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It has long been known that neurons in the brain are not physiologically homogeneous.
In response to current stimulus, they can fire several distinct patterns of action potentials
that are associated with different physiological classes ranging from regular-spiking cells,
fast-spiking cells, intrinsically bursting cells, and low-threshold cells. In this work we
show that the high degree of variability in firing characteristics of action potentials
among these cells is accompanied with a significant variability in the energy demands
required to restore the concentration gradients after an action potential. The values of the
metabolic energy were calculated for a wide range of cell temperatures and stimulus
intensities following two different approaches. The first one is based on the amount
of Na+ load crossing the membrane during a single action potential, while the second
one focuses on the electrochemical energy functions deduced from the dynamics of the
computational neuron models. The results show that the thalamocortical relay neuron
is the most energy-efficient cell consuming between 7 and 18 nJ/cm2 for each spike
generated, while both the regular and fast spiking cells from somatosensory cortex and
the intrinsically-bursting cell from a cat visual cortex are the least energy-efficient, and can
consume up to 100 nJ/cm2 per spike. The lowest values of these energy demands were
achieved at higher temperatures and high external stimuli.
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1. INTRODUCTION
A huge number of studies have been devoted to categorize
neurons in the brain according to various criteria such as
morphology, physiology, biochemical properties and synaptic
characteristics (Peters et al., 1984; White, 1989; Cauli et al., 1997;
Toledo-Rodriguez et al., 2003). However, relatively little has been
said about their classification in terms of energy demands. The
relationship between the action potentials characteristics and the
energy cost required to generate them has been reported recently
(Crotty et al., 2006; Carter and Bean, 2009; Sengupta et al.,
2010). Nonetheless, as in many other works, the calculations of
the metabolic energy involved in the generation of action poten-
tials are based on the ion-counting methods that generally focus
on the number of ATP molecules hydrolyzed by the sodium
pump.

It is well known that Na+ and K+ are the most important
ions with greater impact on the membrane potential dynamics
and on its energetics (Ames III, 2000). In fact, these two ions
together with Ca2+ account for the major ions whose movements
consume ATP molecules. During the generation of action poten-
tials, the electrochemical gradients are partially altered and must
be restored by Na+/K+ pump which mediates influx of 2 K+
in exchange for 3 Na+ per 1 ATP molecule consumed (Kandel
et al., 1991). Estimations of the energy consumed by the neuron
during its signaling activity are usually intended by extrapolat-
ing from a Hodgkin–Huxley type model the number of sodium
ions required to depolarize the membrane in order to know the

amount of ATP molecules that will be needed for the pump to
reestablish its rest potential. This method, known as ion count-
ing approach, corresponds to the first approach to account with
the neuron energy (Laughlin et al, 1998; Attwell and Laughlin,
2001; Alle et al., 2009). Taking into account that action poten-
tial propagation following Hodgkin/Huxley kinetics is based on
equal Na+ efflux and K+ influx, this approach could lead to over-
estimate/underestimate values of energy (Hertz et al., 2013). For
one hand, because of the asymmetry between Na+, K+-ATPase
mediated Na+ and K+ fluxes. And, for the other hand, due to the
overlap of inward and outward currents during an action poten-
tial generation. In fact, inward Na+ and outward K+ overlap
during the action potential generation introducing an uncertainty
in the calculation of sodium ions up to a factor of 4 (Hodgkin,
1975; Attwell and Laughlin, 2001; Lennie, 2003).

Based on computational models that capture the intrinsic
properties of action potentials from different mammalian neu-
rons, this work provides a quantitative comparison of the amount
of ionic currents crossing the membrane during an action poten-
tial and their corresponding energy demands focusing on a new
approach. This approach is based on the biophysical considera-
tions about the nature of computational models used to account
for neuronal spiking response, and gives an alternative method
to deduce the electrochemical energy involved in the dynamics of
the neuron model. Unlike the ion counting approach, this method
requires no hypothesis about the stoichiometry of the ions or the
extent of the overlapping between Na+ and K+ ions and, most
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importantly, offers the possibility to compute the energy con-
sumption of coupled neurons (Moujahid et al., 2010, 2011), espe-
cially when considering complex networks where all the interac-
tions should be considered. As commented in Buzsaki et al. (2007)
it is not possible to estimate energetic costs in isolation. As far as
possible the complexity of the interactions should be taken into
account.

The analytical expression of the electrochemical energy
involved in the dynamics of the classical Hodgkin–Huxley model
consisting of sodium, potassium and leakage currents has been
reported previously in Moujahid et al. (2011, 2012). Here we
provide energy functions of different spiking neurons where addi-
tional ionic currents are involved. The intrinsic properties of
the computational models, considered in this work, arise from
voltage-dependent conductances described by Hodgkin–Huxley
type kinetics. These models were adjusted in previous studies
(Wang and Buzsáki, 1996; Guo et al, 2008; Pospischil et al., 2008)
to experimental data from different preparations to reproduce
the firing characteristics of different neuron classes present in
neocortex, thalamus and hippocampus. These neurons include
regular spiking (RS) cells, fast spiking, intrinsically bursting (IB),
hippocampal fast-spiking interneuron (HFI) and thalamocorti-
cal relay neuron (TCR). The RS and FS models can reproduce
respectively firing properties of RS and FS cells as observed both
in intracellular recordings of cells in ferret visual cortex and in
rat somatosensory cortex. Meanwhile, IB neuron models repro-
duce the typical firings of intrinsically bursting cells in guinea-pig
somatosensory cortex and in cat visual cortex. The other two
neuron models capture the typical spiking as seen in rat hip-
pocampal interneuron and a mouse thalamocortical relay neuron,
respectively.

The paper is organized as follows. First, we introduce the
dynamics and electrochemical energy of the Hodgkin–Huxley
like models used to account for the spiking response of different
classes of neurons present in neocortex, thalamus and hippocam-
pus. Then we describe the kinetic of these neurons according to
the ionic currents involved in their dynamics. Results are reported
and discussed in section 3. Finally, section 4 draws conclusions
and open questions.

2. MATERIALS AND METHODS
2.1. DYNAMICS OF THE SPIKING NEURON MODELS
All computational models were modeled using a Hodgkin–
Huxley type of kinetic model (Hodgkin and Huxley, 1952), and
run using the Matlab simulation environment. For all these mod-
els, the dynamics governing the membrane potential obeys the
following equation:

CV̇ = −gl(V − El) − INa − IK − IM − IL − IT + IStim, (1)

where V is the membrane potential in mV, gl is the maximal
conductance per unit area for the leakage channel, and El is
the corresponding reversal potential. IStim is the total membrane
current density in μA/cm2. C is the membrane capacitance in
(μF/cm2). INa, IK (IM), and IL (IT) are the sodium, potassium
(slow potassium) and calcium (low-threshold calcium) currents,
respectively.

2.1.1. Neocortical neurons
In the models used to account for the different firing patterns
characterizing cells in the neocortex, INa = gNam3h(V − ENa)

and IK = gK n4(V − EK) are the sodium and potassium cur-
rents responsible for action potentials. IM = gMp(V − EK) is a
slow voltage-dependent potassium current responsible for spike-
frequency adaptation, and IL = gLq2r(V − ECa) is a calcium
current to generate bursting.

The gating variables m, h, n, q and r obey the standard kinetic
equation, ẋ = αx(1 − x) − βxx, where x = m, h, n, q, r and αx

and βx are voltage-dependent variables. m and h are sodium
channels activation and deactivation variables, n is potassium
channels activation variable, and q and r are calcium activation
and inactivation variables. The gating variable p associated with
the slow voltage-dependent potassium current is governed by the
following equation: ṗ = (p∞(V) − p)/τp(V).

The RS model consists of the sodium and potassium currents
responsible for action potentials (INa and IK ) and a slow voltage-
dependent potassium current responsible for spike-frequency
adaptation (IM). The IB model includes the same ionic currents
as in the RS ones and an additional L-type calcium current (IL).
The simple FS model accounts only for the currents responsible
of spike generation (i.e., INa and IK ), and reproduces the spik-
ing properties of FS cells as observed from ferret Visual Cortex in
vitro. To capture the firing characteristics of FS cells as recorded
from somatosensory cortex in vitro a slow potassium current (IM)
has been added to the simple FS model.

2.1.2. Thalamocortical relay neuron
The thalamocortical relay neuron model consists of currents
responsible for generating spikes, INa = gNam3∞h(V − ENa) and
IK = gK(0.75(1 − h))4(V − EK), as well as, low-threshold cal-
cium current, IT = gTp2∞r(V − ET). The dynamics of the gating
variables h and r obey respectively the equations ḣ = (h∞ −
h)/τh and ṙ = (r∞ − r)/τr . This model achieves a single spike
activity consisting of trains of action potentials whose frequency
depends on the strength of depolarization. When exposed to
depolarizing current pulse of constant amplitude it results in a
train of action potentials with no frequency adaptation.

2.1.3. Hippocampal interneuron
Finally, the hippocampal interneuron model obeys the same
current-balance equation (Equation 1), and consists of leak cur-
rent and the spike-generating Na+ and K+ voltage-dependent ion
current (INa = gNam3∞h(V − ENa) and IK = gK n4(V − EK)). For
the transient sodium current, the activation variable m is assumed
fast and substituted by its steady-state function m∞ = αm/(αm +
βm). This model has the ability to reproduce repetitive spikes at
high frequencies in response to a constant injected current. It
has a small current threshold (the rheobase Istim � 0.25 μA/cm2),
and the firing rate is as high as 400 Hz for Istim = 20 μA/cm2.

In this work, we use the conductance-based model by
Pospischil et al. (2008) to reproduce the main features of the typi-
cal firing pattern of RS, FS and IB neurons as observed in different
cells in the neocortex. The computational models used to account
for the firing characteristics of thalamocortical relay neuron and
the hippocampal fast-spiking interneurons follow respectively the
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works by Wang and Buzsáki (1996), Sohal et al. (2002), and Guo
et al (2008). The forms of the activation and inactivation func-
tions describing the ion currents of all these models are reported
in Table 1. The the values of biophysical parameters characteriz-
ing each of these models are shown in Table 2, and give rise to 10
different cells. Cell 1 is a RS cell from ferret visual cortex, Cells 2
and 3 are respectively excitatory and inhibitory RS cells from a rat
somatosensory cortex, Cells 4 and 5 are respectively FS cells from
ferret visual cortex and rat somatosensory cortex, Cells 6 and 7
are both IB cells from guinea-pig somatosensory cortex (Cell 6
is characterized by an initial burst followed by adaptive action
potentials, while Cell 7 gives rise to repetitive bursting.), Cell 8 is
an IB cell from a cat visual cortex, Cell 9 is a mouse thalamocor-
tical relay cell, and finally Cell 10 account for a rat hippocampal
interneuron.

2.2. IONIC CHANNELS ENERGY IN SPIKING NEURON MODELS
The procedure followed to find the electrochemical energy
involved in the dynamics of the Hodgkin–Huxley circuit

consisting of capacitor C and three Na, K, and L ionic chan-
nels has been reported in detail in Moujahid et al. (2011). Here
we extend this procedure to deduce the energy functions char-
acterizing the dynamics of Hodgkin–Huxley-like models where
additional ionic channels are present. For the system given by
Equation (1), the total electrical energy accumulated in the circuit
at a given moment in time is,

H(t) = 1

2
CV2 + Hl + HNa + HK + HM + HL + HT, (2)

where the first term in the summation gives the electrical energy
accumulated in the capacitor and represents the energy needed
to create the membrane potential V of the neuron. The other
six terms are the respective energies in the batteries needed to
create the concentration jumps in chloride, sodium, potassium
and calcium. The electrochemical energy accumulated in the
batteries is unknown. Nevertheless, the rate of electrical energy
provided to the circuit by a battery is known to be the elec-
trical current through the battery times its electromotive force.

Table 1 | The activation and inactivation functions describing ion currents.

Activation Inactivation

NEOCORTICAL CELLS

INa = gNam3h(V − ENa) αm(V ) = −0.32(V − VT − 13)

e−(V − VT − 13)/4 − 1
αh(V ) = 0.128e− (V − VT − 17)/18

βm(V ) = 0.28(V − VT − 40)

e(V − VT − 40/5) − 1
βh(V ) = 4

e− (V − VT − 40)/5 + 1

IK = gK n4(V − EK ) αn(V ) = −0.032(V − VT − 15)

e− (V − VT − 15)/5 − 1

βn(V ) = 0.5e− (V − VT − 10)/40

IM = gMp(V − EK ) p∞(V ) = 1
e− (V + 35)/10 + 1

τp(V ) = τmax

3.3e(V + 35)/20 + e− (V + 35)/20

IL = gLq2r(V − ECa) αq(V ) = 0.055(−27 − V )

e(− 27 − V )/3.8 − 1
αr (V ) = 0.000457e(− 13 − V )/50

βq(V ) = 0.94e(− 75 − V )/17 βr (V ) = 0.0065
e(− 15 − V )/28 + 1

THALAMOCORTICAL RELAY (TCR) CELL

INa = gNam3∞h(V − ENa) m∞(V ) = 1/(e− (V + 37)/7 + 1) h∞(V ) = 1/(e(V + 41)/4 + 1)

IK = gK (0.75(1 − h))4(V − EK ) τh(V ) = 1/(a1(V ) + b1(V ))

a1(V ) = 0.128e(− (V + 46)/18)

b1(V ) = 4/(1 + e(− (V + 23)/5))

IT = gT p2∞r(V − ET ) p∞(V ) = 1/(e− (V + 60)/6.2 + 1) r∞(V ) = 1/(e(V + 84)/4 + 1)

τr (V ) = 0.4(e− (V + 25)/10.5 + 28)

HIPPOCAMPAL INTERNEURON (RHI)

INa = gNam3∞h(V − ENa) m∞(V ) = αm(V )/(αm(V ) + βm(V ))

αm(V ) = −0.1(V + 35)

(e− 0.1(V + 35) − 1)
αh(V ) = 0.07e− (V + 58)/20

βm(V ) = 4e− (V + 60)/18 βh(V ) = 1/(e− 0.1(V + 28) + 1)

IK = gK n4(V − EK ) αn(V ) = −0.01(V + 34)

(e− 0.1(V + 34) − 1)

βn(V ) = 0.125e− (V + 44)/80
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Table 2 | The maximal conductances and reversal potential values corresponding to each of the neuron models.

Neocortex Thalamus Hippocampus

RS cells FS cells IB cells TCR RHI

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

MAXIMAL CONDUCT. (mS/cm2)

gleak 0, 1 0, 0205 0, 0133 0, 15 0, 038 0, 01 0, 01 0, 1 0, 05 0, 1

gNa 50 56 10 50 58 50 50 50 3 35

gK 5 6 21 10 3,9 5 5 4,2 5 9

gM 0,07 0,075 0,098 – 0,0787 0,03 0,03 0,042 – –

gL – – – – – 0,1 0,2 0,12 – –

gT – – – – – – – – 5 5

REVERSAL POTENTIAL (mV)

Eleak −70 −70,3 −56,2 −70 −70,4 −70 −70 −75 −70 −65

ENa 50 50 50 50 50 50 50 50 50 55

EK −90 −90 −90 −90 −90 −90 −90 −90 −90 −90

ECa – – – – – 120 120 120 – –

ET – – – – – – – – 0 –

OTHER PARAM.

VT (mV) −61,5 −56,2 −65,4 −61,5 −57.9 −56,2 −56,2 −58 – –

Vx (mV) – – – – – – – – – 5

τmax (mS) 4000 608 934 – 502 4000 4000 1000 – –

φ – – – – – – – – – 5

C (μF ) 0,29 1 1 0,14 1 0,29 0,29 0,29 1 1

Other Parameters are also reported.

Cell 1: RS cell as observed from ferret visual cortex in vitro.

Cell 2: RS excitatory cell as observed from somatosensory cortex in vitro.

Cell 3: RS inhibitory cell as observed from somatosensory cortex in vitro.

Cell 4: FS cell as observed from ferret visual cortex in vitro.

Cell 5: FS cell as observed from somatosensory cortex in vitro.

Cell 6: IB cell as observed from guinea pig somatosensory cortex in vitro (Initial burst followed by adaptive action potentials).

Cell 7: IB cell as observed from guinea pig somatosensory cortex in vitro (Repetitive bursting).

Cell 8: IB cell as observed from cat visual cortex.

Cell 9: TCR cell as observed from Mouse thalamocortical relay neuron.

Cell 10: RHI cell as observed from Rat hippocampal interneuron.

Thus, the total derivative with respect to time of the above energy
will be,

Ḣ(t) = CVV̇ + IlEl + INa ENa + IK EK + IMEK + ILECa + ITET . (3)

where El, ENa, EK , and ECa are the Nernst potentials of leakage,
the sodium, potassium and calcium ions in the resting state of the
neuron. And Il, INa , IK (IM), IL, and IT are the ion currents of
leakage, sodium, potassium, and calcium given by,

Il = gl(V − El),

INa = gNam3h(V − ENa),

IK = gK n4(V − EK), (IK = gK(0.75(1 − h))4(V − EK)

for TCR cell,) (4)

IM = gMp(V − EK),

IL = gLq2r(V − ECa),

IT = gTp2∞r(V − ET)

Substituting Equation (1) in (3), we have for the energy rate in
the circuit,

Ḣ(t) = VIStim − Il(V − El) − INa(V − ENa) − IK(V − EK)

− IM(V − EK) − IL(V − ECa) − IT(V − ET). (5)

Finally, replacing in Equation (5) the ion currents by their expres-
sions given by Equation (4), the electrochemical energy rate in
each neuron will be given by,

Ḣcell = VIStim − Ecell, (6)

where cell=RS, FS, IB, TCR, RHI refers to the five conductance-
based models considered in this work. This energy derivative
provides the total derivative of the electrochemical energy in
the neuron as a function of its state variables. The first term in
the right hand summation represents the electrical power given
to the neuron via the different junctions reaching the neuron
and the Ecell represents the energy per second consumed by the
ion channels (ion channels energy) involved in the dynamics
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of each cell model. The forms of the ion channels energies are
given as:

ERS = gl(V − El)
2 + gNa m3h(V − ENa)

2 + gK n4(V − EK)2

+ gMp(V − EK)2,

EFS = gl(V − El)
2 + gNa m3h(V − ENa)

2 + gK n4(V − EK)2,

EIB = gl(V − El)
2 + gNa m3h(V − ENa)

2 + gK n4(V − EK)2

+ gMp(V − EK)2 + gLq2r(V − ECa)
2, (7)

ETCR = gl(V − El)
2 + gNa m3h(V − ENa)

2

+ gK(0.75(1 − h))(V − EK)2 + gTp2∞r(V − ET)2,

EHFI = gl(V − El)
2 + gNa m3h(V − ENa)

2

+ gK n4(V − EK)2,

These equations permit evaluation of the total energy consumed
by a given neuron and also give information about the consump-
tion associated to each of the ionic channels. Fundamentally, for
each cell, this rate of energy expressed in nJ/s must be replen-
ished by the ion pumps and metabolically supplied by hydrol-
ysis of ATP molecules in order to maintain the cell’s spiking
activity.

2.3. ION-COUNTING BASED ENERGY CONSUMPTION
The energy consumption can be also computed based on the
amount of Na+ load (QNa ) crossing the membrane during a sin-
gle action potential, which it can be estimated integrating the area
under the total Na+ current curve (see Figure 2) for the duration
of stimulus presentation.

Since the Na+ gradient is maintained primarily by the activ-
ity of the Na+/K+ ATPase which mediates influx of 2 K+ in
exchange for 3 Na+ per one ATP molecule consumed, the num-
ber of ATP moles (ATPmols) can be computed as QNa

3eNA , where

e = 1.602 10−19 C is the electric charge and NA = 6.022 1023

is the Avogadro constant (Attwell and Laughlin, 2001). For the
other hand, the energy available for chemical work from the ATP
concentration is measured by the free energy of ATP hydrolysis
(FATP). This allows an estimate of the metabolic energy associated
with ionic pumping as the free energy times the number of ATP
moles, that is, FATP ∗ ATPmols.

The value of the free energy depends to some extent on the
internal chemical state of the cell, and it has been reported to be
in the range from 46 to 62 kJ/mol of ATP (Jansen et al, 2003), but
in this work, we set FATP = 50 kJ/mol.

Moreover, the integral of the area under the instantaneous
energy function for a given cell (Equation 7) provides an esti-
mate of the neuron energy, which is used to computed the
efficiency of the ATP hydrolysis as the ratio of that energy con-
sumption to the number of ATP moles, that is, 1

ATPmols

∫
Ecell.

This ratio expressed is kJ/mol gives us the opportunity to check
if our method of calculation of the actual energy consumption
by the pump and the number of ATP molecules involved are
consistent with other data in the literature. The calculated val-
ues of this ratio are reported in Figures 3, 6 as hydrolysis of ATP
molecules.

3. RESULTS
3.1. FIRING CHARACTERISTICS OF ACTION POTENTIALS
The different possible combinations of conductances in the neu-
ron models considered in this work give origin to a variety of
action potentials with different waveforms and firing characteris-
tics. Figure 1 reports, in part (A), trains of action potentials from
different neuron models when exposed to prolonged stimuli of
constant magnitude slightly greater than threshold (see Table 3
for a description of the current stimuli values). The inter-spike fir-
ing frequencies calculated from the inter-spike time intervals are
reported in parts (B,C). As it can be seen, of all regular-spiking
cells, the RS cell from ferret visual cortex (Cell 1) exhibits the
most pronounced adaptation with an inter-spike firing frequency
declining from about 62–3.5 Hz. Likewise, the IB cell as recorded
respectively from guinea pig somatosensory cortex (Cell 6) and
cat visual cortex (Cell 8), initially generate action potentials at
high firing frequency (of about 55 Hz) that decreases rapidly to
low values within a short time span. Meanwhile, the repetitive IB
cell from guinea pig somatosensory cortex (Cell 7) shows repeti-
tive intrinsic bursting with a mean inter-burst frequency of about
1 Hz, and an inter-spike frequency ranging from 300 to 150 Hz.
The others cell models (i.e., Cells 4, 5, 9, and 10) respond to depo-
larizing stimuli by generating action potentials with little or no
adaptation.

3.2. EFFICIENT ACTION POTENTIALS AND OVERLAPPING
Figure 2 shows in part (A) the shape of the sodium (in blue
line) and potassium currents corresponding to a particular action
potential of the previously described trains. The sodium current
(in blue line) is negative but has been depicted with a positive
sign for a better appreciation of the great extent of its overlap-
ping with the potassium current (red line). Note that as sodium
and potassium currents are both of positive charges but moving
in opposite directions of the cell’s membrane they neutralize each
other to the extent of their mutual overlap. The sodium charge
that is not counterbalanced by simultaneously flowing potassium
charge is much smaller for a greater overlap. This unbalanced
load corresponds to the minimum charge (Qmin) needed for the
depolarization of the action potential. The sum of this capaci-
tive minimum and the overlap load gives the total Na+ loads per
action potential. Recollected values are depicted in Figure 2B.

To quantify the sodium and potassium currents overlap we
calculated the dimensionless charge separation as the ratio of
the capacitive minimum and the total Na+ charge per action
potential. That is, QSeparation = Qmin/QNa, this measure allows
quantifying how efficiently sodium flux is used for action poten-
tial depolarization (Alle et al., 2009). In view of the above, it
seems that rat hippocampal interneuron (Cell 10) and mouse
thalamocortical relay neuron (Cell 9) are the most efficient in
generating action potentials with a charge separation approach-
ing 80%, which shows that most of sodium load are confined to
the rising phase of the action potential. For the other hand, the
FS cell from a ferret Visual Cortex (Cell 4) and the repetitive IB
cell from a guinea pig somatosensory cortex in vitro (Cell 7) are
the most inefficient with only 14% of sodium entry used for spike
depolarization. In fact, the sodium influx during an action poten-
tial in thalamocortical relay neuron was 69 nC/cm2, consuming
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FIGURE 1 | (A) Time course of membrane voltage from different spiking cells when stimulated by prolonged depolarizing stimulus slightly greater than threshold.
The values of stimuli in (μA/cm2) are reported in Table 3. (B,C) The interspike firing frequencies calculated from the interspike intervals as a function of time.

0.24 pmol/cm2 of ATP molecules per spike, while the FS cell from
somatosensory cortex moves 217 nC/cm2 of sodium ions per
spike consuming 0.75 pmol/cm2 of ATP molecules. Other models
including RS cells from somatosensory cortex (Cell 2) and fer-
ret visual cortex (Cell 1) show high values of Na+ loads of about
207 nC/cm2 (0.72 ATP pmol/cm2) and 174 nC/cm2 (0.60 ATP
pmol/cm2), respectively. These estimates agree with other data
reported in literature (Alle et al., 2009; Carter and Bean, 2009;
Sengupta et al., 2010).

3.3. ENERGY
Assuming that one ATP molecule hydrolyzed under normal phys-
iological conditions liberates of about 50 kJ/mol, our calculations
of the energy demands in nJ per cm2 based on the ion-counting
method give energy consumptions ranging from 12 nJ/cm2 for a

thalamocortical relay cell (Cell 9) to 38 nJ/cm2 for a FS cell from
somatosensory cortex (Cell 5).

For the other hand, following the ion-channels energy func-
tions described in Equation (7), the calculated values of the
energy consumption give results which are in excellent agree-
ment with those computed according to ion-counting approach.
Indeed, according to the Wilcoxon rank-sum test (Gibbons and
Chakraborti, 2011) performed on the data reported in Table 3,
the difference between the values of metabolic and ionic energy
is statistically not significant at the 5% significance level with a
p-value = 0.8194.

The values of the energy consumption needed for the restora-
tion of concentration gradients after an action potential was
determined by integrating over long period of time the area
under the instantaneous ion channels energy curve divided by the
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Table 3 | Ionic flux and energy demands of single action potentials from different spiking cells when stimulated by prolonged current stimulus

slightly greater than threshold.

RS cells FS cells IB cells TCR RHI

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

Frequency (Hz) 5 5 6 54 2 2 15 7 15 9

Na+ load 174 207 134 162 217 132 103 147 69 163

K+ load 141 214 150 156 197 137 117 133 79 127

Capacitive minimum 65 108 70 22 129 37 15 51 55 125

Overlap load (nC/cm2) 109 99 64 140 88 95 88 96 14 38

Charge separation 0.38 0.52 0.52 0.14 0.60 0.28 0.14 0.35 0.79 0.77

ATP Pmole 0.60 0.72 0.46 0.56 0.75 0.46 0.36 0.51 0.24 0.56

Metabolic Energy 30 36 23 28 38 23 18 25 12 28

(ion-counting method)

(nJ/cm2)

Ionic Energy 30 34 20 24 38 23 18 30 12 23

(From Equation 7)

(nJ/cm2)

ATP Hydrolysis (kJ/mol) 49.14 47.03 43.93 41.96 51.15 49.70 51.91 59.95 48.78 40.82

Stimulus (μ A/cm2) 1.4 0.7 0.15 1.75 0.8 0.25 0.25 2.25 0.44 0.20

The metabolic energy refers to the energy computed according to the ion-counting approach (section 2.3), and the ionic energy accounts for the electrochemical

energy computed as the integral of the energy functions given by Equation (7).

FIGURE 2 | (A) The sodium (blue line) and potassium (red line) currents
during an action potential showing different degree of overlap. Sodium
current is reversed for comparison. The neutralized flux is measured as the
difference between the total Na+ load and the Na+ minimum charge transfer
necessary for the depolarization of the action potential. (B) The total Na+ load

per action potential for each cell depicted as the sum of the capacitive
minimum and the overlap loads. (C) The charge separation computed as the
ratio of the capacitive minimum to the total Na+ load. This ratio show how
efficiently are the considered cells in generating action potentials. Action
potentials have been generated for the values of stimuli reported in Table 3.

number of spikes, which gives the energy consumption of a sin-
gle spike. In Figure 3 we report the free energy of ATP hydrolysis
computed as the ration of the ionic energy and the number of
ATP molecules. This ratio is expressed in kJ/mol and gives val-
ues ranging from 40.82 kJ/mol in the case of a rat hippocampal
interneuron (Cell 10) and value of about 60 kJ/mol for an IB
cells as observed from cat visual cortex (Cell 8). These values
are in nice agreement with the values of the free energy of ATP

hydrolysis reported in the literature (Ereciriska et al, 1989; Jansen
et al, 2003).

3.4. TEMPERATURE AND STIMULUS INTENSITY
Because neural properties are temperature dependent, we have
analyzed in more detail the values of energy consumption and the
free energy of ATP hydrolysis as a function of temperature and the
magnitude of the external stimuli. Varying the cell temperature in
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FIGURE 3 | The free energy of ATP hydrolysis in kJ/mol computed as the

ratio of the ionic energy and the number in mole of ATP molecules per

membrane unit area. The values of the free energy liberated range from

40.82 kJ/mol in the case of the rat hippocampal interneuron to 59.95 kJ/mol in
the intrinsically bursting cell from a cat visual cortex. The inset displays the
corresponding values of ionic energy in nJ per cm2 calculated from Equation (7).

the neuron models was down multiplying the rates of change of
the activation and inactivation gating variables by a factor k =
2.78(Temp−36)/10, and considering a range of temperature between
20◦C and 40◦C. The stimuli were varied from 2.25 to 10 μA/cm2.

The contour plots in Figure 5 show, for each cell, how the
energy consumption in nJ/cm2 per spike depends upon cell
temperature and input stimulus. As it can be seen the lowest
energy consumption values are achieved for higher temperatures.
In fact, the increased firing frequencies induced by higher tem-
peratures and stimulus (see Figure 4) imply more efficient use of
sodium entry due mainly to the reduced overlap load between
inward Na+ current and outward K+ current (Moujahid et al.,
2012). Indeed, for all cells, the overlap load undergoes a reduction
of about 90% with an increase of cell temperature in a wide range
of stimulus intensity. This efficient use of sodium entry is usually
accompanied by a reduction of the energy demands needed for
the restoration of concentration gradients. For example, the rat
hippocampal interneuron (Cell 10) at 20◦C and an input stimu-
lus of 2.25 μ A/cm2 fires spikes at 55 Hz and consumes of about
58 nJ/cm2. While at a higher temperature of about 40◦C for a wide
range of stimulus intensity, the energy consumption is about 5-
fold lower that the energy needed at low temperatures. This 5-fold
decrease in energy consumption corresponds to 7-fold increase
in firing frequency for an input stimulus of 10 μA/cm2. Likewise,
the IB cell as observed from cat visual cortex (Cell 8) consumes of
about 109 nJ/cm2 at 20◦C and lower stimulus, however, at 40◦C it
requires only 13 nJ/cm2 which represents of about 8-fold decrease
in its energy demand. At this temperature the values of energy
consumption are maintained for a wide range of input stimulus.

3.5. THE FREE ENERGY OF ATP HYDROLYSIS
Figure 6 shows the calculated values of ATP hydrolysis in kJ/mol
as a function of temperature and stimulus intensity. In this case,
we observe different patterns depending on the cells type. The RS
and FS cells at higher temperatures and high input stimuli liber-
ate, respectively of about 12% and 10% more free energy than

at lower temperatures. For these cells the values of free energy
liberated range from 40.73 kJ/mol in the case of FS cell from a
ferret Visual Cortex (Cell 4) to 47.74 kJ/mol in an inhibitory RS
cell from somatosensory cortex in vitro (Cell 3). The IB cells in
guinea pig somatosensory cortex (Cells 6 and 7) show similar pat-
tern as observed in regular and fast spiking cells, but in this case,
increasing the cell temperature and stimulus intensity cause the
free energy to experience an increase of more than 17% reach-
ing values of about 52.27 kJ/mol. But, the more sensible cells to
temperature and stimulus changes are IB cells as observed from
cat visual cortex (Cell 8) and mouse thalamocortical relay neu-
ron (Cell 9). Cell 8 shows values of free energy that range from
44.58 kJ/mol to 61.21 kJ/mol representing an increase of about
37%. For this cell, the higher values of free energy are achieved for
higher temperatures and low values of stimulus. In fact, the more
pronounced pattern was observed for values of stimulus below
3 μA/cm2, and a further increase of stimulus has seems to have
little effect on free energy values. Conversely, Cell 9 accounting
for a mouse thalamocortical relay neuron appears to be more sen-
sitive to stimulus intensity than to temperature values. Increasing
stimulus intensity from 2.25 to 10 μA/cm2 moves the cell to lib-
erate of about 22% more free energy of ATP hydrolysis. Finally,
for Cell 10 corresponding to a rat hippocampal interneuron,
we can see that for values of input stimulus below 8 μA/cm2,
the free energy shows an hyperbole surface with a maximum
around 33◦C.

4. DISCUSSIONS
Based on three computational neuron models (see Table 1), we
used different combinations of voltage-dependent conductances
to reproduce a variety of action potentials with different wave-
forms and firing characteristics as recorded from different cells in
the neocortex, thalamus and hippocampus. Initially, each cell was
stimulated by prolonged depolarizing stimulus slightly greater
than threshold. We calculated in nC/cm2 the amount of Na+
load crossing the membrane during a single action potential
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FIGURE 4 | The firing frequency (Hz) as a function of the cells temperature and the external depolarizing stimulus. We consider a range of temperature
between 20◦C and 40◦C, and a stimulus varying from 2.25 to 10 μA/cm2.

and the corresponding metabolic energy nJ/cm2 needed for the
restoration of concentration gradients after an action potential
following two different approaches (see section 2). According to
our calculations, for all the cells considered in this work, these two
approaches have led to similar values of energy demands which

confirms the consistency of our method to estimate the metabolic
consumption. In fact, the range of values of our estimations of the
free energy of ATP hydrolysis (see Figures 3, 6) agree with other
data reported in the literature (Ereciriska et al, 1989; Jansen et al,
2003).
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FIGURE 5 | The ionic energy (nJ/cm2) as a function of the cells temperature and the external depolarizing stimulus. We consider a range of temperature
between 20◦C and 40◦C, and a stimulus varying from 2.25 to 10 μA/cm2.

An initial classification of the different cells (see Table 3,
Figure 3) places the thalamocortical relay cell (Cell 9) as the most
energy-efficient cell consuming 12 nJ/cm2 for each spike gen-
erated and liberating a free energy of ATP hydrolysis of about

48.78 kJ/mol. For the other hand, the FS cell from somatosensory
cortex (Cell 5) is the least energy-efficient requiring 38 nJ/cm2

per spike and liberating 51.15 kJ/mol of free energy from ATP
hydrolysis.
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FIGURE 6 | Hydrolysis of ATP molecule in kJ/mol as a function of the cells temperature and the external depolarizing stimulus. We consider a range of
temperature between 20◦C and 40◦C, and a stimulus varying from 2.25 to 10 μA/cm2.

To quantify how the energy consumption in nJ/cm2 and then
the free energy of ATP hydrolysis depend upon cell temperature
and input stimulus, we analyzed in more detail the values of
these measures for a wide range of cell temperatures and stimu-
lus intensities. The results give a clear evidence that the metabolic

energy associated to the generation of action potentials is higher
at lower temperature. Indeed, the spiking activity of the cells at
higher temperatures involves less ion flux during the generation
of an action potential. In all the neurons studied in this work,
increasing the cell temperature from 20◦C to 40◦C resulted in
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decreases by about 80% in both the sodium and potassium
flux. Obviously, this decrease in ion flux should be accompanied
by a decrease in energy consumption. In fact, results reported
in Figure 5 support this conjecture showing that low values of
energy are achieved at higher temperatures. For a given tem-
perature and stimulus intensity, for example, at 36◦C and a
stimulus value of 7 μA/cm2, the energy consumptions range from
8.42 nJ/cm2 in the case of cell 9 to 26.8 nJ/cm2 in the case of
cell 5 and 28.5 nJ/cm2 in cell 2. The other cells show value of
energy between 15 and 19 nJ/cm2. While at 40◦C and maintain-
ing the same input stimulus (7 μA/cm2) the values of energy
consumptions reported above decreased by 17%.

The approach reported in this work, contrary to ion-counting-
based methods (Attwell and Laughlin, 2001; Lennie, 2003), does
not require ion counting for estimating the metabolic energy
consumption of the generation of action potentials, and gives
us the opportunity to check in neuron models described by
Hodgkin–Huxley type kinetics which ion counting gives the
correct metabolic energy consumption.

On the other hand, since in many areas of the brain neurons
are organized in populations of units with similar properties, it
should be of interest to know about the metabolic cost of infor-
mation processing of large population of interconnected neurons.
For this end, we need to combine experimental studies of nervous
systems with numerical simulation of large-scale brain models.
Our approach to find an energy function that quantifies the phys-
ical energy associated to the states of a generic model neuron
described by differential equations could be of great interest when
studying population of coupled neurons.
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