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Nowadays, high-density microelectrode arrays provide unprecedented possibilities to
precisely activate spatially well-controlled central nervous system (CNS) areas. However,
this requires optimizing stimulating devices, which in turn requires a good understanding
of the effects of microstimulation on cells and tissues. In this context, modeling
approaches provide flexible ways to predict the outcome of electrical stimulation in
terms of CNS activation. In this paper, we present state-of-the-art modeling methods
with sufficient details to allow the reader to rapidly build numerical models of neuronal
extracellular microstimulation. These include (1) the computation of the electrical potential
field created by the stimulation in the tissue, and (2) the response of a target neuron to this
field. Two main approaches are described: First we describe the classical hybrid approach
that combines the finite element modeling of the potential field with the calculation of the
neuron’s response in a cable equation framework (compartmentalized neuron models).
Then, we present a “whole finite element” approach allowing the simultaneous calculation
of the extracellular and intracellular potentials, by representing the neuronal membrane
with a thin-film approximation. This approach was previously introduced in the frame of
neural recording, but has never been implemented to determine the effect of extracellular
stimulation on the neural response at a sub-compartment level. Here, we show on an
example that the latter modeling scheme can reveal important sub-compartment behavior
of the neural membrane that cannot be resolved using the hybrid approach. The goal of this
paper is also to describe in detail the practical implementation of these methods to allow
the reader to easily build new models using standard software packages. These modeling
paradigms, depending on the situation, should help build more efficient high-density neural
prostheses for CNS rehabilitation.

Keywords: finite element modeling, extracellular focal microstimulation, microelectrode arrays, neural prosthesis,

brain implants, ground surface configuration, compartmentalized neuron models, thin-film approximation

INTRODUCTION
Electrical stimulation of the central nervous system (CNS) has
been used for decades, both for fundamental research—to deci-
pher the organization and dynamics of neuronal circuits—and
with clinical perspectives—to alleviate symptoms of neuronal dis-
eases or restore injured functions (Clark et al., 1977; Benabid
et al., 1991; Winfree, 2005). Despite its widespread use, the pre-
cise effects of electrical stimulation are far from being understood.
For instance, the mechanisms of Deep Brain Stimulation, a pop-
ular technique used to treat symptoms of Parkinson’s disease and
other CNS disabilities, are still debated (Deniau et al., 2010; Shah
and Schiff, 2010). The very nature of electrical stimulation—an
electrical field flowing through entire structures of the brain—
makes it difficult to comprehend its mechanisms and spatial
extents using experimental approaches.

To overcome experimental limitations, modeling approaches
have been used since the 80’s to describe and predict the effects of
electrical stimulation on neural elements (McNeal, 1976; Rattay,

1986; Altman and Plonsey, 1990; Rubinstein, 1991) and esti-
mate the activation thresholds of particular electrode configu-
rations (Warman et al., 1992; Holsheimer and Wesselink, 1997;
Lertmanorat and Durand, 2004; Rattay and Resatz, 2007; Joucla
and Yvert, 2009a; Joucla et al., 2012b). These models are made
of two stages: First, the computation of the electrical field cre-
ated in the tissue by the stimulation; second, the calculation of
the response of the target cells to this field. In this article, we will
describe and compare two methodologies to address these two
calculation steps.

The computation of stimulating electric fields can be per-
formed using a finite element model (FEM). This allows taking
into account realistic brain morphologies and electrical param-
eters (conductivity, dielectric permittivity) (McIntyre and Grill,
2002; Bossetti et al., 2008; Grant and Lowery, 2010; Joucla et al.,
2012a; Wongsarnpigoon and Grill, 2012), as well as simple or
complex electrode configurations and/or geometries (Rattay and
Resatz, 2004; Butson and McIntyre, 2006; Grant and Lowery,
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2009; Joucla et al., 2012b). Surprisingly, the properties of stim-
ulation and ground electrodes, and especially their impedance,
are generally left aside. In a recent study, we showed however that
these properties are essential to simulate electrical stimulation in
a realistic manner near the electrode surfaces, in particular in the
vicinity of large electrodes, such as the ground electrode (Joucla
and Yvert, 2009a).

Regarding the calculation of the neuron response, clas-
sical approaches generally perform in a separate framework
(Greenberg et al., 1999; Miocinovic et al., 2006; Bellinger et al.,
2010; Bourbeau et al., 2011), where the target neuron is seg-
mented in compartments and the stimulation potential field—
separately calculated with the FEM—is applied at each compart-
ment location. For this purpose, the NEURON software (Hines
and Carnevale, 1997) provides a very suitable environment to
perform these cable-equation-based calculations. In the follow-
ing, this will be referred to as the hybrid FEM-cable-equation
approach (see Figure 1A).

The above procedure, where the neuron response computa-
tion is performed after that of the extracellular potential field,
suits for most configurations, but relies on two approximations:
(1) The membrane and extracellular potential are uniform over
each compartment (in fact, the neurons thickness is not modeled
in this framework); and (2) The extracellular potential field is not
affected by the presence of the neuron (in fact, the potential field
is calculated in a separate model that does not include any micro-
scopic description of the tissue). However, it has been argued that
these two assumptions are not valid when target neurons are close

to the stimulation electrode (Schnabel and Struijk, 2001). Thus,
in such cases, other approaches are required to calculate the neu-
ral response to the stimulation. In a recent study (Moulin et al.,
2008), we have developed a 3D FEM based on a thin-film approx-
imation, which allows the calculation of the neuron response in
the same framework as that used for the computation of the
extracellular potential field. Here, we extend this approach to the
case of neural stimulation and show that it can reveal important
membrane polarization at a sub-compartment level. In the fol-
lowing, this will be referred to as the whole FEM approach (see
Figure 1B).

This article is organized as follows: In the first part of
the Methods section, we show how to build a FEM to com-
pute the potential field using the software Comsol Multiphysics
(COMSOL AB, Stockholm, Sweden) and put special emphasis
on the description of the electrical properties of the stimulation
and ground electrodes. In the second part, we explain how to
implement both the hybrid and whole FEM approaches, using
NEURON and the Comsol environment, respectively. In the
Results section, we illustrate the usefulness of both approaches
for the computation of neural response to extracellular stimuli. In
particular, we show that the hybrid FEM-cable-equation approx-
imation can be used in the case of thin fibers and/or dendritic
structures, while the whole FEM model allows detailing the pre-
cise response of the different parts of the neural membrane in
thick regions of the cell such as the cell body. The code corre-
sponding to this example is made available as a supplementary
download for both the hybrid and the whole-FEM approaches.

FIGURE 1 | Schematic representation of the main steps of the hybrid FEM-cable-equation approach (A) and the whole Finite Element Model (B), for

the computation of neural response to extracellular electrical stimulation. For details, refer to the Methods section.
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METHODS AND PROTOCOLS
In this article, we present and compare two procedures to model
neuronal response to extracellular fields: First, the hybrid FEM-
cable-equation approach (Figure 1A), which requires successively
the computation of the electrical field [see Hybrid approach step
1: Computation of the extracellular potential field using a Finite
Element Model (FEM) below] and the calculation of the neu-
ron response to this field (Hybrid approach step 2: Calculation of
the neuron response using NEURON below); Second, the whole
FEM approach (Figure 1B), in which both the extracellular and
the membrane potentials are computed simultaneously (section
Whole FEM approach: Simultaneous calculation of the stimula-
tion potential field and the neuron response below). Procedures
to compute the response of both passive and active neurons are
presented. User variables and functions in Comsol and Neuron
are highlighted in courier font.

The primary goal of this paper is to detail the general meth-
ods to model extracellular electrical neural stimulation, so that
they can be readily used by others. We thus focus on the gen-
eral presentation of these procedures in the Methods section and
then illustrate these approaches on a particular example in the
Results section, where the stimulation configuration of a neu-
ral tissue (representing either a slice or a whole structure of
the Central Nervous System) laid on a 2D microelectrode array
(MEA) is detailed. We show how these modeling approaches
allow to design a particular electrode configuration aiming at
focalizing the potential field created in the tissue (Figure 2) and
to model the response of a straight fiber or a neuron taking
or not into account the presence of the neural geometry in the
calculation of the field (Figures 3, 4).

HYBRID APPROACH STEP 1: COMPUTATION OF THE EXTRACELLULAR
POTENTIAL FIELD USING A FINITE ELEMENT MODEL (FEM)
The following procedure describes the different steps to build a
realistic finite element model for the calculation of the poten-
tial field generated by a current-controlled stimulation. The only
requirement is the software Comsol Multiphysics (version 3.5).
This procedure computes the potential field generated in the
absence of the neuron. This field is thus supposed to be identical
if the neuron were present. The different steps are the followings:

1.1 Run the Comsol Multiphysics software. From the “Model
Navigator” window, select a 3D model and, in the proposed
list, choose Electromagnetics > Conductive Media DC.

1.2 Build the domain geometry, by combining the predefined
elementary shapes (e.g., blocks, cones, cylinders, ellipsoids,
spheres). Remember that the SI dimension unit is the meter,
and create the different shapes accordingly.

1.3 Define the subdomain settings for each volume. In the
Conductive Media DC mode, the equation to solve is the
following Poisson equation:

−∇ · (σ∇V − Je) = −Qj, (1)

where σ is the electrical conductivity of the medium (which
should be set to a value measured with a conductimeter or
taken from the literature, in S/m), Je is the external current

density vector, which should be set to (0, 0, 0) A/m2 and Qj

is the current source (0 A/m3).
1.4 Define the element type depending on the expected preci-

sion and smoothness of the solution to the problem, and
taking into account computation time and computer mem-
ory issues. For the Poisson equation (Equation 1), select
quadratic Lagrange elements, which approximate the solu-
tion by piecewise second degree polynomial functions.

1.5 Define the boundary settings on each surface boundary:
These can be of different types, depending on whether the
selected element is insulating or conductive.

1.5.1 For insulating elements, define a homogeneous
Neumann boundary condition (BC):

σ∇V · n = 0, (2)

where n is the outer vector normal to the boundary.
In a Conductive Media DC model, this is done by
choosing “Electrical insulation” (n · J = 0).

1.5.2 For each conductive element, define a Robin bound-
ary condition (see Joucla and Yvert, 2009a, 2012 for
explanation):

σ∇V · n + gV = gV0, (3)

where V0 is the voltage taken by the electrode on the
metal side (not on the medium side) and g is the
surface conductance of the electrode-medium inter-
face. In a Conductive Media DC model, this is done
by choosing “Distributed resistance”: In this mode,
the Robin BC is written as n · J = σ(V - Vref)/d,
where d is related to the thickness of the electrode-
medium interface. To fully define such BC, proceed
this way:
– Set σ to the value defined in the subdomain

settings.
– Compute the surface conductanceg of the interface

as the inverse of the electrode impedance (Zelec)
divided by the electrode area (Selec). g should be
in S/m2.

– Set d to σ/g.
– Set Vref to 0 for the ground electrode.
– Set Vref to V0 for the stimulation electrode(s). V0

should be computed so as to set the desired cur-
rent Ielec actually flowing through the electrode. For
that purpose, set V0 to 1 Volt in a first approach
and compute the total current I flowing through
the stimulation electrode, at the end of the simula-
tion (see below step 1.9). Then, in a second time,
modify V0 so that the expected I is equal to Ielec,
and solve the problem a second time. In practi-
cal cases where the electrode impedance is high,
the voltage V in the medium in front of the elec-
trode is small compared to V0 and the total current
flowing through the electrode boundary can be
approximated by Ielec = σ V0/d Selec (Ielec is in A).
Set V0 accordingly (in V).

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 13 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Joucla et al. Modeling extracellular electrical neural microstimulation

FIGURE 2 | Modeling the potential field in a FEM including Robin

boundary conditions. (A) 3D geometry of an in vitro MultiElectrode Array
(MEA) chamber created in the Comsol environment. The Poisson equation
was solved in this domain, whose electrical conductivity was 0.2 S/m.
(B) Mesh of the 3D domain, refined around the electrodes. (C) Boundary
conditions (BCs) used to model the insulating elements, such as the
non-stimulating electrodes and the external limits of the chamber
(homogeneous Neumann BC) and the conductive electrodes (Robin BC,

modeled in the DC mode of Comsol Multiphysics by a distributed resistance).
(D) Profiles of electrical potential fields obtained with the monopolar (black)
and ground surface (blue) configurations. In the latter case, the influence of
the surface conductance of the ground surface was evaluated (values are
given in S/m2). Electrical potentials, calculated along a line passing 50 μm
above the stimulation electrode, were normalized by the maximal value, for
each configuration. (E) Contour plots of the current density over the ground
surface (values are given in A/m2).

1.6 Define a (tetrahedral) mesh size in the whole domain. Refine
it locally in the regions where more precise calculations are
required (with a typical element edge size of less than 5 μm).
This is for instance the case around the locations where
the neuron used in the second step of the protocol (using
NEURON) will be located, or also on and around the stim-
ulation electrode. In the latter case, an accurate calculation
of V will lead to an accurate estimation of the actual current
flowing through the electrode.

1.7 Select the parameters of the Stationary solver. If the num-
ber of degrees of freedom (DoFs) is small enough, a direct
resolution of the meshed problem can be performed, for
instance by choosing the Direct (UMFPACK) solver. The

threshold number of DoFs depends on the computer char-
acteristics, but typically, this works for a mesh with less than
100,000–150,000 DoFs. For denser meshes, iterative algo-
rithms can be used, such as the conjugate gradient algorithm
preconditioned with the SSOR method.

1.8 Solve the problem.
1.9 Check that the total current flowing into the tissue equals

the desired nominal current. For that purpose, integrate the
norm of the current density over the boundary of the stimu-
lation electrode (this gives I1). Do it also on the boundary of
the ground electrode (this gives I2). Computing the current
density requires calculating the derivatives of V and is thus
subject to errors. For this reason, the two currents calculated
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FIGURE 3 | Computing the mirror response of a uniform passive fiber

to an extracellular potential field in the Neuron environment. (A) A
260-μm-long uniform fiber is modeled in the Neuron environment by a set
of electrical compartments linked in series through the intracellular
resistance Ra. Each (1-μm-long) compartment is modeled by a capacitance
(cm) in parallel with a membrane conductance (gl , in series with a voltage
source equal to the leakage potential El ), in parallel with ion-specific active
currents Ii,n. The latter are set to 0 in the current passive model.
(B) Contour plot of the extracellular potential field in the y–z plane
containing the compartmentalized fiber (oriented along the y axis, at
z = 50 μm). Values are given in mV, for a cathodic current of −1 μA
delivered by the stimulation electrode (in red) and returning through the
ground surface (in blue). (C) The extracellular potential is plotted at the
locations of the fiber compartments, together with the membrane
response at the end of a cathodic 1-ms-long stimulation.

previously (I1 and I2), which should be opposite one from
the other, may differ significantly. In such case, trust the cur-
rent calculated on the larger electrode, since it is generally
computed on a greater number of surface triangles.

1.10 If the calculated total current does not equal the nominal
one, multiply V0 by their ratio (step 1.5.2) and run the
problem again).

Having completed the previous steps, interpolate the values of the
electrical potential V at the locations of the centers of the neuron
compartments. For that purpose, use a cross-section plot (from
the postprocessing menu) and save the results in a .txt file.

FIGURE 4 | Complete FEM calculation of the extracellular potential and

the neuron response in the Comsol Multiphysics environment. (A) Two
thin-film-approximation-based FEMs were built, representing either a
straight uniform fiber or a neuron with a 20-μm-diameter soma in the
stimulation chamber. The Poisson equation is solved simultaneously in each
domain, with appropriate conductivity values (σ = 0.2 S/m in the
extracellular domain and σ = 1 S/m in the neuronal elements). The electrical
potentials in the two domains (V and Vint) are linked through the equations
driving the membrane voltage (Vm). The neurons are oriented along the y
axis and located above the stimulation electrode at z = 50 μm. (B) Spatial
profile of the membrane potential, plotted along the fiber (top) and neuron
(bottom) geometries: In each configuration, the red (respectively blue)
curve corresponds to the membrane potential computed in the FEM, along
the bottom (respectively top) side of the membrane, facing (respectively,
opposite to) the stimulation electrode. The black line corresponds to the
solution obtained with the hybrid method.

HYBRID APPROACH STEP 2: CALCULATION OF THE NEURON
RESPONSE USING NEURON
The following procedure describes how to simulate the response
of a neuron to an extracellular potential field previously calculated
and interpolated at the center of each compartment. The model
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is created in the free software NEURON (version 7.2 or later) and
requires only the knowledge of the distribution of the extracellu-
lar potential along the neuron, saved previously in a text file for
instance.

For this procedure, we do not use the NEURON’s graphi-
cal interface, but only a.hoc script gathering all the following
instructions.

2.1 Create the neuron morphology in 3D. For that purpose,
create each compartment using the pt3dadd function so as
to keep the 3 dimensional organization of the neuron. Use
small-enough compartments to get accurate computation.
In practice use a compartment size so that using a twice
smaller one would lead to < 1% difference in the membrane
potential Vm (usually of the order of 1 μm for a 100-μm-
long axon). Connect the created compartments in the correct
order, using the connect function recursively.

2.2 Define the electrical properties of the neuron: For each com-
partment, set the intracellular resistivity Ra (in Ohm.cm),
the surface capacitance cm (in μF/cm2) and the active and
passive conductances. This can be done using the Hodgkin
and Huxley hh mechanism (Hodgkin and Huxley, 1952)
or user-defined membrane currents. In the first case, for
instance, define the membrane leakage conductance gl_hh
(in S/cm2) and the sodium and potassium maximal conduc-
tances gnabar_hh and gkbar_hh in the compartments
where the associated channels are located. Define also the
leakage potential El as well as the potassium and sodium
equilibrium potentials (EK and ENa). Proceed identically for
user-defined conductances.

2.3 To model electrical stimulation, insert the extracellular
mechanism in all compartments. This creates a variable
e_extracellular in each compartment. This variable
takes a different value at each compartment and at each time
step during the stimulation pulse.

2.4 Define the integration scheme by setting the variable
secondorder to 0. Doing so, you select the first-order
backward Euler scheme. If you set secondorder to 1, you
will use the second-order Crank-Nicholson scheme, but this
does not work properly with the extracellular mechanism
(Carnevale and Hines, 2006).

2.5 Set the integration time step by assigning the variable dt
the desired value. This value should be chosen so as to have
a sufficient number of time samples during the stimulation
pulse and the neuron action potential (if present). So, a typ-
ical value for dt is 0.05 ms or less. A very small value for dt
will give very accurate results, but at the price of an increased
computation time. If an important set of simulations has to
be run, it can be good to evaluate the accuracy of the solution
for various time steps and choose a value of dt that gives a
good compromise between accuracy and computation time.
To determine a good value of dt, compute the solution of
the cable equation for dt and dt/10 and test whether the
relative difference of the membrane potential (Vm) at a given
position (for instance, the location of the largest value of Vm)
is smaller than 1%. If this is not the case, divide dt by 10 until
this criterion is satisfied.

2.6 Define a piecewise or pointwise stimulation time course. This
is the function by which the extracellular potential will be
multiplied over time, for each compartment. This can be
done by defining a different value for different time win-
dows, when using rectangular functions (for instance −1 for
a cathodal pulse,+1 for an anodal pulse, 0 before and after
the stimulation, or even between the different pulses). You
can also create a vector storing the amplitude of the stimu-
lation time course for each time step, which can be useful if
other functions (more complex than rectangles) are needed.

2.7 Set the initial value of the membrane potential using the
finitialize function. This value can be that of the
resting potential.

2.8 Initialize the simulation using the init function.
2.9 Until the end of the simulation has not been reached,

update the current value of the extracellular potential
(e_extracellular) at each compartment and integrate
the equation over one time step by calling the fadvance
function. Note that updating the value of the extracellular
potential at each time step allows defining complex stim-
ulation temporal patterns, such as succession of rectangle
functions of different amplitudes, or sinusoids, and so on.
This is the reason why the stimulation time course should
then be defined pointwise or piecewise before running the
simulation (stage 2.6 above).
Modify steps 2.6–2.8 depending on the objective of the study.
For instance, if your aim is to determine the threshold inten-
sity at which the target neuron fires an action potential,
embed these steps in a dichotomy algorithm in which the
global amplitude of the stimulation time course (step 2.6)
will be increased or decreased until threshold is reached. At
each step of this dichotomy, the action potential is detected
when the membrane potential of a given compartment (or a
set of compartments) exceeds the spike threshold.

WHOLE FEM APPROACH: SIMULTANEOUS CALCULATION OF THE
STIMULATION POTENTIAL FIELD AND THE NEURON RESPONSE
As stated in the Introduction, another approach to model extra-
cellular stimulation is to use the FEM in the Comsol environment
as in section Hybrid approach step 1: Computation of the
extracellular potential field using a Finite Element Model (FEM),
and also embed the geometry of the neuron in this model to
compute its response. For this purpose, the following procedure
can be used.

3.1. Run the Comsol Multiphysics software and open the Finite
Element Model created in section Hybrid approach step
1: Computation of the extracellular potential field using a
Finite Element Model (FEM). From the “Model Navigator”
window, add a new Conductive Media DC model, the
variable of which is named Vint.

3.2. Build the geometry corresponding to the target neu-
ron. This separates the whole geometry in two domains:
The intracellular domain corresponding to the neuron
(noted domain #2 in the following) and the extracellular
domain (noted domain #1 in the following). Domain #1
corresponds to the original domain from which the neuron
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has been removed. However, note that this separation
is somewhat “virtual” and not definitive, so that the
geometrical characteristics of the neuron can be easily
modified, without having to build again domains #1 and #2.

3.3. From the multiphysics section, select the 1st DC model. Set
the geometry #1 active and the geometry #2 inactive in this
domain. Then, select the 2nd DC model. Set the geometry
#2 active and the geometry #1 inactive in this domain. In
each case, define the value of σ. For the neuron geometry,
σ is equal to the inverse of Ra expressed in Ohm.m.

3.4. For each geometry, define the initial value (at t = 0) of
the variable. In domain #1, set V–0 (the default value). In
domain #2, set Vint to the neuron resting potential (this
corresponds to step 2.7 in the Neuron simulation).

3.5. Define the element type depending on the expected
precision and smoothness of the solution to the problem,
and taking into account computation time and computer
memory issues. In the current simulation paradigm, the
extracellular potential is not interpolated so as to be used in
another software (such as NEURON), but the extracellular
and intracellular potentials (V and Vint) are computed
simultaneously. For sake of computational efficiency, use
linear Lagrange elements in domain #1 and quadratic
Lagrange elements in the neuron geometry (domain #2).
This gives accurate results without increasing too much the
computation time.

3.6. Define the boundary settings on the boundaries between
the neuron and the extracellular domain. In the present
case, we first consider the case of a passive neuron not
equipped with voltage-dependent conductances. The case
of an active neuron is provided further below.

3.6.1. Select the 1st DC model and assess an “Inward
Current Flow” boundary condition to the bound-
aries between the extracellular domain and the
neuron. This BC is written −n · J = Jn. Set Jn to Im,
which represents the total current flowing through
the neuron membrane. Im is given in A/m2. Define
Im as a “Boundary expression” for convenience (see
below).

3.6.2. Select the 2nd DC model and assess an “Inward
Current Flow” boundary condition to the bound-
aries between the neuron and the extracellular
domain. Set Jn to –Im.

3.6.3. Define a boundary expression for Im. In the passive
case, the neuron membrane is represented by a
capacitance in parallel with a conductance (which is
in series with a voltage source, see Figure 3A). Thus,
the membrane current is the sum of the capacitive
and resistive leakage currents. Define a boundary
expression for each of these currents and for the
total membrane current:

- Ic = cm*(Vintt-Vt),
- Il = gl*(Vint-V-El),
- Im = Ic + Il,

where Vintt and Vt represent the first-order time
derivatives of Vint and V, respectively, and El is
the neuron leakage potential.

3.7. Define a time-dependent boundary condition on the
stimulation electrode(s), corresponding to the desired
stimulation time course [noted f(t)]. For that purpose,
modify the value of Vref in the “Distributed resistance”
BC, which was initially set to V0. Set it to V0*f(t).
Define f as a function of argument t using the dedicated
“Functions” tool. For instance, define cathodic and anodic
rectangle stimuli with a piecewise polynomial function.

3.8. Define constant values for the electrical properties of the
neuron: cm, gl and El.

3.9. Define a mesh size in domains #1 and #2, and refine it
locally on the neuron boundaries. This is important, espe-
cially if you use linear Lagrange elements in geometry #1.

3.10. Select the parameters of the Time-dependent solvers. Use
the Direct (UMFPACK) method as linear system solver and
set the time steps in accordance with the time constant of
the problem. Give small values to the absolute and relative
tolerances, taking into account the resulting computation
time.

3.11. Solve the problem.
The case of a passive neuron was presented first since it
allows the explanation of specific characteristics of the
current model, compared to the original one: simultaneous
resolution of two equations (this takes advantage of the
Multiphysics approach of Comsol) linked by boundary
conditions (BCs) at the neuron membrane, as well as
time-dependence of the problem to solve. In practice,
neurons contain active (voltage-dependent) conductances,
which must be taken into account when calculating the
total membrane current Im. Here, we show how to model
Hodgkin-Huxley-like voltage-dependent conductances in
the Comsol environment.
The equations driving the potassium and sodium mem-
brane currents are the following, as given by Hodgkin and
Huxley (1952):

IK = gK · (Vm − EK) (4a)

and INa = gNa · (Vm − ENa), (4b)

where EK and ENa are the equilibrium potentials of the
potassium and sodium ions, and gK and gNa are voltage-
dependent conductances. The latter can be expressed as:

gK = gK · n4 (5a)

and gNa = gNa · m3 · h, (5b)

where n, m, and h represents the opening probabilities of
the n-, m- and h-gates constituting the channels. n, m and h
can be calculated from the following first-order differential
equations:

dn

dt
= αn · (1 − n) − βn · n, (6a)

dm

dt
= αm · (1 − m) − βm · m (6b)

dh

dt
= αh · (1 − h) − βh · h, (6c)
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where:

αn = 0.01 · (
Ṽm + 10

)

exp
((

Ṽm + 10
)
/10

) − 1
and βn = 0.125·exp

(
Ṽm/80

)
, (7a)

αm = 0.1 · (
Ṽm + 25

)

exp
((

Ṽm + 25
)
/10

) − 1
and βm = 4·exp

(
Ṽm/18

)
, (7b)

αh = 0.07 · exp
(
Ṽm/20

)
and βh = 1

exp
((

Ṽm + 30
)
/10

) + 1
. (7c)

In these expressions, Ṽm denotes the opposite of the vari-
ation of the membrane potential around its resting value.
To simulate these equations in Comsol, use the following
procedure:

3.12. From the “Model Navigator” window, add 3 “Weak form”
boundary models, the variables of which are named N, M,
and H. This defines 3 variables which take values only on
the boundaries of the domain.

3.13. From the multiphysics section, select 1 weak form, bound-
ary, for instance N. Set this model active on the boundaries
of the neuron geometry in which potassium channels are
present. Set the model inactive on all other boundaries.
Do the same for the M and H variables, by selecting the
boundaries where sodium channels are present.

3.14. Set the boundary settings of variable N as follows (do the
same for variables M and H). On the boundaries on which
N is active:

3.14.1. Set weak’ to N_test * (alpha_N -
(alpha_N + beta_N) * N).

3.14.2. Set ’dweak’ to N_test * Nt. These two steps
correspond to Equations (6) above, multiplied by
a test function N_test on both sides, accordingly
with the weak form approach.

3.14.3. Set the initial value of n: N(t0) to N0. The value
of N0 is calculated from Equations (6) when the
membrane potential is at its resting value, i.e.,
when dN/dt = 0. Then, set N0 to alpha_N0
/ (alpha_N0+beta_N0).

3.14.4. Set the initial value of the time-derivative of n to 0
(Nt(t0)=0).

3.15. In the boundary expressions, define new expressions
for alpha_N, beta_N, alpha_M, beta_M,
alpha_H and beta_H, from Equations (7). Define also
the voltage-dependent conductances gK and gNa and
eventually the active currents IK and INa. Update also the
expression of Im on the relevant boundaries:

- IK = gK* (Vint-V-EK),
- INa = gNa* (Vint-V-ENa),
- Im = Ic + Il + IK + INa.

3.16. Define constant values for gK_bar, EK, alpha_N0,
beta_N0, gNa_bar, ENa, alpha_M0, beta_M0,
alpha_H0 and beta_H0.

3.17. Solve the problem.

RESULTS
In this section, we illustrate and compare the use of the hybrid
FEM-cable-equation and whole FEM approaches. Regarding the
calculation of the potential field, we focus on the ground surface
configuration, a case where the choice of the BCs for stimulation
and ground electrodes is crucial [section Hybrid approach step
1: Computation of the extracellular potential field using a Finite
Element Model (FEM)]. The potential field generated in the tis-
sue is then applied to a straight fiber (section Hybrid approach
step 2: Calculation of the neuron response using NEURON) and
a neuron with a cell body. In a previous study, we showed that
the neural response follows the mirror image of the extracel-
lular potential field along the neuron. Here, we compare this
mirror response in both approaches. We found that the whole-
FEM approach, which takes into account the neuron morphology
in a whole finite element model, allows to see a clear difference
of the neuron response between the sides the soma membrane
either facing or opposite to the stimulating electrode (section
Whole FEM approach: Simultaneous calculation of the stimula-
tion potential field and the neuron response).

IMPORTANCE OF THE ROBIN BOUNDARY CONDITION TO MODEL THE
POTENTIAL FIELD
Figure 2 shows a finite element model used to compute the
electrical potential field created by a stimulation in a neural
tissue. The stimulations were applied in a cylindrical chamber
surrounding a 8-by-8 MultiElectrode Array (MEA) without the
corners comprising 60 10-μm-diameter planar microelectrodes
spaced every 100 μm, similar to standard designs used in the
community for in vitro applications (Figure 2A). The potential
field was computed by solving the Poisson equation (Equation
1) in which the electrical conductivity was set to 0.2 S/m, a
value which falls in the range of reported neural tissues electri-
cal conductivities (0.1–0.4 S/m Ranck et al., 1963, 1965; Geddes
and Baker, 1967). For sake of simplicity, we modeled a sin-
gle domain with uniform conductivity, assuming that the tissue
filled the whole chamber. As reported previously (Joucla and
Yvert, 2009a; Joucla et al., 2012b), more complex tissues with
several domains of various conductivities can be modeled by
adding current continuity BCs at the domain interfaces. The 3D
domain was meshed with about 100,000 tetrahedral elements
and locally refined on the substrate of the MEA (Figure 2B).
The focality of the potential field created by two electrode con-
figurations were compared: First, the classical monopolar con-
figuration, in which the stimulation is applied between a stim-
ulation electrode and a distant ground electrode; Second, the
recently proposed “ground surface” configuration, which consists
in adding a layer of conductive material on the MEA chamber
substrate and using this surface as ground electrode (Figure 2C).
The gap between each electrode and the ground surface was set
to 10 μm.

Figure 2D illustrates the profile of the potential field along a
line passing 50 μm above the stimulation electrode, and shows
that the potential field created by the ground surface config-
uration was more focal than that created by the monopolar
configuration. Moreover, the field focality increased when the sur-
face conductance (g) of the ground surface increased, starting
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from gGS = 500 S/m2, a typical value for Platinum electrodes
(Figure 2D). We emphasize that this influence of the surface con-
ductance has been obtained with a model including the Robin
boundary condition (BC), which directly depends on g. With
the homogeneous Dirichlet boundary condition, which imposes a
zero potential on the ground electrode (V = 0), the potential field
would have been that obtained with an infinite surface conduc-
tance (ginfinite in Figure 2D), and thus would not have reflected
the actual shape of the extracellular potential. Moreover, as shown
in Figure 2E, the current density is not uniform over the ground
surface. Thus, the Robin BC could also not be replaced with a
non-homogeneous Neumann BC imposing a uniform current
density (n · J = i).

THE MIRROR RESPONSE OF A FIBER WITH THE HYBRID APPROACH
Figure 3 shows a model of a compartmentalized fiber stimulated
by an extracellular potential field. The computations were done in
the Neuron environment. We considered a 2-μm-diameter-large
and 260-μm-long passive uniform fiber (Figure 3A), which was
segmented in 1-μm-long compartments to ensure accurate com-
putation of its response to the field (Joucla and Yvert, 2009b).
The electrical parameters were set to the following values: Ra =
100 Ohm.cm, cm = 1 μF/cm2, gl = 10−4 mS/cm2, El = − 65 mV,
while the ionic currents (Ii) were set to 0. The electrical potential
field created in the neural tissue by a −1 μA cathodic ground sur-
face stimulation (Figure 3B, modeled in the Comsol Multiphysics
software, with gGS = 500 S/m2) was interpolated at the loca-
tions of the fiber compartments, passing above the stimulation
electrode at z = 50 μm (Figure 3C-top). As shown in Figure 3C-
bottom, the membrane potential profile (centered on the resting
membrane potential) computed at the end of the 1ms-long stim-
ulation is the mirror image of the extracellular potential centered
on its spatial average along the fiber geometry (Joucla and Yvert,
2009b).

THE MIRROR RESPONSE OF A FIBER AND A NEURON WITH THE
WHOLE-FEM APPROACH
An alternative to the hybrid approach consists in embedding
the neuron geometry in the finite element model and com-
puting simultaneously the extracellular potential field and the
neuron intracellular potential with a thin-film approach. We
implemented this approach in Comsol Multiphysics to com-
pute the membrane response of both the uniform passive fiber
modeled in Neuron and a neuron of identical length including
a 20-μm-diameter cell body (Figure 4A). These two neuronal
geometries were stimulated with a ground surface configuration
(gGS = 500 S/m2). We focused on the spatial distribution of the
membrane response along 2 sides of the neuron: The bottom
side facing the stimulation electrode (in red) and the top side
opposite to the electrode (in blue), and compared these with
the response obtained in the Neuron environment (thin black
curves).

As shown in Figure 4B-top, the fiber response obtained with
the thin film model was identical to the cable response at the ends
of the fiber, and slightly differed in the middle of the fiber (com-
pare the blue and red curves with the black one). This was due
to the potential field gradient across the fiber geometry (in the z

direction), which was most important above the stimulation elec-
trode. Nevertheless, the differences between the top and bottom
sides of the membrane were very small, because of the small fiber
diameter (2 μm).

By contrast, the neuron-with-soma response greatly differed
between the compartmentalized and the thin-film approaches.
Indeed, in the full finite element model, membrane potential
computed at the level of the soma (above the stimulation elec-
trode) displayed large variations between the bottom and the top
sides of the soma (Figure 4B-bottom). This stems from both the
large soma diameter and the important potential field gradient
across the neuron geometry (in the z direction). Contrary to the
fiber response, the variations of the membrane response along
the soma contor were not symmetrical with respect to the cable
response obtained in Neuron. This was due to the decrease of the
potential field gradient along the z axis. Indeed, the bottom side of
the membrane is located at z = 40 μm, where the field gradients
are most important than at z = 60 μm, which is the location of
the top side of the membrane. Thus, the largest membrane poten-
tial variations around the resting potential were obtained on the
side facing the stimulation electrode (see red curve). This example
shows that the whole-FEM approach allows catching important
membrane response features at the sub-compartment level, which
cannot be tackled using the classical hybrid approach.

DISCUSSION
This article aims at presenting two different methods to model
electrical stimulation of neurons at the single-cell level. Basically,
neurons are excited by the potential field created in a conductive
neural tissue by the electrical stimulation. The accuracy of the
stimulation modeling depends on the relevance of both the model
used to compute the electrical potential field and that used to
calculate the neuron response. The neuron response can be com-
puted either with a cable equation formalism or by embedding
the neuron morphology in a complete FEM model. In the latter
case, the proposed approach treats the membrane as a thin film,
which has the advantage not to require meshing and specifying
explicitly its volume.

Regarding the computation of the electrical potential field, the
simplest model is the point source electrode, which applies in
infinite media with uniform and homogeneous electrical con-
ductivity (Plonsey, 1969). Although this configuration does not
correspond to the case of complex nervous tissues in contact
(or implanted) with electrodes having non-negligible sizes, such
model has long been used to study the basic mechanisms of
neuronal activation with externally applied fields (Rattay, 1989;
Rubinstein, 1993; Plonsey and Barr, 1998; Wesselink et al., 1998;
McIntyre and Grill, 2000). More realistic modeling takes into
account the actual size of the electrodes, which requires numer-
ical approaches. Following the widespread of numerical methods
and efficient computers, finite difference methods, based on the
approximation of the Poisson equation on a grid, have been
developed (Struijk et al., 1992, 1993; Holsheimer and Wesselink,
1997; Wesselink et al., 1998). Since about 15 years, they have
been supplanted with finite-element models, which allow an easy
resolution of the Poisson equation in domains with complex
geometries and electrical parameters (McIntyre and Grill, 2002;
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Rattay and Resatz, 2004; Butson and McIntyre, 2006; Grant and
Lowery, 2009, 2010; Wongsarnpigoon and Grill, 2012; Joucla
et al., 2012a,b).

A key element of numerical models is the choice of the BCs,
which determine a unique solution to the Poisson equation. Here,
we focused on the Robin BC, which has the advantage of taking
into account the potential drop at the electrode-tissue interface,
through the (non-infinite) surface conductance of the electrodes
(Joucla and Yvert, 2009a). We emphasize that the vast majority of
literature models use Dirichlet BCs, which consists in setting the
electrodes potentials to a uniform value on the electrode surface,
thus ignoring the behavior of the interface during stimulation,
and assuming this surface as infinitely conductive, which is not
the case in practice with typical electrode materials. In the partic-
ular example of the ground surface configuration, the Robin BC
allowed to highlight the influence of the ground surface conduc-
tance on the focalization of the potential field created in the tissue,
which would not have been made possible with the Dirichlet BC.

Further applications of this approach may include the design
of neural implants for specific applications requiring precise
electrical microstimulation of the CNS. The precise modeling
of the extracellular potential field could indeed help to build
specific electrode configurations designed to specifically target
pre-determined group of cells depending on the application (e.g.,
retinal implants or cortical neural prosthesis). Further improve-
ments could be brought to the present modeling approach to
account for the frequency dependence of stimulation wave-
forms (Bossetti et al., 2008). For instance, in many stimulation
paradigms, electrical stimuli are delivered as rectangular func-
tions, during which the (complex) electrode impedance may vary.
Thus, an improvement of the model would consist in assigning
time-dependent surface conductances to the electrodes, by com-
bining the Fourier transform of the electrical stimuli and the
frequency-dependence of the electrodes’ impedance.

Once a correct model of the extracellular potential field has
been determined, the response of a modeled neuron has to be
calculated. For that purpose, a cable equation, relating the mem-
brane potential to the extracellular potential, is classically solved.
This cable equation (see Joucla and Yvert, 2009b for instance)
is discretized in space using finite differences, leading to a sys-
tem of N linearly dependent first-order differential equations (N
corresponding to the number of compartments in the neuron
geometry). This system of equations can be solved in a home-
made simulation program or in a dedicated environment, such as
the GENESIS (Bower and Beeman, 1998) or NEURON software
packages (Hines and Carnevale, 1997). We used the latter, a tool
of choice for subcellular to network simulations (according to the
NEURON website, more than 1176 publications have been using
NEURON as of January 29, 2012).

NEURON models can be built either graphically or using
the associated script language. We used scripts, which allowed
an easy implementation of the extracellular stimulation proto-
col, using the extracellular process. We note that, although the
source term of the cable equation is the spatial second deriva-
tive of the extracellular potential along the neuron geometry,
the extracellular process works by defining only the electrical
potential at the location of each compartment, the approximated

spatial second derivative being calculated internally by NEURON
based on the 3D neuron geometry. This allows a very easy imple-
mentation of extracellular stimulation paradigms, since the only
mandatory step is to interpolate the extracellular potential at the
corresponding coordinates in the FEM model. Regarding prac-
tical implementation of an extracellular process, it should be
noticed that the cable equation should be time-discretized using
the first-order backward Euler scheme and not the second-order
Crank-Nicholson scheme, since the latter is prone to oscillations
and large errors (Carnevale and Hines, 2006). The backward Euler
scheme is chosen by setting the secondorder variable to 0.

Models created in the NEURON environment are based on
a 1D cable approach, derived from the initial formulation of
McNeal (1976) and Rattay (1986). Such formulation considers
that the neuron response varies only in the longitudinal direc-
tion and not along the contour of the compartments’ membrane.
Moreover, it assumes that the presence of the neuron does not
affect the extracellular potential field and that this field varies
only along the neuron direction and not in the orthogonal direc-
tions. However, it has been shown that these assumptions are only
fulfilled within an intermediate range of electrode-to-fiber dis-
tances, of the order of 100 μm–1 cm (Schnabel and Struijk, 2001).
Nowadays, stimulation devices are used not only for peripheral
nerve stimulation, but also increasingly for CNS microactiva-
tion. In such case, the aim is to specifically activate local pools
of neurons involved in specific task or behavior. The distance
between the target neurons and the stimulation electrode(s) tends
to decrease below the 100-μm limit. Consequently, appropriate
simulation tools taking into account the presence of the neuron in
the field should be developed in order to predict the actual effects
of local stimulation more precisely than with the cable approach.

To this end, a hybrid finite element model has been developed
by Ying and Henriquez (2007), which solves simultaneously the
Poisson equation in the intracellular and extracellular domains,
and models the membrane as an infinitely thin interface. This
model uses an iterative algorithm combining a spatial resolution
in the FEM and a time integration done separately. However, it
remains limited to 2D circular or spherical cells or arrangements
of cells placed in uniform electrical fields (Pourtaheri et al., 2009),
and therefore does not cover a wide range of practical situations.
More recently, an asymptotic model has been developed, that
solves the 3D boundary value problem by coupling a 2D “trans-
verse” problem and a 1D “longitudinal” problem (Cranford
et al., 2012). This, model, which also treats the fiber membrane
as infinitely thin, relies on an asymptotic separation between
the fast fiber response (its initial polarization) and its slow
response (depending on the membrane time constant), together
with a separation between the short and long spatial scales,
determined respectively by the fiber radius and length constant.
This approach showed promising results for long and thin fibers,
but might not be directly extended to the case of complex neuron
morphologies including branching points and large diameters at
the cell body, since the asymptotic approximation might not be
valid in this case.

To overcome these drawbacks, we presented here how
to use a thin-film-approximation-based finite element model,
which embeds complex neuronal geometries in 3D extracellular
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fields created by various electrode configurations. This model,
implemented in the Comsol Multiphysics environment, was first
developed to study the extracellular fields generated in the extra-
cellular medium by spiking neurons and their recording by
microelectrodes (Moulin et al., 2008). Similarly to the above-
cited models, it simultaneously solves the Poisson equation in two
domains that are coupled by a time-dependent boundary con-
dition (BC), the resolution being done in a single environment,
without any approximation related to the geometrical and elec-
trical parameters of the modeled cell. A strength of this model is
that both passive and active membrane properties can be easily
simulated, through a simple modification of the BC describing
the membrane currents. Moreover, the cell geometry can include
branching points and diameter variations, which allows extending
the simulation paradigms to complex CNS neurons.

It should be noted that this thin-film approximation method
proposed here is close to the bidomain approach used previ-
ously to model intracellular response of cardiac tissue (Roth and
Wikswo, 1994) or more recently neural stimulation of the retina
(Dokos et al., 2005). In the latter study, the retina was modeled as
a whole by a large intracellular volume thus not accounting for the
precise morphology of individual neurons. By contrast, here we
model directly the 3D geometry of a neuron, in order to detail the
response of the whole membrane morphology to an extracellular
stimulation.

The whole-FEM approach gave similar results to the com-
partment NEURON model in the case of a uniform fiber.
However when a cell body was introduced (Figure 4B, bottom),
it revealed important sub-compartment behaviors of the neural
membrane that could not be seen using the classical compart-
mental approach. More precisely, the cable formalism predicted
well the cell response averaged within each compartment, but,
within a given compartment, the FEM approach gave more
detailed description of the membrane response. For instance, in
the present example, the membrane area close to the electrode
was more depolarized by a cathodic stimulus than membrane area
located on the side opposite to the electrode. Although this effect
was almost negligible in the case of a fiber, much larger variations
between opposite membrane sides were observed with a neuron
geometry including a cell body. For the small electrode-to-neuron
distance considered here (50 μm), these transverse-field-induced
variations were of the same order as those induced by the longitu-
dinal field, showing the importance of a full 3D model to correctly
account for the effects of electrical stimulation at short distances.

A practical aspect for the use of this model is the computa-
tion time. The models built for this paper consisted in about
75,000 DoF. Stimulation were applied as 1-ms-long rectangular
functions, starting after a delay of 1 ms. The time required for
a 20-ms-long simulation was of the order of 400 s for a passive
model. This relatively fast computation time, as compared to that
reported in Cranford et al. (2012)—about 28 min—was enabled
by the use of an adaptive integration time step in the COMSOL
solver.

In summary, we presented state-of-the-art models that allow
relevant simulation of electrical stimulation of CNS neurons.
These models are first based on a correct description of the
extracellular field, which should be calculated from a boundary

value problem embedding Robin boundary conditions at the
stimulation and ground electrodes. This field can then be applied
to a compartmentalized neuron model to compute its response in
the case of large enough electrode-to-neuron distances. For short
distances, the computation of the extracellular potential should
be performed simultaneously with that of the intracellular poten-
tial, for instance in a finite element model in which the neuron
membrane is modeled by a thin-film approximation. We hope
that the step-by-step description of these models will make them
easy to implement in future studies and will benefit to the design
of advanced neural implants and prostheses for the exploration
and the rehabilitation of the CNS.
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