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A human motor system can improve its behavior toward optimal movement. The skeletal
system has more degrees of freedom than the task dimensions, which incurs an ill-posed
problem. The multijoint system involves complex interaction torques between joints. To
produce optimal motion in terms of energy consumption, the so-called cost function
based optimization has been commonly used in previous works.Even if it is a fact that an
optimal motor pattern is employed phenomenologically, there is no evidence that shows
the existence of a physiological process that is similar to such a mathematical optimization
in our central nervous system.In this study, we aim to find a more primitive computational
mechanism with a modular configuration to realize adaptability and optimality without
prior knowledge of system dynamics.We propose a novel motor control paradigm based
on tacit learning with task space feedback. The motor command accumulation during
repetitive environmental interactions, play a major role in the learning process. It is applied
to a vertical cyclic reaching which involves complex interaction torques.We evaluated
whether the proposed paradigm can learn how to optimize solutions with a 3-joint,
planar biomechanical model. The results demonstrate that the proposed method was valid
for acquiring motor synergy and resulted in energy efficient solutions for different load
conditions. The case in feedback control is largely affected by the interaction torques.
In contrast, the trajectory is corrected over time with tacit learning toward optimal
solutions.Energy efficient solutions were obtained by the emergence of motor synergy.
During learning, the contribution from feedforward controller is augmented and the one
from the feedback controller is significantly minimized down to 12% for no load at hand,
16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization
process in redundant system with dynamic-model-free and cost-function-free approach.

Keywords: feedback error learning, motor synergy, optimality, interaction torques, redundancy, Bernstein problem,

tacit learning

1. INTRODUCTION
A human motor system can continuously act to improve its
behavioral performance toward optimal movement. Motor learn-
ing and control are executed seamlessly, adapting to environ-
mental variations and newly-generated desired goals based on a
person’s intentions. In addition, when we move our limbs to exe-
cute a motor task, our body has more degrees of freedom (DOF)
than the number of dimensions in its task space. Kinematic
redundancy can contribute to better dexterity and versatility, but
incurs an ill-posed problem of inverse kinematics from the task-
description space to the human joint space. Such an ill-posed
problem of DOF was originally formulated by Bernstein (1967)
as the DOF problem. It is still an open problem on how motor
controllers in the brain solve kinematic redundancy.

It is known that the cerebellum takes an important role in
such motor learning by developing the internal model while com-
paring the actual outcome to the predicted outcome (Wolpert
et al., 1998; Kawato, 1999). Ito (1972) first proposed that
the cerebellum contains forward models of the limbs. This
internal model theory has been well supported by behavioral

studies in the field of motor control (Schweighofer et al., 1998)
and by neurophysiological studies (Kawato, 1999). To estab-
lish such an internal model, feedback-error-learning (FEL) is
well studied to provide computational adaptation paradigms,
including prism adaptation, saccade adaptation and reaching
(Kawato and Gomi, 1992a,b). There is extensive evidence that
the learning system using feedback error relies on the cere-
bellum. FEL can provide an algorithm to establish the inter-
nal inverse dynamics model by minimizing the error against
the desired joint angle trajectory. However, particularly for a
redundant system, it does not provide a mechanism that can
systematically improve performance toward optimal solutions
such as minimizing total energy or torque changes (Uno et al.,
1989). FEL has a computational adaptability, but for compu-
tational optimality in motor redundancy, FEL should be used
together with the so-called cost function based optimization
(Schweighofer et al., 1998; Todorov, 2004; Braun et al., 2009).
In a typical approach to using FEL with a redundant system,
the desired joint angle trajectory is prepared using optimiza-
tion to solve the redundant problem, and FEL is then applied to
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establish the inverse dynamics model to map the joint angles and
torques.

Several types of optimality model have been proposed. Such
models are often defined as “minimum X,” where X can be jerk
(Flash and Hogan, 1985), torque changes (Uno et al., 1989),
motor command (Harris and Wolpert, 1998), and energy con-
sumption (Alexander, 1997). In redundant manipulators, such
cost function based optimal control was successfully applied
in Todorov and Jordan (2002) and Guigon et al. (2007). In
robotics, several methods were studied to deal with the redun-
dancy (Nakamura, 1991; Nguyen-Tuong and Peters, 2011). They
basically assume the use of a physical inverse dynamic model
(Nakanishi et al., 2008) or approximation-based model (Peters
and Schaal, 2008). The model-based cost function is commonly
used for the optimization process. As for model-free approach,
adaptive feedback control is already known in control society
(Astrom, 1987; Marino and Tomei, 1993). Adaptive control is
basically a mechanism of the parameter adjustment of the model
or the gain adjustment of the controller using the trajectory error.
However, adaptive control can not be applied to redundant sys-
tems without using cost function based optimization (Nakanishi
and Schaal, 2004). In addition, dual task of the target task execu-
tion and the behavior optimization toward energy efficiency can
not be performed in parallel.

The phenomenological optimal solutions appearing in human
motion can be obtained using such a mathematical optimization
approach. It is known that we employ muscle synergy (D’Avella
et al., 2003; Alnajjar et al., 2013) for natural motion, which
should have a relationship to optimal solutions in redundant
space. Even if it is a known fact that an optimal motor pat-
tern is employed phenomenologically, there is no evidence that
shows the existence of a physiological process that may be simi-
lar to such a mathematical optimization in our brain or central
nervous system (CNS). For instance, infants can modify their
motion toward an optimal solution through repetitive interac-
tions with the environment, but the appropriate cost function
may initially not have been obtained. In addition, cost func-
tion based optimization is a process which involves a global
image of the dynamic system over time rather than a simple
feedback process of the states for an instant in time, which is
a complex process to be embedded in the CNS as a modular
configuration. Thus, we believe that there is an importance to
find an alternative simpler computational paradigm which can
induce equivalent optimization property. There are two types of
redundancy in human motion. One is about muscle redundancy,
and the other is about kinematic redundancy. In this study, we
focus on the control solutions on kinematic redundancy, and we
define a coordinated command pattern in the joint level as motor
synergy.

In this study, we aim to find a more primitive computational
mechanism to realize both adaptability and optimality in a redun-
dant system with a dynamic-model-free and cost-function-free
approach. A simple control architecture which can deal with opti-
mality in a redundant system, can be a key organizational princi-
ple that CNS employs for achieving versatility and adaptability
in motor control. FEL allows to establish the internal model,
but does not provide an optimization process in a redundant

system. Thus, the main contribution of this paper is to pro-
pose a new way of inducing optimization process without a prior
knowledge of the system dynamics by using the task space error.
Recently, a novel learning scheme named Tacit Learning was pro-
posed (Shimoda and Kimura, 2010; Shimoda et al., 2013) as an
unsupervised learning paradigm. Tacit learning is a biomimetic
learning architecture where the primitive behaviors composed of
reflex actions are tuned to the adaptive behavior. The experi-
mental results demonstrated that the walking gait composed of
primitive motions was well adapted to the environment in terms
of walking efficiency (Shimoda et al., 2013). Here, we reformu-
lated the paradigm as a supervised learning approach applied to
simple cyclic reaching tasks using the feedback motor command
error as a supervising signal.

This work is also oriented for reaching simulation of motor-
impaired subjects and able-bodied subjects. The skeletal system
has a complex series of linkages that produce coupled dynam-
ics. For instance, when we quickly move our forearm by flexing
the elbow joint, the flexion torques on the elbow joint acceler-
ate our forearm. However, because of the forearm’s inertia, this
acceleration also produces torques on the shoulder. These interac-
tion torques induce the undesired effect of accelerating the upper
arm segment. The dynamics of multijoint limbs often cause such
complex torques. However, an able-bodied subject can normally
handle such interaction torques through motor learning and pre-
dict them without difficulty (Shadmehr and Wise, 2005; Braun
et al., 2009). In contrast, the vertical reaching task was studied
in patients with cerebellar lesions in Bastian et al. (1996). They
concluded that cerebellar patients had specific deficits in their
predictive compensation for the interaction torques. In control
subjects, the elbow and shoulder joints rotated in a synergetic
manner to compensate for the interaction torques (Gribble and
Ostry, 1999). In a patient with cerebellar damage, it was difficult
to control the endpoint of the arm in a synergetic way between
multiple joints because of gravity and interaction torques. This
implied that cerebellar damage affects the prediction of inter-
action torques that is normally based on the internal model
established from motor learning. Thus, it is significant to enable
the control simulation of motor performance for subjects who
are successful in dealing with the interaction torques and those
who can not manage. In this paper, the control simulation results
with redundant actuators demonstrate that the proposed method
can systematically produce motor synergies and energy efficiency
while finding a way to compensate the interaction torques during
multijoint reaching tasks.

2. MATERIALS AND METHODS
2.1. VERTICAL REACHING AND DYNAMICS SIMULATION
In this study, we propose an optimal control paradigm in motor
learning which has adaptability similar to FEL and optimal-
ity without using cost-function based optimization. We veri-
fied the performance of tacit learning in vertical reaching that
involves complex interaction torques and the gravitational effect,
as shown in Figure 1. This configuration was used in Bastian
et al. (1996). We evaluated whether the proposed computational
learning paradigm can learn how to compensate the interaction
torques during multijoint reaching.
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For simulating joint dynamics, we used MatODE (Caarls,
2010) which is a Matlab interface to the Open Dynamics Engine
(Russell Smith, 2000). In a sagittal plane, 3DOF composed of the
shoulder, elbow and wrist joint were assumed. The upper arm,
forearm and hand segments were connected through each joint
in the dynamics simulation environment. All the dynamics sim-
ulations were managed by external ODE package, in which the
control module has access only to the control of each joint torque,
and none to the manipulator dynamics model itself, in the learn-
ing process. It should be noted that the configuration used in this
study is in the so-called Bernstein’s DOF problem where we have
actuation redundancy because the task is performed in 2D with a
3DOF manipulator.

−θ3

θ2

θ1

x

y

p1

p2

FIGURE 1 | Schematic representation of the vertical reaching task.

2.2. CONFIGURATION OF CONTROLLER WITH TACIT LEARNING
In tacit learning, the command signal accumulations during
repetitive interactions with the environment, play a main role
in creating appropriate behavior. In biological controllers, signal
accumulations can be considered as the typical learning method
to create the adaptive behaviors, such as long-term depres-
sion (LTD) and long-term potentiation (LTP) in the cerebellum
(Coesmans et al., 2004).

Previously in tacit learning for biped walking, joints were
divided into kinematically specified and unspecified groups
(Shimoda et al., 2013). The unspecified joints were then con-
trolled with tacit learning as an unsupervised learning paradigm.
In this reaching task, only the desired position in task space
was given as a target to follow, and all the joints were con-
trolled with tacit learning as in Figure 2. The block diagram was
formulated as a supervised learning paradigm using the feed-
back motor command error. Conceptually, it has an approach
in common with FEL in how to use feedback errors as super-
vising signals. However, in FEL, optimization of some criteria
is still necessary to achieve optimality. Thus, we aim to pro-
vide a primitive mechanism for realizing such optimality along
with a FEL-like controller without using cost function. As in
the mechanism of the cerebellum with regard to LTD and
LTP, simple tacit learning with torque signal accumulation is
employed to realize both adaptation and optimal control syn-
chronously. This study is oriented for compensation of the inter-
action torques of unknown multijoint dynamics. We assume
that only forward kinematics (FK) information is available. In
contrast, in FEL, the given inverse kinematics computation is typ-
ically assumed to establish the internal inverse dynamics (ID)
model.

Let us explain the details of the proposed learning paradigm
shown in Figure 2 by listing separated steps:

1. The intention of the subject to follow the target is expressed by
a force vector in the task space, which represents the direction
to the target, and the distance as its intensity, using the pro-
portional (P) feedback error between the target and current
endpoint.

PD

J (  )

Joint

P
+

-

-
r
Target

Feedback Force Error

T

+

I

++

Endpoint error

Motor-Command Error

Task space Joint space

+

x
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Joint Angle and Angular Velocity
Endpoint

Force to Torque
Mapping

.
,

Δp

FIGURE 2 | A block diagram of motor learning for reaching motion

using tacit learning. P represents Proportional, D Derivative, and I the
Integral controller, respectively. The box named joint represents the
physical joint of the arm. The intention of the subject is expressed by a
force vector in the task space, which represents the direction to the
target and the distance as its intensity, using the proportional feedback

error between the target and current endpoint. The feedback torque
command error at each joint space is computed through the Jacobian of
the arm by mapping the feedback force into the joint torque space. Local
PD control represents the local reflex loop as a function of a muscle
spindle. The torque command accumulation part in gray color
corresponds to tacit learning.
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2. The feedback force error is mapped through the Jacobian of
the arm into the joint torque space. It can be regarded as
motor-command error that works as a supervising signal, as
in FEL.

3. Local proportional derivative (PD) control mainly corre-
sponds to a local reflex loop as a function of the muscle
spindles. This part basically contributes to changing the joint
angles smoothly.

4. Torque command accumulation part shown as gray box cor-
responds to tacit learning. This Integral (I) part serves as a
unique learning process. This motor command accumulation
part starts to learn how to compensate the interaction torques,
and turns into a predictive torque patterns after the motor
learning.

Specifically, the controllers for PD feedback and tacit learning can
be expressed as follows.
PD feedback case:

τ1 = −JT(θ)k�p − A�θ − Bθ̇. (1)

Tacit Learning case:

τ2 = −JT(θ)k�p − A�θ − Bθ̇ + C

∫
τ1dt. (2)

τ1, τ2,�θ, θ̇ ∈ Rm,�p ∈ Rn, JT(θ) ∈ Rm×n, A, B, C ∈ Rm×m

where, m is the number of the joints, n is the dimensional number
of the task space, τ implies the control torque inputs of the joints,
θ implies the angles of the joints, θ̇ implies the angular velocities
of joints. JT(θ) is the transpose of the Jacobian of the arm, k is
the gain of the task space propotional feedback, �p is the end-
point error vector. This term corresponds to the neural substrate
of force mapping functionality presumably due to corticospinal
control (Bizzi et al., 1991).

A and B are diagonal matrices which consist of the propor-
tional and derivative gains of the PD controllers. C is a diago-
nal matrix which consists of the gains of the torque command
integration regarding motor-command error and local feedback
torque. The term A�θ is optional, and it can be set if you spec-
ify the neutral position of the joint. In this simulation, this neutral
position is specified only for the wrist joint, because the wrist tries
to return to the neutral position when we relax.

As for local PD feedback, this part corresponds to a local reflex
loop as a function of the muscle spindles (Shadmehr and Mussa-
Ivaldi, 1994). When a muscle is stretched, primary sensory fibers
of the muscle spindle respond to changes in muscle length and
velocity. The reflexivity evoked activity in the alpha motoneurons
is then transmitted via their efferent axons to the muscle, which
generates force and thereby resists the stretch. This work is still at
joint level representation, but the resisting feature against muscle
length change and velocity change can be captured by the resisting
feature in the joint angle and angular velocity changes as in local
PD control.

Note that all joints are controlled independently, then this
configuration can be regarded as a modular structure presum-
ably implemented within cerebellar pathways. All dynamical

parameters, such as segment inertia and mass, and the model
itself, are completely blind to the controller. Differently from typi-
cal optimal solutions that is based on model-based cost functions,
our approach is to produce such optimization process without
using cost function, purely with repetitive interactions with the
environment. It purely works only with the controller presented,
that tends to find optimal solutions by the given dynamic envi-
ronment. The difference between the PD feedback case and the
tacit learning case is only the last term of the command signal
accumulation in Equation (2).

2.3. MECHANISM OF TACIT LEARNING FOR REACHING
As for the neurological explanation of the proposed control
model, it has a common concept with FEL regarding the use of
feedback error as a supervising signal. We can basically apply
the same physiological roles as in FEL and the so-called inter-
nal model theory in the cerebellum (Kawato, 1999). The climbing
fiber inputs to Purkinje cells carry error signals in the motor
command coordinates, and their temporal waveforms can be
well reproduced using the inverse dynamics model. The phase
shift between feedback control and feedforward control during
motor learning is well justified by obtaining the internal model
in the cerebellum in previous papers (Kitazawa et al., 1998;
Kawato, 1999). Feedforward movements are made without sen-
sory feedback, which have predictive nature of the given dynam-
ics. Feedback control, in contrast, involves modification of the
current movement using information from sensory receptors and
error detection. Optimal movement control likely reflects a com-
bination of both feedback and feedforward processes (Desmurget
and Grafton, 2000).

The difference in this work from a typical FEL configuration is
first the point where the motor-command error is created by the
mapping between the task space force and the joint space torque.
In FEL, the optimized desired trajectory of position and veloc-
ity in joint space should be prepared in advance by optimizing
some criteria specifically for the arm with redundant degrees of
freedom (Schweighofer et al., 1998). Even if we use the Jacobian
information, we do not perform inverse kinematic (IK) computa-
tion explicitly. The pseudo-inverse of Jacobian is not computed in
this method differently from the typical methods in the robotics
approach. Thus, the dimension reduction is not performed. The
Jacobian itself can be obtained with the knowledge of the FK
model. Thus, only FK information is assumed in this method, and
the IK and ID models are unknown, then how to take the dynam-
ics into account is being learned by the repetitive interactions with
the environment. Thus, the controller design is different from a
typical FEL configuration. In the proposed method, the optimal-
ity can also be addressed by tacit learning with command signal
accumulations. Thus, along with the adaptivity originating from
the FEL architecture, the optimal solution manageability can be a
significant contribution of this study.

As for the explanation on how motor performance can be opti-
mized over time, the motor command accumulation part serves
as an energy feedback with task space directional information.
Simply, in general error feedback control, when the error is feed-
back, the error can be minimized. Similarly, the integrated torque
command contains an energy measure since it accumulates the
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past torque generation history during cyclic reaching task. Then
this term works as directional energy feedback, thus naturally
the energy can be minimized as it is in a feedback loop. Thus,
tacit learning can induce energy minimization through the repet-
itive actions with the environment while minimizing the endpoint
error toward a given target point in the task space.

2.4. CONTROL SIMULATION STUDY OF VERTICAL REACHING
The task of vertical reaching is to move the endpoint of the arm
following the target which is moving between two points at a fre-
quency f = 0.5 Hz. These two points in the coordinate system of
Figure 1 and the moving target r(t) are given as follows:

p1 = [
0.25 −0.5

]T
, p2 = [

0.35 −0.1
]T

.

r(t) = (p1 − p2) sin(2πft)/2 + (p1 + p2)/2. (3)

Initial joint angles are θ1 = 0◦, θ2 = 90◦, θ3 = 0◦. As for the
segment length, the inertia around the z axis and the mass of
the upper arm, forearm and hand, they are obtained from the
anthropometric table reported in De Leva (1996). They are set
respectively as follows:

l1 = 0.282[m] l2 = 0.269[m] l3 = 0.086[m],
I1 = 0.01275[kgm2] I2 = 0.006516[kgm2] I3 = 0.001305[kgm2],

m1 = 1.978[kg] m2 = 1.183[kg] m3 = 0.445[kg].

The control gains are set respectively as follows:

k = 20.0, A =
⎡
⎣ 0 0 0

0 0 0
0 0 0.05

⎤
⎦, B =

⎡
⎣ 0.01 0 0

0 0.01 0
0 0 0.01

⎤
⎦,

C =
⎡
⎣ 0.15 0 0

0 0.15 0
0 0 0.15

⎤
⎦ (4)

We investigate the motor learning with different loads at the end-
point. Two conditions, with no load or a 0.5 kg load attached to
the hand, were evaluated. The energy consumption during each
reaching cycle is compared between only PD control case and tacit
learning controller in different load conditions. In this study, the
30% value of the above mass parameters both for arm segments
and load, was used to achieve faster convergence of the learning
within 60 s, to allow plotting of the whole range of the learning
process in the limited space. Even in this condition, the allocated
mass and inertial parameters create the effect of gravity and inter-
action torques. As long as these dynamical parameters are blind
as set in this simulation, it does not influence the verification of
the tacit learning performance except for the learning speed. The
control gains are set the same for the two controllers and for the
different load conditions.

2.5. COMPARISON TO MODEL-BASED OPTIMIZATION
The above proposed method is purely based on control with
sensory feedback information and FK model without using a
knowledge of manipulator dynamics. The standard solution for

redundant system control is to use mathmatical optimization
with dynamics model as described in introduction. Thus, we have
also tried the model-based optimization to compare to the result
of tacit learning. We first define the equation of motion of the
manipulator with m revolve joints. The equation of motion of
such manipulator can be described as follows (Nakamura, 1991):

τ = R(θ)θ̈ + 1

2
Ṙ(θ)θ̇ + S(θ, θ̇)θ̇ + g(θ), (5)

where θ, θ̇, θ̈ ∈ Rm implies the vectors of joint angle, angu-
lar velocities and acceleration, respectively. We assume that θ

expresses the relative angles between neighboring links. R(θ) ∈
Rm×m is the inertia matrix that is symmetric and positive definite.
The eigenvalue of R(θ) has the upper and lower bounds for any θ

because all elements in R(θ) are the constant or the trigonomet-
ric function of θ. S(θ, θ̇) ∈ Rm denotes centrifugal and Coriolis
forces. g(θ) ∈ Rm is the gravitational component derived from the
potential energy of the manipulator U(θ). All elements in g(θ)

are trigonometric functions of θ. The link length, link mass and
inertia are set as indicated in the previous section.

The Matlab function fminunc was used to optimize the joint
torque τ with the constraints of the endpoint at the desired
trajectory. The inverse dynamics is available with closed-form
explicit equations as in Equation (5). This allows the joint angle
to be calculated from the torques and vice versa. Optimal con-
trol solutions were obtained by finding deterministic controls
τ(t) = {τi(t)}(i = 1...m) in [t0; tf ] such that the cost function

E =
∑

i = 1...m

∫
[t0;tf ]

τi(t)dt (6)

is minimum during the cyclic reaching task. Fifty discrete points
per one reaching cycle of 2 s are used for the optimization process.

3. RESULTS
3.1. MOTOR CONTROL WITH TACIT LEARNING
To evaluate the performance of the proposed tacit learning, we
compare the control results for vertical reaching between (A) a
PD feedback controller and (B) tacit learning with feedback con-
troller. The task of vertical reaching is to move the endpoint of the
arm following the target.

Figure 3 shows a control result for vertical reaching. The first
plot is the endpoint in the case with only PD feedback, and the
second plot is with tacit learning in addition to feedback con-
trol. The time sequential transition is illustrated using a color
map which changes depending on the progress of time. The color
map correspondence to time can be seen in the color bar on the
right side of figure. A cool color map is used for (A) PD feedback
control, and a jet color map is used for (B) tacit learning. This
colormap configuration is also used in other figures in this Result
section.

Figure 3 shows that PD control is largely affected by gravity
and the interaction torques. In contrast, we see that the trajec-
tory is corrected in time in the case of tacit learning, minimizing
the effect of gravity and interaction torques. Figure 4 shows a
phase portrait for the joint angle-angular velocity of the shoulder,
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elbow and wrist joints. We notice that each joint phase portrait
in tacit learning is gradually shifted from its original form that
is similar to the form in the PD controller. It seems that the
joint space around the neutral position, which is θ1 = 0◦, θ2 =
90◦, θ3 = 0◦., is being sought regardless of the effect of gravity
and interaction torques.

3.2. EMERGENCE OF MOTOR SYNERGY VIA TACIT LEARNING
Figure 5 indicates a phase portrait of the shoulder-elbow joint
angle in no load and 0.5 kg load conditions. We can find that
the phase in tacit learning converges into more aligned synergetic
solutions compared with the case with only feedback control. The
phase form in PD control changed with the addition of a 0.5 kg
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FIGURE 3 | Endpoint transition (no load at hand). (A) Only with
feedback control and (B) with tacit learning in addition to feedback control.

load. It represents that the controller is significantly influenced by
gravity and the interaction torques.

As a result, it shows more unrelated and non-synergetic solu-
tions between the shoulder and the elbow for PD control. In
contrast, the phase form is similar for different load conditions
in tacit learning. The shoulder and elbow joints are used in a
synergetic way even with the load. As the metrics of the joint
synergy, the coefficient of correlation between joint angles is cal-
culated as in Figure 5. It showed low value in both PD control
cases, in contrast, it showed high value after the learning pro-
cess in tacit learning case. This implies that tacit learning allowed
it to learn how to manage the interaction torques and to find
synergetic combinations between neighboring joints to achieve
efficiency in multijoint coordination. It is interesting to see such a
synergetic solution is gradually found with the dynamics-model-
free and cost-function-free approach. “synergistic solutions” can
be considered as equivalent to “reduced space coordination.” The
aligned solutions toward reduced dimension was appeared in
different load conditions with tacit learning. It implies that the
aligned solutions is also robust to the dynamic condition changes,
since the phase form is not necessary to be largely modified.

The integrated torque term of the wrist joint is depicted in
Figure 6. The plot in the cool color map represents the case with
PD feedback. In this mode, there is no integrated torque term
in the controller, but this term was computed for comparison.
The plot in the jet color map is the integrated torque term in
tacit learning. We can find that the torque pattern of this term
is converging into a certain form as in Figure 6. This torque pat-
tern can be regarded as the part that compensates for gravity and
the interaction torques of the dynamic system. In this sense, this
torque integration term can be considered a feedforward (FF)
controller which anticipates the environmental interactions dur-
ing the reaching task. Motor learning is a process that develops
a feedforward controller and minimizes the contributions from
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FIGURE 4 | Phase portrait of joint angle-angular velocity for the

shoulder, elbow and wrist joints. (A) With only feedback control and (B)

with tacit learning in addition to feedback control. We see that each joint

phase portrait in tacit learning is gradually shifted through the interactions
with the environment from its original form that corresponds to the solution
of only feedback case.
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map is that for tacit learning. We see the phase in tacit learning converges

into more aligned synergetic solutions compared with the case in only
feedback control. As the metrics of the joint synergy, the coefficient of
correlation between joint angles represents the synergetic joint usage in
the tacit learning case.
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FIGURE 6 | The transition of integrated torque in the wrist joint (no

load at hand). The line in the cool color map indicates the result with only
feedback control. The integrated torque term was computed for
comparison. The line in the jet color map is that for tacit learning. We see
that the integrated torque pattern is converging into certain form that can
be regarded as the predictive part which compensates gravity and
interaction torques of the multijoint dynamics.

the feedback controller. During learning, the contribution from
FF increased and the torque from FF converged into a certain
pattern. Thus, tacit learning naturally matches this neurological
learning process.

3.3. ENERGY EFFICIENCY AND TRACKING ERROR MINIMIZATION
Energy consumption in one cycle of reaching was measured and
compared between PD control and tacit learning in different load
conditions. The vertical reaching in this study was the motion
between two vertically located points at a frequency of 0.5 Hz.

Therefore, the energy consumption during every 2 s period was
calculated by summing each joint energy consumption 2πτθ̇.
The transition of energy consumption in tacit learning with a
0.5 kg load is illustrated in Figure 7 (middle). The corresponding
endpoint error is also plotted with the calculation of the root-
mean-square (RMS) error between the target point and current
endpoint during one cycle as in Figure 7 (top). The energy used
in each joint is depicted by the red line for the shoulder, green for
the elbow, and blue for the wrist joint as in Figure 7 (bottom).
In Equation (2), the torque component of PD feedback can be
regarded as a feedback (FB) controller, and the integration term
can be regarded as a FF controller. The energy consumption by
each torque component was also computed, as shown in Figure 7
(middle). For comparison, the transition of endpoint error and
the energy consumption with a 0.5 kg load with feedback con-
trol case is shown in Figure 8. Initial transition phase is purely
due to the stored energy in the mass-spring-damping property
by PD control, since the arm starts to move from the stopped
condition toward the moving target. Except this period, there is
no adaptation process both in end point error as well as energy
consumption. From the graph in Figure 7, the endpoint error
is minimized asymptotically during motor learning. The energy
consumption is also minimized globally, while the contribution
from the FF controller is augmented in the course of motor learn-
ing and the contribution from the FB controller is minimized. In
addition, we notice that the energy used in the elbow increased,
while that in the shoulder decreased.

The endpoint error and energy consumption transition ver-
sus time is summarized in Table 1 for all conditions. We can
notice that the energy consumption in tacit learning is mini-
mized during motor learning, while the energy transition remains
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FIGURE 7 | The transition of endpoint error (top) and energy

consumption in one cycle of reaching with a 0.5 kg load with tacit

learning (middle). Not only improving the target tracking accuracy, but
tacit learning solutions result in efficient total energy consumption. In
addition, it was possible to observe the contribution ratio was switched
between FB and FF controllers. Initially FB was mainly used, and with
learning progress, the energy consumption with FB is significantly
minimized. In addition, we notice that the energy used in the elbow
increased while that in the shoulder decreased (bottom).

constant in the case of feedback control because there is no adap-
tive functionality. As for endpoint error, it was also minimized
to improve target tracking accuracy in tacit learning, while it
remained constant in FB control. The energy consumption ratio
by the FF controller was augmented, while that of the FB con-
troller decreased. The figures in parentheses in Table 1 indicate
the cycle-to-cycle variability to evaluate the convergence of tacit
learning. We can confirm that the error, the energy and the con-
tributions of FF and FB are all converged in the course of the
optimization process in tacit learning.

We should note that more energy was naturally necessary when
we try to follow the moving target more precisely. The absolute
energy consumption was not significantly different between the
only feedback and the tacit learning cases. However, we should
remember that the tracking error was largely different in both
cases.

To realize accurate target tracking performance with only PD
control, much greater energy will be required by increasing feed-
back gain because the dynamic effect should be canceled precisely,
while having the conflicts between joints. With a load of 0.5 kg in
tacit learning, both accuracy and total energy clearly improved
with synergetic motor control of the shoulder and elbow joints,
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FIGURE 8 | The transition of endpoint error (top) and energy

consumption in one cycle of reaching with a 0.5 kg load with feedback

control case (bottom). Initial transition phase is purely due to the stored
energy in the mass-spring-damping property by PD control, since the arm
starts to move from the stopped condition toward the moving target.

as a result of the optimality in tacit learning. In high-gain PD
case, the four times larger gain k of the task space propotional
feedback is used. Even though the end point error is similar scale
to the one in tacit learning, the energy consumption becomes
larger. Between PD and Tacit, the same gain k of the task space
propotional feedback is used.

In addition, to show the performance for other tasks in dif-
ferent directions, a result for multidirectional reaching is shown
as in Figure 9. The target moving line was tilted with every 60◦
for 3 directions. For each different target direction, the learning
is started from center position with no prior knowledge. Here,
the same control gains were employed for all the cases. Thus, we
can find that the dynamics effect appears differently for different
directions. For instance, the error and the energy consumption
was different for each direction. Especially, direction 2 required
larger energy than other directions. If we remind that the shoul-
der position is at origin of the coordinate, the inertial momentum
around the shoulder and the swing-up momentum around the
elbow can not be used effectively for direction 2, then we imagine
that it was resulted in higher energy requirement.

3.4. RESULT WITH MODEL-BASED OPTIMIZATION
We analyzed the system also with model-based optimization by
using a knowledge of the dynamics model. The endpoint error
and energy consumption with the solution produced by model-
based optimization are summarized in Table 2. We can notice
that the energy consumption is similar to the one converged
in tacit learning. It implies that the solution in tacit learning
is close to the optimal solution by the so-called optimization
approach. If we remind that in tacit learning, no dynamics
knowledge is used differently from the case in so-called opti-
mization, the result supports the advantage of the proposed
method.
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Table 1 | Endpoint RMS error (m) and energy consumption (J) in one cycle of reaching.

Time (s) PD Tacit High-gain PD

Error Energy Error Energy FF FB Error Energy

0 kg

4 0.108 16.44 0.079 (0.0596) 15.71 (15.78) 5.42 (2.82) 10.33 (18.84) 0.030 19.51

10 0.107 15.12 0.043 (0.0078) 15.11 (0.14) 10.35 (1.33) 4.95 (1.15) 0.030 17.93

14 0.107 14.99 0.033 (0.0041) 15.68 (0.18) 12.60 (0.95) 3.31 (0.75) 0.030 17.92

20 0.107 15.07 0.027 (0.0014) 15.61 (0.06) 13.98 (0.30) 2.15 (0.26) 0.030 17.92

40 0.107 15.06 0.023 (0.0002) 15.25 (0.03) 14.61 (0.01) 1.87 (0.01) 0.030 17.92

70 0.107 15.06 0.022 (0.0) 15.05 (0.01) 14.41 (0.01) 1.82 (0.0) 0.030 17.92

0.5 kg

4 0.174 55.80 0.147 (0.0411) 45.43 (9.99) 14.33 (8.56) 32.17 (18.17) 0.048 36.19

10 0.164 29.01 0.077 (0.0169) 21.08 (0.57) 13.92 (1.77) 7.56 (2.55) 0.047 31.20

14 0.163 26.62 0.066 (0.0042) 22.25 (1.18) 17.14 (1.80) 6.61 (0.03) 0.047 31.20

20 0.162 26.20 0.059 (0.0027) 20.10 (1.10) 16.87 (0.19) 4.63 (0.56) 0.047 31.20

40 0.162 26.32 0.049 (0.0008) 23.71 (0.16) 22.61 (0.17) 4.11 (0.04) 0.047 31.20

70 0.162 26.32 0.045 (0.0001) 23.20 (0.02) 22.30 (0.01) 3.85 (0.01) 0.047 31.20

The figures in parentheses indicate the cycle-to-cycle variability to evaluate the convergence of tacit learning.

In high-gain PD, the four times larger gain k of the task space propotional feedback is used. Even though the end point error is similar scale to the one in tacit

learning, the energy consumption becomes larger. In contrast, the end point error is being minimized as well as the energy consumption in tacit learning. Between

PD and Tacit, the same gain k of the task space propotional feedback is used.
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FIGURE 9 | Endpoint transition (no load at hand) for multidirectional

reaching with tacit learning. The target moving line was tilted with every
60◦. For each different target direction, each learning is started from center
position with no prior knowledge. The resultant error of the end point and
the energy consumption is indicated as well as the contribution information
of FF and FB controllers.

4. CONCLUSIONS AND DISCUSSION
In this paper, we proposed a novel computational control
paradigm in motor learning for a reaching task, especially vertical
reaching which involves the management of interaction torques
and gravitational effects. From the control results, we claim that
the proposed method is valid for acquiring motor synergy in
the system with actuation redundancy. We highlighted that tacit
learning provides computational adaptability and optimality with
dynamic-model-free and cost-function-free approach, in contrast
to previous studies. Energy efficient solutions were obtained by

Table 2 | Endpoint error and energy consumption in the case of

model-based optimization.

kg Error (m) Energy (J)

0 0.019 16.51

0.5 0.019 22.65

the emergence of motor synergy in the redundant actuation space.
Not only were the target tracking accuracy and energy efficiency
improved, but the learning behavior was supported by a finding
that the shift of contributions between the FB and FF controllers
is observed, as shown in Figure 7 (middle). Phenomenologically,
this shift fits well with the findings reported in the internal model
theory (Kawato, 1999).

Finally, the FF torque pattern converged to a specific tempo-
ral pattern in order to manage the given dynamics, as shown in
Figure 6. Such effect of command signal accumulation may be
regarded as phenomenological LTP and LTD, provided by the tacit
learning. The above explanation is a qualitative interpretation. As
for a theoretical explanation of the learning process, motor com-
mand accumulation part served as an energy feedback with task
space directional information. As same as the case where the error
can be minimized in error feedback loop, energy could be mini-
mized when the integrated torque command was in the feedback
loop through the repetitive actions with the environment.

In this work, FEL was taken as an example to be contrasted
with the proposed method, but the result of this work actually
doesn’t conflict with FEL at all. On the one hand, the proposed
method can be regarded as a special form of FEL. On the other,
a neural network FEL architecture (Kawato et al., 1987) is still
useful to memorize the optimal control solutions in the obtained
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behavior together with sensory feedback signals for managing
discrete movements. Thus, the proposed method could coexist
alongside the conventional neural network FEL by adding a new
optimality feature of the proposed method in a complementary
role.

In addition, the simulation results showed good correspon-
dence to the experimental results reported in Bastian et al.
(1996). In their experiment, they found that the inability to pro-
duce accommodating joint torques for the dynamic interaction
torques appeared to be an important cause of kinematic deficien-
cies shown by subjects with cerebellar abnormalities. Thus, the
reaching by them showed lack of coordination of the shoulder
and elbow joints, and a curved endpoint trajectory according to
Bastian et al. (1996). The characteristics of reaching in subjects
with cerebellar abnormality are equivalent to the results of (A)
with only FB control in this study. In the case of PD feedback, we
can confirm the failure to compensate for gravity and the inter-
action torques in Figure 3, and the curved non-synergistic joint
use in Figure 5, which showed the conflicts between the joints.
The level of the interference was higher in a 0.5 kg load condition
because the interaction torque levels got higher.

In contrast, the experimental reaching of an able-bodied sub-
ject showed the correspondence to the result (B) with tacit learn-
ing. In Bastian et al. (1996), they suggest that a major role of the
cerebellum is in generating joint torques with prediction of the
interaction torques being generated by other moving joints and
compensating for them. It implies that the proposed computa-
tional learning paradigm well represents the learning principles
actually taking place in the cerebellum. The failure to manage
interaction torques leads to the situation where one joint motion
affects the motion of another. Thus, the solution to managing
these environmental forces should be achieved by finding syn-
ergetic use of neighboring joints. When the conflicting torque
could be minimized, it can naturally result in energy effective
motion. It can be a reason why we employ motor synergy that
can reduce the interaction conflicts in a multijoint system. In the
results, the energy used in the elbow increased, while that in the
shoulder decreased. This is one of the results from the strategy
where an energy effective solution is being learned because the
joint angle acceleration in the shoulder involves all the arm seg-
ments from the upper arm to the hand, while the joint angle
acceleration in the elbow involves only the forearm and the hand,
which are half the total mass in the arm dynamics system. Tacit
learning found it only by repetitive interactions with the envi-
ronment without using a dynamic model and cost function. This
process is similar to human motor control principles, where even
an infant can improve his motor control ability by repetitions
without thinking about it. Increasing the contribution of the FF
controller that corresponds to the so-called internal model devel-
opment also matches well the nature of computational motor
learning in a human being (Kawato, 1999). In Table 1, the con-
tribution ratio was switched between FB and FF, initially FB
was fully used, and with learning progress, the energy consump-
tion with FB is significantly minimized down to 12% for no
load, 16% for a 0.5 kg load condition. Instead, the contribu-
tion of FF is increased from initial 0% to 95% for no load,
96% for a 0.5 kg load condition. Since there is still remained

conflicts between FB and FF solutions, the sum of both goes
over 100%.

The results demonstrated in this paper also concern Bernstein’s
DOF problem. The Bernstein problem is how the CNS can find an
optimal solution with actuation redundancy. The use of motor
synergy was pointed out by Bernstein, but a fundamental motor
control principal that can generate motor synergy has not yet
been reported in neuroscience. In this study, it is a simple situa-
tion of actuation redundancy, but the proposed tacit learning first
managed to generate motor synergy by a simple computational
principle, which is more likely to be embedded as a modular con-
figuration in the CNS, rather than the so-called cost function
based mathematical optimization approach. The obtained solu-
tion in tacit learning also showed the similar energy consumption
to the case with such model-based optimization.

In this study, we have not conducted the tuning of control
gains, since we preferred to propose a new type of computa-
tional paradigm which can manage redundant system optimiza-
tion process. However, in the given dynamic conditions and the
given control gains, the tacit learning showed that the contribu-
tion of the FF controller is augmented in the course of motor
learning and the contribution from the FB controller is mini-
mized for all the directions and different loads. Further, more
optimal solutions may be obtained in different control gain
conditions. However, the detailed analysis on the dynamic sta-
bility of the system, would be required for the generalization of
the control gain tuning for future work. Simple cyclic reaching
task was used in this study to show the optimization process
in redundant system. Toward complex task management, addi-
tional work would be necessary to establish the internal model
from the optimized torque solutions obtained from the proposed
method.

A recent study from the group of G. Courtine (Van Den Brand
et al., 2012) reported that smart circuits embedded in the brain
stem and spinal cord, may elaborate the detailed motor command
toward optimum motor states, based on the supraspinal signal,
current limb position, and constraints. As the proposed controller
has a simple modular paradigm with a distributed structure that
can be embedded into the individual controllers for multijoint
coordination to achieve adaptivity and optimality for the total
system, the proposed computational principle may also help to
represent spinal adaptivity toward optimal solutions.
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