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In a first step toward the comprehension of neural activity, one should focus on the
stability of the possible dynamical states. Even the characterization of an idealized regime,
such as that of a perfectly periodic spiking activity, reveals unexpected difficulties. In this
paper we discuss a general approach to linear stability of pulse-coupled neural networks
for generic phase-response curves and post-synaptic response functions. In particular, we
present: (1) a mean-field approach developed under the hypothesis of an infinite network
and small synaptic conductances; (2) a “microscopic” approach which applies to finite but
large networks. As a result, we find that there exist two classes of perturbations: those
which are perfectly described by the mean-field approach and those which are subject to
finite-size corrections, irrespective of the network size. The analysis of perfectly regular,
asynchronous, states reveals that their stability depends crucially on the smoothness
of both the phase-response curve and the transmitted post-synaptic pulse. Numerical
simulations suggest that this scenario extends to systems that are not covered by the
perturbative approach. Altogether, we have described a series of tools for the stability
analysis of various dynamical regimes of generic pulse-coupled oscillators, going beyond
those that are currently invoked in the literature.
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1. INTRODUCTION
Networks of oscillators play an important role in both bio-
logical (neural systems, circadian rhythms, population dynam-
ics) (Pikovsky et al., 2003) and physical contexts (power grids,
Josephson junctions, cold atoms) (Hadley and Beasley, 1987;
Filatrella et al., 2008; Javaloyes et al., 2008). It is therefore com-
prehensible that many studies have been and are still devoted to
understanding their dynamical properties. Since the development
of sufficiently powerful tools and the resulting discovery of gen-
eral laws is an utterly difficult task, it is convenient to start from
simple setups.

The first issue to consider is the model structure of the single
oscillators. Since phases are typically more sensitive than ampli-
tudes to mutual coupling, they are likely to provide the most
relevant contribution to the collective evolution (Pikovsky et al.,
2003). Accordingly, here we restrict our analysis to oscillators
characterized by a single, phase-like, variable. This is typically
done by reducing the neuronal dynamics to the evolution of the
membrane potential and introducing the corresponding veloc-
ity field which describes the single-neuron activity. Equivalently,
one can map the membrane potential onto a phase variable and
simultaneously introduce a phase-response curve (PRC) [Upon
changing variables, the velocity field can be made independent of
the local variable (as intuitively expected for a true phase). When
this is done, the phase dependence of the velocity field is moved
to the coupling function, i.e., to the PRC] to take into account
the dependence of the neuronal response on the current value of
the membrane potential (i.e., the phase). In this paper we adopt

the first point of view, with a few exceptions, when the second one
is mathematically more convenient.

As for the coupling, two mechanisms are typically invoked
in the literature, diffusive and pulse-mediated. While the former
mechanism is pretty well understood [see e.g., the very many
papers devoted to Kuramoto-like models (Acebrón et al., 2005)],
the latter one, more appropriate in neural dynamics, involves a
series of subtleties that have not yet been fully appreciated. This is
why here we concentrate on pulse-coupled oscillators.

Finally, for what concerns the topology of the interactions,
it is known that they can heavily influence the dynamics of the
neural systems leading to the emergence of new collective phe-
nomena even in weakly connected networks (Timme, 2006), or
of various types of chaotic behavior, ranging from weak chaos
for diluted systems (Popovych et al., 2005; Olmi et al., 2010)
to extensive chaos in sparsely connected ones (Monteforte and
Wolf, 2010; Luccioli et al., 2012). We will, however, limit our
analysis to globally coupled identical oscillators, which provide
a much simplified, but already challenging, test bed. The high
symmetry of the corresponding evolution equations simplifies the
identification of the stationary solutions and the analysis of their
stability properties. The two most symmetric solutions are: (1)
the fully synchronous state, where all oscillators follow exactly the
same trajectory; (2) the splay state (also known as “ponies on a
merry-go-round,” antiphase state or rotating waves) (Hadley and
Beasley, 1987; Ashwin et al., 1990; Aronson et al., 1991), where
the oscillators still follow the same periodic trajectory, but with
different (evenly distributed) time shifts. The former solution is
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the simplest representative of the broad class of clustered states
(Golomb and Rinzel, 1994), where several oscillators behave in
the same way, while the latter is the prototype of asynchronous
states, characterized by a smooth distribution of phases (Renart
et al., 2010).

In spite of the many restrictions on the mathematical setup,
the stability of the synchronous and splay states still depend
significantly on additional features such as the synaptic response-
function, the velocity field, and the presence of delay in the pulse
transmission. As a result, one can encounter splay states that
are either strongly stable along all directions, or that present
many almost-marginal directions, or, finally, that are marginally
stable along various directions (Nichols and Wiesenfield, 1992;
Watanabe and Strogatz, 1994). Several analytic results have been
obtained in specific cases, but a global picture is still missing: the
goal of this paper is to recompose the puzzle, by exploring the
role of the velocity field (or, equivalently, of the phase response
curve) and of the shape of the transmitted post-synaptic poten-
tials. Although we are neither going to discuss the role of delay
nor that of the network topology, it is useful to recall the stabil-
ity analysis of the synchronous state in the presence of delayed
δ-pulses and for arbitrary topology, performed by Timme and
Wolf in Timme and Wolf (2008). There, the authors show that
even the complete knowledge of the spectrum of the linear oper-
ator does not suffice to address the stability of the synchronized
state.

The stability analysis of the fully synchronous regime is far
from being trivial even for a globally coupled network of oscil-
lators with no delay in the pulse transmission: in fact, the pulse
emission introduces a discontinuity which requires separating the
evolution before and after such event. Moreover, when many neu-
rons spike at the same time, the length of some interspike intervals
is virtually zero but cannot be neglected in the mathematical
analysis. In fact, the first study of this problem was restricted to
excitatory coupling and δ-pulses (Mirollo and Strogatz, 1990). In
that context, the stability of the synchronous state follows from
the fact that when the phases of two oscillators are sufficiently
close to one another, they are instantaneously reset to the same
value (as a result of a non-physical lack of invertibility of the
dynamics). The first, truly linear stability analyses have been per-
formed later, first in the case of two oscillators (van Vreeswijk
et al., 1994; Hansel et al., 1995) and then considering δ-pulses
with continuous PRCs (Goel and Ermentrout, 2002). Here, we
extend the analysis to generic pulse-shapes and discontinuous
PRCs [such as for leaky integrate and fire (LIF) neurons].

As for the splay states, their stability can be assessed in two
ways: (1) by assuming that the number of oscillators is infi-
nite (i.e., taking the so called thermodynamic limit) and thereby
studying the evolution of the distribution of the membrane
potentials—this approach is somehow equivalent to dealing with
(macroscopic) Liouville-type equations in statistical mechanics;
(2) by dealing with the (microscopic) equations of motion for
a large but finite number N of oscillators. As shown in some
pioneering works (Kuramoto, 1991; Treves, 1993), the former
approach corresponds to develop a mean field theory. The result-
ing equations have been first solved in Abbott and van Vreeswijk
(1993) for pulses composed of two exponential functions, in the

limit of a small effective coupling [A small effective coupling can
arise also when PRC has a very weak dependence on the phase
(see section 3)]. Here, following Abbott and van Vreeswijk (1993),
we extend the analysis to generic pulse-shapes, finding that sub-
stantial differences exist among δ, exponential and the so-called
α-pulses (see the next section for a proper definition).

Direct numerical studies of the linear stability of finite net-
works suggest that the eigenfunctions of the (Floquet) operator
can be classified according to their wavelength � (where � refers
to the neuronal phase—see section 4.1 for a precise definition). In
finite systems, it is convenient to distinguish between long (LW)
and short (SW) wavelengths. Upon considering that � = n/N
(1 ≤ n ≤ N), LW can be identified as those for which n � N,
while SW correspond to larger n values. Numerical simulations
suggest also that the time scale of a LW perturbation typically
increases upon increasing its wavelength, starting from a few mil-
liseconds (for small n values) up to much longer values (when n
is on the order of the network size N) which depend on “details”
such as the continuity of the velocity field, or the pulse shape. On
the other hand, SW are characterized by a slow size-dependent
dynamics.

For instance, in LIF neurons coupled via α-pulses, it has been
found (Calamai et al., 2009) that the Floquet exponents of LW
decrease as 1/�2 (for large �), while the time scale of the SW
component is on the order of N2. In practice the LW spectral
component as determined from the finite N analysis coincides
with that one obtained with the mean field approach (i.e., tak-
ing first the thermodynamic limit). As for the SW component, it
cannot be quantitatively determined by the mean-field approach,
but it is nevertheless possible to infer the correct order of mag-
nitude of this time scale. In fact, upon combining the 1/�2 decay
(predicted by the mean-field approach) with the observation that
the minimal wavelength is 1/N, it naturally follows that the SW
time scale is N2, as analytically proved in Olmi et al. (2012).
Furthermore, it has been found that the two spectral components
smoothly connect to each other and the predictions of the two
theoretical approaches coincide in the crossover region.

It is therefore important to investigate whether the same agree-
ment extends to more generic pulse shapes and velocity fields. The
finite-N approach can, in principle, be generalized to arbitrary
shapes, but the analytic calculations would be quite lengthy, due
to the need of distinguishing between fast and slow scales and the
need of accounting for higher order terms. For this reason, here
we limit ourselves to give a positive answer to this question with
the help of numerical studies.

The only, important, exception to this scenario is obtained for
quasi δ-like pulses (Zillmer et al., 2007), i.e., for pulses whose
width is smaller than the average time separation between any two
consecutive spikes, in which case all the SW eigenvalues remain
finite for increasing N.

In section 2 we introduce the model and derive the corre-
sponding event-driven map, a necessary step before undertaking
the analytic calculations. Section 3 is devoted to a perturbative
stability analysis of the splay state in the infinite-size limit for
generic velocity fields and pulse shapes. The following section 4
reports a discussion of the stability in finite networks. There we
briefly recall the main results obtained in Olmi et al. (2012) for
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the splay state and we extensively discuss the method to quantify
the stability of the fully synchronous regime. The following two
sections are devoted to a numerical analysis of various setups.
In section 5 we study splay states in finite networks for generic
velocity fields and three different classes of of pulses, namely,
with finite, vanishing (≈1/N), and zero width. In section 6 we
study periodically forced networks. Such studies show that the
scaling relations derived for the splay states apply also to such a
microscopically quasi-periodic regime. A brief summary of the
main results together with a recapitulation of the open problem
is finally presented in section 7. In the first appendix we derive
the Fourier components needed to assess the stability of a splay
state for a generic PRC. In the second appendix the evaporation
exponent is determined for the synchronous state in LIF neurons.

2. THE MODEL
The general setup considered in this paper is a network of N
identical pulse-coupled neurons (rotators), whose evolution is
described by the equation

Ẋj = F(Xj) + gE(t), j = 1, . . . , N (1)

where Xj represents the membrane potential, g is the coupling
constant and the mean field E(t) denotes to the synaptic input,
common to all neurons in the network. When Xj reaches the
threshold value Xj = 1, it is reset to Xj = 0 and a spike contributes
to the mean field E in a way that is described here below. The
resetting procedure is an approximation of the discharge mecha-
nism operating in real neurons. The function F(X) (the velocity
field) is assumed to be everywhere positive, thus ensuring that
the neuron is repetitively firing. For F0(X) = a − X the model
reduces to the well-known case of LIF neurons.

The mean field E(t) arises from the linear superposition of the
pulses emitted by the single neurons. In order to describe its time
evolution, it is sufficient to introduce a suitable ordinary differen-
tial equation (ODE), such that its Green function reproduces the
expected pulse shape,

E(L) =
L−1∑

i

aiE
(i) + K

N

∑
n|tn < t

δ(t − tn), (2)

where the superscript (i) denotes the ith time derivative, L the
order of the differential equation and K = ∏

i αi, (−αi being the
poles of the differential equation), so as to ensure that the sin-
gle pulses have unit area (for N = 1). The δ-functions appearing
on the right hand side of Equation (2) correspond to the spikes
emitted at times {tn}: each time a spike is emitted, the term E(L−1)

has a finite jump of amplitude K/N. Therefore L controls the
smoothness of the pulses: L − 1 is the order of the lowest deriva-
tive that is discontinuous. L = 0 corresponds to the extreme case
of δ-pulses with no field dynamics; L = 1 corresponds to discon-
tinuous exponential pulses; L = 2 (with α1 = α2) to the so-called
α-pulses (Es(t) = α2te−αt). Since α-pulses will be often referred
to, it is worth being a little more specific. In this case, Equation (2)
reduces to

Ë(t) + 2αĖ(t) + α2E(t) = α2

N

∑
n|tn < t

δ(t − tn), (3)

and it is convenient to transform this equation into a system of
two ODEs, namely

Ė = P − αE, Ṗ + αP = α2

N

∑
n|tn < t

δ(t − tn), (4)

where we have introduced, for the sake of simplicity, the auxiliary
variable P ≡ αE + Ė.

2.1. EVENT-DRIVEN MAP
By following Zillmer et al. (2006) and Calamai et al. (2009), it is
convenient to pass from a continuous—to a discrete-time evolu-
tion rule, by deriving the event-driven map which connects the
network configuration at consecutive spike times. For the sake
of simplicity, in the following part of this section we refer to
α-pulses, but there is no conceptual limitation in extending the
approach to L > 2.

By integrating Equation (4), we obtain

En + 1 = Ene−αTn + PnTne−αTn (5)

Pn + 1 = Pne−αTn + α2

N
, (6)

where we have taken into account the effect of the incoming
pulse (see the term α2/N in the second equation) while Tn =
tn + 1 − tn is the interspike interval; tn + 1 corresponds to the time
when the neuron with the largest membrane potential reaches the
threshold.

Since all neurons follow the same first-order differential equa-
tion (this is a mean-field model), the ordering of their membrane
potentials is preserved [neurons “rotate” around the circle [0, 1]
without overtaking each other (Jin, 2002)]. It is, therefore, con-
venient to order the potentials from the largest to the smallest
one and to introduce a co-moving reference frame, i.e., to shift
backward the label j, each time a neuron reaches the threshold. By
formally integrating Equation (1),

X
j
n + 1 = F(X

j + 1
n ,Tn) + g

e−Tn − e−αTn

α − 1

(
En + Pn

α − 1

)

− g
Tne−αTn

(α − 1)
Pn. (7)

Moreover, since X1
n is always the largest potential, the interspike

interval is defined by the threshold condition

X1
n(Tn, En, Pn) ≡ 1. (8)

Altogether, the model now reads as a discrete-time map, involv-

ing N + 1 variables, En, Pn, and X
j
n (1 ≤ j < N), since one degree

of freedom has been eliminated as a result of having taken the
Poincaré section (XN

n ≡ 0 due to the resetting mechanism). The
advantage of the map description is that we do not have to deal
any longer with δ-like discontinuities, or with formally infinite
sequences of past events.

In this framework, the splay state is a fixed point of the event-
driven map. Its coordinates can be determined in the following
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way. From Equation (5), one can express P̃ and Ẽ as a function of
the yet unknown interspike interval T ,

P̃ = α2

N
(1 − e−αT )−1 Ẽ = T P̃(eαT − 1)−1. (9)

The value of the membrane potentials X̃k are then obtained by
iterating backward in j Equation (7) (the n dependence is dropped
for the fixed point) starting from the initial condition X̃N = 0.
The interspike interval T is finally obtained by imposing the con-
dition X̃0 = 0. In practice the computational difficulty amounts
to finding the zero of a one dimensional function and, even
though F(Xj + 1,T ) can, in most cases, be obtained only through
numerical integration, the final error can be very well kept under
control.

3. THEORY (N = ∞)
The stability of a dynamical state can be assessed by either first
taking the infinite-time limit and then the thermodynamic limit,
or vice versa. In general it is not obvious whether the two methods
yield the same result and this is particularly crucial for the splay
state, as many eigenvalues tend to 0 for N → ∞. In this section
we discuss the scenarios that have to be expected when the ther-
modynamic limit is taken first. We do that by following Abbott
and van Vreeswijk (1993).

As a first step, it is convenient to introduce the phase-like
variable

yi =
∫ Xi

0

dx

G(x)
, 0 ≤ yi ≤ 1 (10)

where, for later convenience, we have defined G(X) ≡ g +
T0F(X), T0 = NT being the period of the splay state (i.e., the
single-neuron interspike interval). The phase yi evolves according
to the equation

dyi

dt
= Ẽ + gε(t)

G(X(yi))
(11)

where Ẽ = 1/T0 is the amplitude of the field in the splay state,
ε(t) = E(t) − Ẽ. In the splay state, since ε = 0, yi grows lin-
early in time, as indeed expected for a well-defined phase. In the
thermodynamic limit, the evolution is ruled by the continuity
equation

∂ρ

∂t
= − ∂J

∂y
(12)

where ρ(y, t)dy is the fraction of neurons whose phase yi lies in
(y, y + dy) at time t, and

J(y, t) =
[

Ẽ + gε(t)

G(X(y))

]
ρ(y, t) (13)

is the corresponding flux. As the resetting implies that the out-
going flux J(1, t) (which coincides with the firing rate) equals
the incoming flux at the origin, the above equation has to be

complemented with the boundary condition J(0, t) = J(1, t).
Finally, in this macroscopic representation, the field equation
writes

ε(L) =
L−1∑

i

aiε
(i) + K(J(1, t) − Ẽ), (14)

while the splay state corresponds to the fixed point ρ = 1, ε = 0,
J = Ẽ. The smoothness of the splay state justifies the use of a par-
tial differential equation such as (Equation 12). Its stability can be
studied by introducing the perturbation j(y, t)

j(y, t) = J(y, t) − Ẽ, (15)

and linearizing the continuity equation,

∂ j

∂t
= g

G(X(y))

∂ε

∂t
− Ẽ

∂ j

∂y
. (16)

while the field equation simplifies to

ε(L) =
L−1∑

i

aiε
(i) + Kj(1, t). (17)

By now introducing the Ansatz

j(y, t) = jf (y)eλt ε(y, t) = εf (y)eλt, (18)

in Equations (16) and (17) and, thereby solving the resulting
ODE, one can obtain an implicit expression for jf (y),

jf (y) = e−λy/Ē

[
1 + gKλ jf (1)

Ẽ
∏L

k = 1(λ + αk)

∫ y

0
dz

eλz/Ẽ

G(X(z))

]
,

where −αk and K are defined as below Equation (2). By imposing
the boundary condition for the flux, jf (1) = jf (0) = 1, one finally
obtains the eigenvalue equation (Abbott and van Vreeswijk,
1993),

(
eλ/Ẽ − 1

) L∏
k = 1

(λ + αk) = gKλ

Ẽ

∫ 1

0
dy

eλy/Ẽ

G(X(y))
. (19)

In the case of a constant G(X(y)) = σ , L eigenvalues correspond
to the zeroes of the following polynomial equation

L∏
k = 1

(λ + αk) = gK

σ
. (20)

For g = 0 such solutions are the poles which define the field
dynamics, while for g = σ , λ = 0 is a solution: this corresponds
to the maximal value of the (positive) coupling strength beyond
which the model does no longer support stationary states, as
the feedback induces an unbounded growth of the spiking rate.

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 8 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Olmi et al. Linear stability in networks of pulse-coupled neurons

Besides such L solution, the spectrum is composed of an infinite
set of purely imaginary eigenvalues,

λ = 2πinẼ = 2πin

T0
n �= 0. (21)

The existence of such marginally stable directions reflects the fact
that all yi phases experience the same velocity field, indepen-
dently of their current value (see Equation 11), so that no effective
interaction is present among the oscillators. In the limit of small
variations of G(X(y)), one can develop a perturbative approach.
Here below, we proceed under the more restrictive assumption
that the coupling constant g is itself small: we have checked that
this restriction does not change the substance of our conclusions,
while requiring a simpler algebra.

A small g value implies that λ is close to 2πinẼ and thereby
expand the exponential in Equation (19). Up to first order, we
find

λn = 2πinẼ

[
1 + gK(An + iBn)∏L

k = 1(2πinẼ + αk)

]
(22)

where

(An + iBn) =
∫ 1

0
dy

ei2πny

G(X(y))
(23)

are the Fourier components of the phase-response curve
1/G(X(y)).

In order to estimate the leading terms of the real part of λn in
the large n limit, let us rewrite Equation (22) as

λn = iγn + gKγn
−Bn + iAn∏L
k = 1(α

2
k + γ 2

n )

L∏
k = 1

(αk − iγn) (24)

where γn = 2πnẼ = (2πn)/T0. Since γn is proportional to n, the
leading terms in the product at numerator of Equation (24) are

L∏
k = 1

(αk − iγn) ∼ (−i)Lγ L
n + S(−i)L−1γ L−1

n , (25)

where S = ∑L
k = 1 αk while the leading term in the product at

denominator in Equation (24) is γ 2L
n . Accordingly, the main con-

tribution to the real part of the eigenvalues is, in the case of
even L,

Re{λn} ∼ gK(−1)L/2
[

SAn

γ L
n

− Bn

γ L−1
n

]
(26)

and, for odd L,

Re{λn} ∼ gK(−1)(L+3)/2
[

An

γ L−1
n

+ SBn

γ L
n

]
. (27)

An exact expression for the Fourier components An and Bn

appearing in Equation (23) can be derived in the large n limit.

In particular, the integral over the interval [0, 1] appearing in
Equation (23) can be rewritten as a sum of integrals, each
performed on a sub-interval of vanishingly small length 1/n.
Furthermore, since the phase-response 1/G has a limited varia-
tion within each sub-interval, it can be replaced by its polynomial
expansion up to second order. Finally, as shown in Appendix A,
the following expression are obtained at the leading order in 1/n
for a discontinuous F(X)

An 
 −T0

4π2n2

[
F′(1)

G(1)2
− F′(0)

G(0)2

]
, (28)

Bn 
 T0

2πn

[
F(1) − F(0)

G(1)G(0)

]
. (29)

Therefore, for even L, the leading term for n → ∞ is

Re{λn} = gKTL
0(−1)L/2 (F(0) − F(1))

(2πn)LG(1)G(0)
. (30)

For even L, the stability of the short-wavelength modes (large n)
is controlled by the sign of (F(0) − F(1)): for even (odd) L/2 and
excitatory coupling, i.e., g > 0, the splay state is stable whenever
F(1) > F(0) (F(1) < F(0)). Obviously the stability is reversed for
inhibitory coupling.

Notice that for L = 0, i.e., δ-spikes, the eigenvalues do not
decrease with n, as previously observed in Zillmer et al. (2007).
This is the only case where all modes exhibit a finite stability even
in the thermodynamic limit.

For odd L, the real part of the eigenvalues is

Re{λn} = gKTL
0(−1)(L+1)/2

(2πn)(L+1)
× (31)

{
F′(1)

G(1)2
− F′(0)

G(0)2
− ST0

F(1) − F(0)

G(1)G(0)

}
,

in this case the value of F(X) and of its derivative F′(X) at the
extrema mix up in a non-trivial way.

Finally, as for the scaling behavior of the leading terms we
observe that

Re{λn} ∼ n−q, q = 2

⌊
L + 1

2

⌋
(32)

where �· stays for the integer part of the number. Therefore the
scaling of the short-wavelength modes for discontinuous F(X) is
dictated by the post-synaptic pulse profile.

For a continuous but non-differentiable F(X), (i.e., F′(1) �=
F′(0)), if L is even, it is necessary to go two orders beyond in the
estimate of the Fourier coefficients (see Appendix A). As a result,
the eigenvalues scale as

Re{λn} ∝ n−(L+2). (33)

For odd L, it is instead sufficient to assume F(0) = F(1) in
Equation (31).

Altogether, we have seen that the non-smoothness of both
the post-synaptic pulse and of the velocity field (or, equivalently,
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of the phase response curve) play a crucial role in determining
the degree of stability of the splay state. The smoother are such
functions and the slower short-wavelength perturbations decay,
although the changes occur in steps which depend on the parity
of the order of the discontinuity (at least for the pulse struc-
ture). Moreover, the overall stability of the spectral components
depends in a complicate way on the sign of the discontinuity itself.

4. THEORY (FINITE N )
4.1. THE SPLAY STATE
The stability for finite N can be investigated by linearizing
Equations (5–7). A thorough analysis has been developed in Olmi
et al. (2012); here we limit ourselves to review the key ideas as a
guide for the numerical analysis.

We start by introducing the vector W = ({xj}, ε, p)

(j = 1, N − 1), whose components represent the infinites-
imal perturbations of the solution {Xj}, E, P. The Floquet
spectrum can be determined by constructing the matrix A which
maps the initial vector W(0) onto W(T ),

W(T ) = AW(0) (34)

where T corresponds to the time separation between two con-
secutive spikes. This is done in two steps, the first of which
corresponds to evolving the components of a Cartesian basis
according to the equations obtained from the linearization of
Equations (1, 4) (in the comoving reference frame),

ẋj = dF

dxj + 1
xj + 1 + gε, j = 2, . . . , N ẋN ≡ 0

ε̇ = p − αε, ṗ = −αp. (35)

The second step consists in accounting for the spike emission,
which amounts to add the vector

U = [{Ẋj(T )}, Ė(T ), Ṗ(T )]τ (36)

where τ is obtained from the linearization of the threshold
condition (8),

τ = −
(

∂X1

∂E
ε + ∂X1

∂P
p

)
1

Ẋ1
(37)

The diagonalization of the resulting matrix A, gives N + 1
Floquet eigenvalues μk, which we express as

μk = eiφk eT0(λk + iωk)/N , (38)

where φk = 2πk
N , k = 1, . . . , N − 1, and φN = φN−1 = 0, while

λk and ωk are the real and imaginary parts of the Floquet expo-
nents. The variable φk plays the role of the wavenumber k in the
linear stability analysis of spatially extended systems.

Previous studies (Olmi et al., 2012) have shown that the spec-
trum can be decomposed into two components: (1) k ∼ O(1);
(2) k/N ∼ O(1). The former one is the LW component and can
be directly obtained in the thermodynamic limit (see the previ-
ous section). For L = 2 and α1 = α2 (i.e., for α pulses), it has

been found that the results reported in Abbott and van Vreeswijk
(1993) match does obtained for 1 � k � N in Olmi et al. (2012).
The latter one corresponds to the SW component: it depends on
the system size and cannot, indeed, be derived from the mean field
approach discussed in the previous section. In the next section,
we illustrate some examples that go beyond the analytic studies
carried out in Olmi et al. (2012).

4.2. THE SYNCHRONIZED STATE
In this section we address the problem of measuring the stability
of the fully synchronized state for a generic oscillator dynamics
F(x). The task is non-trivial, because of the resetting mecha-
nism, which acts simultaneously on all neurons. On the one side,
we extend the results obtained in Goel and Ermentrout (2002)
which are restricted to a continuous PRC, on the other side we
extend the results of Mirollo and Strogatz (1990) which refer to
excitatory coupling and δ pulses. In order to make the analysis
easier to understand we start considering α-pulses. Other cases
are discussed afterward.

The starting point amounts to writing the event driven map in
a comoving frame,

X
j
n + 1 = F

(
X

j + 1
n , En, Pn,Tn

)
(39)

En + 1 = Ene−αTn + PnTne−αTn , (40)

Pn + 1 = Pne−αTn + α2

N
, (41)

where the function F is obtained by formally integrating the
equations of motion over the time interval Tn. Notice that the
field dynamics has been, instead, explicitly obtained from the
exact integration of the equations of motion [compare with
Equations (3, 4)]. The interspike time interval Tn is finally deter-
mined by solving the implicit equation

F(X1
n, En, Pn,Tn) = 1. (42)

In order to determine the stability of the synchronized state, it is
necessary to assume that the neurons have an infinitesimally dif-
ferent membrane potentials, even though they coincide with one
another. As a result, the full period must be broken into N steps.
In the first one, of length T, all neurons start in X = 0 and arrive
at 1, but only the “first” reaches the threshold; in the following
N − 1 steps, of 0-length, one neuron after the other passes the
threshold and it is accordingly reset in 0.

With this scheme in mind we proceed to linearize the equa-
tions, writing the evolution equations for the infinitesimal per-

turbations x
j
n, εn, pn, and τn around the synchronous solution.

From Equations (39–41) we obtain,

x
j
n + 1 = FX(j + 1)x

j + 1
n + FE(j + 1)εn +

FP(j + 1)pn + FT (j + 1)τn 1 ≤ j < N (43)

εn + 1 = e−αT εn + T e−αT pn −(
αẼ − Pne−αT )

τn (44)

pn + 1 = e−αT pn − αPne−αT τn. (45)
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with the boundary condition xN
n + 1 = 0 (due to the reset mech-

anism) and where the subscripts X, E, P, and T denote a partial
derivative with respect to the given variable. Moreover, the depen-
dence on j + 1 is a shorthand notation to remind that the various
derivatives depend on the membrane potential of the (j + 1)st
neuron. Finally, we have left the n-dependence in the variable
P as it changes (in α2/N steps, when the neurons progressively
cross the threshold), while Ẽ refers to the field amplitude, which,
instead, stays constant.

The above equations must be complemented by the condition

τn = −TXx1
n + TEεn + TPpn, (46)

where TZ = FZ(1)/FT (1) (Z = X, E, P). Equation (46) is
obtained by differentiating Equation (42) which defines the
period of the splay state.

We now proceed to build the Jacobian for each of the N steps,
starting from the first one. In order not to overload the notations,
from now on, the time index n corresponds to the step of the pro-
cedure. It is convenient to order all the variables, starting from xj

(j = 1, N − 1), and then including ε and p, into a single vector, so
that the evolution is described by an (N + 1) × (N + 1) matrix
with the following structure,

N (n) =
(

�(n) 0
�(n) 	(n)

)
, (47)

where 0 is an (N − 1) × 2 null matrix; �(n) is a quadratic
(N − 1) × (N − 1) matrix, whose only non-zero elements are
those in the first column and along the supradiagonal; �(n) is
a 2 × (N − 1) matrix whose elements are all zero except for the
first column; finally 	(n) is a 2 × 2 matrix.

Since in the first step all neurons start from the same position
X = 0, one can drop the j dependence in F . With the help of
Equations (46, 43)

�(1)j,1 = −FX

�(1)j,j + 1 = FX (48)

Moreover, with the help of Equations (44–46)

�(1)11 = −
(
αẼ − P̃e−αT

)
TX

�(1)12 = −αPe−αTTX, (49)

where we have also made use that P1 = P̃. Finally,

	(1)11 = e−αT −
(
αẼ − P̃e−αT

)
TE,

	(1)12 = Te−αT −
(
αẼ − P̃e−αT

)
TP,

	(1)21 = −αP̃e−αTTE, (50)

	(1)22 = e−αT − αP̃e−αTTP,

In the next steps, Tn vanishes, so that FE = FP = 0, while FX =
1 and FT (1) = F(1) + gẼ := V1. Moreover, FT (j) depends on

whether the jth neuron has passed the threshold or not. In the for-
mer case FT (j + 1) = F(0) + gẼ := V0, otherwise FT (j + 1) =
V1. As a result,

�(n)j,1 = −Vj/V1

�(n)j,j + 1 = 1 (51)

where Vj = V0 if j < n and Vj = V1, otherwise. At the same
time, from the equations for the field variables, we find that

�(n)11 = αẼ − (P̃ + (n − 1) α2

N )

V1

�(n)12 = α(P̃ + (n − 1) α2

N )

V1
, (52)

while 	(n) reduces to the identity matrix.
From the multiplication of all matrices, we find that the

structure is preserved, namely

N (N) · · ·N (2)N (1) =
(

Λ 0
�̄ 	(1)

)
, (53)

where �̄(n) is a 2 × (N − 1) matrix, whose elements are all zero
except for those of the first column, namely

�̄11 = �(1)11 + �(n)11

�̄12 = �(1)12 + �(n)12

Furthermore, Λ is a diagonal matrix, with

Λjj = FX
V0

V1
= F(0) + gẼ

F(1) + gẼ
exp

[∫ T

0
dtF′(X(t))

]
(54)

Therefore, it is evident that the stability of the orbit is measured
by the diagonal elements Λjj together with the eigenvalues of 	

which are associated to the pulse structure. In practice, FX cor-
responds to the expansion rate from X = 0 to X = 1 under the
action of the mean field E and we recover a standard result in
globally coupled identical oscillators: the spectrum is degenerate,
all eigenvalues being equal and independent of the network size.
The result is, however, not obvious in this context, due to the care
that is needed in taking into account the various discontinuities.
We have separately verified that the same conclusion holds for
exponential spikes.

The stability of the synchronized state can be also addressed by
determining the evaporation exponent Λe (van Vreeswijk, 1996;
Pikovsky et al., 2001), which measures the stability of a probe
neuron subject to the mean field generated by the synchronous
neurons with no feedback toward them. By implementing this
approach for a negative perturbation, van Vreeswijk found that
Λe is equal to Λjj (for α-functions). By further assuming that
F′ < 0, he was able to prove that the synchronized state is sta-
ble for inhibitory coupling and sufficiently small α-values. The
situation is more delicate for exponential pulse-shapes. As shown
in di Volo et al. (2013), Λe > 0 (Λe < 0) depending whether the
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perturbation is positive (negative). In this case, the Floquet expo-
nent reported in Equation (54) coincides with the evaporation
exponent estimated for negative perturbations. In Appendix B.
we show that the difference between the left and right stability is to
be attributed to the discontinuous shape of the pulse: no anomaly
is expected for α pulses.

5. NUMERICAL ANALYSIS
The theoretical approaches discussed in the previous sections
allow determining: (1) the SW components of the Floquet spec-
trum for discontinuous velocity fields; (2) the leading LW expo-
nents directly in the thermodynamic limit for generic velocity
fields and pulse shapes, in the weak coupling limit. It would be
possible to extend the finite N results to other setups, but we do
not think that the effort is worth, given the huge amount of tech-
nicalities. We thus prefer to illustrate the expected behavior with
the help of some simulations which, incidentally, cover a wider
range than possibly accessible to the analytics.

More precisely, in this and the following section we study the
models listed in Table 1 in a standard set up (splay states) and
under the effect of periodic external perturbations.

5.1. FINITE PULSE WIDTH
Here, we discuss the stability of the splay state for different degrees
of smoothness of the velocity field at the borders of the unit
interval for post-synaptic pulses of α-function type.

We start from discontinuous velocity fields. They have been the
subject of an analytic study which proved that the SW component
scales as 1/N2 (Olmi et al., 2012). The data reported in Figure 1A
for F1(X) confirms the expected scaling: the agreement with the
theoretical curve derived in Olmi et al. (2012) is impressive over
the entire spectral range, while the mean field Equation (30) gives
a very good estimation of the spectrum except for the shortest
wavelengths, where it overestimates the numerical data. The mean
field approximation turns out to be more accurate for continuous
velocity fields (with a discontinuity of the first derivative at the

Table 1 | In the first column is reported the list of the velocity fields

F(X ) analyzed in the paper. All the considered fields are everywhere

positive within the definition interval X∈[0,1], thus ensuring that the

neuron is supra-threshold. The second column refers to the

continuity properties of the fields within the interval [0,1].

Velocity field Continuity properties

F0(X ) = a − X Discontinuous

F1(X ) = a − X (X − 0.7) Discontinuous

F2(X ) = a − 0.25 sin(πX ) C(0)

F3(X ) = a + X (X − 1) C(0)

F4(X ) = a − 0.25 sin(πX ) cos2(πX ) C(0)

F5(X ) = a − 0.25 sin(2πX ) cos2(2πX ) C(∞)

F6(X ) = a − 0.25 sin(2πX )ecos(2πX ) C(∞)

F7(X ) = a − 1 + e2 sin(2πX ) C(∞)

The function is labeled as discontinuous if F(0) �= F(1); it is C(0) if F(0) = F(1) but

F ′(0) �= F ′(1) and C(1) if F(0) = F(1) and F ′(0) = F ′(1). F(X) is C(∞) if it is infinitely

differentiable and each derivative is continuous at the extrema of the definition

interval.

borders of the definition interval). Indeed the agreement between
the theoretical expression Equation (A10) and the numerical data
is very good for the entire range [see Figure 1B which refers to
F4(X)].

The numerical Floquet spectra for fields that are C(0), but
not C(1) (F(0) = F(1), F′(0) �= F′(1)), are reported in Figure 2
[the curves in panels (A, B) refer to F2(X) and F4, respectively].
For these velocity fields, we have also verified that the spectra
scale as 1/N4, confirming the observation reported in Calamai
et al. (2009) for a different velocity field with the same analyti-
cal properties. The data displayed in Figures 2A,B refer to the LW
components: they indeed confirm to be independent of the sys-
tem size and scale as 1/k4 (see the dashed line) as predicted by the
perturbative theory discussed in section 3.

The spectra reported in the other two panels refer to analytic
velocity fields: in all cases the initial part of the Floquet spectra is
again independent of N and scales approximately exponentially
with k, confirming that the scaling behavior of the exponents
is related to the analyticity of the velocity field. The fluctuating
background with approximate height 10−12 is just a consequence
of the finite numerical accuracy. This is the reason why we did not
dare to estimate the SW components that would be exceedingly
small.

5.2. VANISHING PULSE-WIDTH
Here, we analyze the intermediate case between finite pulse-width
and δ-like impulses. Similarly to what done in Zillmer et al.
(2007) for the LIF, we consider α pulses, where α = βN, with β

independent of N.
In Figure 3A we report the spectra for a discontinuous veloc-

ity field, F1(x). In this case the Floquet spectra remain finite, so
that the corresponding states remain robustly stable even in the
thermodynamic limit. Also in this case the agreement with the
theoretical expression reported in Equation (7) in Olmi et al.
(2012) is extremely good, while Equation (30) overestimates the
spectra for large phases. The field considered in panel (b) (F2(X))
is C(0) but not C(1). In this case, the Floquet spectra scale as 1/N:
this scaling is predicted by the analysis reported in section 3 and
the whole spectrum is very well reproduced by Equation (A10).

FIGURE 1 | Floquet spectra for α-pulses for (A) a discontinuous field

F1(X) and (B) a continuous field F4(X ). The orange dotted line in (A)

represents the theoretical curve estimated by using Equation (7) in Olmi
et al. (2012), while the dashed maroon curve represents the theoretical
curve estimated by using Equation (30) in section 3. In (B) the dashed
maroon curve is calculated by using Equation (A10). All data refer to a = 1.3
and α = 3.
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FIGURE 2 | Floquet spectra for α-pulses for two continuous sinusoidal

fields, namely F2(X ) (A) and F4(X ) (B); and two analytic fields, namely

F6(X ) (C) and F7(X ) (D). The dashed blue line in (B) indicates a scaling
1/k4. All data refer to a = 1.3 and α = 3.

FIGURE 3 | Floquet spectra for β-pulses with a discontinuous field

[F1(X )] (A) and a C(0) field [F2(X )] (B). The orange dotted line in (A)

represents the theoretical curve estimated by using Equation (7) in Olmi
et al. (2012). The dashed line in (A) [resp. (B)] represents the theoretical
curve computed by using Equation (30) [resp. Equation (A10)] for β-pulses.
The data refer to a = 1.3 and β = 0.03.

Last but not least, we have studied an analytic field, namely
F7(X). In this case the Floquet spectra appear to scale exponen-
tially to zero with the wavevector k, similarly to what observed for
the finite pulse width, as shown in Figure 4.

5.3. δ PULSES
Finally we considered the case of δ-pulses: whenever the potential
Xj reaches the threshold value, it is reset to zero and a spike is sent
to and instantaneously received by all neurons. We studied just
two cases: (1) the analytic field F7(X); (2) a leaky integrate-and
fire neuron model with F0(X). The results, obtained for inhibitory
coupling [since the splay state is known to be stable only in such
a case (van Vreeswijk, 1996; Zillmer et al., 2006)] are consistent
with the expectation for the β model.

In particular we found, in the analytic case (1), that the Floquet
spectra decay exponentially to zero. The exponential scaling is not
altered if a phase shift ζ is introduced in the velocity field (i.e., for
F(X) = a − 1 + e2 sin(2πX+ζ)). In the case of the LIF model (F0),

FIGURE 4 | Floquet spectra for β-pulses for the analytic field F7(X ). The
data refer to a = 1.3 and β = 0.03.

we already know that the Lyapunov spectrum tends, in the δ-pulse
limit, to Zillmer et al. (2007)

lim
β→∞ λπ = −1 + 1

T0
ln

(
a

a − 1

)
. (55)

This result is confirmed by our simulations which also reveal that
the splay state is stable even for small, excitatory coupling values,
extending previous results limited to inhibitory coupling (Zillmer
et al., 2006).

6. PERIODIC FORCING
In this section we numerically investigate the scaling behavior of
the Floquet spectrum in the presence of a periodic forcing, to test
the validity of the previous analysis in a more general context. We
have restricted our studies to splay-state-like regimes, where it is
important to predict the behavior of the many almost marginally
stable directions. Moreover, we have considered only the smooth
α-pulses. In this case, the dynamical equations read

Ẋj = F(Xj) + gE + A cos(ϕ), j = 1, . . . , N,

Ė = P − αE, (56)

Ṗ = −αP,

ϕ̇ = ω.

They have been written in an autonomous form, since it is more
convenient to perform the Poincaré section according to the
spiking times, rather than introducing a stroboscopic map. The
interspike interval is determined by the equation

T =
∫ 1

Xold

dX1

F(X1) + gE + A cos(ϕ)
. (57)

where X1 is the membrane potential of the first neuron (the
closest to threshold), and Xold is its initial value.

We analyzed only those setups where the unperturbed splay
state is stable. More precisely: the two discontinuous fields F0(X)

and F1(X), the two C(0) fields (F2(X) and F3(X)), and the analytic
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field F7(X). In all cases the external modulation induces a periodic
modulation of the mean field E with a period Ta = 2π/ω equal to
the period of the modulation. At the same time, we have verified
that, although the forcing term has zero average (i.e., it does not
change the average input current), the average interspike interval
is slightly self-adjusted and, what is more important, there is no
evidence of locking between the modulation and the frequency of
the single neurons. In other words, the behavior is similar to the
spontaneous partial synchronization observed in van Vreeswijk
(1996) (where the modulation is self-generated).

Because of the unavoidable oscillations of the interspike inter-
vals, it is necessary to identify the spike times with great care. In
practice we integrate Equation (56) with a fixed time step Δt,
by employing a standard fourth-order Runge–Kutta integration
scheme. At each time step we check if X1 > 1, in which case we
go one step back and adopt the Hénon trick, which amounts to
exchanging t and X1 in the role of independent variable (Henon,
1982).

The linear stability analysis can be performed by linearizing
the system (56), to obtain

ẋj = dF(Xj)

dXj
xj + gε − A sin(ϕ)δϕ, j = 1, . . . , N,

ε̇ = p − αε,

ṗ = −αp,

δϕ̇ = 0;

and by thereby estimating the corresponding Lyapunov spectrum.
In the case of F0 and F1, we have always found that the

Lyapunov spectrum scales as 1/N2 as theoretically predicted in
the absence of external modulation (see Figure 5 for one instance
of each of the two velocity fields).

A similar agreement is also found for F3, where the Lyapunov
spectrum scales as 1/N4, exactly as in the absence of external forc-
ing (see Figure 6). Analogous results have been obtained for the
other velocity fields (data not shown), which confirm that the
validity of the previous analysis extends to more complex dynam-
ical regimes, as long as the membrane potentials are smoothly
distributed.

7. SUMMARY AND OPEN PROBLEMS
In this paper we have discussed the linear stability of both fully
synchronized and splay states in pulse-coupled networks of iden-
tical oscillators. By following Abbott and van Vreeswijk (1993),
we have obtained analytic expressions for the long-wavelength
components of the Floquet spectra of the splay state for generic
velocity fields and post synaptic potential profiles. The structure
of the spectra depends on the smoothness of both the velocity
field and the transmitted pulses. The smoother they are and the
faster the eigenvalues decrease with the wavelength of the corre-
sponding eigenvectors. In practice, while splay states arising in LIF
neurons with δ-pulses have a finite degree of (in)stability along all
directions, those emerging in analytic velocity fields have many
exponentially small eigenvalues. These results have been derived
in the mean field framework, where the system is assumed to be
infinite. Although realistic neural networks are finite, the present

FIGURE 5 | Lyapunov spectra for neurons forced by an external

periodic signal, we observe the scaling 1/N2 for the discontinuous

velocity fields (A) F0(X ) and (B) F1(X ). In both cases A = 0.1, Ta = 2.

FIGURE 6 | Lyapunov spectra for neurons forced by an external

periodic signal, we observe the scaling 1/N4 for the continuous

velocity field F3(X ). The data refer to A = 0.1, Ta = 2.

analysis predicts correctly, even for finite systems, the stability of
the eigenmodes associated to the fastest scales and the order of
magnitude of the eigenvalues corresponding to slower time scales.
Interestingly, the scaling behavior of the eigenvalues carries over
to that of the Lyapunov exponents, when the network is periodi-
cally forced, suggesting that our results have a relevance that goes
beyond the highly symmetric solutions studied in this paper.

Finally, we derived an analytic expression for the Floquet spec-
tra for the fully synchronous state. In this case the exponents
associated to the dynamics of the membrane potentials are all
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identical, as it happens for the diffusive coupling, but here the
result is less trivial, due to the fact that one must take into account
that arbitrarily close to the solution, the ordering of the neu-
rons may be different. Moreover, the value of the (degenerate)
Floquet exponent coincides with the evaporation exponent (van
Vreeswijk, 1996; Pikovsky et al., 2001) whenever the pulses are
sufficiently smooth, while for discontinuous pulses (like exponen-
tial and δ-spikes) the equivalence is lost (see also di Volo et al.,
2013).

For discontinuous velocity fields, another important property
that has been confirmed by our analysis is the role of the ratio
R = N/(T0α) between the width of the single pulse (1/α) and the
average interspike interval of the whole network (T = T0/N). In
fact, it turns out that the asynchronous regimes can be strongly
stable along all directions only when R remains finite in the
thermodynamic limit (and is possibly small). This includes the
idealized case of δ-like pulses, but also setups where the single
pulses are so short that they can be resolved by the single neurons.
Mathematically speaking, this result implies that the thermody-
namic limit does not commute with the limit of a zero pulse-
width. It would be interesting to check to what extent this prop-
erty extends to more realistic models. A first confirmation result
is contained in Pazó and Montbrió (2013), where the authors find
a similar property in a network of Winfree oscillators.

Among possible extensions of our analysis, one should defi-
nitely mention the inclusion of delay in the pulse transmission.
This generalization is far from trivial as it modifies the phase dia-

the stability analysis of the synchronized phase. An analytic treat-
ment of this latter case is reported in Timme et al. (2002) for
generic velocity fields and excitatory δ-pulses.
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APPENDICES
A. FOURIER COMPONENTS OF THE PHASE RESPONSE CURVE
In this appendix we briefly outline the way the explicit expression
of An and Bn, defined in Equation (23), can be derived in the large
n limit for a velocity field F(X) that is either discontinuous, or
continuous with discontinuous first derivatives at the border of
the definition interval.

The integration interval [0, 1] appearing in Equation (23) is
splitted in n sub-intervals of length 1/n, and the original equation
can be rewritten as

(An + iBn) =
n∑

k = 1

∫ k/n

(k − 1)/n
dy

ei2πny

G(y)
. (A1)

For n sufficiently large we can assume that the variation of 1/G(y)
is quite limited within each sub-interval, and we can approximate
the function as follows, up to the second order

1

G(y)
= 1

g + T0F(y0)

{
1 − T0F′(y0)

g + T0F(y0)
(y − y0)

+
[(

T0F′(y0)

g + T0F(y0)

)2

− T0F
′′
(y0)

2(g + T0F(y0))

]
(y − y0)

2

}

where y0 = (k − 1)/n is the lower extremum of the nth sub-
interval.

By inserting these expansions into Equation (A1) and by
performing the integration over the n sub-intervals, we can deter-
mine an approximate expression for An and Bn. The estimation of
An involves integrals containing cos(2πny); it is easy to show that
the integral over each sub-interval is zero if the integrand, which
multiplies the cosinus term, is constant or linear in y; therefore
the only non-zero terms are,

∫ k/n

(k − 1)/n
dy cos(2πny)y2 = 1

2π2n3
. (A2)

This allows to rewrite

An = 1

2π2n2

n∑
k = 1

H2

(
k − 1

n

)
1

n

= 1

2π2n2

[∫ 1

0
dxH2(x)

]
+ O

(
1

n3

)
(A3)

where

H2(x) =
[

(T0F′(x))2

(g + T0F(x))3
− T0F

′′
(x)

2(g + T0F(x)2)

]
. (A4)

It is easy to verify that H2(x) admits an exact primitive and there-
fore to perform the integral appearing in Equation (A3) and to
arrive at the expression reported in Equation (28).

The estimation of Bn is more delicate, since now integrals con-
taining sin(2πny) are involved. The only vanishing integrals over

the sub-intervals are those with a constant integrand multiplied
by the sinus term and therefore the estimation of Bn reduces to

Bn =
n∑

k = 1

H1

(
k − 1

n

) ∫ k/n

(k − 1)/n
dy sin(2πny)y

+
n∑

k = 1

H2

(
k − 1

n

) ∫ k/n

(k − 1)/n
dy sin(2πny)

(
y2 − 2y

k − 1

n

)

where

H1(x) = − T0F′(x)

(g + T0F(x))2
, (A5)

and the non-zero integrals are

∫ k/n

(k − 1)/n
dy sin(2πny)y = − 1

2πn2
, (A6)

and

∫ k/n

(k − 1)/n
dy sin(2πny)y2 = 1 − 2k

2πn3
. (A7)

This allows to rewrite Bn as

Bn = − 1

2πn

n∑
k = 1

H1

(
k − 1

n

)
1

n

− 1

2πn2

n∑
k=1

H2

(
k − 1

n

)
1

n
. (A8)

We can then return to a continuous variable by rewriting (A8), up
to the O(1/n3), as

Bn = − 1

2πn

[∫ 1

0
H1(x)dx + H1(1) − H1(0)

2n

]

− 1

2πn2

∫ 1

0
H2(x)dx. (A9)

The expression Equation (29) is finally obtained by noticing that
the primitive of H2(x) is H1(x)/2, and that

∫ 1

0
H1(x)dx = 1

(g + T0F(0))
− 1

(g + T0F(1))
.

For continuous velocity fields, Bn = 0 so that, we can derive
from Equation (26) an exact expression for the real part of the
Floquet spectrum in the case of even L (for odd L the equivalent
expression is given by Equation (31))

Re{λn} = gKSTL+1
0 (−1)L/2

(2πn)(L+2)

F′(0) − F′(1)

G(1)2
. (A10)

A rigorous validation of the above formula would require going
one order beyond in the 1/n expansion of Bn, a task that is
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utterly complicated. In the specific case of the Quadratic Integrate
and Fire neuron (or 
-neuron) F(X) = a − X(X − 1), it can be,
however, analytically verified that Bn is exactly zero. Moreover,
Equation (A10) is in very good agreement with the numeri-
cally estimated Floquet spectra for two other continuous veloc-
ity fields, namely F4(X) and F2(X) as shown in Figures 1, 3,
respectively. As a consequence, it is reasonable to conjecture that
Equation (29) is correct up to order O(1/n4).

B. EVAPORATION EXPONENT FOR THE LIF MODEL
In this appendix we determine the (left and right) evaporation
exponent for a synchronous state of a network of LIF neurons.
This is done by estimating how the potential of a probe neu-
ron, forced by the mean field generated by the network activity,
converges toward the synchronized state. The stability analysis
is performed by following the evolution of a perturbed probe
neuron. Let us first consider an initial condition, where the syn-
chronized cluster has just reached the threshold (Xc = 1), while
the probe neuron is lagging behind at a distance δi. Such a distance
is equivalent to a delay td

td = δi

F+(1)
, (A11)

where the subscript “+” means that the velocity field is estimated
just after the pulses have been emitted. Over the time td, the
potential of the cluster increases from the reset value 0 to

δc = F+(0)td = F+(0)

F+(1)
δi. (A12)

From now on (in LIF neurons), the distance decreases exponen-
tially, reaching the value

δf = δce−T, (A13)

after a period T. As a result,

δf

δi
= F+(0)

F+(1)
e−T = a + gE+

a − 1 + gE+ . (A14)

The logarithm of the expansion factor gives the left evaporation
exponent

Λl
e = ln

(
a + gE+

a − 1 + gE+

)
− T. (A15)

Let us now consider a probe neuron which precedes the syn-
chronized cluster by an amount δi. After a time T the distance
becomes

δc = δie
−T (A16)

since no reset event has meanwhile occurred. Such a distance
corresponds to a delay

td = δc

F−(1)
, (A17)

where the subscript “−” means that the velocity has now to be
estimated just before the pulse emission. By proceeding as before
one obtains,

δf

δi
= F−(0)

F−(1)
e−T . (A18)

so that the right evaporation exponent writes

Λr
e = ln

(
a + gE−

a − 1 + gE−

)
− T. (A19)

It is easy to see that the left and right exponents differ if and only
if E− �= E+, i.e., if the pulses themselves are not continuous: this
is, for instance, the case of exponential and δ pulses.
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