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The histograms of response times of optimal YES/NO decisions that are computed from
a single sensory Poisson neuron are highly structured. In particular, response times in NO
decisions are quantized to a small set of times, while response times in YES decisions
have a multimodal structure. Both the times of NO decisions, as well as the modes of the
the histogram of YES decisions, are associated to the number of action potentials that
were necessary to reach the decision. Their value is a function of the firing rate of the
neuron in response to the states of the stimulus.
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1. INTRODUCTION
Consider an animal that is facing a binary decision (YES/NO,
GO/NO-GO) in response to the presence/absence of a stimulus
(light/no light, sound/no sound). The animal makes its decision
based on the firing pattern of its sensory neurons. What is the
best decision strategy, one that minimizes the response time while
keeping the number of decision errors within an acceptable pre-
defined limit? In a wide set of situations the best decision strategy
is well known and it is based on Wald’s sequential probability ratio
test (SPRT) (Wald, 1945; Wald and Wolfowitz, 1948). Models of
neuron-based decision that are based on SPRT have been suc-
cessful at predicting the response time histograms of animals
that are engaged in decision tasks, and neurophysiological cor-
relates of key stages of the computation have been found (Gold
and Shadlen, 2007), suggesting that the brain may be using this
decision strategy. Here I explore the predictions of this theory
when very few, one in the limit, neurons are engaged in the deci-
sion process. I find that response time histograms become highly
structured, something that ought to be easy to reveal with simple
behavioral/psychophysical experiments and might provide addi-
tional insight into how the brain computes decisions from sensory
inputs.

In order to make this paper self-contained, in Section 2, I
review SPRT and in Section 3, I review how to compute such deci-
sion based on the firing pattern of Poisson (or Bernoulli) neurons.
In Section 4, I explore an example with physiologically plausible
constants. In Section 5, I compute the properties of response time
histograms for a single neuron. In Section I briefly discuss the case
of multiple neurons involved in a decision. Section 8 describes
the computational experiments. I conclude in Section 9 with a
discussion of the main observations.

2. OPTIMAL BAYESIAN OBSERVER
I assume that the animal is sensing, and responding to, an under-
lying binary state of the world, e.g., the presence/absence of a

given stimulus. I will call C = 0 one state (stimulus absence)
and C = 1 the other state (stimulus presence). The animal’s
YES/NO decision is computed from the stimulus. The animal is
rewarded if the response is appropriate, i.e., (C = 0) −→ NO and
(C = 1) −→YES, and the animal is not rewarded otherwise.

Call Xt the measurements on which the decision is based. I will
assume that Xt is the firing pattern of one sensory neuron which
will be firing vigorously if the stimulus is present, and will fire at a
low level of activity if the target is absent. Here t is a discrete index
of time, with observations starting at t = 1, thus, if xt is the piece
of information that is acquired at time t, then Xt = {x1, . . . , xt}.
As I will explain below, the theory may be developed both in
discrete time and in continuous time; the two formalisms yield
identical results.

Wald’s SPRT strategy works by repeating at each time t the
following two steps:

First, compute the log ratio of the probability that C = 1 is
true, vs the probability that C = 0 is true, given the available
data Xt :

Rt = log
P(C = 1|Xt)

P(C = 0|Xt)
(1)

Second, compare Rt to two thresholds, τ0 and τ1 (typically τ0 <

0 < τ1). If Rt > τ1, then C = 1 is much more likely than C = 0,
and decision YES is made. If instead Rt < τ0, then decision NO is
made. The third possibility is that τ0 < Rt < τ1, i.e., the ratio is
between thresholds. In this case no decision may be made because
the information is insufficient, and one waits for the next piece of
evidence xt + 1. The process is repeated until a decision is made.

In summary:

repeat for each t = 1, . . . until decision reached:

obtain xt , compute Rt, if

⎧⎪⎨
⎪⎩

Rt > τ1 −→ decide YES

Rt < τ0 −→ decide NO

Rt ∈ (τ0, τ1) −→ wait for xt + 1
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FIGURE 1 | Probability of error vs. threshold on the log-likelihood ratio

Rt (see Equations 2, 3).

FIGURE 2 | Bernoulli representation of a sequence of action potentials.

In the black plot (above) the action potentials produced by a neuron over
time are indicated with vertical bars. The binary xt ∈ {0, 1} variable (blue
plot, below) is obtained by dividing time into (short) bins of length �t;
xt = 1 if an action potential is observed in the corresponding time interval t,
and it is equal to 0 otherwise. The bins should be short enough that the
probability of observing multiple action potentials in one bin is very small
(e.g., �t = 1 ms). By taking the limit �t −→ 0 one obtains a Poisson model
of neuronal firing.

Wald proved that this strategy is optimal (Wald, 1945; Wald and
Wolfowitz, 1948), i.e., no strategy with the same error rate yields
faster decisions. A review of this strategy in the context of neu-
rophysiological models of decision may be found in Gold and
Shadlen (2007).

The two thresholds τ0, τ1 determine the error rates, and may
be computed from the expression for Rt in Equation 1:

Rt = log
P(C = 1|Xt)

P(C = 0|Xt)
= log

P(C = 1|Xt)

1 − P(C = 1|Xt)
(2)

where the denominator of the second fraction depends on the fact
that C may only take two values, 0 and 1. Solving this expression
for P(C = 1|Xt) yields:

P(C = 1|Xt) = 1

1 + exp(−Rt(Xt))
= g(Rt) (3)

Table 1 | Parameters used in the example of section 4 and in the

simulations shown in Figures 4, 5. For convenience, base 10 was

used for both exp and log.

Independent variables:

λ0 = 1 spike/s Firing frequency of neuron
when C = 0

λ1 = 10 spikes/s Firing frequency of neuron
when C = 1

P(C = 0) = 0.5 Prior probability of C = 0

P(C = 1) = 0.5 Prior probability of C = 1

Derived variables:

r0 = log(P(C = 1)/P(C = 0)) = 0 Initial value R0 of the
diffusion (Equation 4)

r(1) = log(λ1/λ0) = 1 Diffusion increment, action
potential at time t
(Equation 7)

δ = log10(e)(λ0 − λ1) ≈ −3.9 s−1 Diffusion drift when no action
potential is observed
(Equation 6)

FIGURE 3 | Schematics of a diffusion resulting from SPRT. The vertical
axis indicates the log probability ratio Rt . The diffusion is indicated in blue.
In the absence of action potentials the diffusion drifts by δ units/s and
reaches the lower threshold at time RT N

0 (see section 5 and Equation 8),
where a NO decision is made. When an action potential occurs the
diffusion jumps by r(1). When one of the two thresholds τ is crossed, a
decision is made. In this case the decision is NO; it is indicated by a red
dot. It is made at time RT N

1 (see Equation 8). Notice that if the time of the
action potential changes within the interval t ∈ (0, RT N

0 ), the decision is
made at the same time. A number of diffusions produced by a simulation
with the parameters shown in Table 1 are shown in Figures 4, 5.

Where g(·) denotes the logistic function. Thus, say, if Rt = τ1 =
2, that means that P(C = 1|X) ≈ 0.99 (Equation 3 and Figure 1),
i.e., the false accept error rate is 1%. Conversely, if a 1% false
accept error rate is deemed acceptable, then (Equation 2) may be
used to compute the upper threshold on Rt : τ1 ≈ 2 . Similarly,
if a false reject rate of 1% is reasonable, then τ0 = −2 (for
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FIGURE 4 | Patterns of action potentials and ensuing decisions when

C = 0. Action potentials are represented by black vertical bars along the
time axis. The corresponding diffusion Rt (X ) (Equation 4) is represented
by a light blue line. When Rt crosses one of the two thresholds τ a
decision is made. YES decisions are represented by green dots and

NO decisions by red dots. One may notice one false alarm error in the
last row. The parameters of the simulation are shown in Table 1. For
convenience, examples are sorted by the number of action potentials
that were sufficient to reach a decision. For a frequency of each such
event see Figure 6.

convenience of mental calculation I am using base 10 for both
exp and log). Figure 1 shows the relationship of error probability
and threshold magnitude.

Computing R1, R2, . . . , Rt is easy from the class conditional
probabilities P(Xt |C = 1), P(Xt |C = 0) if the measurements xt

are independent when the state of the world C is known.
Using Bayes’ theorem:

Rt = log
P(C = 1|x1, . . . , xt)

P(C = 0|x1, . . . , xt)
= log

P(C = 1)

P(C = 0)

+
t∑

s = 1

log
P(xs|C = 1)

P(xs|C = 0)

= r0 +
t∑

s = 1

r(xs) = Rt−1 + r(xt) (4)

where

r0 = log
P(C = 1)

P(C = 0)
(log ratio of priors)

r(xt) = log
P(xt |C = 1)

P(xt |C = 0)
(log ratio of probabilities

given evidence xt)

Equation 4 shows that the computation is a diffusion, i.e., it may
be carried out recursively by updating the previous value Rt−1

with a term r(xt) that depends only on the current observation
xt , rather than on the whole set of observations Xt . The fact
that some binary decisions may be implemented by the brain
with a diffusion was first suggested as a phenomenological model
(Ratcliff and Hacker, 1981) and later shown to be optimal, under
appropriate conditions (Gold and Shadlen, 2001).
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FIGURE 5 | Patterns of action potentials and ensuing decisions when C = 1. Same parameters as in Figure 4. One may notice false reject errors in the
first row.

3. DECISIONS BASED ON ONE POISSON NEURON
As soon as one knows the statistics P(Xt |C) of neuronal responses
Xt to stimuli C one is able to compute the log likelihood ratio Rt

explicitly. Here I will derive Rt assuming that neurons produce
patterns of action potentials that are distributed with Poisson
statistics, a model that has been shown to be useful in many
instances (Seung and Sompolinsky, 1993; Jazayeri and Movshon,
2006; Graf et al., 2011). More general Poisson-like models (Beck
et al., 2008) may be used in the following analysis. They have the
disadvantage of being more complex to implement and analyze
and therefore I will confine myself to Poisson here.

The equations are particularly simple if one uses a Bernoulli
approximation to the Poisson distribution: call Xt the firing pat-
tern of a neuron. I will assume that time has been discretized
in small non-overlapping identical bins, e.g., time bins that are
�t = 1 ms long, and that the random variable xt ∈ {0, 1} repre-
sents whether an action potential is observed during the interval
corresponding to time-bin t, in which case xt = 1, otherwise
xt = 0 (see Figure 2).

Consider a neuron whose expected firing rate is λ0 action
potentials per second when C = 0, and λ1 action potentials
per second when C = 1 (if one models the firing rate with
a Poisson process, λ is the expectation). In this case one
may compute the value of r(xt) to be used in the diffusion
Equation 4:

r(xt) = log
P(xt |C = 1)

P(xt |C = 0)

the variable xt takes only two values, 0 and 1. Thus:

r(0) = log
1 − p1

1 − p0

r(1) = log
p1

p0
(5)

where p0 and p1 are the probabilities of detecting an action poten-
tial in a given time bin when the world is in state C = 0 and C = 1
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FIGURE 6 | Histograms of 2 · 105 decision times for diffusions with

parameters as in Table 1 and Figures 4, 5. The symbol C indicates the
stimulus and the symbol C ′ indicates the decision; thus, the combination
C = 0, C ′ = 1 denotes false alarms and C = 1, C ′ = 0 indicates false
rejects. (Top-Left, Top-Center) The histogram of response times is sparse
for C ′ = 0, in line with the theoretical prediction (Section 5). In this case,
decisions are more likely to be made with 0 action potentials, slightly less

likely with 1, then 2 etc. (Bottom-left, Bottom-Center) The histograms for
C ′ = 1 is not sparse; however, it is lumpy. (Top-Right, Bottom-Right) The
structure of the C ′ = 0 and C ′ = 1 histograms is clear when separate
histograms are drawn for decisions made after k =0,...,6 action potentials.
Notice that for C ′ = 1 no such decisions involve fewer than 2 action
potential, since 1 action potential is insufficient to cross the τ1 = 1.5
threshold as discussed in Section 4.

respectively. Thus, indicating with �t the duration of a time bin,
chosen so that λ�t � 1:

p0 ≈ λ0�t

p1 ≈ λ1�t

The limit for �t −→ 0 yields the continuous model. There is only
one delicate point: in the limit r(0) −→ 0; however, δ = r(0)/�t,
the linear drift rate of the diffusion when no action potentials are
observed, is different from zero. Thus:

δ = lim
�t→0

r(0)

�t
= lim

�t→0

1

�t
log

1 − p1

1 − p0

= lim
�t→0

1

�t
log

1 − λ1�t

1 − λ0�t
= log(e)(λ0 − λ1) (6)

r(1) = log
p1

p0
= log

λ1

λ0
(independent of �t, thus the limit

is trivial) (7)

By taking the limit for �t −→ 0 we obtained the exact equations
for the Poisson model (Jazayeri and Movshon, 2006; Chen et al.,
2011). In Equation 6 the limit may be computed by consider-
ing the Taylor expansion log(1 + x)/ log(e) = x + O(x2), where
O(x2) indicates higher order terms that vanish when one takes
the limit. When using base 10 for the log, as in Table 1 and in
Section 4, then log10(e) ≈ 0.4343. When using natural logs, then,
of course, log(e) = 1.

According to Equations 6, 7 the diffusion will mostly drift lin-
early at a rate δ, and present jumps of height r(1) whenever an
action potential is observed (see Figure 3).
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FIGURE 7 | When λ1 is reduced the spacing of the peaks in the response time histograms becomes larger. Decisions take longer, since the neuron fires
less vigorously, and firing rates between C = 0 and C = 1 are more similar. Here λ0 = 1, λ1 = 3; compare with Figure 6 where λ0 = 1, λ1 = 10.

Notice that if one assumes, without loss of generality, that λ1 >

λ0, then the diffusion jumps will always be positive, i.e., upwards
and the drift will always be negative, i.e., downwards. i.e., action
potentials always contribute evidence toward C = 1, while quiet
periods always contribute evidence toward C = 0.

4. A CONCRETE EXAMPLE
In order to develop one’s intuition it is useful to explore a
concrete case. Suppose that a neuron responds to stimuli with
parameters indicated in Table 1, which correspond to a neu-
ron firing briskly at 10 Hz when the stimulus is present (C =
1) and at some “resting” level of 1 Hz when the stimulus is
absent (C = 0). The diffusion starts at a value of R0 = 0, it is
incremented by r(1) = 1 units whenever an action potential is
observed (this is a rare event) and it drifts by δ = −9 log10(e) ≈
−3.9 units/s during the intervals where no action potentials
are observed (see Figure 3). Simulations of this are shown in
Figures 4, 5.

Simple calculations allow one to estimate the expected
response time for decisions when C = 1 and when C = 0.

Suppose that we consider an error rate in the neighborhood
of 3% acceptable, then we should use thresholds τ1 = 1.5 and
τ0 = −1.5 (Equation 3, Figure 1). Since one action potential
increases the diffusion value by one unit, and 1 < τ1, it will
take at least two action potentials to reach a YES decision, while
a sufficiently long time interval with no action potentials will
lead to a NO decision (see Figure 3). We explore in the follow-
ing the response time for YES and NO decisions when C = 1
and when C = 0. A more systematic analysis is presented in
Section 5.

YES decision after 2 action potentials (C = 1)—Let’s con-
sider first the case where the decision is made after two action
potentials. After two action potentials the value of the diffusion
is Rt = 2 + δt (t is the time that has passed since the begin-
ning of observation). Thus a YES decision may be taken only
if t2 < (2 − τ1)/|δ| ≈ 128 ms. The neuron fires with frequency
λ1 = 10 spikes/s, which makes it somewhat unlikely that two
action potentials will be observed in 128 ms (the probability is
about 0.23, which may be computed considering the Poisson dis-
tribution with expectation λ = t2λ1). Thus, YES decisions that
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FIGURE 8 | Diffusions for a decision involving two neurons. The neurons
are symmetric with respect to C: one fires more vigorously for C = 0
(λ0 = 10, λ1 = 1) and the other for C = 1 (λ0 = 1, λ1 = 10). In this case there
is no drift (the two drift terms cancel) and the diffusion only moves when an
action potential is observed. (Top row) examples of diffusions where a

decision is reached quickly, (Middle row) examples of diffusions where
decisions are reached after multiple action potentials. YES decisions are
represented by green dots and NO decisions by red dots. (Bottom row)
Histograms of response times. Notice that the response time histograms are
neither sparse nor lumpy (compare with Figure 6).

are based on two action potentials will only happen in a minority
of cases.

YES decision after 3 action potentials (C = 1)—Consider
now the case where the YES decision is made after three
action potentials. This decision may not be made when t <

128 ms since in that case it would be made after the first
two action potentials (see previous paragraph). Thus the deci-
sion time is at least 128 ms. Furthermore, following the rea-
soning in the previous paragraph, the decision time will at
most be t3 = (3 − τ1)/|δ| ≈ 384 ms. The probability that at least
three action potentials are observed in less than 384 ms is
about 0.47.

NO decisions (C = 0)—Now consider the C = 0 case. If
no action potentials are observed it will take τ0/δ ≈ 1.5/3.9 ≈
0.384 ms for a negative decision to be made. However, if one
action potential is observed during this time, then the diffusion
will be incremented by 1 and one will have to wait ≈ 1/3.9 ≈
0.256 s longer for a negative decision. When C = 0 it is quite
likely that no action potentials are observed during a 0.384 s time
interval since λ0 = 1 s/s; the probability of this event is ≈ 0.68
(computed from a Poisson distribution P(k = 0; λ) with λ =
0.384). Thus, one would expect the majority of negative decisions
to be made after no action potentials are observed and a time of
about 0.384 s has elapsed.
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FIGURE 9 | Decision times are shorter when λmax >> λmin . (Left) Histogram of the response times for the two-neuron system explored in Figure 8. (Right)
Median response time as a function of λmax when λmin = 1 spike per second.

I simulated such a process and obtained histograms of decision
times (Figure 6). The histogram of decision times for C = 0 is
sparse. Only a few discrete decision times are observed. This issue
is explored in Section 5.

5. SPARSE RT HISTOGRAMS
Each decision is made once a small number of action poten-
tials has been observed. Without loss of generality, let’s assume
that the neuron fires more vigorously when C = 1 than
when C = 0, i.e., λ1 > λ0 ⇒ p1 > p0. Then r(1) > 0 > δ (see
Equations 6, 7).

NO decisions—Since δ < 0, decisions made after observing
k = 0 action potentials must be of type NO and are made in
exactly RTN

0 = τ0/δ s (Figure 3). For k = 1 a NO decision takes
longer because the diffusion is incremented by r(1) when the
action potential is observed (Figure 3); therefore, it takes −r(1)/δ

longer to reach the threshold, thus RTN
1 = RTN

0 − r(1)/δ. The
general expression for the NO decision time after k action poten-
tials is therefore:

RTN
k = τ0

δ
− k

r(1)

δ
(8)

Therefore, one would predict that when only one neuron is
involved, decision times are sparse and no other decision time
may be observed.

Using the constants of Table 1 as in the example above yields:
RTN

k = (1.5 − k)/(9 log10(e))), i.e., one would predict the follow-
ing discrete decision times 384, 640, 895, 1151 ms etc. for k =
0, 1, 2, 3, . . .. This is precisely what is observed in the simulation
shown in Figure 6 (left).

YES decisions—As shown in Figure 6, the histogram of
response times is lumpy. It is possible to predict this observa-
tion, and to see that each mode of the histogram corresponds
to a different number k of action potentials. The time it takes
to compute a YES decision that is based on k action potentials

has a lower and an upper bound. Let’s call the bounds RTY, l
k and

RTY, u
k . The maximum time that it may take for a YES decision

to be made is easy to compute: k action potentials increase the
diffusion by kr(1) units. To obtain a YES decision after k action
potentials in the amount of time RTY, u

k the diffusion will reach a

value equal to τ1 after RTY, u
k seconds, which implies a downwards

drift of δRTY, u
k = kr(1) − τ1 units. Solving for the upper bound

yields:

RTY, u
k = τ1 − k · r(1)

δ
(9)

The lower bound may also be computed considering the fact
that it is achieved when a decision based on k − 1 action poten-
tials is missed by a hair’s breath and is followed immediately
by another action potential, which overshoots the threshold.
Thus:

RTY, l
k = τ1 − (k − 1) · r(1)

δ
(10)

Using the constants of Table 1 yields the following predic-

tions: RTY, l
2 = 0 s, RTY, u

2 = 0.128 s, RTY, l
3 = 0.128 s, RTY, u

3 =
0.384 s, RTY, l

3 = 0.384, RTY, u
3 = 0.640 s etc. The simulation

shown in Figure 6 (right) are consistent with these predictions.
If one compares equations 8 with 9 one can readily see that

when τ1 = −τ0 the sparse RT for NO decisions and the “zeros”
of the RT histogram of YES decisions are the same, i.e., YES
decisions mostly happen at times that are different from NO
decisions.

One last question one may ask is how the various parame-
ters (τ and λ) affect the spacing between the response times,
and the height of the peaks, in the NO decision sparse his-
togram. It is intuitive that the larger the spacing and the higher
the second peak w.r. to the first one, the easier it will be to
observe the sparse nature of the response time histogram in an
in-vivo experiment where multiple sources of noise and vari-
ability will tend to blur away the sparse/lumpy nature of the
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histograms. From Equation 8 the spacing between peaks is
equal to:

S = r(1)

δ
= log(λ1) − log(λ0)

log(e)(λ1 − λ0)
(11)

therefore the spacing is maximum for λ1 −→ λ0. An experi-
ment where C = 0 does not stimulate the neuron, and C =
1 stimulates the neuron lightly may therefore be the best
option for revealing sparse response time histograms (see
Figure 7).

6. DECISIONS INVOLVING MULTIPLE NEURONS
Decisions involving multiple neurons firing independently may
be made using SPRT and Equation 4 (detailed equations for
Poisson neurons may be found in Chen et al., 2011). Each
action potential contributes to the diffusion independently of
the other action potentials, and the contribution of each action
potential is ri(1) = log(λi

1) − log(λi
0) (same as the case for

a single neuron, see Equation 7), where i is the index of
the neuron that generated the action potential. Thus, neu-
rons that respond very differently to C = 0 and C = 1 (and
thus λi

0 and λi
1 are very different) will contribute strongly to

the diffusion, while neurons for which λi
0 ≈ λi

1 will have little
influence.

If the population of neurons responds overall asymmet-
rically to C, then one would still expect to observe lumpy
response time histograms if the neurons are not too many.
In the special case where λi

1 > λi
0∀i (e.g., when C = 1 cor-

responds to a sound and C = 0 corresponds to no sound,
and all neurons are excited by sound), then all action poten-
tials will send the diffusion upwards and the only way a NO
decision may be taken is by the diffusion drifting toward
the negative threshold. In this case the NO response time
histogram will be sparse. However, the analysis of this case
becomes considerably more tedious than the analysis presented
in Section 5.

If, on the other hand, the neurons are symmetrical w.r. to C,
i.e., some neurons respond preferentially to C = 0 and some to
C = 1, then the drift term is zero because drift terms for different
neurons are equal and opposite and thus cancel each other. In this
case the response time histograms are neither lumpy, nor sparse
(see Figure 8).

7. FIRING RATES AND RESPONSE TIMES
It is intuitive that response times will be lower when the maxi-
mum firing rate λ1 is much larger than the minimum firing rate
λ0. Consider Equation 8. Decisions based on zero action poten-
tials take τ0/δ = τ0/(λ0 − λ1). Since τ0 is negative, these deci-
sions are quicker when λ1 >> λ0, which makes the magnitude
of the denominator larger. Similarly, when k > 0, decisions take
are quicker when λ1 >> λ0 since the numerator increases log-
arithmically, while the denominator increases linearly. Figure 9
shows the behavior of RT vs λmax when λmin = 1 for the sym-
metric case of two neurons described in Section6, where for one
neuron λ1 = λmax and λ0 = λmin and vice-versa for the other
neuron.

8. METHODS
The optimal Bayesian observer based on SPRT was implemented
in Matlab using the Bernoulli method described in Section 3
with �t = 1 ms and other parameters as shown in Table 1, unless
otherwise specified in the text.

9. DISCUSSION AND CONCLUSIONS
The analysis I presented predicts that when binary decisions are
computed by a mechanism involving a single neuron, one will
observe sparse response time histograms for NO responses, and
lumpy response time histograms for YES responses.

A number of additional observations are possible:

1. The histograms will still look highly structured when few
neurons are involved, provided that the YES/NO decision is
perceptually asymmetric (e.g., detecting the presence vs the
absence of a sound, a vibration, or a light spot).

2. The response time histogram will look like a log-normal dis-
tribution when the neurons involved respond symmetrically
to C.

3. Even if the timing of the action potentials produced by the
input neuron(s) are unpredictable and uncorrelated, as mod-
eled by Poisson statistics, the timing of action potentials
produced by the neurons that compute a decision is highly
structured; it is tightly quantized in the case of NO decisions.
Conceivably, this fact will enable additional computations
where synchronization between action potentials is required.

4. If quantized/structured response time histograms are observed
in an experiment, it may be possible not only to predict that a
small number of neurons is involved, but also to estimate their
firing rate.

5. The predictions I make are not affected by the real statistics of
the neuron’s response. They are a consequence of using SPRT
and the assumption that the neuron’s statistics is Poisson. It is
impossible to decide whether a short sequence of action poten-
tials is governed by Poisson or other statistics. I suspect that
any Poisson-like assumption will lead to the same qualitative
prediction.

Observing sparse response time histograms experimentally is
difficult for a number of reasons:

1. In most systems the number of neurons involved in the com-
putation is more than a handful.

2. If the task is symmetric (e.g., discriminate between a red and
a green light), then there will be neurons tuned to both condi-
tions making both YES and NO histograms continuous, rather
than sparse.

3. Motor response and neural propagation delays are them-
selves a random variable which, if summed to the perceptual
response time, will blur away the sparse nature of the NO
histograms.

I believe that one should be able to design single-neuron asym-
metric preparations. For example, by stimulating a single gan-
glion cell in the retina with a small light dot, or stimulating a
single tactile receptor in the skin of the back, where receptors
are sparse. If such experiments prove to be possible, response
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time histograms would provide a wealth of information on the
mechanisms involved in decision, including the firing rate of the
neuron involved.

ACKNOWLEDGMENTS
Research supported by the Gordon and Betty Moore Foundation
and by ONR MURI Grant #N00014-10-1-0933.

REFERENCES
Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., et al.

(2008). Probabilistic population codes for bayesian decision making. Neuron
60, 1142–1152. doi: 10.1016/j.neuron.2008.09.021

Chen, B., Navalpakkam, V., and Perona, P. (2011). “Predicting response time and
error rate in visual search,” in Neural Information Processing Systems Conference
(NIPS), Granada.

Gold, J. I., and Shadlen, M. N. (2001). Neural computations that underlie deci-
sions about sensory stimuli. Trends Cogn. Sci. 5, 10–16. doi: 10.1016/S1364-
6613(00)01567-9

Gold, J. I., and Shadlen, M. N. (2007). The neural basis of decision making. Annu.
Rev. Neurosci. 30, 535–574. doi: 10.1146/annurev.neuro.29.051605.113038

Graf, A. B., Kohn, A., Jazayeri, M., and Movshon, J. A. (2011). Decoding the activity
of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14,
239–245. doi: 10.1038/nn.2733

Jazayeri, M., and Movshon, J. A. (2006). Optimal representation of sensory infor-
mation by neural populations. Nat. Neurosci. 9, 690–696. doi: 10.1038/nn1691

Ratcliff, R., and Hacker, M. (1981). Speed and accuracy of same and different
responses in perceptual matching. Attent. Percept. Psychophys. 30, 303–307. doi:
10.3758/BF03214286

Seung, H., and Sompolinsky, H. (1993). Simple models for reading neu-
ronal population codes. Proc. Natl. Acad. Sci. U.S.A. 90, 10749–10753. doi:
10.1073/pnas.90.22.10749

Wald, A. (1945). Sequential tests of statistical hypotheses. Ann. Math. Stat. 16,
117–186. doi: 10.1214/aoms/1177731118

Wald, A., and Wolfowitz, J. (1948). Optimum character of the sequential prob-
ability ratio test. Ann. Math. Stat. 19, 326–339. doi: 10.1214/aoms/1177
730197

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 20 September 2013; accepted: 24 March 2014; published online: 11 April
2014.
Citation: Perona P (2014) Quantized response times are a signature of a neuronal
bottleneck in decision. Front. Comput. Neurosci. 8:42. doi: 10.3389/fncom.2014.00042
This article was submitted to the journal Frontiers in Computational Neuroscience.
Copyright © 2014 Perona. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Computational Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 42 | 10

http://dx.doi.org/10.3389/fncom.2014.00042
http://dx.doi.org/10.3389/fncom.2014.00042
http://dx.doi.org/10.3389/fncom.2014.00042
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Quantized response times are a signature of a neuronal bottleneck in decision
	Introduction
	Optimal Bayesian Observer
	Decisions Based on One Poisson Neuron
	A Concrete Example
	Sparse RT Histograms
	Decisions Involving Multiple Neurons
	Firing Rates and Response Times
	Methods
	Discussion and Conclusions
	Acknowledgments
	References


