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Muscle synergies have been proposed as a way for the central nervous system (CNS) to
simplify the generation of motor commands and they have been shown to explain a large
fraction of the variation in the muscle patterns across a variety of conditions. However,
whether human subjects are able to control forces and movements effectively with a
small set of synergies has not been tested directly. Here we show that muscle synergies
can be used to generate target forces in multiple directions with the same accuracy
achieved using individual muscles. We recorded electromyographic (EMG) activity from
13 arm muscles and isometric hand forces during a force reaching task in a virtual
environment. From these data we estimated the force associated to each muscle by
linear regression and we identified muscle synergies by non-negative matrix factorization.
We compared trajectories of a virtual mass displaced by the force estimated using the
entire set of recorded EMGs to trajectories obtained using 4–5 muscle synergies. While
trajectories were similar, when feedback was provided according to force estimated
from recorded EMGs (EMG-control) on average trajectories generated with the synergies
were less accurate. However, when feedback was provided according to recorded force
(force-control) we did not find significant differences in initial angle error and endpoint
error. We then tested whether synergies could be used as effectively as individual
muscles to control cursor movement in the force reaching task by providing feedback
according to force estimated from the projection of the recorded EMGs into synergy
space (synergy-control). Human subjects were able to perform the task immediately
after switching from force-control to EMG-control and synergy-control and we found no
differences between initial movement direction errors and endpoint errors in all control
modes. These results indicate that muscle synergies provide an effective strategy for
motor coordination.
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INTRODUCTION
How the CNS coordinates a large number of muscles to con-
trol forces and movements is a long standing issue in neuro-
science. Muscle synergies, coordinated recruitment of groups of
muscles with specific activation balances or temporal profiles,
have been proposed as building blocks employed by the CNS
to simplify the generation of forces or movements (Jacobs and
Macpherson, 1996; Tresch et al., 1999; Bizzi et al., 2002; d’Avella
et al., 2003; Flash and Hochner, 2005; Giszter et al., 2007; Ting and
McKay, 2007; Bizzi et al., 2008; d’Avella and Pai, 2010; Lacquaniti
et al., 2012; Bizzi and Cheung, 2013; d’Avella and Lacquaniti,
2013). A small number of muscle synergies, identified by multidi-
mensional factorization techniques such as non-negative matrix
factorization (NMF) (Lee and Seung, 1999), independent com-
ponent analysis (ICA) (Bell and Sejnowski, 1995), and other
iterative algorithms (d’Avella and Tresch, 2002; Tresch et al.,
2006; Omlor and Giese, 2011), have been shown to explain a
large fraction of the variation in the muscle patterns in a vari-
ety of vertebrate species (Tresch et al., 1999; Saltiel et al., 2001;
d’Avella et al., 2003; Hart and Giszter, 2004; Ivanenko et al., 2004;
Cheung et al., 2005; Ting and Macpherson, 2005), across differ-
ent behaviors and experimental conditions (d’Avella and Bizzi,

2005; Cappellini et al., 2006; d’Avella et al., 2006, 2008, 2011;
Ivanenko et al., 2007; Torres-Oviedo and Ting, 2007; Overduin
et al., 2008; Torres-Oviedo and Ting, 2010; Dominici et al., 2011;
Hug et al., 2011; Chvatal and Ting, 2012; Frere and Hug, 2012;
Roh et al., 2012; Chvatal and Ting, 2013; d’Andola et al., 2013;
Gentner et al., 2013). These observations provide support to the
existence of muscle synergies as neural control strategy employed
by the CNS for motor coordination. However, they do not directly
demonstrate that a small number of synergies is sufficient to gen-
erate the functional output of muscle patterns, i.e., the forces
or movements necessary for accomplishing a task (Alessandro
et al., 2013). Thus, in order to validate muscle synergies as a
neural control strategy their functional consequences need to be
investigated.

Torres-Oviedo et al. (2006) first investigated the functional
consequences of muscle synergies by extracting synergies simul-
taneously from EMGs and foot contact forces during postural
responses to multidirectional stance perturbations in cats. Such
functional muscle synergies were able to explain both muscle
activation patterns and endpoint forces in a range of postural
configurations, thereby supporting a functional role for the syner-
gies. A common set of functional muscle synergies were then also
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found to explain different types of postural responses in human
subjects (Chvatal et al., 2011). Furthermore, forward dynamics
simulations using a musculoskeletal model of the human trunk,
pelvis, and legs have shown that a small number of muscle syn-
ergies are sufficient to perform the basic sub-tasks of walking in
two (Neptune et al., 2009) and three (Allen and Neptune, 2012)
dimensions. More recently de Rugy et al. (2013) addressed the
question of the functional consequences of muscle synergies in
the context of isometric force generation at the wrist. They esti-
mated forces as a linear function of EMGs recorded from five
wrist muscles. Subject used such estimated forces to perform a
force reaching task. de Rugy and collaborators then compared the
forces estimated using EMGs with the forces estimated using syn-
ergies extracted from the EMGs. Four synergies explained most
of the variation in the muscle patterns but they were not able
to accurately reproduce the forces estimated using the recorded
EMGs. However, estimated and real forces were not compared
and it is not clear whether the apparent inaccuracy of the forces
estimated using the synergies is specific to the wrist system.

Here, we extended the analysis of de Rugy et al. (2013) to a
more complex and redundant system. We recorded muscle activ-
ity from 13 arm and shoulder muscles in humans performing a
force reaching task in which a cursor in a virtual environment
was displaced according to either the recorded isometric force
(force-control) or the force estimated from the recorded EMGs
(EMG-control). We compared the cursor trajectories executed
during EMG-control with the trajectories reconstructed using
synergies, as in de Rugy et al. (2013). However, we also performed
two additional comparisons. First, we investigated the recon-
struction of trajectories executed in force-control using synergies
and individual muscles. Second, to explicitly validate the syn-
ergy hypothesis as a possible control principle, we directly tested
whether subjects were able to control movements with synergies.
We let subjects perform the force reaching task in force-control,
in EMG-control, and in synergy-control, i.e., by projecting online
each sample of the recorded muscle patterns in the synergy space,
and we compared their performances across the three conditions.

We found that, across subjects, 4–5 synergies could capture
adequately the EMG data variation but they were not sufficient
to reconstruct the trajectories executed in EMG-control with the
same endpoint accuracy, thus extending to the arm the results
obtained for the wrist by de Rugy et al. (2013). However, when we
compared the reconstructions of trajectories executed in force-
control using individual muscles and synergies we did not find
any significant difference in several performance measures. These
results demonstrate that individual muscles and synergies per-
form equally well in the prediction of the applied forces that were
generated by human subjects. Finally, we found that humans were
not only able to perform the task immediately after switching
from force-control to EMG-control and synergy-control, but they
also did not show any differences in performance between the
three conditions. These results demonstrate that human subjects
can achieve similar performances in an isometric reaching task
using a small number of synergies and using individual muscles.

MATERIALS AND METHODS
We asked naïve participants to reach targets on a virtual desktop
by displacing a cursor (i.e., a virtual spherical handle) according

to: (1) the force applied on a physical handle (force-control);
(2) the force estimated from the EMG activity recorded from
many shoulder and arm muscles (myoelectric or EMG-control);
(3) the force estimated from the combination of the recorded
EMG signals through a set of muscle synergies (synergy-control).
Initially the reaching task was performed under force-control
and, for each individual participant, the force and EMG data
collected were used to estimate an EMG-to-force matrix by mul-
tiple linear regressions. EMG data collected during force-control
or during EMG-control were also used to identify muscle syn-
ergies by non-negative matrix factorization. Such synergies were
then used to reconstruct cursor trajectories executed in force- and
EMG-control and to execute trajectories in synergy-control.

PARTICIPANTS
14 right-handed naïve subjects (mean age 26.0 years, SD 3.5, age
range 20–34, 9 females) participated in the experiments after giv-
ing written informed consent. All procedures were conducted in
conformance with the Declaration of Helsinki and were approved
by the Ethical Review Board of Santa Lucia Foundation.

EXPERIMENTAL SET-UP
Subjects sat in front of a desktop on a racing car seat with their
torso immobilized by safety belts, their right forearm inserted in
a splint, immobilizing hand, wrist, and forearm. The center of the
palm was aligned with the body midline at the height of the ster-
num and the elbow was flexed by approximately 90◦. The subjects’
view of their hand was either occluded by a 21-inch LCD monitor
inclined with its surface approximately perpendicular to the sub-
jects’ line of sight when looking at their hand (Figure 1A) during
Experiment 1 (see Experimental Protocols below) or by a mirror
displaying the virtual scene co-located with the real desktop posi-
tioned above the mirror (Figure 1B) during Experiment 2. After
calibration, the monitor could display a virtual desktop matching
the real desktop, a spherical cursor matching, at rest, the position
of the center of the palm and moving on a horizontal plane, and
spherical targets on the same plane (Figure 1C). A steel bar at the
base of the splint was attached to a 6-axis force transducer (Delta
F/T Sensor, ATI Industrial Automation, Apex, NC, USA) posi-
tioned below the desktop to record isometric forces and torques.
Surface electromyographic (EMG) activity was recorded from the
following 13 muscles acting on the shoulder and elbow: brachio-
radialis (BracRad), biceps brachii short head (BicShort), biceps
brachii long head (BicLong), triceps brachii lateral head (TriLat),
triceps brachii long head (TriLong), infraspinatus (InfraSp), ante-
rior deltoid (DeltA), middle deltoid (DeltM), posterior deltoid
(DeltP), pectoralis major (PectMaj), teres major (TerMaj), latis-
simus dorsi (LatDorsi), middle trapezius (TrapMid). EMG activ-
ity was recorded with active bipolar electrodes (DE 2.1, Delsys
Inc., Boston, MA), band-pass filtered (20–450 Hz) and amplified
(gain 1000, Bagnoli-16, Delsys Inc.). Force and EMG data were
digitized at 1 KHz using an A/D PCI board (PCI-6229, National
Instruments, Austin, TX, USA). The virtual scene was rendered
by a PC workstation with a refresh rate of 60 Hz using custom
software. In Experiment 2 the scene was rendered stereoscopically
using a 3D graphic card (Quadro Fx 3800, NVIDIA Corporation,
Santa Clara, CA, USA) and shutter glasses (3D Vision P854,
NVIDIA). Cursor position information was processed by a second
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FIGURE 1 | Experimental setup and trial sequence. Subjects sat in front
of a desktop and applied forces on a transducer attached to a forearm,
wrist, and hand splint. In Experiment 1 a LCD monitor (A) and in
Experiment 2 a mirror (B) occluded the subject’s hand and displayed a
virtual scene co-located with the real desktop. (C) Transparent spheres
positioned on a horizontal plane with centers at the same height as the
center of the palm indicated force targets that the subjects were instructed
to reach with a smaller spherical cursor moving on the same plane
according to the force applied (force-control) or estimated from EMGs
recorded from 13 arm and shoulder muscles (EMG-control, see Materials
and Methods), or estimated from recorded EMGs recombined using a set
of synergies extracted using NMF (synergy-control, see Materials and
Methods). (D) Subjects were instructed to perform a center-out reaching
task in which they had to maintain the cursor in a central start location for
1 s, reach a target as soon as it appeared at one of 8 peripheral locations,
and maintain the cursor at the target for 0.2 s. (A) and (C) adapted from
Berger et al. (2013); (B) adapted from Borzelli et al. (2013).

workstation running a real-time operating system and transmit-
ted to the first workstation. Cursor motion was simulated in real
time using an adaptive mass-spring-damper (MSD) filter (Park
and Meek, 1995). Either the actual force recorded by the trans-
ducer (force-control), or the force estimated in real-time from
the recorded and rectified EMGs (myoelectric or EMG-control)
using a linear mapping (EMG-to-force matrix, see below), or the
force estimated in real-time from synergies using the EMG-to-
force matrix (synergy-control, see below), was applied to a virtual
mass attached to a reference position through a critically damped
spring. The position of the cursor corresponded to the position
of the virtual mass. The reference position matched the position
of the center of the palm. To maintain fast response to changes in
force while reducing the effect of myoelectric noise, the simulated
mass was adapted dynamically according to the time derivative
of the applied force magnitude. Further details can be found in
Berger et al. (2013).

EXPERIMENTAL PROTOCOLS
In all experiments subjects initially performed two blocks of tri-
als in force-control. In the first force-control block, the mean
maximum voluntary force (MVF) along 8 directions (separated
by 45 deg) in the horizontal plane was estimated as the mean
of the maximum force magnitude recorded across 16 trials in
which subjects were instructed to generate maximum force in
each direction. Subjects were then instructed to move the cursor

quickly from the rest position to a target in one of the 8 direc-
tions by applying forces on the splint. At the beginning of each
trial (Figure 1D) subjects were requested to maintain the cursor
within a transparent sphere at the central start position for 1 s
(tolerance of 2% MVF). Next, a go signal was given by display-
ing a transparent target sphere while the start sphere disappeared.
Subjects were instructed to reach the target as quickly as possi-
ble and to remain there for 0.2 s (tolerance of 2% MVF). After
successful target acquisition the cursor and the target disappeared
indicating the end of the trial. Trials had to be completed within
2 s from the go signal. In the second force-control block subjects
performed 72 trials to targets positioned at force magnitudes cor-
responding to 10, 20, and 30% of MVF (random order within
cycles of 8 directions). After this block there was a 5 min pause
to process the recorded data in order to construct the myoelectric
controller. All subsequent blocks consisted of 24 trials with targets
at 20% MVF in random order within cycles of 8 directions.

Experimental protocol 1
Eight participants (numbered from 1 to 8) performed this pro-
tocol. Data collected in force-control and EMG-control mode in
our previous study (Berger et al., 2013) were used in this study
to reconstruct cursor trajectories with synergies. After two ini-
tial blocks of trials in force-control the rest of the experiment was
performed in EMG-control. For the purpose of the present anal-
ysis we only considered the force-control block and the second
EMG-control block. Further details of the experimental protocol
are described elsewhere (Berger et al., 2013).

Experimental protocol 2
Six participants (numbered from 9 to 14) performed this pro-
tocol. After the initial two blocks of trials performed in force-
control, the system switched to synergy-control, using the subject
specific synergies from the initial force-control block (synergy-
control, see below). After 6 blocks of synergy-control, three blocks
of force-control were introduced; this was followed by 6 blocks
of EMG-control. At the end of the experiment a final block in
force-control was performed.

EMG-TO-FORCE MAPPING
If the arm is in a fixed posture, the force generated at the hand is
approximately a linear function of the activation of muscles acting
on shoulder and elbow:

f = Hm + ef (1)

where f is the generated 2-dimensional force vector, m is the
13-dimensional vector of muscle activations, and H is a matrix
relating muscle activation to force (dimensions 2 × 13), and
ef is a 2-dimensional vector of force residuals. The EMG-to-
force matrix (H) was estimated using multiple linear regressions
of each applied force component, low-pass filtered (2nd order
Butterworth, 1 Hz cutoff), with EMG signals recorded during the
initial force-control block (dynamic phase, i.e., time from tar-
get go until the target has been reached), low-pass filtered (2nd
order Butterworth, 5 Hz cutoff), and normalized to the maxi-
mum EMG activity during the generation of MVF. We verified
that the choice of filter parameters for the estimation of the H
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matrix did not affect the quality of the force reconstruction dur-
ing EMG-control by investigating different force and EMG cutoff
frequencies. Figure 2A illustrates an example of the columns of
the EMG matrix (i.e., the force associated to each muscle, hi)
estimated in subject 2.

SYNERGY EXTRACTION
Muscle synergies were identified by NMF (Lee and Seung, 1999)
from EMG patterns from the go signal to target acquisition
(dynamic phase):

m = Wc + em (2)

with W a M × N synergy matrix whose columns are vectors spec-
ifying relative muscle activation levels (N number of synergies,
and M number of muscles), and c a N-dimensional synergy acti-
vation vector, and em is a M-dimensional vector of muscle activa-
tion residuals. For the comparison between trajectories executed
in EMG-control and their reconstruction using synergies EMG
patterns recorded during EMG-control were used for synergy
extraction. For the comparison of trajectories from data collected
during force-control EMG patterns recorded during force-control
were used for synergy extraction. EMG patterns were first low-
pass filtered (2nd order Butterworth filter, 5 Hz cutoff frequency)

FIGURE 2 | EMG-to-force mapping and synergies. (A) EMG-to-force
matrix H estimated for subject 2 in Experiment 1 from EMG and force data
recorded during the performance of the task in force-control. Each column
of H, representing the planar force generated by one muscles, is illustrated
by a colored arrow (1: brachioradialis, 2: biceps brachii short head, 3: biceps
brachii long head, 4: triceps brachii lateral head, 5: triceps brachii long head,
6: infraspinatus, 7: anterior deltoid, 8: medial deltoid, 9: posterior deltoid,
10: pectoralis major, 11: teres major, 12: latissimus dorsi, 13: middle
trapezius). (B) Muscle synergies (matrix W) identified by non-negative
matrix factorization from the EMG data of subject 2 collected in the
force-control block of Experiment 1. Each column of W, a vector specifying
a specific pattern of relative level of muscle activation, is illustrated by
color-coded horizontal bars. (C) Forces associated to the muscle synergies
[W, shown in (B)] through the EMG-to-force matrix [H, shown in (A)], i.e.,
the columns of the matrix product H W (synergy-to-force matrix). Adapted
from Berger et al. (2013).

and rectified, their baseline noise level was then subtracted, and
finally they were normalized to the maximum EMG activity of
each muscle recorded during the generation of MVF. Baseline
noise was estimated at the beginning of the experiment and
updated periodically throughout the experiment while the subject
was relaxed. For each possible N from 1 to M, the extraction algo-
rithm was repeated 10 times and the repetition with the highest
reconstruction R2 was retained. Figure 2B illustrates an example
of the set of 4 synergies extracted in subject 2.

NUMBER OF SYNERGIES
For each subject the number of synergies adequately capturing the
EMG data (N) was selected according to the fraction of data vari-
ation explained, defined as R2

EMG = 1-SSEEMG/SSTEMG, where
SSEEMG is the sum of the squared muscle activation residuals and
SSTEMG is the sum of the squared residuals of the muscle activa-
tion from its mean vector. We considered two criteria. The first
criterion was a threshold of 0.9 on R2

EMG. The second criterion
was based on the detection of a change in slope in the curve of
the R2 value as a function of N. A series of linear regressions were
performed on the portions of the curve included between N and
its last point (M). N was then selected as the minimum value for
which the mean squared error of the linear regression was less
than 10−4. In case of mismatch between the two criteria, the larger
N was chosen.

EMG- AND SYNERGY-CONTROL
Output forces f during EMG-control were computed using the
EMG-to-force mapping (H) and the recorded muscle activity m
(compare EMG-to-force mapping), i.e., by

f = H m (3)

thus allowing for individual muscle control. During synergy-
control muscle activity was substituted by the product of the
initially extracted subject-specific synergies (W) and estimated
synergy coefficients (ĉ), i.e., by f = H W ĉ, where H W is the
synergy-to-force mapping (illustrated in Figure 2C for subject 2).
Synergy coefficients were estimated by projecting recorded mus-
cle activity onto the synergy space, i.e., by ĉ = W+ m, where W+ is
the pseudo inverse of W, corresponding to estimating ĉ from m as
least squares solution of m = W c. Thus, during synergy-control
output forces were computed as:

f = H W W+m (4)

TRAJECTORY RECONSTRUCTION USING EMGS AND SYNERGIES
Cursor trajectories executed in EMG-control, i.e., computed
online as the displacement of a virtual mass-spring-damper sys-
tem under the force estimated by Equation 3, were reconstructed
using synergies, i.e., by computing offline how the cursor would
have been displaced using the forces computed by Equation 4.
Similarly, cursor trajectories executed in force-control, i.e., com-
puted online as the displacement of a virtual mass-spring-damper
system under the recorded force, were reconstructed using EMGs,
i.e., using the forces computed by Equation 3, and synergies, i.e.,
using the forces computed by Equation 4.
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PERFORMANCE MEASURES
We compared cursor trajectories driven by EMGs, i.e., either
executed in EMG-control (EC) or reconstructed by EMGs (ER)
during force-control, with trajectories reconstructed by syner-
gies (SR) during either EMG- or force-control, by assessing the
fraction of EMG-driven trajectory variation explained, R2

traj =
1 − SSEtraj/SSTtraj, where SSEtraj is the sum of the squared tra-
jectory residuals and SSTtraj is the sum of the squared residuals of
the EMG-driven trajectory from its mean vector. We also com-
pared cursor trajectories computed from recorded forces with
trajectories reconstructed by EMGs (ER) or synergies (SR) during
force-control by assessing the fraction of force-driven trajectory
variation explained with a similarly defined R2

traj-force measure.

Both such measures quantified the similarity of the entire time
course of two sets of trajectories. We then also compared per-
formances at the beginning of the movement, quantifying an
initial angle error, and at the end of each movement, quantifying
an endpoint error. Initial angle error was defined as the angular
deviation of the initial movement direction of the cursor with
respect to target direction. The angular deviation was computed
as abs(ϑtarget − ϑcursor), where ϑtarget is the target direction and
ϑcursor is the direction of the displacement between the position
of the cursor at movement onset and at the first following peak of
its tangential velocity. Taking the absolute value avoided cancella-
tions when averaging the values of the angular deviations across
targets with different signs for the difference between target direc-
tion and cursor initial direction. Endpoint error was defined as
the Euclidean distance, normalized to target distance from the
origin, between the target position and the mean cursor position
during the 0.2 s following the cursor’s entrance into the target
region. Finally, in Experiment 2, we compared the fraction of
unsuccessful trials, i.e., the fraction of trials in which the cursor
did not reached and remained in the target within the instructed
time intervals, during the task execution in EMG-control and in
synergy-control.

STATISTICAL ANALYSIS
Differences in performance measures were assessed either by
t-test statistics (paired, two-tailed) if the data were distributed
normally (according to a Lilliefors test) or by Wilcoxon ranksum
test otherwise.

RESULTS
SYNERGY RECONSTRUCTION OF CURSOR TRAJECTORIES DURING
EMG-CONTROL
To address the question whether a small set of muscle synergies
not only explains a large fraction of the variation of the muscle
activity but can also generate the forces necessary to perform an
isometric reaching task accurately, we compared the trajectories
performed by human subjects during EMG-control (EC) with
the trajectories reconstructed using the subject-specific synergies
(synergy-reconstructed, SR). Figures 3A,B illustrate examples of
EC (green) and SR (red) trajectories for 8 different targets in
one subject. Figure 3C shows the corresponding filtered EMGs
traces (gray area) and their synergy reconstruction (red line)
using four synergies (Figure 2B). These synergies adequately cap-
tured the muscle patterns across directions and muscles. For each

direction a different combination of synergy coefficients is used
(Figure 3D), e.g., in direction 0◦ (1st column) synergy 2 and 4
are recruited, whereas in direction 225◦ (6th column) synergies 1
and 3 are recruited. The directional tuning of all four synergies is
well captured by a cosine functions (Figure 3E, see also Borzelli
et al., 2013; Gentner et al., 2013). The SR trajectories show a high
similarity to the EC trajectories in each of the eight target direc-
tions. To quantify similarity, we first computed the fraction of EC
trajectory variation (R2

traj) explained by trajectories reconstructed

using for each subject a number of synergies adequately capturing
the EMG data variation (R2

EMG, see Methods) which varied across
subjects between 4 and 5 (see Table 1). On average across subjects
(n = 8) we found that SR trajectories reconstructed accurately EC
trajectories (mean R2

traj value 0.96 ± 0.03 SD, range: 0.89–0.98,

Table 1). We then assessed the mean similarity of EC and SR tra-
jectories as a function of the number of synergies (N) used for the
reconstruction (Figure 4A, averages across subjects, n = 8). Five
synergies were sufficient to reconstruct the EC trajectories with
an average R2

traj value larger than 0.9 (mean R2
traj values were 0.89

and 0.97, for N = 4 and 5, respectively).
To assess the performance of the synergy reconstruction at the

beginning of the movement, we then compared the initial angle
error of EC and SR trajectories (Table 1 and Figure 4B). Using
for each subject a number of synergies adequately capturing the
EMG data variation (see Table 1), we did not find any signifi-
cant differences between the mean initial angle error of EC and
SR trajectories (Table 1, p = 0.087, t-test, n = 8). Figure 4B (red)
shows the mean initial angular error of SR trajectories as a func-
tion of the number of synergies (N), averaged across subjects
(n = 8), in comparison with the mean error of EC trajectories
(green). While the trajectories reconstructed with 4 synergies had
a significantly larger angle error than EC trajectories (p = 0.027,
N = 4, n = 8, t-test with mean values ± SD of 15.1 ± 5.5◦, with
respect to 8.9 ± 2.5◦ in EC), there was no significant difference
between the error of EC trajectories and the error of trajectories
reconstructed using 5 synergies (p = 0.14, N = 5, n = 8, t-test,
mean value ± SD: 14.7 ± 10.2).

To assess the performance of the synergy reconstruction at the
end of the movement and to make a direct comparison to the
results of de Rugy et al. (2013), we also estimated the endpoint
error of the trajectories (Table 1 and Figure 4C). When compar-
ing the endpoint error of the EC and SR trajectories we found
similar results to those of de Rugy et al. (2013). Using for each
subject a number of synergies adequately capturing the EMG data
variation (see Table 1) we found a significant difference between
the mean endpoint errors of EC and SR trajectories (p = 0.00015,
Wilcoxon ranksum test, n = 8). Comparing the endpoint errors
of EC and SR trajectories as a function of the number of syn-
ergies, we also found a significant difference between average
endpoint errors for both four and five synergies (p = 0.0002 and
p = 0.0003, for N = 4 and N = 5, Wilcoxon ranksum test, n = 8.
Mean ± SD 0.22 ± 0.12 and 0.12 ± 0.05 for N = 4 and N = 5,
respectively, compared to 0.067 ± 0.005 during EC). However, the
analysis of individual subjects revealed a high inter-subject vari-
ability (Figure 4D). There was no significant difference between
the endpoint error of EC and SR trajectories using 5 synergies
for three out of eight subjects (p = 0.3481, p = 0.2883, and
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FIGURE 3 | Examples of cursor trajectories and muscle pattern

reconstruction by synergies. (A) Examples of cursor trajectories executed
by subject 2 in EMG-control (EC, green) and their reconstruction using four
synergies (SR, red ). Each column shows a trial to a different target (gray
circle). Markers indicate the time of target acquisition. (B) Corresponding
cursor displacements in x- and y- force directions for each trial. (C) Rectified

and filtered EMG traces recorded during each trial (gray area) and their
reconstruction (red ) by the four subject-specific synergies shown in
Figure 2B. Vertical dashed lines indicate the time of target acquisition. (D)

Time varying synergies coefficients (color coded as in Figure 2B) for each
trial. (E) Polar plot of the directional tuning of the four synergies shown in
Figure 2B.
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Table 1 | Number of synergies estimated from EMG-patterns in EMG-control (Experiment 1), fraction of EMG data variation explained, and

performance measures for individual subjects of EMG-control trajectories (EC) and trajectories reconstructed using synergies (SR).

Subject Id 1 2 3 4 5 6 7 8 Mean ± SD

Number of synergies 5 4 5 4 5 5 5 4 4.6 ± 0.5

R2
EMG 0.93 0.95 0.95 0.95 0.93 0.96 0.93 0.93 0.94 ± 0.01

R2
traj (EC reconstruction by SR) 0.97 0.98 0.98 0.97 0.96 0.98 0.89 0.94 0.96 ± 0.03

Initial angle error [deg] (SR) 10.5 9.8 17.0 13.4 30.1 6.0 30.5 8.0 15.7 ± 9.6

Initial angle error [deg] (EC) 14.4 8.1 9.3 7.7 8.1 6.1 9.7 7.4 8.9 ± 2.5

Endpoint error (SR) 0.12 0.10 0.11 0.11 0.17 0.11 0.20 0.17 0.14 ± 0.04

Endpoint error (EC) 0.08 0.06 0.06 0.07 0.07 0.06 0.07 0.07 0.07 ± 0.005

p = 0.9589 for subjects 2, 4, and 8, with N = 5) and for one
subject using 4 synergies (p = 0.0764 for subject 1).

In summary, we found on average a high similarity between
cursor trajectories under EMG-control and trajectories recon-
structed using a set of synergies which adequately explained EMG
data variation. Moreover, the mean initial angle error, indicative
of the accuracy of the feed-forward commands, was not differ-
ent between trajectories executed in EMG-control and trajectories
reconstructed using synergies. However the mean endpoint error,
more sensitive to feedback control, was larger for trajectories
reconstructed using synergies than for trajectories executed using
EMG-control of individual muscles.

SYNERGIES RECONSTRUCTION OF CURSOR TRAJECTORIES DURING
FORCE-CONTROL
As inaccuracies in the EMG-to-force mapping could be cor-
rected by online adjustments in EC while inaccuracies in the
synergy-to-force mapping could not be corrected in the offline
reconstruction by synergies, we also compared the trajectories
reconstructed using the EMG data (ER) recorded while human
subjects performed the isometric reaching task in force-control
(FC) with the trajectories reconstructed using subject specific
synergies (SR). We quantified the similarity of ER trajectories
with SR trajectories by computing the fraction of ER trajec-
tory variation explained by SR trajectories (R2

traj, Table 2 and

Figure 5A). When we used, for each subject, a number of syn-
ergies adequately explaining EMG data variation (Table 2), we
found, across subjects (n = 8), a mean R2

traj value of 0.88 ± 0.08

SD (Table 2). When we considered the mean R2
traj value as a func-

tion of the number of synergies (Figure 5A), we found that the
mean R2

traj value was 0.85 ± 0.10 with four synergies and 0.93

± 0.06 with five. We also compared how ER and SR trajectories
reconstructed FC trajectories by computing the ratio of the frac-
tion of FC trajectory variation explained (R2

traj-force) by SR and

by ER trajectories (Table 2 and Figure 5B). Selecting a number of
synergies, for each subject, adequately capturing EMG data vari-
ation we found a mean R2

traj-force ratio (SR/ER) of 0.92 ± 0.11

(SD). Averaging the R2
traj-force ratio across subjects as a function

of the number of synergies (Figure 5B) we found that 5 synergies
reached a value of 0.96 ± 0.09 (SD). Thus, during force-control,
we found a high similarity between the trajectories reconstructed
using the entire set of recorded muscles and those reconstructed
using only a small number of synergies.

We then compared the initial angle error of ER and SR tra-
jectories. Figure 5C shows the average errors for ER trajectories
and SR trajectories using, for each subject, a number of syner-
gies which captured EMG data variation adequately. We found no
significant differences between mean errors for ER and SR trajec-
tories (p = 0.26, t-test, n = 8, mean ± SD 18.5 ± 8.2◦ and 15.5
± 5.3 for ER). We also found no significant difference between
the mean angle error of ER trajectories and the mean error of SR
trajectories reconstructed using 4 synergies (p = 0.17 for N = 4
synergies, t-test, n = 8, with mean values of 18.4 ± 5.9◦ for SR
and as above for ER). Finally, comparing the endpoint error of ER
to SR trajectories (Table 2 and Figure 5D) we found no significant
differences between the average errors using the subject-specific
number of synergies (p = 0.19, n = 8, Wilcoxon ranksum test,
mean ± SD: 0.46 ± 0.09 for SR and 0.40 ± 0.06 for ER) as well as
when using 4 synergies for all subjects (p = 0.10, n = 8, Wilcoxon
ranksum test, mean ± SD for SR: 0.46 ± 0.09). Thus individ-
ual muscles and synergies showed similar performance during
force-control.

PERFORMANCE DURING SYNERGY-CONTROL, EMG-CONTROL, AND
FORCE-CONTROL
We then investigated how well subjects were able to control the
cursor directly with the synergy activation estimated online from
the recorded EMGs, i.e., in synergy-control (SC) mode, by com-
paring their performances in FC, SC, and EC. In SC we used for
each subject a number of synergies adequately capturing EMG
data variation (Table 3). Subjects were able to control the cursor
in SC and EC mode immediately after FC. Figure 6A shows exam-
ples of the trajectories for the first three movements in each of the
eight directions performed in each control mode by one subjects.
In these examples, all trials except one (bottom right target in
EC) were successful. On average across subjects only 2.8 ± 3.4%
(SD) of the trials in SC and 3.5 ± 6.7% of the trials in EC were
unsuccessful while all trials were successful in FC for all subjects.
The differences in the fraction of unsuccessful trials between all
conditions were not significant (t-test, n = 6; SC–EC: p = 0.72;
FC–SC: p = 0.10; FC–EC: p = 0.26).

We first assessed the subjects’ performance by comparing ini-
tial angle errors (Figure 6B). There was no significant difference
in angle error for the pairwise comparisons of the three differ-
ent control modes (FC–SC: p = 0.067; SC–EC: p = 0.15; FC–EC:
p = 0.13, t-test, n = 6, mean values ± SD for FC, SC, and EC,
respectively, were: 7.7 ± 2.5, 11.6 ± 3.8, and 9.7 ± 3.9◦). We then
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FIGURE 4 | Comparison between trajectories executed in EMG-control

and trajectories reconstructed using synergies. (A) Mean fraction of
EMG data variation explained by synergies (R2

EMG, black) and mean fraction
of EC trajectory variation explained by SR trajectories (R2

traj, blue) as a
function of the number of synergies (n = 8, shaded areas indicate SD,
dashed line indicate 0.9 R2). (B) Mean initial angle error for EC and SR
trajectories as a function of the numbers of synergies. (C) Mean endpoint
error (normalized to target distance from the origin, n.u.: normalized units)
for EC and SR trajectories as a function of the number of synergies.(D)

Endpoint error of SR trajectories for individual subjects (bars with different
gray levels) as a function of the number of synergies. Average endpoint of
EC trajectories across subject is indicated by the green line.

investigated the endpoint error (Figure 6C). We also found no
significant difference in the endpoint error for the pairwise com-
parisons of the three different control modes (FC–SC: p = 0.94;
FC–EC: p = 0.89; SC–EC: p = 0. 91, t-test, n = 6, mean values ±

SD for FC, SC, and EC, respectively, were: 0.072 ± 0.005, 0.070
± 0.006, and 0.067 ± 0.006). In summary, during all three con-
trol modes subjects were able to control the cursor accurately and
there were no significant differences in initial angular error and
endpoint error.

DISCUSSION
As in many previous studies, we found that a small number of
muscle synergies explained a large fraction of the variation of
the muscle patterns recorded during different task conditions.
In this study, however, we focused on the question whether a
small number of muscle synergies can accurately generate the
forces involved in the task and, ultimately, whether muscle syn-
ergies can be used to perform the task effectively. We first tested
whether trajectories of a virtual mass displaced by EMG activ-
ity recorded from 13 arm muscles during an isometric reaching
task could be reconstructed with similar accuracy using the com-
binations of the same muscle activities into a small number of
muscle synergies identified by NMF. Our results showed that
the trajectories reconstructed using 4–5 synergies were as accu-
rate as the trajectories obtained by displacing a virtual cursor
according to the hand force estimated from EMGs recorded from
the entire set of muscles when considering the initial movement
direction error but not in terms of endpoint error. However, these
results were not consistent across subjects, as for some subjects we
found no difference in endpoint error using 4 or 5 synergies. We
then assessed whether the availability of feedback in EMG-control
mode could explain the lower endpoint accuracy of the synergies
by comparing the reconstructions of the trajectories executed in
force-control using synergies and using the entire set of muscles.
Indeed, in force-control cursor movements depended only on the
applied force and did not provide any information on the inac-
curacy likely present in the EMG-to-force and synergy-to-force
mappings used for the reconstruction. Trajectories reconstructed
using synergies were not significantly different from trajectories
reconstructed using individual muscles suggesting that the differ-
ence between the trajectories generated during EMG-control and
their reconstruction by synergies observed in some subjects were
due to online adjustments performed during the EMG-control
mode. Finally, we explicitly tested whether human subjects were
able to control a virtual cursor and to perform successfully a
force reaching task by synergy recruitment. In synergy-control
mode the cursor movement depended only on the portion of the
recorded EMGs that could be reconstructed by synergy combina-
tions. Subjects were able to control the cursor in synergy-control
mode immediately after switching from force-control mode and
there were no significant differences in performance between the
three control modes.

As mentioned in the Introduction, several studies have pro-
vided evidence supporting the hypothesis that movements are
controlled by a limited set of modules or muscle synergies.
However, most of these studies focused on how well synergies
describe muscle patterns, showing that a small number of syn-
ergies capture a large fraction of the muscle pattern variation
across task conditions and often that such synergies are robust
across different tasks, but they did not directly address the ques-
tion whether synergies can be used by the CNS to effectively
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Table 2 | Number of synergies estimated from EMG-patterns in force-control (Experiment 1), fraction of EMG data variation explained, and

performance measures for individual subjects of trajectories reconstructed using EMGs (ER) and synergies (SR) during force-control.

Subject Id 1 2 3 4 5 6 7 8 Mean ± SD

Number of synergies 4 4 4 4 4 5 6 4 4.4 ± 0.7

R2
EMG 0.91 0.96 0.92 0.93 0.91 0.96 0.94 0.91 0.93 ± 0.02

R2
traj(ER reconstruction by SR) 0.94 0.95 0.75 0.91 0.89 0.96 0.76 0.90 0.88 ± 0.08

Initial angle error [deg] (SR) 23.1 8.9 21.3 20.6 16.8 10.1 34.0 13.3 18.5 ± 8.2

Initial angle error [deg] (ER) 22.2 9.0 14.3 12.2 23.4 10.7 18.5 14.0 15.5 ± 5.3

Endpoint error (SR) 0.47 0.34 0.57 0.39 0.56 0.40 0.57 0.41 0.46 ± 0.09

Endpoint error (ER) 0.44 0.33 0.41 0.33 0.51 0.36 0.43 0.36 0.40 ± 0.06

accomplish a task. Thus, in order to validate the synergy hypoth-
esis it must be demonstrated that a small number of synergies
are sufficient to generate the forces or movements necessary for
accurate task performance. Two recent studies have addressed
the functional role of the muscle synergies underlying postural
responses to stance perturbations in cats (Torres-Oviedo et al.,
2006) and in humans (Chvatal et al., 2011) by using NMF to
simultaneously extract synergies from EMG data and kinetic data
(contact forces, center of mass accelerations). Such functional
muscle synergies could explain both muscle activation patterns
and kinetic data in a range of postural configurations and in
different types of responses, suggesting that muscle synergies
are responsible for the control of specific biomechanical func-
tions shared across task conditions. Consistent functional roles of
muscle synergies have also been demonstrated in dynamic simu-
lations of human pedaling and walking (Raasch and Zajac, 1999;
Neptune et al., 2009; Allen and Neptune, 2012). Identification
of functional muscles synergies, however, relies on the assump-
tion of a linear relationship between EMGs and kinetic variables
which might be valid only in limited conditions. Similarly, accu-
rate forward dynamic simulations using muscle synergies depend
on many musculoskeletal parameters that are difficult to vali-
date and require fine-tuning of the muscle excitation patterns.
Thus, these studies do not provide direct evidence that a small
set of muscle synergies is sufficient for achieving accurate task
performance.

A recent study by de Rugy et al. (2013) investigated the relation
between synergies and task performance in humans by compar-
ing force trajectories generated under EMG-control during an
isometric reaching task, similar to the one used in the present
study but involving only five wrist muscles, with the trajecto-
ries reconstructed using muscle synergies. One advantage of this
experimental approach is that task performance depends on a
well-defined linear transformation of the recorded EMGs, even if
such linear mapping is not an accurate estimate of the real EMG-
to-force mapping. de Rugy and collaborators found that four
synergies on average explained more than 90% of the EMG data
variation but they reconstructed cursor trajectories with a much
higher endpoint error than the error of the trajectories executed
in EMG-control. The authors claimed that synergy decomposi-
tion introduces substantial task space errors and concluded that
applying synergy decomposition onto a set of available muscles
appears of little use to best reconstruct the motor output in task
space.

In the present study we have addressed the issue of whether
muscle synergies can accurately reconstruct and generate forces
in a number of ways. First, we performed the same analysis that
de Rugy and collaborators performed on the wrist system (using
EMG activity recorded from five muscles) on the more complex
arm system (using EMG activity recorded from 13 muscles). We
compared the endpoint error of cursor trajectories during EMG-
control of a reaching task with the endpoint error of trajectories
reconstructed using synergies. We found, on average across sub-
jects, that a small number of synergies were not sufficient to
reach the same endpoint accuracy as during EMG-control, thus
replicating for the arm the results by de Rugy et al. (2013) for
the wrist. However, investigation of individual subjects showed
that this result was inconsistent across subjects. For half of the
subjects synergy reconstruction using 4 or 5 synergies was suf-
ficient to reach the same performance as during EMG-control.
Moreover, as our subjects were instructed to reach the target with
a fast reaching movement and were not required to minimize end-
point error, we also compared the entire cursor trajectories and
the initial directional error and we found no significant differ-
ences between EMG-control and reconstruction with a number
of synergies adequately explaining the EMG data.

Second, as the comparison of EMG-control and synergy recon-
struction may be biased by the use of online feedback, we
also compared EMG and synergy reconstruction of cursor tra-
jectories generated by recorded forces. In EMG-control cursor
trajectories are generated by forces estimated using EMG sig-
nals and not by the recorded forces and subjects were able
to exploit feedback to correct inaccuracies in the estimated
EMG-to-force mapping. However, inaccuracies in the synergy-
to-force mapping may require different corrections unavail-
able in the offline synergy reconstruction. We therefore argue
that in order to conclude that synergy decomposition decreases
task performance with respect to individual muscle control,
one needs either to compare experimental conditions in which
online corrections to both EMG-to-force and synergy-to-force
inaccuracies are possible (as in our second experimental pro-
tocol), or to compare the reconstructions, using individual
muscles and synergies, of trajectories executed in force-control
mode, in which neither EMG-to-force nor synergy-to-force
inaccuracies can be corrected. When we compared the tra-
jectories reconstructed using synergies and using individual
EMGs using data collected while the task was performed in
force-control mode we did not find any significant difference.
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FIGURE 5 | Comparison between trajectories reconstructed using

individual muscles and synergies during task performance in

force-control. Trajectories reconstructed using EMG data (ER) are shown in
green; trajectories reconstructed using synergies (SR) are shown in red. (A)

Mean fraction of EMG data variation explained by synergies (R2
EMG, black)

and mean fraction of ER trajectory variation explained by SR trajectories
(R2

traj, blue) as a function of the number of synergies (n = 8, shaded areas

indicate SD, dashed line indicate 0.9 R2). (B) Mean of the ratio between the
fraction of FC trajectory variation (R2

traj-force) explained by SR trajectories and
the fraction of FC trajectory variation explained by ER trajectories. Dashed
line indicate a ratio of 1. (C) Mean initial angle error for ER and SR
trajectories as a function of the numbers of synergies. (D) Mean endpoint
error (normalized to target distance from the origin) for ER and SR
trajectories as a function of the number of synergies.

These results indicate that the trajectories reconstructed using
synergies are not as accurate as the trajectories executed in
EMG-control because of online feedback corrections during
EMG-control.

Third, we directly demonstrated the effectiveness of a small
number of synergies in generating the forces involved in a reach-
ing task by showing that subjects were able to control the cursor
accurately with the synergies. We compared performances when
subjects controlled the cursor with synergies to performances
in EMG-control and force-control. Remarkably, subjects were
able to perform the task immediately after switching from force-
control to synergy-control and they did not show significant
differences in initial angle error and endpoint error between the
three control models. These results show that subjects were able
to control a cursor in a reaching task using synergies with similar
performance as during force-control and EMG-control.

Finally, de Rugy et al. (2013) examined the wrist system, which
has a relatively low muscle redundancy, and it might not require
synergistic control. They also drew similar conclusions analyz-
ing arm muscle pattern that were simulated as to generate the
target forces, using an EMG-to-force mapping derived from a
biomechanical model, with minimal summed squared muscle
activations (Fagg et al., 2002). They justified the use of simu-
lated data for assessing the task efficacy of muscle synergies also
in the more complex arm system with the observation that wrist
simulated data show a fraction of variance explained by synergy
decomposition and endpoint error of trajectories reconstructed
using synergies similar to those obtained with experimental data.
However, the similarity between simulated and experimental data
in the weakly redundant wrist system might be due to the lack
of synergistic control in such system. In contrast, simulated data
might have a different synergy decomposition than experimental
data collected in the arm system if this is controlled synergisti-
cally. In fact, a recent study by Borzelli et al. (2013) investigating
muscle patterns of the arm underlying isometric force genera-
tion has shown that the estimated minimum effort recruitment
of individual muscles does not adequately capture the observed
muscle activation patterns. Thus, using simulated muscle patterns
de Rugy et al. (2013) did not test whether a small number of syn-
ergies could achieve good task performance in the arm system.
Not surprisingly the simulated data had a high dimensionality
and the synergy decomposition resulted in higher aiming errors
than individual muscles. However, if the data had been generated
by combinations of a small number of synergies their decomposi-
tion into the same number of synergies would have achieved the
same task performance as individual muscles. Thus, the results of
these simulations, because they depend on the assumptions made
for data generation, cannot lead to any conclusion on whether the
CNS does employ synergies for simplifying control.

The number of synergies used for reconstructing cursor tra-
jectories executed in force- and EMG-control and for projecting
recorded EMG data in synergy-control is a critical parameter that
has a major effect on the task space accuracy. We selected the
number of synergies, a free parameter in the NMF decomposition
of the EMG data, comparing the EMG data variation accounted
by different number of synergies (R2

EMG). We considered two
criteria used in many previous studies of muscle synergies: the
minimum number of synergies with R2

EMG over 90% (Tresch
et al., 1999; Ting and Macpherson, 2005; Torres-Oviedo et al.,
2006; Roh et al., 2012; Delis et al., 2013) and the number of
synergies at which the slope of the R2

EMG curve has a change in
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Table 3 | Number of synergies extracted from EMG-patterns in force-control (Experiment 2), fraction of EMG data variation explained, and

performance measures for individual subjects of trajectories executed in force-control (FC), synergy-control (SC), and EMG-control (EC).

Subject Id 9 10 11 12 13 14 Mean ± SD

Number of synergies 5 5 7 6 5 5 5.5 ± 0.8

R2
EMG 0.92 0.93 0.97 0.93 0.95 0.92 0.93 ± 0.02

Initial angle error [deg] (FC) 6.4 12.0 6.3 7.9 8.9 4.8 7.7 ± 2.5

Initial angle error [deg] (SC) 8.7 13.9 18.4 9.4 10.7 8.8 11.6 ± 3.8

Initial angle error [deg] (EC) 6.6 14.9 12.6 7.0 12.2 5.0 9.7 ± 3.9

Endpoint error (FC) 0.070 0.075 0.078 0.068 0.074 0.065 0.072 ± 0.005

Endpoint error (SC) 0.075 0.075 0.073 0.060 0.070 0.067 0.070 ± 0.006

Endpoint error (EC) 0.064 0.061 0.077 0.069 0.065 0.070 0.067 ± 0.006

FIGURE 6 | Comparison between trajectories during force-control,

synergy-control, and EMG-control. (A) Examples of cursor trajectories
during the execution of individual trials to the eight different targets during
force-control (FC, left), synergy-control (SC, middle), and EMG-control (EC,
right) for subject 9. Cursor trajectories are shown up to the time of arrival at
the target (gray disks) or until the end of the trials in the target was not
reached. (B,C) Averages across subjects (Experiment 2, n = 6) of the mean
initial angle error (B) and mean endpoint error (C) over all the trials in the
first block performed in FC, SC, and EC. Error bars indicate SD across
subjects. All pairwise comparisons were not significant (see text).

slope (d’Avella et al., 2003; Cheung et al., 2005; d’Avella et al.,
2006; Tresch et al., 2006; Delis et al., 2013). When the number
of synergies selected by the two criteria did not match we chose
the largest number to ensure the best reconstruction of the EMG
data when analyzing task performance. However, both criteria
depend on ad-hoc thresholds and they do not ensure the selec-
tion of the correct number of synergies. Importantly, we noticed
that adding a single synergy may sometimes have a small effect
on R2

EMG but a large effect on the quality of the reconstruction of
EMG-control trajectories using synergies (R2

traj) (see Figure 4D,

subject 3). Thus, the lower task performance of the trajectories
reconstructed using synergies, in addition to the lack of feed-
back driven adjustments to synergy-to-force inaccuracy discussed
above, might also be due to the inappropriate selection of the
number of synergies for some of the subjects. However, the num-
ber of synergies selected with our criterion did allow to perform

the task in synergy-control with accuracy similar to that of force-
and EMG-control, suggesting that the criterion was adequate and
that the lower performance of synergy-reconstructed trajectories
executed in EMG-control was mainly due to the lack of appropri-
ate feedback. Finally, task performance in synergy-control could
be used as a new criterion for the selection of a number of
synergies, especially for synergy-based myoelectric control appli-
cations. It would simply require testing an increasing number
of synergies and selecting the number that ensures performance
comparable to that obtained with individual muscles.

In conclusion, the investigation of a 2-dimensional force
reaching task demonstrated that a complex arm muscle system
can be effectively controlled by a small number of synergies. Our
results suggest that muscle synergies are employed by the CNS
to cope with the high number of degrees-of-freedoms in the
musculoskeletal system and to simplify movement coordination.
However, the fact that we did not find evidence for any signif-
icant reduction in performance using muscle synergies cannot
definitively prove whether or not synergies are actually employed
by the CNS. Further insights into the synergy hypothesis may be
gained by testing subjects’ adaptation to perturbation. In a recent
study (Berger et al., 2013) we have shown that adaption to vir-
tual surgeries, i.e., perturbation of the muscle-to-force mapping,
depends on the compatibility of the surgery with the synergies.
Human subjects adapted strikingly faster after compatible vir-
tual surgeries, in which a full range of movements in the task
space could be achieved recombining the initially identified syn-
ergies, than after incompatible virtual surgeries, for which new
or modified synergies would be required. Muscle synergies might
thus allow for faster adaptation to perturbation and to environ-
mental demands. Comparing adaptation to perturbation directly
under synergy-control and EMG-control might therefore shed
further light into possible control strategies employed by the CNS.
Synergy-control could moreover be useful for achieving intuitive
simultaneous and proportional control of myoelectric prosthe-
ses (Jiang et al., 2009, 2013), and robot arms (Artemiadis and
Kyriakopoulos, 2010) and for the development of novel diagnos-
tic tools and rehabilitation approaches (Safavynia et al., 2011).
Specifically, rehabilitation exercises in a virtual environment with
synergy-control might promote recovery of movement skills in
stroke patients by facilitating the recruitment of spared muscle
synergies (Cheung et al., 2009, 2012) and the re-organization of
altered ones (Roh et al., 2013).
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