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The ability to learn and perform statistical inference with biologically plausible recurrent
networks of spiking neurons is an important step toward understanding perception
and reasoning. Here we derive and investigate a new learning rule for recurrent
spiking networks with hidden neurons, combining principles from variational learning and
reinforcement learning. Our network defines a generative model over spike train histories
and the derived learning rule has the form of a local Spike Timing Dependent Plasticity
rule modulated by global factors (neuromodulators) conveying information about “novelty”
on a statistically rigorous ground. Simulations show that our model is able to learn both
stationary and non-stationary patterns of spike trains. We also propose one experiment
that could potentially be performed with animals in order to test the dynamics of the
predicted novelty signal.
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1. INTRODUCTION
Humans and animals are able to learn complex behavioral tasks
and memorize events or temporally structured episodes. Most
likely, learning and memory formation are intimately linked
to changes in the synaptic connection strength between neu-
rons. Long-term potentiation and depression of synapses can be
induced by many different experimental protocols, and depend
on voltage (Artola and Singer, 1993; Ngezahayo et al., 2000),
spike-timing (Markram et al., 1997; Bi and Poo, 2001) as well as a
subtle combination of timing, voltage, and frequency (Sjöström
et al., 2001; Clopath et al., 2010). Spike-Timing Dependent
Plasticity (STDP) has intrigued theoreticians, because it provides
a local Hebbian learning rule for spiking neurons; local, here,
means that the dynamics of the synapses is of the form d

dt wij ∝
h(posti, prej), where prej is the set of pre-synaptic variables of
neuron j (e.g., spike timing) and posti is the set of post-synaptic
variables of neuron i (e.g., spike times and voltage) and h is an
arbitrary functional.

Unsupervised learning through STDP has been repeatedly
shown (Levy et al., 2001; Song and Abbott, 2001; Izhikevich et al.,
2004; Morrison et al., 2007; Cateau et al., 2008; Gilson et al., 2009;
Clopath et al., 2010) to yield connectivity structures that leads to
non-trivial activity patterns in recurrent spiking networks.

With relation to neuroscience, unsupervised learning is most
commonly related to developmental plasticity (Miller et al.,
1989), formation of receptive fields (Song and Abbott, 2001) or
cortical rewiring (Young et al., 2007). Indeed most early appli-
cations of unsupervised STDP concern the learning of feedfor-
ward connections and the formation of receptive fields (Gerstner
et al., 1996; Kempter et al., 1999; Song et al., 2000; Song and
Abbott, 2001). Unsupervised STDP will tune to the earliest spikes
(Song and Abbott, 2001; Gerstner and Kistler, 2002; Guyonneau

et al., 2005) and can perform Independent Component Analysis
(Clopath et al., 2010; Savin et al., 2010).

On the level of behavioral neuroscience, human performance
approaches in many psychophysical learning paradigms Bayes
optimality, i.e., the best statistical model cannot perform better
than humans do (Knill and Pouget, 2004; Körding and Wolpert,
2004). This supports the hypothesis that the brain is performing
approximate inference, which implies that the brain has access to
prior and posterior distribution of possible explanations of the
observed data (Berkes et al., 2011).

These findings lead to the idea that the spiking activity of
the brain constitutes a generative model, that is, a model of
the joint distribution of percepts (observed spike trains induced
by sensors) and hidden causes in the world (hidden spike train
generated by neurons that are not directly affected by sensor
spikes).

The ability to model hidden causes in the sensory data is
important for both stationary and non-stationary situations.
For stationary distributions of spike trains, hidden neurons are
important to encode potential interpretations or explanations of
spike patterns observed at the sensory neurons (visible neurons).
For non-stationary sequences, hidden neurons are fundamen-
tal for representing the non-observed dynamics and to form
long-term memories.

Various abstract Bayesian models have been proposed to
account for this phenomenon (Körding and Wolpert, 2004;
Deneve, 2008; Nessler et al., 2009). However, it remains an
open question whether optimization in abstract Bayesian models
can be translated into plausible learning rules for spiking neu-
rons. If one considers only stationary input patterns, an explicit
relation between Bayesian inference and synaptic plasticity has
been suggested (Habenschuss et al., 2012). Moreover, it has been
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suggested recently (Pecevski et al., 2011; Shao, 2012) that spiking
networks with biologically plausible dynamics can produce sta-
tionary samples from Deep Boltzmann Machines (Salakhutdinov
and Hinton, 2009) and more general Bayesian networks. In the
following we drop the limitations of stationary spatial patterns
and consider a recurrent network of stochastically spiking neu-
rons as a generative model of spatio-temporal spiking patterns.

Learning the synapses between hidden neurons in recurrent
models has been recognized as a difficult problem, as these
synapses only contribute indirectly to the activity of the visible
neurons and as recurrence leads to the “vanishing gradient” prob-
lem (Bengio et al., 1994). Conversely, in machine learning the
algorithms known to be efficient for learning graphical and recur-
rent models are typically non-local (Jaakkola and Jordan, 2000;
Bhatnagar et al., 2007; Sutskever et al., 2008; Salakhutdinov and
Hinton, 2009). That is, in order to efficiently perform param-
eter updates in these models, their learning rules either take
into account the entire state of the model or it requires that
information to propagate in a non-causal maner through the
synapses.

Therefore, the locality constraints imposed by biology con-
stitutes one of the major challenges in transforming those
algorithms into biologically plausible learning rules.

Even in biology, however, certain types of non-local signals
participate in the learning process, notably through neuromod-
ulators which can convey information about the global state of
the network or external information (e.g., reward or surprise)
(Izhikevich, 2007; Schultz, 2008; Fremaux et al., 2010).

Here, we derive a principled learning rule for unsupervised
learning in recurrent spiking networks that relies only on quanti-
ties that are locally available at the synapse: pre-synaptic activity,
post-synaptic activity and a global modulatory signal.

The key innovation of our model compared to earlier stud-
ies (Brea et al., 2011; Jimenez Rezende et al., 2011) lies in the
computation of a global modulating signal which is a linear super-
position of local terms and can therefore be interpreted as the
diffusion of a neuromodulator in the extra-cellular medium.

Furthermore our global neuromodulating signal conveys
information about novelty or surprise on statistically rigorous
grounds, providing interesting links with findings relating sur-
prise and plasticity (Gu, 2002; Ranganath and Rainer, 2003; Yu
and Dayan, 2005).

We show with simulations based on synthetic data that our
proposed learning mechanism is capable to capture complex hid-
den causes behind the observed spiking patterns and is able to
replicate, in its spontaneous activity, the statistics of the observed
spike trains.

Finally, we provide an application of our model to a hypothet-
ical novelty detection task where a simulated agent (e.g., a rat)
is inserted into a maze with specific properties (views, rooms,
topology of the maze). Our model, simulating the “brain” of this
agent, successfully captures the statistical properties of this envi-
ronment. We show that, after learning, our model is capable of
distinguishing the original environment from another environ-
ment that differs only in its topology (relative location of the
rooms). Additionally, we predict the “expected dynamics” of a
neuromodulator signaling “novelty” as the agent traverses the

virtual maze. We propose that this hypothetical experiment could
be developed into a real experiment.

2. MATERIALS AND METHODS
2.1. NEURON MODEL
The neuron model used in our simulations is a generalized linear
model (GLM) in the form of a Spike Response Model (SRM) with
escape noise (Gerstner and Kistler, 2002; Jolivet et al., 2006). The
spike train of a neuron j for times t > 0 is denoted as Xj(t) =∑

t
f
j ∈

{
t1
j ,...,tNs

j

} δ
(

t − t
f
j

)
, where

{
t1
j , . . . , tNs

j

}
is the set of spike

timings.
We model the membrane potential of a neuron i as

ui(t) =
∑

j

wijφj(t) + ηi(t), (1)

where ηj(t) = −η0
∫ t

0 dse
− (t − s)

τ adapt Xj(s) is the adaptation potential,
wij is the synaptic strength between neurons i and j and φj(t)
is the potential evoked by an incoming spike from neuron j.
The evoked potentials are modeled by a simple exponential filter

φj(t) = ∫ t
0 dse− (t − s)

τ Xj(s) implemented as a differential equation

φ̇j(t) = 1

τ
(Xj(t) − φj(t)), (2)

where τ is the time constant of the membrane potential.
The spikes are generated by a conditioned Poisson process

with exponential escape rate (Jolivet et al., 2006). That is, the
conditional instantaneous firing intensity ρi(t) is taken to be

ρi(t) = ρ0 exp

[
ui(t) − ϑ

�u

]
, (3)

where ϑ and �u are physical constants of the neuron. However,
we will keep ρi(t) as an arbitrary function of ui(t), ρi(t) =
g(ui(t)), in all our derivations and we specify the exponential
form (Equation 3) only when performing the simulations (see
further below). Equations (1–3) capture the simplified dynamics
of a spiking neuron with stochastic spike firing.

In the following simulations we assume that two different neu-
rons i and j can have at most two common synapses, wij and
wji. The neuron model and the potentials contributing to its
activation are illustrated in Figure 1.

In the following sections, we will first introduce the theo-
retical framework in which we derive our learning rule. The
learning mechanism is then derived in several steps, followed
by simulations showing that our model and learning rules are
capable of capturing complex spatio-temporal features in the
input spike trains, reproduce them in its spontaneous activ-
ity and perform statistical inference on the hidden causes of
provided data.

2.2. A PRINCIPLED FRAMEWORK FOR LEARNING
In the following we consider a stochastic, fully connected net-
work M composed of two sets of neurons which are functionally
distinct. The first group which we call observed or visible neurons
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(denoted by V) represents an ensemble of neurons which receive
data in the form of spike trains. The spike trains of the visible
neurons will be referred to as XV . These neurons are exposed to
the external world. The second set, which we call hidden neurons
(denoted by H) does not directly receive data from the external
world. The spike trains of the hidden neurons will be referred
to as XH. Their role is to provide “compressed explanations” for
the observed data. The topology of this network is illustrated
in Figure 2C. In the absence of external drive, the spontaneous
activity of the hidden neurons will contribute to the firing of
the observed neurons. The spike trains of the entire network

comprising both observed and hidden neurons will be indicated
simply as X.

Our network defined in this way constitutes a generative model
of spike trains with hidden neurons. In the following we interpret
synaptic potentiation and depression as a form of optimization
of this generative model. More precisely, we assume that synaptic
plasticity (the “learning rule”) is trying to increase the likelihood
of the observed spike trains under the model.

In what follows, we review the calculation of the complete-data
log-likelihood log p(XV , XH) for a recurrent network of point-
process neurons.

FIGURE 1 | Neuron and synaptic models. Illustration of the different contributions to the total membrane potential of a neuron i in our model.

FIGURE 2 | The different network architectures discussed in this study.

(A) Feed-forward, fully observed spiking network. It defines a conditional
model of the target spiking patterns given the input patterns. (B) Fully
connected and fully observed spiking network. It defines a generative model
of the observed data. (C) Network decomposed in two pools of neurons:

neurons which receive data or observed neurons V and neurons which do
not receive data or hidden neurons H. Both pools of neurons are fully
connected. (D) The network with M-synapses (solid links) and Q-synapses
(dashed links) which provides the infrastructure required for learning the
generative model.
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From Equations (1–3) it follows that the probability

Pi

(
t

f
i ∈ [t, t + �t]|X(0 . . . t)

)
of producing a spike in the

infinitesimal interval [t, t + �t] by the ith neuron conditioned
on the past activity of the entire network X(0 . . . t) and provided
that ρi(t)�t � 1 is given by

Pi

(
t

f
i ∈ [t, t + �t]|X(0 . . . t)

)
≈ ρi(t)�t, (4)

and the probability Pi

(
t

f
i /∈ [t, �t]|X(0 . . . t)

)
of producing no

spike in the same interval is given by

Pi

(
t

f
i /∈ [t, t + �t]|X(0 . . . t)

)
≈ (1 − �tρi(t)). (5)

Therefore, by discretizing a finite time interval [0, T] into N suffi-
ciently small bins [tk, tk + �t] with k = 1 . . . N so that there is at
most one spike in each bin and assuming independence between
neurons within the infinitesimal bins we can write the probability

P(X(0 . . . T)) of producing a spike train Xi(t) = ∑
t
f
i
δ
(

t − t
f
i

)
for all neurons in the network as

P(X(0 . . . T)) ≈
∏

i ∈V ∪H

∏
ks

i

[
ρi

(
t

f
ks

i

)
�t

]∏
kns

i

[
1 − �tρi

(
t

f
kns

i

)]
,

(6)

where ks
i and kns

i labels the bins with one spike and bins with-
out spike from neuron i, respectively. Taking the limit N → ∞
of Equation (6) divided by the volume �tK , where K is the total
number of spikes in the interval [0, T] we obtain the probability
density

p(X(0 . . . T)) =
∏

i ∈V ∪H

⎡
⎢⎣∏

t
f
i

ρ
(

t
f
i

)⎤⎥⎦ exp

(
−

∫ T

0
dtρi(t)

)
.(7)

The log-likelihood corresponding to Equation (7) can be com-
pactly written as

log p(X(0 . . . T)) =
∑

i ∈V ∪H

∫ T

0
dτ

[
log ρi(τ )Xi(τ ) − ρi(τ )

]
. (8)

It should be stressed that the log-likelihood (Equation 8) is not a
sum of independent terms, since the instantaneous firing rate of
each neuron depends on the entire past activity of all the other
neurons through Equations (1–3).

In the following sections we derive a plasticity rule that will
attempt to maximize the log-likelihood of the observed data
log p(XV ). For this, we briefly review the calculation of the gra-
dient of the observation likelihood in absence of hidden neurons
and then we introduce our method for approximating its gradient
when there are hidden neurons.

2.3. FULLY OBSERVED NETWORK
The gradient of the log-likelihood of fully observed networks
of SRM neurons and similar point-processes have been studied

in detail in Paninski (2004) and Pfister et al. (2006). In what
follows we review the calculation of the gradients of the data log-
likelihood (Equation 8) with respect to the synaptic weights and
then discuss a simulation revealing the limitations of the model.

In a network without hidden neurons as illustrated in
Figures 2A,B, the data log-likelihood (Equation 8) reduces to a
simple form

log p(XV ) =
∑
k ∈V

∫ T

0
dτ

[
log ρk(τ )Xk(τ ) − ρk(τ )

]
. (9)

In Paninski (2004) and Pillow et al. (2004) it is shown that the
optimization problem defined by the log-likelihood (Equation 9)
is convex. Therefore its global maximum can be found by gradient
ascent.

The gradient of Equation (9) with respect to the synaptic
efficacies wij is given by

∇wij log p(XV ) =
∑
k ∈V

∫ T

0
dt′ ∂ log ρk(t′)

∂wij

[
Xk(t′) − ρk(t′)

]
, (10)

where the gradients ∂ log ρk(t′)
∂wij

are obtained by differentiating the

firing rate function (Equation 3):

∂ log ρk
(
t′
)

∂wij
= δki

g′ (uk
(
t′
))

g (uk (t′))
φj

(
t′
)

(11)

We conclude that the gradient ∇wij log p(XV ) can be calculated
in a purely local manner. More precisely, an update of the weights
according to gradient ascent �wij ∝ ∇wij log p(XV ) yields a learn-
ing rule that is simply a “trace” of a product of two factors: A
first factor φj

(
t′
)

that depends only on the presynaptic activ-

ity and a second factor
g′(uk(t′))
g(uk(t′))

[
Xk

(
t′
) − ρk

(
t′
)]

that depends

on the state of the postsynaptic neuron. Moreover, the gradient
(Equation 10) has been shown to yield a simplified form of STDP
(Pfister et al., 2006). The notion of “trace” (i.e., a temporal aver-
age of some quantity) will return for other learning rules later in
this paper.

In order to expose the weakness of the fully observed model
described above, we test its performance on a task which consists
of learning “stair patterns” involving 3 groups of 10 visible neu-
rons, which are probabilistically activated using low (1 Hz) and
high (700 Hz) firing rates. The activations generate a sequential
pattern where each group remains active for a duration drawn
from a Gaussian distribution with mean 30 ms and standard
deviation 10 ms (truncated at positive values), (Figure 3A). This
benchmark is interesting firstly because it requires the forma-
tion of memories on the order of three times the membrane
time constants of the single neuron dynamics and secondly
because it requires the ability to learn the appropriated transi-
tion probabilities. Our simulations show that a fully observed
network is not capable of learning such patterns, as can be seen
by looking at the samples produced from the learned network
(Figure 3B). However, a model with 50 hidden neurons (with the
learning rule discussed further below) can learn the distribution
(Figures 3C,D).
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FIGURE 3 | Models with hidden neurons succeed where a fully observed

model fails. Here we compare our model (online with variance reduction,
see Materials and Methods) with and without hidden neurons. (A) Sample
from the training data. (B) Sample activity from the visible neurons of a
learned model without hidden neurons. From the generated samples we can
see that a model with only visible neurons can capture some correlations
present in the data (note the formation of “downward” moving blurred
patterns) but fails at capturing the long-term structure of the pattern. (C)

Sample from a learned model with 50 hidden neurons: hidden neurons’
spikes (top) and visible neurons’ spikes (bottom). Note that the learned

hidden representation unambiguously represents the global state of the
visible neurons, generating different spiking patterns for each distinc phase of
the training pattern. (D) Relative performance of the models with (vertical
axis) and without (horizontal axis) hidden neurons measured by their data
log-likelihood. The blue points indicate the relative evolution of the data
log-likelihood of both models during a learning session. The model with latent
neurons has systematically a better performance (higher log-likelihood) than
the model without hidden neurons. (E) Model with hidden neurons in
inference mode. The activity of the hidden neurons from the Q-network (top)
forms a higher-level representation of the observed spike trains (bottom).

Moreover, even if the fully observed network could learn the
data distribution it would not provide any useful representation
of the data, while a network with hidden neuron natu-
rally forms higher-level representations of the incoming data
(Figure 3E)(top). For precise details concerning the numerical
simulations and evaluations, see further below.

This simulation corroborates the intuition that a network
consisting of visible neurons only is rather limited in scope.
We therefore turn in the following to a more general network
consisting of both visible and hidden neurons.

2.4. PARTIALLY OBSERVED NETWORK
In the following we first introduce our model that includes hid-
den neurons. We derive our learning rule and introduce a few
modifications to improve its performance. Finally, we show with
simulations that the resulting model can learn spiking patterns
that couldn’t be learned by a model without hidden neurons.

In a model that includes hidden neurons (that is, neurons not
directly connected to the incoming data), the marginalized like-
lihood of the visible neurons is obtained by integrating over all
possible hidden spike trains XH,

p(XV ) =
∫

DXH p(XV , XH). (12)

In the following we introduce the variational approxima-
tion scheme for approximating Equation (12). The variational
approach consists of approximating a complex distribution p by
a simpler distribution q and provides a flexible generalization of

the expectation-maximization (EM) algorithm (see Jaakkola and
Jordan, 2000; Beal and Ghahramani, 2006).

We are interested in approximating the posterior p(XH|XV )

by another distribution over spike trains q(XH|XV ). We optimize
the parameters of the distribution q(XH|XV ) by minimizing the
KL-divergence

KL(q; p) =
∫

DXHq (XH|XV ) log
q(XH|XV )

p(XH | XV )

=
∫

DXHq(XH|XV ) log
q(XH|XV )

p(XH, XV )
+ log p(XV )

= 〈
log q(XH|XV ) − log p(XH, XV )

〉
q(XH|XV )

+ log p(XV )︸ ︷︷ ︸
Data log-likelihood

, (13)

where 〈f (X)〉p = ∫ DXf (x)p(x). The first term in Equation (13) is
known in statistical physics as the Helmholtz free energy (Landau
et al., 1980),

F = 〈
log q(XH|XV ) − log p(XH, XV )

〉
q(XH|XV )

. (14)

The second term in Equation (13) is simply the data log-
likelihood. Since the KL-divergence KL(q; p) between two distri-
butions q and p is non-negative (Gibbs and Su, 2002), the free
energy (Equation 14) is an upper bound on the negative log-
likelihood. Therefore, we can redefine the problem of maximizing
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the data log-likelihood log p(XV ) with respect to the parameters
of the generative model p as the double optimization problem
of minimizing the free energy F with respect to the param-
eters of q and with respect to the parameters of the original
model p.

The attractiveness of such an approach for deriving biolog-
ically plausible rules comes from the fact that the distribu-
tion q is arbitrary (as long as it has the same support as the
true distribution). Therefore we can either choose it in order
to simplify the calculations or to improve the model’s com-
pliance with known biological constraints, such as causality
and locality of the weight updates. These interesting proper-
ties of the variational approximation have been explored by a
diversity of models (Dayan, 2000; Friston and Stephan, 2007;
Jimenez Rezende et al., 2011; Brea et al., 2013; Nessler et al.,
2013).

In what follows, we postulate that the posterior distribution
of the hidden spike trains of the network M can be well approxi-
mated by another recurrent network of spiking neurons which we
call the network Q. This network is composed of the same neu-
rons as the original model, except that it has different synaptic
connections. Its connectivity is depicted in Figure 2D.

The assumption of an “inference” network Q is analogous
to the recognition model introduced in Dayan (2000) for the
Helmholtz machine.

Our model differs from the Helmholtz machine, as introduced
in Dayan (2000), in two key aspects: (1) The Helmohtz machine is
a model for stationary data, i.e., it cannot readily model temporal
sequences; (2) Although the recognition network is introduced
in a variational framework, the proposed learning rule is not
attempting to minimize a free energy (there are different cost
functions for the generative and recognition models) whereas our
learning rule is explicitly attempting to minimize the free energy
associated to the model.

In other words, our model consists of a single set of neurons
with two sets of synaptic weights that can be turned on and off
independently (possibly through the action of specific neuromod-
ulators). The first set of weights, which we will refer to as wM

ij ,

parameterizes the original generative modelM. The second set of
weights, which we will refer to as wQ

ij parameterizes the network

Q. The topology of the network Q is restricted and excludes con-
nections toward the visible neurons from hidden and other visible
neurons.

In the following, all the quantities (e.g., membrane potentials
and firing rates) that are computed using the parameters wM

ij (i.e.,

with Q turned off) will have the superscript M. Analogously, all
the quantities that are computed using the parameters wQ

ij (i.e.,

with M turned off) have the superscript Q.
When driven solely by the observed spike trains and by

the weights wQ
ij , the activity of the hidden neurons XH is, by

construction, an approximated sample from true the posterior
distribution p(XH|XV ) provided by the distribution q(XH|XV ).
Therefore, if we want our model to perform approximated
Bayesian inference on the most likely hidden causes of an
observed spike train XV we just have to run it with the synapses
wM

ij turned off. Conversely if we want to produce a sample from

the learned generative model, we have to run it with the synapses
wQ

ij turned off.
In the next sections we derive stochastic estimators of the gra-

dients of the free energy F with respect to the synaptic weights
wM

ij and wQ
ij in a biologically plausible manner.

We show that the naive gradients obtained for wQ
ij are prob-

lematic since their variance grows quadratically with the size of
the network. We then introduce a simple modification to reduce
the variance of the obtained gradients based on techniques from
reinforcement learning. Finally we modify the gradient estimators
so that they turn into “on-line” parameter updates.

2.5. STOCHASTIC GRADIENTS
The complete data log-likelihood LM of the model M and LQ
of the model Q are given by

LM = log p(XV , XH)

=
∑

i ∈V ∪H

∫ T

0
dτ

[
log ρM

i (τ )Xi(τ ) − ρM
i (τ )

]
(15)

and

LQ = log q(XH|XV )

=
∑
i ∈H

∫ T

0
dτ

[
log ρQ

i (τ )Xi(τ ) − ρQ
i (τ )

]
(16)

respectively.
The free energy (Equation 14) corresponding to the log-

likelihoods (Equations 15, 16) is given by

F = 〈LQ − LM〉
q(XH|XV )

. (17)

In the following we simplify the notation and write 〈•〉q instead
of 〈•〉q(XH|XV ). We wish to write the learning equations for both

wM
ij and wQ

ij as simple gradient descent on the free energy:

ẇM
ij = −μM∇wM

ij
F (18)

ẇQ
ij = −μQ∇wQ

ij
F , (19)

where μM and μQ are learning rates for the networks M
and Q, respectively. The exact gradients ∇wM

ij
F and ∇wQ

ij
F are

difficult to evaluate analytically since we cannot compute the
required expectations. Therefore we resort to unbiased stochastic
approximations of those gradients.

The calculation of the gradient ∇wM
ij
F is analogous to the fully

observed case and is given by

∇wM
ij
F = ∇wM

ij

〈LQ − LM〉
q

= −
〈
∇wM

ij
LM

〉
q

≈ −∇wM
ij
L̂M, (20)
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where L̂M is a point-estimate of the complete data log-likelihood
of our generative model obtained by computing the required
traces from a single simulation of the network Q in the inter-
val [0, T]. Similarly, the stochastic gradient with respect to wQ

ij
is given by

∇wQ
ij
F =

〈
∇wQ

ij
LQ

〉
q
+

〈(−LM + LQ)∇wQ
ij
LQ

〉
q

=
〈(−LM + LQ)∇wQ

ij
LQ

〉
q

≈
(
−L̂M + L̂Q

)
∇wQ

ij
L̂Q

= F̂ ∇wQ
ij
L̂Q, (21)

where we have used the fact that

〈
∇wQ

ij
LQ

〉
q

= ∇wQ
ij

〈
expLQ〉

q =
∇

wQ
ij

1 = 0 and F̂ is the point-estimate of the free energy,

F̂ = L̂Q − L̂M

=
∫ T

0
dτ

∑
i ∈H

[
log ρQ

i (τ )Xi(τ ) − ρQ
i (τ )

]

−
∫ T

0
dτ

∑
i ∈V ∪H

[
log ρM

i (τ )Xi(τ ) − ρM
i (τ )

]

=
∫ T

0
dτFτ , (22)

where we have defined the “instantaneous free energy” Fτ as

Fτ =
∑
i ∈H

[
log ρQ

i (τ )Xi(τ ) − ρQ
i (τ )

]

−
∑

i ∈V ∪H

[
log ρM

i (τ )Xi(τ ) − ρM
i (τ )

]
. (23)

Note that during learning the activity of the visible neurons is
driven purely by the observed spike trains while the activity of
the hidden neurons and related quantities (e.g., ρQ

i and ρM
i )

is driven by the Q-network. Expanding the remaining gradients
in Equations (20, 21) using the chain rule we obtain the “batch
mode” learning equations

ẇM
ij (T) ≈ μM

∫ T

0
dt

g′ (uM
i (t)

)
g
(
uM

i (t)
) [

Xi(t) − ρM
i (t)

]
φj(t)

∀ i, j ∈ V ∪ H, (24)

ẇQ
ij (T) ≈ −μQF̂

∫ T

0
dt

g′
(

uQ
i (t)

)
g
(

uQ
i (t)

) [
Xi(t) − ρQ

i (t)
]
φj(t)

∀ i ∈ H, j ∈ V ∪ H. (25)

Note that the learning rule (Equation 24) is the same as in the
fully observed network case in Equation (10). The learning rule
(Equation 25) for the network Q is similar, but contains an addi-

tional modulation factor, the point estimate of the free energy F̂ ,
which appears as a global signal that modulates the learning of

the network Q. Since F̂ provides a lower bound on the data log-
likelihood, the free energy measures how much the recent history
of observed spike trains “fits” the generative model defined by the
network M. The assumption of a globally available signal con-
veying information about reward or surprise is standard in the
reinforcement learning literature.

The naive stochastic gradients (Equations 24, 25) are not effi-
cient in practice. Even though they constitute unbiased estimators
of the true gradients, their variance is prohibitively high. We
address this problem below.

2.6. REDUCING THE VARIANCE OF THE GRADIENTS
Stochastic gradients of the form Equation (25) have been exten-
sively studied in the reinforcement learning literature and several
approaches with different levels of complexity have been pro-
posed for reducing their variance (Munos, 2005; Bhatnagar et al.,
2007). In the following, we sketch some theoretical arguments for
why gradients of the form of Equation (25) should be expected to
scale badly with the size of the network.

Let N be the number of neurons in the network and T be
the time window on which we compute the relevant quantities.

Equation (25) contains the free energy F̂ which is, according to
Equation (22), a sum of traces (integrals on the interval [0, T])
for each neuron. Therefore, in a weak-coupling scenario, the esti-
mator (Equation 25) is the integral on the interval [0, T] of a
sum of N weakly correlated terms in the free energy, that we
assume to have some typical variance σ 2

0 and mean m. Under
these assumptions, the variance of the gradient (Equation 25)
scales approximately as

Var
[

ẇQ
ij

]
∝ [

μQ]2 (
N × T × σ 2

0 + N2 × T2 × m2) ,

That is, as the size of the network grows, the variance of the
gradient (Equation 25) grows with the square of the number of
neurons. A naive solution would be to decrease the learning rate
as μQ ∝ 1/N but this would make learning too slow for larger
networks.

In the following, we adopt a simple baseline removal approach
to reduce the variance of our gradient estimator. That is, we sim-

ply subtract the mean F̄ of the free energy F̂ , calculated as a
moving average across several previous batches of length T, from

the current value F̂(T). This yields the learning rule

ẇQ
ij (T) ≈ −μQe(T)

∫ T

0
dt

g′
(

uQ
i (t)

)
g
(

uQ
i (t)

) [
Xi(t) − ρQ

i (t)
]
φj(t)

∀i ∈ H, j ∈ V ∪ H, (26)

where we have introduced the “free energy error signal” e(T) =
F̂(T) − F̄ .
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With this simple change, we can see that the variance of our
gradient scales as

Var
[

ẇQ
ij

]
∝ [

μQ]2 (
N × T × σ 2

0

)
.

The baseline removal trick is not a solution to the problem but it
drastically reduces the variance of our estimator when the size of
the network is increased.

Note that the quadratic or linear growth of the gradient’s vari-
ance with the number of neurons is not just an artifact of our
variational approximation. The arguments presented in this sec-
tion apply to any learning rule that has the form of local Hebbian
traces modulated by global signals that are composed of several
weakly correlated terms. For instance, the learning rule proposed
in Brea et al. (2011) also falls into this category.

2.7. ONLINE vs. BATCH LEARNING
The gradients that define our learning scheme (Equations 24, 26)
are given in terms of quantities accumulated over a given time
interval [0, T]. In this sense, we have derived a “batch” learn-
ing rule and we would have to wait until the end of the interval
[0, T] in order to apply the changes in the parameters of our
model.

However, compatibility with biology requires that we have
an online version of our algorithm. This can be approximately
achieved if, instead of accumulating the traces required for cal-
culating the gradients on time interval [0, T] and applying the
parameters updates in the end, we replace the traces by mov-
ing averages and apply the parameter updates at every time
step. The modified learning rules can be formulated as fol-

lows. At each synapse, we have “Hebbian traces” HM,Q
ij (t)

that keep track of pre- and post-synaptic activity and evolve
according to

τGḢM
ij (t) = −HM

ij (t) + g′ (uM
i (t)

)
g
(
uM

i (t)
) [

Xi(t) − ρM
i (t)

]
φj(t),

∀i, j ∈ V ∪ H (27)

τGḢQ
ij (t) = −HQ

ij (t) +
g′
(

uQ
i (t)

)
g
(

uQ
i (t)

) [
Xi(t) − ρQ

i (t)
]
φj(t),

∀i ∈ H, j ∈ V ∪ H (28)

where we have introduced a time constant τG controlling the
time-scale of the moving averages. Similarly, the online estimate
of the error signal eN(T) is obtained by replacing time integrals in
the interval [0, T] with moving averages

τG
˙̂F(t) = −F̂(t) + Ft . (29)

τ baseline
˙̄F = −F̄ + F̂(t). (30)

That is, F̂ is a “short term” moving average of the instantaneous
free energyFt (Equation 23) with time-scale τG while F̄ is a “long
term” moving average of Ft with a longer time-scale depend-
ing on τG and τbaseline. Note that the “error signal” eN(T) can

also be interpreted as an instantaneous surprise measure rela-
tive to the slow “background” surprise level F̄ . The updates of
the weights uses the Hebbian traces and fixed learning rates μM
and μQ

ẇM
ij (t) = μMHM

ij (t) (31)

ẇQ
ij (t) = −μQeN(t)HQ

ij (t). (32)

Thus the update of the M-network is given by a “Hebbian” rule
whereas the update of the Q-network follows a three-factor rule
with the surprise as a global factor. This architecture is illustrated
in Figure 4A and the three-factor rule for the Q-synapses is illus-
trated in Figure 4C. Another way of interpreting the learning rule
(Equation 32) is that it is simply proportional to the covariance
between the Hebbian trace HQ

ij and the moving average of the

free energy F̂ . If they are uncorrelated, the expected change in the
parameters will be zero and the synaptic weights will just perform
a centered random walk.

2.8. A SIMPLIFIED MODEL
Since the variational distribution q in Equation (13) can be arbi-
trary, one could imagine a model simpler than the one derived in
the previous sections which consists in approximating the poste-
rior distribution of the hidden neurons directly by the forward
dynamics of the generative model. In practice this approxima-
tion amounts to constraining the synaptic weights wQ

ij of the

Q-network to be equal to the synaptic weights wM
ij of the

M-network for i ∈ H and j ∈ V ∪ H.
Under this constraint, the learning equations (31) and (32)

reduces to

ẇM
ij (t) = μM

{
HM

ij (t) if i ∈ V
−eN(t)HM

ij (t) otherwise
(33)

and the instantaneous free energy simplifies to a sum over the
observed neurons only

Fτ = −
∑
i ∈V

[
log ρM

i (τ )Xi(τ ) − ρM
i (τ )

]
. (34)

The architecture of this model is illustrated in Figure 4B The
idea of using the forward-dynamics as a proposal distribution for
the posterior has been used in Brea et al. (2011) and Brea et al.
(2013), where the proposals are then weighted by an importance-
sampling scheme to better represent the true posterior distribu-
tion over the hidden activity.

Further below (see results) we show that, at least in the con-
text of the variational learning discussed here, this approximation
does not outperform our more general model.

2.9. NUMERICAL SIMULATIONS
All the simulations in this study are based on a discrete-
time version of the Equations (31, 32). The spiking process
is approximated by taking 1 − exp [−dtρ(t)] as the probabil-
ity of producing one spike in the finite time bin [t, t + dt].
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FIGURE 4 | The different studied architectures and three-factor STDP.

(A) Illustration of our main model (Equations 31, 32) with its two sets of
synapses Q (black) and M (gray). The “error signal” eN (t) modulates the
learning of the Q-synapses. (B) Illustration of the simplified model (Equations
33, 34) with its single set of synapses M. The “error signal” eN (t) modulates
the learning of the M-synapses. (C) Learning in the main model’s
Q-synapses is triggered by the covariance between the Hebbian trace HQ

ij

and the moving average of free energy F̂ . The inset blue curve indicates the
shape of the Hebbian trace term as a function of the time interval between
pre and post synaptic spikes. The dotted gray line corresponds to HQ

ij = 0 (no
weight change). A positive covariance will induce synaptic depression (left
quadrant of blue curve) while a negative covariance will induce synaptic
potentiation (right quadrant of blue curve). A null covariance would induce a
centered random walk on the synaptic weights.

The values of the parameters used in this study are reported in
Table 1.

The initial synaptic weight of both M and Q were sam-
pled from a Gaussian distribution with mean zero and standard
deviation of 0.01.

For all experiments, the training data consists of binary arrays
with ones indicating spikes and zeros indicating no-spike in the
corresponding time bin. The training data-sets are organized in
batches of 200 ms which are sequentially presented to the model.
During our training sessions, each learning epoch corresponds to
500 presentations of data batches. In other words, each epoch cor-
responds to a total of 100 s of spiking data. During the learning
phase, the visible neurons are exactly driven by the data spike
trains, that is, they are forced to spike or to not spike in the
exact same way as the data samples at each time bin. During the
spontaneous activity phase the networks are running without any
external drive.

The log-likelihood of test data was estimated by an impor-
tance sampling procedure. Given a generative model with density
p(xv, xh) over observed variables xv and hidden variables xh,
importance sampling allow us to estimate the density p(xv) of a
data point xv as

p(xv) = 〈
p(xv|xh)

〉
p(xh)

= 〈
p(xv|xh)w(xh, xv)

〉
q(xh)

, (35)

Table 1 | Parameters used in the simulations.

Parameter Description Value

dt Time discretization interval 1 ms

τ Membrane potential time constant 10 ms

η0 Adaptation potential strength 0.1 mV

τadapt Adaptation potential time-scale 10 ms

ρ0 Firing rate scale 1 kHz

ϑ Firing threshold 0 mV

�u Firing sensitivity to the membrane potential 1 mV

μM Learning rate for the model network M 0.00001

μQ Learning rate for the recognition network Q 0.00001

τG Time scale for the moving averages of the
gradients and free energy

10 ms

τ baseline Time scale for the moving average of mean
free energy

100 ms

where q(xh|xv) is an arbitrary distribution with same sup-
port as p(xh) and w(xh, xv) = p(xh)/q(xh|xv) is the impor-
tance weight. The Equation (35) can be rewritten in terms
of the point-estimated of the free energy (Equation 22) as
follows
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p(xv) = 〈
p(xv|xh)w(xh, xv)

〉
q(xh|xv)

= 〈
exp[log p(xv|xh) + log p(xh) − log q(xh|xv)]

〉
q(xh|xv)

=
〈
exp −F̂(xv, xh)

〉
q(xh|xv)

, (36)

where F̂(xv, xh) is a point-estimator of the free energy.
Using Equation (36) we estimate the log-likelihood of a

observed spike-train by sampling several times from the network
Q and taking the average of the exponentiated point-estimator of
the free energy (Equation 22). For our applications, we have gen-
erated 500 samples of duration 100 ms from the network Q per
estimation.

3. RESULTS
The learning rules derived above (see Materials and Methods)
come in four different variants. First, a batch-based naive gradi-
ent descent rule. Second, a variant that reduces the variance of

the gradient estimator. Third an online version of the variance-
reduced rule that is biologically more plausible than a batch rule.
Finally, a simplified version of the model where the Q-network is
merged with the M-network in a specific manner.

3.1. VARIANCE REDUCED RULE vs. NAIVE RULE
Naive gradient descent on the free energy yields the batch learn-
ing rule (Equation 25). Tested on the stairs-patterns (Figure 3A)
using a network of 30 visible neurons and 30 hidden neurons gen-
erates very slow learning. In Figure 5A we show that the learning
rule with the variance reduction (Equation 26) performs substan-
tially better than the naive gradient (Equation 25). Both networks
have the same number of visible and hidden neurons, but the
first network is trained with the gradient given in Equation (25)
whereas the second network is trained with the gradient defined
in Equation (26). The data log-likelihood of both networks is
approximated by importance sampling after every learning epoch.

In Figure 5A, along the horizontal axis we plot, across sev-
eral epochs the log-likelihood of the model using the learning

FIGURE 5 | Variance reduction and Q-network are important while

on-line approximation is not. Comparison of the different flavors of the
proposed model across 100,000 learning epochs on the “stairs pattern” task.
Shown log-likelihoods where estimated by importance sampling every 500
epochs during learning. Likelihood values (crosses) further to the right (high
log-likelihood) correspond to the end of learning while the cross on the
diagonal marks the beginning of learning (epoch 1). (A) Model with variance

reduction (horizontal axis) achieves a higher log-likelihood than a naive model
without variance reduction (vertical axis). (B) Batch model with variance
reduction(horizontal axis) and on-line model with variance reduction (vertical
axis) exhibit a similar evolution of log-likelihoods. (C) Online-model with
variance reduction (horizontal axis) performs better than the simplified model
(without the Q-network) with variance reduction defined by Equations (33,
34) (vertical axis).
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rule with variance reduction and along the vertical axis the log-
likelihood of the model without variance reduction (i.e., the naive
batch gradient rule). We find that the log-likelihood of the vari-
ance reduced model is consistently above the log-likelihood of
the naive model, indicating an increase in learning speed of more
than a factor 100.

3.2. ONLINE ALGORITHM vs. VARIANCE REDUCED BATCH ALGORITHM
Online algorithms are biologically more plausible than batch
algorithms which require storage of intermediate results. Here we
show that the online learning rules (Equations 31, 32) induce only
minor impairments of the performance compared to the batch
rules (Equations 24, 26).

Both versions of the model were trained on the same “stair
pattern” task and the results are shown in Figure 5B. Along the
horizontal axis we indicate the log-likelihood of the batch model
and along the vertical axis that of the online model, across several
epochs of learning. Both performances are strongly correlated,
indicating that the online approximation does not introduce any
major impairment in the model for this particular dataset.

3.3. FORWARD DYNAMICS vs. THE Q-NETWORK
Here we show that the simplified model defined by the Equations
(33, 34) does not reach the performance of the more general
model defined by Equations (31, 32).

Both versions of the model were trained on the same “stair
pattern” task and the results are shown in Figure 5C. Along the
horizontal axis we indicate the log-likelihood of our model with
Q-network and along the vertical axis that of the simplified
model, across several epochs of learning. Both performances are
correlated. However, the simplified model has clearly lower log-
likelihoods than the complete model. This result suggests that the
forward dynamics of the generative model may provide a poor
approximation to the true posterior distribution of the hidden
neurons compared to having an independently parameterized
inference network.

3.4. HIDDEN REPRESENTATIONS AND INFERENCE
To show that our model is not only learning a prior that represents
the data but can also form interesting hidden representations and
perform inference on the hidden explanations of the incoming
data, we use the Q-network of a model with 50 hidden neurons,
trained on the stairs dataset Figure 3A. The activity of the hid-
den neurons of the model during sampling (or “dreaming”) are
shown on Figure 3C (top). As we can see just by visually inspect-
ing the activity of the hidden neurons, they form an unambiguous
representation of the activity of the visible neurons in this simple
example. Conversely, by running the model on “inference mode”
(i.e., with the synapses wQ activated) can also see that the model
is capable of performing inference on the causes of the incoming
data Figure 3E.

3.5. THE ROLE OF THE NOVELTY SIGNAL
The resulting online rule given in Equation (32) for is a Hebbian-
type plasticity rule modulated by a global novelty signal eN(t)
where eN(t) is a measure of surprise relative to a slow moving
average of the free energy. We repeat the learning rule for the

Q-network from Equation (32),

ẇQ
ij (t) = −μQeN(t)HQ

ij (t), (37)

where HQ
ij (t) is a synaptic trace that keeps track of “Hebbian”

coincidence between pre- and post-synaptic activity.
The Hebbian trace

τGḢQ
ij (t) = −HQ

ij (t) +
g′
(

uQ
i (t)

)
g
(

uQ
i (t)

) [
Xi(t) − ρQ

i (t)
]
φj(t)(38)

is activated by the product of a voltage-dependent post-synaptic

factor
g′
(

uQi (t)
)

g
(

uQi (t)
) [

Xi(t) − ρQ
i (t)

]
and a presynaptic EPSP caused

by presynaptic spike arrival.
It is known that the brain is able to detect novelty and to broad-

cast novelty related signal across large brain regions (Gu, 2002;
Ranganath and Rainer, 2003). In order to illustrate the dynamics
of the novelty signal in our model we describe a task which could
be transformed into a real animal experiment.

We place an agent (e.g., a rat) in a maze and let it explore it.
During the exploration, the agent will learn the topology of the
maze through a combination of visual and proprioceptive infor-
mation. If the agent is suddenly transported to another maze with
many similar but a few different parts we expect this change to
trigger some novelty signal in the brain of the agent whenever it
encounters the parts of the new maze that differ from the learned
maze. In order for the agent’s brain to detect a change in the envi-
ronment, it must first learn a sufficiently accurate model of the
environment. We hypothesized that our recurrent neuronal net-
work learns the structure of the environment and at the same time
provides an online surprise signal when it encounters a “novel”
situation. Such a novelty signal could be compared to recordings
of different neuromodulators.

We created two virtual mazes composed of 16 “rooms”
arranged as a square lattice where only neighboring rooms are
accessible from each other: a first one which the agent will learn,
the target maze, indicated in Figure 6A (left) and the test maze
Figure 6A (right) which is similar to the first but with a few,
randomly chosen rooms, replaced as indicated in Figure 6A by
the yellow squares. Note that the only way to detect the differ-
ence between the two mazes in this simulation is to actually learn
the exact connectivity graph of the rooms, because the rooms are
themselves identical in both mazes.

The views corresponding to each room were generated by ran-
domly choosing images of handwritten digits from the MNIST
dataset (LeCun and Cortes, 2010). The MNIST images are 28 ×
28 gray-scale images of handwritten digits. We converted the
pixel-values to firing rates in the range [0.01 Hz, 9 Hz]. To keep
the simulations simple, time was considered in abstract units for
these simulations (with time steps of 100 ms instead of 1 ms).

For the “brain” of the agent we used a recurrent binary net-
work with 30 hidden neurons and 28 × 28 visible neurons. In
order to train this network, data batches where produced by
recoding the activity of the visible neurons while the agent per-
forms random trajectories of 100 time-steps in the target maze.
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FIGURE 6 | Novelty-gated Hebbian learning. (A) The target maze (left)
and test maze (right). Each one of the 16 rooms in the maze is
represented by a random MNIST digit. Transitions are only possible
between neighbor rooms. The test maze was generated from the target
one by randomly replacing a few rooms (indicated with yellow borders). A
sample trajectory is shown with the green arrows. (B) Evolution of the
slow moving average of the free energy F̄ as a function of the amount of

observed data for the target maze (blue) and the mean free energy of the
same model when “teleported” to the control maze (red) every 500 s. (C)

Fine-grained temporal details of the fast free energy traces eN (t) while
traversing the sample trajectory for the target maze (blue) and for the test
maze (red). Visited rooms are indicated by the annotated coordinates at
each change-point. During the intervals between two consecutive
change-points the agent remains in the same room.

Each learning epoch corresponds to 500 presentations of these
data-batches to our model.

In Figure 6B we plot the “slow” moving average of the free
energy F̄ as a function of the learning time during the explo-
ration phase for the target maze (blue curve) and for the test
maze (red dots). The reported free energy for the control maze
was measured every 5000 s for a path of length 50 s. As we can
see, in the beginning of the learning the model is unable to dis-
tinguish between both mazes (both have high free energy). But
as the model learns the target maze, it successfully identifies the
test maze as “unfamiliar” (attributing low free energy to the target
maze and much higher free energy to the test maze).

In Figure 6C we plot for both mazes the free energy error sig-
nal eN(t) for the sample trajectory shown in Figure 6A. From
Figure 6C (blue) we can see that eN(t) fluctuates around zero for
the learned maze but deviates largely from zero for the test maze.

This result suggests that if animals have a neurophysiologi-
cal correlate of the “free energy error signal” e(T) introduced in
Equation (26) we should look for activity bursts when the ani-
mals traverses unexpected situations (e.g., when traversing the
test maze from position (2, 1) to position (2, 2)).

Moreover we should expect a substantial increase in the vari-
ance of the changes in synaptic weights when moving from a

learned maze to an unfamiliar maze due to the change in the
baseline of the surprise levels.

4. DISCUSSION
We have proposed an alternative to the learning algorithms pre-
viously proposed in Brea et al. (2011) and Jimenez Rezende et al.
(2011) for learning a generative model of spike trains defined by
recurrent spiking networks. Our new model combines techniques
from variational learning and reinforcement learning to derive a
new efficient synaptic plasticity rule.

The resulting (see Materials and Methods) online rule for
synapses is a Hebbian-type trace modulated by a global novelty
signal. The Hebbian terms are traces of products of pre-synaptic
terms (EPSPs) and post-synaptic terms. Similar gradients have
been studied in Pfister et al. (2006) where they are found to
yield STDP-like dynamics. Importantly, the global modulating
signal, Equation (23) is a linear superposition of terms locally com-
puted by each neuron so we can interpret it as the diffusion of a
neuromodulator in the extra-cellular medium.

The original feature of the proposed model is that it uses an
auxiliary recurrent spiking network in order to approximate the
posterior distribution of the hidden spiking activity given the
observed spike trains in an on-line manner. Using this auxiliary
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network allowed us to derive a learning rule which is based on
local gradients modulated by slow non-local factors conveying
information about “novelty.”

We have shown that naive stochastic gradients derived in such
a framework are not viable in practice due to their high vari-
ance (which may grow quadratically with the number of hidden
neurons). Deriving viable learning rules thus requires finding
low-variance and unbiased estimators of the gradients defined in
Equations (24, 25). In this paper we have only reduced this prob-
lem as our learning rule (Equation 26) still has a variance that
grows (linearly) with the number of hidden neurons.

Our proposed learning algorithm, has potential applications
for finding functional networks from recorded neurophysiolog-
ical data. Since it can learn a recurrent spiking network that
approximatively “explains” the data. Taking into account external
currents injected into the network would be straightforward.

We also provide an on-line neural estimator of nov-
elty/surprise and make experimentally testable predictions about
its dynamics. The estimator is a quantity that naturally emerges
from the statistical principles behind our framework instead of
being an ad hoc quantity.

From the biological literature, it is known that novelty or sur-
prise is, at least partly, encoded in neuromodulators such as ACh
(Ranganath and Rainer, 2003; Yu and Dayan, 2005). Moreover,
neuromodulators are known to affect synaptic plasticity (Gu,
2002). We suggested a hypothetical animal experiment that could
test predictions concerning a novelty signal and its potential
relation to plasticity.

5. RELATED WORK
The framework in which we derive our model is very general and
has been used in different ways in previous works (Dayan, 2000;
Friston and Stephan, 2007; Jimenez Rezende et al., 2011; Brea
et al., 2013; Nessler et al., 2013). The uniqueness of the present
works relies on the combination of methods from variational
learning and reinforcement learning yielding a learning rule that
is both biologically plausible and efficient.

The main difference between our model and models that
exploit more analytical properties of the variational approxima-
tion (explicitly computing expectations and covariances terms in
the free energy) (Friston and Stephan, 2007; Jimenez Rezende
et al., 2011) is that, although these analytical approximations
may provide gradient estimators with much lower variance and
typically yield more scalable algorithms, these methods are intrin-
sically non-local and further approximations are required in order
to obtain a biologically plausible learning rule.

An interesting learning algorithm for recurrent spiking net-
works which approximates the gradients of the KL-divergence
(Equation 13) using an importance sampling technique has been
proposed in Brea et al. (2011) and Brea et al. (2013). Their algo-
rithm does not use an auxiliary network to approximate the
activity of the hidden dynamics conditioned on the observed
spike trains. Instead, the generative forward dynamics of the
model is used as a proposal distribution which is then weighted
by an importance-sampling approximation.

Another important family of algorithms proposed in
Habenschuss et al. (2012) and Nessler et al. (2013), heavily

relies on approximating recurrent neural networks with soft
winer-takes-all (WTA) dynamics. One advantage of assuming
a WTA dynamics is that the computation of the gradients of
the KL-divergence (Equation 13) greatly simplifies, yielding a
simple local learning rule. A limitation of their approach is that
the model does not take into account the full temporal dynamics
during inference.
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