,
constant so that the postsynaptic neuron receives a fixed overall
excitatory drive. In this study we set M = 5000, which is of-the-
order-of estimates by O’Kusky and Colonnier (1982), Megías et al.
(2001), and Spruston (2008). This has the effect of maintaining
the overall level of excitatory drive to the postsynaptic cell and in
biological terms can be seen as a constraint of metabolic efficiency
across the presynaptic population: as some contacts potentiate,
others die out. The effects of relaxing this condition are discussed
later. Recent analysis of long-term plasticity data has shown that
changes in EPSP amplitude are captured by models in which
the number of independent release sites n increases or decreases.
Depending on the protocol, n can potentiate or depress by a fac-
tor of 5 or more (Loebel et al., 2013); a typical range for n is 5–50.
However, contacts with a binomial n as low as 1 or as high as
100 sites have also been observed. Though the upper bound is
unbiological, for completeness we vary n between 1 and 5000 in
simulations.

2.2. CORRELATIONS FROM PRESYNAPTIC SYNCHRONY
The population of neurons driving a common target often
displays substantial synchrony in spiking activity (Salinas and
Sejnowski, 2000; Averbeck et al., 2006; Cohen and Kohn, 2011)
(see Figure 1D). Here we model correlations in the presynap-
tic population by using a variation of the Multiple Interaction
Process (MIP) introduced in Kuhn et al. (2003). We implement
the process by considering a master spike train with a constant
Poissonian rate NRa/S. For each spike in the master train we pick
S of the presynaptic neurons at random and assign a synchronous
spike in their trains. If S = 1 this would imply no correlations
in the presynaptic population and S = N would be a fully syn-
chronous presynaptic population. Note that the spiking of each
presynaptic neuron is Poissonian at rate Ra as required and also
that, given that one presynaptic neuron spikes, the probability
that a particular other presynaptic neuron has a spike at the
same time is c = (S − 1)/(N − 1). In reality, shared spikes will
not be entirely synchronous and so in later simulations (specifi-
cally, those leading to Figures 6, 7) we add independent, normally
distributed jitter to the spike times with mean 0 and standard
deviation τj following de la Rocha and Parga (2005) and Cohen
and Kohn (2011). Note that in Figures 5, 6A,B, 7 the curves are
truncated for increasing n because, for fixed S and fixed M = nN,
it is invalid to have S greater than N. This is also the case for
Figures 6B,C with increasing S.

2.3. POSTSYNAPTIC VOLTAGE
We treat the postsynaptic neuron as a leaky integrate-and-fire
model with each neurotransmitter release event causing the volt-
age to jump by an amount a. The membrane voltage V has a
resting value E and a spike threshold Vth. After a spike, V is reset
to E and held there for a time τr to model the refractory period. If
N presynaptic neurons each have n neurotransmitter release sites
then the postsynaptic voltage is governed by

τ
dV

dt
= E − V + aτ

N∑
i = 1

n∑
j = 1

∑
k

�
ij
k (xij)δ(t − ti

k) (2)

where τ is the membrane time constant, xij is the occupancy vari-
able for the ith presynaptic neuron’s release site number j and k
labels the order of incoming action potentials to release site with
occupancy xij. Note that the spike times ti

k are identical for all
release sites with the same presynaptic neuron i and that some
of the spike times will be common to release sites with distinct
presynaptic neurons, depending on the level of synchrony given
by the correlated MIP process parameterized by S. The values of
other parameters used in simulations (unless otherwise stated)
are given in (Table 1).

3. RESULTS
We first derive exact forms for the crosscorrelations of vesicle-
occupancy and of neurotransmitter-release time series. The latter
can then be used to calculate the exact membrane voltage vari-
ance. Two approximations of the postsynaptic firing rate then
lead us to the main result of the paper: that long-term synap-
tic plasticity—through its alternation of the synaptic parameter
n—sets the optimal postsynaptic response to a presynaptic popu-
lation with correlated firing. Throughout this section the notation
〈φ〉 denotes the steady-state expectation of the fluctuating quan-
tity φ.

For the calculation of the crosscorrelations of objects separated
by a time T, it is useful to consider how the steady-state expec-
tation of the product of the occupancy x with some quantity ψ
evaluated at an earlier time evolves with the separation time:

d

dT
〈x(T)ψ(0)〉 = 〈(1 − x(T))ψ(0)〉 Rr − 〈x(T)ψ(0)〉 pRa (3)

where the first term on the right-hand side is the rate that an
empty site is filled and the second term is the rate that a full
site releases its contents. This equation can be rearranged into the
form

τx
d

dT
〈x(T)ψ(0)〉 = 〈x〉 〈ψ〉 − 〈x(T)ψ(0)〉 (4)

where the time constant τx and steady-state occupancy 〈x〉 are

τx = 1

Rr + pRa
and 〈x〉 = Rr

Rr + pRa
. (5)

That the second quantity must be the steady-state occupancy 〈x〉
can be inferred by noting that in the limit T → ∞ the expectation
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Table 1 | Typical parameters used for the figures.

Parameter Interpretation Value

V Postsynaptic membrane
voltage

Varies

S Number of presynaptic cells
that fire together

Varies

n Number of release sites per
presynaptic neuron

Varies

N Number of presynaptic
neurons

Varies

M Total number of vesicle
release sites (nN)

5000

Rr Rate at which empty vesicles
are replaced at release sites

2 Hz

Ra Rate of presynaptic spiking 2 Hz

p Probability of spike arrival
inducing neurotransmitter
release at a site with a
vesicle present

0.66

τj Jitter standard deviation
timescale

2 ms

E Resting membrane voltage −70 mV

Vth Threshold at which action
potentials are initiated

−55 mV

τr Refractory period of a neuron
after a spike

2 ms

τ Membrane time constant 10 ms

a EPSP amplitude induced by
neurotransmitter released
from a single vesicle

0.2 mV

〈x(T)ψ(0)〉 in Equation (3) loses its T dependence and factorises
into the product 〈x〉 〈ψ〉. Note that the exponential solution to
the differential Equation (4) implies that all crosscorrelations that
include the occupancy x take a simple exponential form

Crosscorr(x, ψ) = (〈xψ〉 − 〈x〉 〈ψ〉)e−t/τx (6)

where 〈xψ〉 is the expectation evaluated in the limit T → 0.

3.1. VESICLE OCCUPANCY CROSSCORRELATIONS
The autocorrelation of release-site occupancy can be calculated
by making use of the fact that for the binary variable x we have
x2 = x and so

〈
x2

〉 = 〈x〉. Putting ψ = x in equation (6) gives

Autocorr(x) = 〈x〉 (1 − 〈x〉)e−|T|/τx = pRaRr

(Rr + pRa)2
e−|T|/τx (7)

where the extension of the exponential to negative times comes
from a symmetry argument. For the crosscorrelation between dif-
ferent release sites, with occupancy variables x and x′, we need to
distinguish between cases where the release sites either share the
same presynaptic neuron or have different presynaptic neurons
when deriving

〈
xx′〉. However, the derivation can be written in

the same form by introducing a quantity γ that is the proportion
of shared spikes: γ = 1 for release sites with the same presynap-
tic neuron or γ = c = (S − 1)/(N − 1) for different presynaptic
neurons. A steady-state equation for the zero-time expectation〈
xx′〉 can be found by considering the state where both sites are

occupied and balancing the total rates into and out of this state

〈
x(1 − x′)

〉
Rr + 〈

(1 − x)x′〉 Rr = 〈
xx′〉 (2Rap − γRap2). (8)

The terms on the left-hand side represent the total rate into the
double occupancy state, whereas the terms on the right-hand side
multiplying the expectation are the combined rates of individual
vesicle release minus the coincidence term to prevent overcount-
ing of events. We now combine terms to obtain the required
expectation

〈
xx′〉

γ
= 2Rr 〈x〉

2Rr + Rap(2 − γp)
(9)

where the γ subscript will be used later to distinguish the different
cases. It can be inserted into Equation (6) with ψ = x′ to give

Crosscorr(x, x′) = γp2RaR2
r e−|T|/τx

(2Rr + pRa(2 − pγ))(Rr + pRa)2
. (10)

Example plots of Equation (7), and Equation (10) for cases with
γ = 1 and γ = c are given in Figures 2A,C,E. It is interesting to
note that our exact results are identical to those previously cal-
culated in Rosenbaum et al. (2012) using a combined diffusion
and additive-noise approximation, validating their method up to
second-order statistics.

3.2. NEUROTRANSMITTER RELEASE CROSSCORRELATIONS
Though synchrony in the presynaptic population leads to
positive correlations for release-site occupancy, we now show
that the delayed restock following release leads to negative
cross-correlations in the release events themselves. Let χ(t) and
χ′(t) be trains of delta pulses representing neurotransmitter
release from sites with occupancies defined by x(t) and x′(t),
respectively, so that:

χ(t) =
∑

k

�k(x)δ(t − tk) (11)

where k counts incoming action potentials at the contact with site
occupancy x. In the steady state we have 〈χ〉 = pRa 〈x〉 because
the rate of release is equal to the release rate pRa given vesicle
occupancy multiplied by the occupancy probability 〈x〉. The auto
and crosscorrelations can be straightforwardly calculated using
the general result of Equation (6) by setting ψ = χ′ and noting
that

〈
χ(T)χ′(0)

〉 = pRa
〈
x(T)χ′(0)

〉
. However, some care needs to

be taken when considering the case T = 0. The result of Equation
(6) is valid in the limit T → 0; but there is an additional delta
function in the crosscorrelation when T = 0 with an amplitude
equal to the rate of simultaneous events in χ and χ′ that arises
from the delta functions in Equation (11). The autocorrelation
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FIGURE 2 | Release-site occupancy is correlated,

neurotransmitter-release events are anticorrelated. (A) Autocorrelation
of a release-site occupancy and (B) autocorrelation in neurotransmitter
release. (C,D) Crosscorrelations for distinct release sites sharing the same
presynaptic cell. (E,F) Crosscorrelations for release sites with different
presynaptic cells. The parameters were N = 500, n = 10, and S = 10 giving
the probability of synchronous spikes c = 0.018.

function for χ therefore takes the form

Autocorr(χ) = pRa 〈x〉 δ(T)− (pRa 〈x〉)2e−|T|/τx (12)

where the rate of simultaneous events for the autocorrelation is
just the mean release rate pRa 〈x〉 and prefactor of the exponen-
tial is only − 〈χ〉2 because in the limit T → 0 the expectation
of 〈χ(T)χ(0)〉 is zero as there is no time for a restock. A similar
consideration gives the result for the crosscorrelation

Crosscorr(χ,χ′) = γp2Ra
〈
xx′〉

γ
δ(T)

+ R2
ap2((1 − γp)

〈
xx′〉

γ
− 〈x〉2)e−|T|/τx (13)

where we are treating cases for which the release is from dis-
tinct contacts sharing the same presynaptic neuron γ = 1 or from
distinct presynaptic neurons where γ = c. In Equation (13) the
prefactor of the delta function arises from the rate of simul-
taneous releases, which is equal to the arrival of simultaneous
spikes γRa multiplied by the probability that each contact releases
a vesicle p2

〈
xx′〉

γ
. The prefactor of the exponential shares the

same squared component − 〈χ〉2 = −(pRa 〈x〉)2 as the autocor-
relation, but also has a non-zero contribution from

〈
χ(T)χ′(0)

〉
in the limit T → 0. This quantity is equal to the probability that
both sites are occupied

〈
xx′〉

γ
multiplied by the probability of a

release from site x′ but no release from site x from a simulta-
neous presynaptic event, which is Rap(1 − γp) multiplied by a

subsequent release from site x just afterwards due to a second
presynaptic spike, pRa. This exact result is again identical to that
derived previously using a diffusion and additive-noise approx-
imation (Rosenbaum et al., 2012). Example autocorrelation and
crosscorrelation functions are plotted in Figures 2B,D,F.

3.3. MEMBRANE VOLTAGE MEAN AND VARIANCE
The tonic component of the presynaptic drive can be character-
ized by the mean voltage, which is straightforward to calculate
in the absence of a threshold. The dynamics of this quantity can
be found by taking the expectation of Equation (2) to yield the
steady-state result

〈V〉 = E + aMτpRa 〈x〉 = E + aMτpRaRr

Rr + pRa
. (14)

Note that the mean voltage is independent of the synchrony S
and is also independent of release-site number n when M = nN
is held fixed.

The effect of correlated synaptic fluctuations on the postsynap-
tic neuron can also be characterized by deriving the steady-state
variance of the postsynaptic voltage (again in the absence of
a threshold-reset mechanism). This quantity is derived in the
Appendix using the auto and crosscorrelations of χ (Equations
12, 13) and takes the form

Var(V) = a2τNnpRa

2

(〈x〉 + (n − 1)p
〈
xx′〉

1 + (N − 1)ncp
〈
xx′〉

c

)

+ Nn(aτpRa)
2

1 + τRr + pτRa

(
(n − 1)(1 − p)

〈
xx′〉

1

+ (N − 1)n(1 − cp)
〈
xx′〉

c − Nn 〈x〉2) . (15)

The first term arises from the δ-functions in Equations (12, 13)
and the second term comes from the negative correlations in
vesicle release due to short-term depression (the terms featuring
exponentials in the same equations). For a related model (de la
Rocha and Parga, 2005) it was demonstrated that on increasing
the presynaptic rate a maximum can be seen in the conductance
fluctuations. The exact result of Equation (15) allows for this
effect of fluctuations in depressing synapses on the voltage itself to
be analyzed. Example variances as a function of presynaptic rate
are shown in Figure 3 and, as expected from the previous anal-
ysis of conductance fluctuations (de la Rocha and Parga, 2005),
the variance also shows a maximum at intermediate presynaptic
rates.

Though the voltage variance measures one aspect of presy-
naptic fluctuations, it misses its increasing shot-noise nature as
the correlations increase. Shot noise causes a non-Gaussian com-
ponent in the tails of the membrane voltage distribution that,
because they extend to the region of action-potential initiation,
can significantly affect the post-synaptic firing rate (Richardson
and Swarbrick, 2010). The mean EPSP amplitude can be used
to see this effect: it is proportional to the mean of the vesicles
released by a spike given the occupancy levels already computed,
and so

〈EPSP〉 = apnS 〈x〉 = apSnRr

Rr + pRa
. (16)
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As correlations from increasing n or S become stronger, the
mean EPSP amplitude increases. However, as noted above, the
mean voltage (Equation 14) does not change under increasing
n or S. Taken together, the implications are that in the limit of
high correlations the synaptic drive becomes temporally sparse
with large amplitude EPSPs generated from correlated events.
This effect can be seen in simulations of the model with dif-
ferent parameter regimes (Figure 4). For parameters N = 125,
n = 1, and S = 1 (no presynaptic synchrony) the presynaptic

FIGURE 3 | Exact voltage variance for a postsynaptic neuron receiving

multiple depressing synaptic contacts from a presynaptic population.

Three examples are given with different numbers of neurostransmitter
release sites per presynaptic neuron. For each case the synchrony was
S = 10.

spikes (Figure 4A) and neurotransmitter release (Figure 4D) are
uncorrelated, and in the full system with M = 5000 the EPSPs are
relatively small (Figures 4G,H) and the resulting voltage distri-
bution is close to Gaussian (Figure 4I). Increasing n (Figure 4B)
or S (Figure 4C) to 25 leads to correlations in neurotransmit-
ter release (Figures 4E,F), larger EPSPs (Figures 4J,K,M,N) and
a more variable and skewed membrane voltage (Figures 4L,O).
Note the right-hand tails from the skewed membrane voltages
under conditions of presynaptic correlation that extend toward
voltages where action potentials would be initiated.

3.4. RELEASE SITE NUMBER AND POSTSYNAPTIC RATE
As the analyses of the previous section and examples in Figure 4
demonstrate, for the case of few release sites and low synchrony
the voltage distribution is close to Gaussian. However, for the
case of many release sites the synchronous release events gener-
ate large EPSPs that are reminiscent of shot noise. With this in
mind, approximations for the firing of the postsynaptic cell may
be found for the cases of low n, when the voltage distribution is
roughly Gaussian, and high n for which the EPSP amplitudes are
of-the-order-of or larger than threshold.

3.4.1. Few release sites
For the low n approximation we rely on a recent observation
(Alijani and Richardson, 2011) that the firing rate of integrate-
and-fire neurons is relatively insensitive to temporal correlations
as long as the subthreshold voltage mean and variance are
matched. To this end we approximate the firing rate of the neuron
by a white-noise equivalent that has a voltage meanμ equal to that

FIGURE 4 | Membrane voltage distributions become markedly

non-Gaussian as correlations increase. (A–C) Rasters of presynaptic firing
with: (A) N = 125, n = 1, and S = 1; (B) N = 5, n = 25, and S = 1; (C)

N = 125, n = 1, and S = 25. (D–F) Rasters of neurotransmitter release for
these firing patterns. (G,J,M) EPSP histograms for the above n and S values,
but with N adjusted so that M = nN = 5000. (H,K,N) Histograms of the total

synaptic drive over an interval of the membrane time constant for the same
parameters. (I,L,O) Voltage histograms for the same parameters. Note that,
whereas the voltage is close to Gaussian for the single release-site and
no-presynaptic-synchrony case, it develops a tail to the right when
correlations arise either from multiple release sites or presynaptic
synchrony.
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of Equation (14) and variance σ 2 equal to that of Equation (15).
The firing rate of a leaky-integrate-and-fire neuron with these
parameters is given (Brunel and Hakim, 1999) by the reciprocal of

τ

∫ ∞

0

dz

z
e−z2/2 (

ezzth − ezzre
)

(17)

where zth = (Vth − E − μ)/σ and in this case zre = −μ/σ .

3.4.2. Many release sites
For sufficiently large n the mean EPSPs are greater than that
required to bring the neuron to threshold apnS 〈x〉 � Vth − E,
and so each synchronous presynaptic event is likely to cause the
postsynaptic cell to spike. The postsynaptic cell receives input at
a total rate of NRa/S and so we can approximate the rate in the
large n case by

r ∼ NRa

S
= MRa

nS
. (18)

Therefore, increasing the presynaptic synchrony S will reduce the
postsynaptic response when n is large.

3.4.3. Optimal release-site number
Under conditions of a fixed number of release sites onto the
postsynaptic cell M = nN, increasing n has no effect on the
voltage mean (Equation 14), but increases the voltage variance
(Equation 15). Therefore, as n increases from an initially small
value, the approximation given by Equation (17) predicts that the
postsynaptic cell will fire at an increasing rate. However, from
Equation (18), which is valid for high n, we see that the postsy-
naptic firing rate decreases as n increases. Hence, there must be
an intermediate n for which the response of the postsynaptic cell
is optimized. This effect can be clearly seen in the examples given
in Figure 5 in which the postsynaptic rate is plotted as a function
of n for fixed M. The intersections of the two approximations for

FIGURE 5 | The postsynaptic firing rate exhibits a maximum as a

function of the number of pre-to-post release sites n. Firing-rate
simulations (solid lines), low n approximation (Equation 17; blue dashed
lines) and high n approximation (Equation 18; red-dashed lines) for various
levels of presynaptic synchrony S as a function of the number of release
sites n per presynaptic cell. The maximal postsynaptic response is close to
the intersection of the approximate forms and the optimum n decreases
with increasing synchrony S. Note that the curves are limited on their right
because of the restriction S ≤ N (the maximal allowable synchrony is equal
to the number of presynaptic neurons) so that the maximum n is n = M/S.
This upper bound on n holds for similar curves in later figures.

each curve provide an estimate for the optimal n, which decreases
as the presynaptic synchrony increases. It should be noted that
this effect, which has a maximum as a function of release-site
number at constant presynaptic rate, is a distinct phenomenon
to the tuning curve as a function of presynaptic rate analyzed in
de la Rocha and Parga (2005).

3.5. LONG-TERM PLASTICITY AND RESPONSE TO SYNCHRONY
The post-synaptic firing rate is sensitive to correlations arising
from multiple release sites, as discussed above, as well as to
presynaptic synchrony (de la Rocha and Parga, 2005). In par-
ticular, the firing rate has a maximal response at an optimal n
that is a function of the presynaptic synchrony as can be seen
in Figure 6. When neurotransmitter release is too strongly cor-
related in the presynaptic population, the postsynaptic response
weakens because the quantity of neurotransmitter released is in
excess of that necessary to take the postsynaptic cell to thresh-
old and therefore this limited resource is wasted. The reduction
in response to over-strong correlations gives rise to the optimal
responses in the space of n and S seen in Figures 6A–C. Note that
the band of optimal postsynaptic response is linear with negative
gradient in the n, S log–log plot and so the optimal synchrony in
the presynaptic population has an inverse relation to the number
of release sites n each presynaptic cell makes onto the postsynaptic
target.

Analyses of long-term plasticity data (over a 12 h period)
by Loebel et al. (2013) demonstrated that connections between
thick-tufted layer-5 pyramidal cells in the rat somatosensory cor-
tex alter their efficacy by changing the binomial parameter n, in
preference to probability of release or quantal amplitude. Among
the experiments analyzed certain connections potentiated four-
fold, from an effective binomial n of ∼25 to ∼100. Assuming
that the mean excitatory drive remains constant, this potenti-
ation would lead to the postsynaptic cell becoming maximally
responsive to signals encoded by weaker presynaptic synchrony
(see Figure 6C). It would also cease to amplify strongly correlated
stimuli as effectively. Other connections showed four-fold reduc-
tions in n from ∼40 to ∼10 under protocols that cause long-term
depression. In this case the postsynaptic cell would now act as a
better amplifier of stimuli encoded with larger correlations.

3.6. OPTIMAL RESPONSE AND SYNCHRONY JITTER
The effects of fluctuations in a synchronous presynaptic popula-
tion can be modeled by adding a Gaussian-distributed jitter, of
timescale τj, to the timing of each action potential. When the
individual components of the synchronous MIP event are too
dispersed temporally, i.e., when the jitter is greater than the mem-
brane time constant τj > τ, the MIP event will fail to integrate
in the postsynaptic cell. Under these circumstances the effect of
correlations is diminished, as illustrated in Figure 7. When jitter
is absent (Figure 7A), different values of presynaptic synchrony
S produce distinct and clearly defined optimal response curves.
With a physiological jitter timescale of τj = 2 ms (Figure 7B) the
curves for different synchronies shift upwards in n and the peak
postsynaptic firing rate falls, particularly for larger synchrony.
When τj = τ (Figure 7C) only relatively strong synchrony values
are significantly different from the independent case (S = 1).
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FIGURE 6 | Long-term plasticity that alters release-site number n sets

the sensitivity to presynaptic synchrony. (A) Postsynatpic rate as a
function of release-sites per presynaptic neuron n for different examples of
presynaptic synchrony S. (B) Heat map of the postsynaptic rate as a
function of presynaptic release-site number n and presynaptic synchrony S.
(C) Postsynaptic rate as a function of presynaptic synchrony S for different
examples of release-site number n. For these figures population spikes
have been jittered with a standard deviation of 2 ms. Note that in panel B

the optimal synchrony has an inverse dependency on the release-site
number. Long-term potentiation makes the postsynaptic cell more sensitive
to weak synchrony, whereas long-term depression sensitizes the cell to
stronger synchrony.

3.7. OPTIMAL-RESPONSE CURVES ARE A ROBUST FEATURE OF
SYNAPTIC HOMEOSTASIS

Throughout much of the above analysis we held the total number
of release sites M = nN constant and demonstrated an optimal
response curve in which the postsynaptic rate peaks at an inter-
mediate n, which is dependent on the presynaptic synchrony
S. The rationale for this choice is that, under conditions of home-
ostasis, synaptic potentiation (increasing n) amongst a subpopu-
lation of presynaptic neurons will occur at the expense of pruning
neurons that do not contribute to postsynaptic firing. This will
lead to the postsynaptic neuron receiving afferent drive from
fewer presynaptic neurons, though each of these will make more
contacts (and vice-versa for long-term depression). The theoreti-
cal results and simulations are not predicated on the assumption
of constant M and so it is interesting to investigate whether the
optimal-response effect persists if this restriction is relaxed. Using
the example S = 10 we plotted the postsynaptic rate as a func-
tion of the presynaptic neuron N and release site number n (see
Figure 8A). As expected the postsynaptic rate increases with an
increasing number of presynaptic neurons N or release sites n.
Plotted on the same figure is the curve N = M/n with M = 5000
that, because of its reciprocal relation will have low rates at either
asymptotes, and an intermediate maximum (see Figure 8B). Also
plotted is the curve N = M0 where M0 is a constant. This corre-
sponds to a scenario in which the entire presynaptic population

FIGURE 7 | Impact of synchrony jitter on the optimal response curves.

(A–C) Postsynaptic firing rate as a function of the number of release sites
per presynaptic neuron n for increasing jitter standard deviations τj . (A) No
jitter τj = 0. (B) Physiological levels of jitter τj = 2 ms. (C) Response curves
converge on the unsynchronized S = 1 case, as expected, when jitter is of
the order of the postsynaptic membrane time constant τj = 10 ms.

has either potentiated or depressed their contacts, thereby chang-
ing the number of release sites n a presynaptic neuron makes
without altering the total number of presynaptic neurons N. For
this case, which is arguably an extremum from the point-of-view
of homeostatis, the intermediate maximum is lost: the postsynap-
tic rate increases monotonically and loses its n dependence when
n is sufficiently large, as expected from the first form of Equation
(18). However, for intermediate cases of homeostasis of the form
N = Mκ/nκ with κ = 3/4, 1/2, 1/4 a maximal postsynaptic rate
again occurs at some intermediate n (see Figure 8B). Given the
dependence of the postsynaptic rate on n and N in Figure 8A it
can be seen geometrically that any curve in which there is a recip-
rocal relation between N and n will likely feature a maximum at
intermediate n and so the optimal-response curves are a robust
feature of a postsynaptic neuron in which there is some degree of
homeostatic restriction on the total number of afferent contacts.

4. DISCUSSION
We considered the effects of afferent correlations arising
from multiple neurotransmitter release sites and a partially
synchronized presynaptic population. We derived exact forms for
the crosscorrelations of vesicle release site occupancy and vesi-
cle release, and demonstrated that these are identical to those
recently obtained from a diffusion and additive-noise approxi-
mation (Rosenbaum et al., 2012), validating that approach up

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 8 | Article 2 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bird and Richardson Postsynaptic response to correlated afferents

FIGURE 8 | Curves with a maximal postsynaptic rate at intermediate n

are a robust feature. (A) Intensity plot of the postsynaptic rate as a
function of presynaptic release site n and neuron number N for an example
with S = 10. Also plotted are the relations N = Mκ /nκ for
κ = 0,1/4,1/2,3/4,1, where κ = 1 corresponds to the homeostatic
scenario principally considered in this paper for which there is a restriction
M = nN on the total number of afferent contacts. The case κ = 0
corresponds to a scenario with no such restriction, and the other values of
κ are intermediate cases with varying degrees of homeostasis. (B) The
postsynaptic rate as function of n for the curves in the upper panel. Cases
for all values of κ, except κ = 0 in which there is no homeostatic restriction,
show a maximal response at intermediate n. The example curves given
have Mκ chosen so that they all pass through the point n = 25 and
N = 200.

to second-order statistics and explaining their perfect agreement
between theoretical and simulational results. We further calcu-
lated the exact variance of the membrane voltage, in absence of
spike threshold. This quantity extends previous calculations (de la
Rocha and Parga, 2005) of synaptic conductance fluctuations and
allows for an estimation of the postsynaptic rate in the low-
correlation Gaussian regime. For the high-correlation regime, due
to multiple release sites n or strong synchrony S, we argued that
the EPSPs become increasingly large, the nature of the synaptic
fluctuations increasingly shot-noise like, and so the postsynaptic
rate tends to the rate of synchronous presynaptic events. Combing
these two results for the low and high correlation regimes, we
demonstrated that the postsynaptic response is maximal for an
intermediate number of release sites or synchrony. The system

therefore exhibits a tuning-curve response to synchrony that can
be modulated by long-term plasticity, which alters the number of
release sites n.

Neurons respond maximally to specific stimuli when pro-
cessing sensory input. A coordination of long-term plasticity,
afferent synchrony and short-term depression therefore provides
a potential tuning mechanism for cells to achieve this sensitivity.
Efficient responsiveness would then depend on historical changes
in synaptic connectivity (Taschenberger et al., 2002; Loebel et al.,
2013) and the transient correlations evoked by a particular stim-
ulus (Averbeck et al., 2006; Cohen and Kohn, 2011). More gen-
erally, neuronal networks balance fidelity of signal transmission
with the metabolic costs associated with neurotransmitter recy-
cling (Levy and Baxter, 2002; Savtchenko et al., 2012). Although
a release of neurotransmitter beyond that necessary to induce a
postsynaptic spike may have medium-term conductance impli-
cations or counteract strongly fluctuating inhibition, an efficient
network would not be expected to exceed the degree of pairwise
connectivity that maximizes response to common spike frequen-
cies and correlations. On the other hand, signals encoded by small
numbers of cells would require highly potentiated connections to
transmit information with any degree of consistency. This implies
that across a neuronal network the degree of clustering would be
optimally balanced with individual synaptic weights.

To investigate maximal firing rate response to a defined excita-
tory drive, we have neglected the effects of synaptic inhibition.
As in vivo network behaviors arise from a balance of excita-
tion and inhibition, a development of the ideas presented here
along the above lines would need to incorporate inhibitory effects
on the total synaptic conductance. By altering the timescales on
which excitatory inputs are integrated, inhibitory drive could
allow a more finely-tuned response to afferent sub-populations
with varying degrees of temporal dispersion. Another extension
of this work would be to incorporate different forms of short-
term synaptic plasticity into the model. This would be particularly
appropriate when studying connections between specific cell-
types where there is experimental evidence for other forms of
synaptic dynamics. It is also likely that effects moderating synap-
tic depression, such as the increasing facilitation in the maturing
neocortex (Reyes and Sakmann, 1999) would lead to qualitatively
different behavior as cortical networks develop.
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APPENDIX
DERIVATION OF THE VOLTAGE VARIANCE
The voltage equation can be written in the form

τ
dV

dt
= E − V + aτζ (19)

where ζ is the summation of the release trains across the N
presynaptic neurons and each of their n contacts

ζ =
N∑

i = 1

n∑
j = 1

χij (20)

where χij takes the form of Equation (11) for the ith presynaptic
neuron’s jth contact. The autocorrelation of ζ is therefore com-
prised of Nn autocorrelations of χ in the form of Equation (12),
Nn(n − 1) crosscorrelations of χ for distinct release trains shar-
ing the same presynaptic neuron given by Equation (13) with
γ = 1 and N(N − 1)n2 crosscorrelations of χ for release trains
with different presynaptic neurons given by Equation (13) with
γ = c.

Taking expectations of both side of Equation (19) in the steady
state gives

〈V〉 = E + aτ 〈ζ〉 = E + aMτRap 〈x〉 . (21)

We can now solve Equation (19) to give

V − 〈V〉 = a

∫ t

−∞
dt′e−(t−t′)/τ (

ζ(t′)− 〈ζ〉) (22)

so that the voltage variance can be written as an integral over the
autocorrelation of ζ, Autocorr(ζ) = 〈(

ζ(t′)− 〈ζ〉) (
ζ(t′′)− 〈ζ〉)〉

(V − 〈V〉)2 = a2
∫ t

−∞
dt′

∫ t

−∞
dt′′e−(t−t′)/τe−(t−t′′)/τAutocorr(ζ). (23)

As discussed above, the autocorrelation of ζ is the sum of the
various crosscorrelations of χ so that it must take the form

Autocorr(ζ) = αδ(t′ − t′′)+ βe−|t′−t′′|/τx (24)

where α and β are obtained from the prefactors of the terms in
Equations (12, 13) multiplied by their respective contributions.
Inserting Equation (24) into (23) and performing the integration
gives

Var(V) = a2
(

ατ

2
+ βτ2τx

τ + τx

)
. (25)

On substituting the appropriate forms for α and β the result given
in Equation (15) is obtained.
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