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The primary visual cortex is an excellent model system for investigating how neuronal
populations encode information, because of well-documented relationships between
stimulus characteristics and neuronal activation patterns. We used two-photon calcium
imaging data to relate the performance of different methods for studying population
coding (population vectors, template matching, and Bayesian decoding algorithms) to
their underlying assumptions. We show that the variability of neuronal responses may
hamper the decoding of population activity, and that a normalization to correct for this
variability may be of critical importance for correct decoding of population activity. Second,
by comparing noise correlations and stimulus tuning we find that these properties have
dissociated anatomical correlates, even though noise correlations have been previously
hypothesized to reflect common synaptic input. We hypothesize that noise correlations
arise from large non-specific increases in spiking activity acting on many weak synapses
simultaneously, while neuronal stimulus response properties are dependent on more
reliable connections. Finally, this paper provides practical guidelines for further research on
population coding and shows that population coding cannot be approximated by a simple
summation of inputs, but is heavily influenced by factors such as input reliability and noise
correlation structure.
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INTRODUCTION
Stimuli in an animal’s environment are encoded by the pattern
of action potential firing of a neuron (Hubel and Wiesel, 1974).
It remains unclear however how precisely information about the
outside world is encoded and processed in the brain on a network
level. Using information coded by single neurons is straight-
forward, but when the activity of multiple neurons is used to
code information, higher-order statistics such as temporal depen-
dencies can strongly influence neural codes (Butts et al., 2007;
Ainsworth et al., 2012).

To study these general principles of population coding, it is
necessary to choose a suitable model system. For many years, the
primary visual cortex has been serving as such a model (Tong,
2003). Many properties of V1 appear to be preserved across
mammalian species, including neuronal tuning properties, but
the spatial organization of these neurons differs. For example,
in primates orientation tuned neurons are organized in columns
(Hubel and Wiesel, 1974), while in mouse V1 neurons that are
tuned to different orientations are organized in an intermingled
“salt-and-pepper” way (Hübener, 2003). Despite the apparent
absence of orientation columns in mouse V1, pyramidal neurons
still exhibit selectivity to many visual stimulus properties, such as
retinal location, orientation or motion direction, contrast, spa-
tial and temporal frequency, and speed (Hübener, 2003; Niell and

Stryker, 2008; Andermann et al., 2011). These factors, in com-
bination with the relative ease to work with mice and the many
options for genetic modifications, make them an excellent animal
model for studying population coding of visual information.

One of the biggest challenges of population coding is under-
standing how higher-order neuronal populations can read out
their input from primary sensory populations, especially con-
sidering the relatively high noise of neural systems (Faisal et al.,
2008), and the complex spatiotemporal structures this noise
can assume (correlated trial-to-trial variability between neurons
that occurs regardless of any similarity in the mean response
of these neurons to stimuli, i.e., noise correlations) (Cohen and
Kohn, 2011). Even when disregarding noise, this reading-out—
or decoding—is non-trivial, since neurons are often responsive
to a plethora of stimulus properties, while higher-level popu-
lations need to extract specific information from this entan-
gled stimulus representation (Pagan et al., 2013). In addition to
the already large number of stimulus dimensions that influence
responses of neurons in V1, their firing patterns can be modu-
lated by non-stimulus related processes such as attention (Motter,
1993), wakefulness (Greenberg et al., 2008), reward-related activ-
ity (Goltstein et al., 2013), or even higher-order properties of the
visual scene, such as whether an object belongs to the foreground
or background of a scene (Lamme, 1995).

Frontiers in Computational Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 58 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00058/abstract
http://community.frontiersin.org/people/u/45607
http://community.frontiersin.org/people/u/20102
http://community.frontiersin.org/people/u/2725
mailto:j.s.montijn@uva.nl
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Montijn et al. Population coding in mouse visual cortex

One way to study population coding is with the use of compu-
tational algorithms that decode information from the population
activity (e.g., Zhang et al., 1998; Pillow et al., 2008; Quiroga and
Panzeri, 2009; Graf et al., 2011). Comparing a decoder’s per-
formance in different situations can then provide insight into
how much information is present in population spiking activ-
ity. Moreover, comparing the performance of different decoders
may provide insight into how population coding works in the
brain and into which variables are important. Using decoding
algorithms has been particularly fruitful in the investigation of
the effects that specific spatiotemporal structures of noise (noise
correlations) have on population coding (Pillow et al., 2008; Graf
et al., 2011), although it remains unclear whether they are benefi-
cial (e.g., Averbeck et al., 2006; Ecker et al., 2011; da Silveira and
Berry, 2013) or detrimental (e.g., Mitchell et al., 2009). Moreover,
it is still unknown whether the same anatomical substrates (i.e.,
synaptic connections) underlie both noise correlations and stim-
ulus tuning. It has been hypothesized for some years that noise
correlations are dependent on horizontal cortico-cortical connec-
tions (Ts’o et al., 1986; Smith et al., 2012), and it has more recently
been shown that L2/3 orientation tuned neurons have a higher
intra-laminar connection probability with similarly tuned neu-
rons (Ko et al., 2011). This would make it plausible that these
two processes indeed share similar anatomical substrates, but this
hypothesis has—to our knowledge—not yet been tested.

A number of decoding algorithms has been applied to neural
data recorded from several brain regions, but to our knowledge
the performance of these algorithms has not been compared in
mouse primary visual cortex (V1). Especially the influence of sin-
gle neurons on the decoding performance of ensembles has been
studied little, even though it has been known for several years
that neuronal populations in V1 show sparse coding, where single
attributes in a visual scene are represented by only a very small
number of neurons (Vinje and Gallant, 2000). We will there-
fore compare the performance of a classical population vector,
template matching, variability-normalizing template matching,
and Bayesian maximum-likelihood algorithm as a function of
neuronal population size. We also relate their performance to
their mathematical assumptions to show which variables deter-
mine the applicability of the different decoders. We performed
these analyses using population data obtained by in vivo two-
photon calcium imaging of ensemble activity in V1, which
directly reflects spiking activity (Kerr et al., 2005; Greenberg et al.,
2008). Furthermore, we investigate the dependence of decoding
accuracy on orientation selectivity, signal correlations and noise
correlations, and show the relationships between these neuronal
properties. Methodological descriptions of several analysis meth-
ods are provided so they can be used as guidelines by other
researchers for future investigation of population coding. The
results from these analyses reveal the caveats and critical factors of
applying population vector and template matching algorithms to
population activity of V1 neurons, including the pivotal impor-
tance of response reliability (i.e., little variation over trials in
response magnitude). Secondly, our results show that there exists
an anatomical intersomatic distance dependence of noise cor-
relations, but not of the difference in preferred visual stimulus
direction between pairs of cells. These results lead us to formulate

two hypotheses for which we also present testable predictions.
First, we argue that a Hebbian plasticity mechanism might lead
to a normalization of neuronal responses based on their vari-
ability. Secondly, we hypothesize that noise correlations are due
to global non-specific synaptic barrages in local circuits, while
stimulus response properties are dependent on stronger or more
reliable connections.

METHODS
ANIMAL PREPARATION
All experimental procedures were conducted with approval of
the animal ethics committee of the University of Amsterdam and
are largely similar to those described in more detail in Goltstein
et al. (2013). In short, 6 adult male C57BL/6 mice (Harlan)
were implanted with a titanium head bar prior to the imaging
experiment and were allowed to recover for a minimum of 3
days. On the day of the two-photon calcium imaging experi-
ment, buprenorphine (0.05 mg/kg) was injected subcutaneously
30–60 min before induction of anesthesia with isoflurane (3.0%
in 100% oxygen). Intrinsic signal imaging (ISI) was performed to
localize the primary visual cortex (V1) while the animal was anes-
thetized lightly (0.8% isoflurane). We subsequently performed a
small (2 mm) craniotomy above the retinotopic area responding
to visual stimulation with drifting gratings. After the craniotomy,
the dura was kept wet with an artificial cerebrospinal fluid (ACSF:
NaCl 125 mM, KCl 5.0 mM, MgSO4 ∗ 7 H2O 2.0 mM, NaH2PO4

2.0 mM, CaCl2 ∗ 2 H2O 2.5 mM, glucose 10 mM) buffered with
HEPES (10 mM, adjusted to pH 7.4) (Svoboda et al., 1999). After
removal of the skull, multi-cell bolus loading with Oregon Green
BAPTA-1 AM (OGB) and Sulforhodamine 101 (SR101) was per-
formed 230–270 microns below the dura as previously described
(Stosiek et al., 2003; Goltstein et al., 2013). After injection of the
dyes, the exposed dura was covered with agarose (1.5% in ACSF)
and sealed with a circular cover glass that was fixed to the skull
using cyanoacrylate glue.

APPARATUS AND STIMULUS PRESENTATIONS
Dual-channel two-photon imaging recordings (filtered at
500–550 nm for OGB and 565–605 nm for SR101; see Figure 1A)
with a 512 × 512 pixel frame size were performed at a sampling
frequency of 25.4 Hz. We used an in vivo two-photon laser
scanning microscopy setup (modified Leica SP5 confocal system)
with a Spectra-Physics Mai-Tai HP laser set at a wavelength of
810 nm to simultaneously excite OGB and SR101 molecules, as
previously described (Goltstein et al., 2013). Mice (n = 6) were
kept lightly anesthetized (0.8% isoflurane) during the entirety
of the two-photon calcium imaging recordings (n = 6, 1 data
set/animal), while they were presented with 10 repetitions of
8 different directions of square-wave drifting gratings (n = 80
trials/recording). Visual stimulation duration was 3 s and was
alternated by a 5 s blank inter-trial interval during which an
isoluminant gray screen was presented. Visual drifting gratings
(diameter 60 retinal degrees, spatial frequency 0.05 cycles/degree,
temporal frequency 1 Hz) were presented within a circular
cosine-ramped window to avoid edge effects at the border of
the circular window. All visual stimulation was performed on
a 15 inch TFT screen with a refresh rate of 60 Hz positioned at
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FIGURE 1 | (A) Contrast-enhanced average of all x-y movement-corrected
frames recorded from an anesthetized mouse during a two-photon calcium
imaging experiment used for decoding. The data were obtained by
recording fluorescence levels in neurons stained with Oregon Green
BAPTA-1 AM (OGB-1 AM). Dual dye-loading with Sulforhodamine-101
(SR-101) was performed to differentiate astrocytes (yellow/orange) from
neuronal cell bodies (green). The location marked in blue in the upper part
of the example recording is the cell body of the neuron whose
stimulus-selective responses are shown in (B). (B) Activity trace of an
example neuron measured by the dF/F0 (fraction change in fluorescence
level relative to a 30 s baseline, which correlates approximately linearly with
spiking activity). This neuron responds strongly to gratings moving to the
upper left (315◦) and lower right (135◦), but not to any other moving
direction. It is therefore strongly orientation-tuned, but weakly
direction-tuned. Each gray line depicts a single trial (−3 to +5 s of stimulus
onset) and the mean response per stimulus direction over all ten repetitions
is shown in blue. The area shaded in gray shows stimulus presentation
time. Depicted in the center graph is the maximum value of the mean
response of the neuron per stimulus direction in dF/F0.

16 cm from the mouse’s eye, which was controlled by MATLAB
using the PsychToolbox extension (Brainard, 1997; Pelli, 1997).
A field-programmable gate array (FPGA, OpalKelly XEM3001)
was connected to the microscope setup and interfaced with
the stimulus computer to synchronize the timing of the visual
stimulation with the microscope frame acquisition.

DATA PREPROCESSING
After a recording was completed small x-y drifts were corrected
with an image registration algorithm (Guizar-Sicairos et al., 2008)

and the recording was manually checked for movement arti-
facts along the z-axis. If z-drifts occurred during a recording, it
was rejected and no further analyses were performed. Regions of
interest (neurons, astrocytes, and blood vessels) were determined
semi-automatically using custom-made MATLAB software and
subsequently dF/F0 values for all neurons were calculated as pre-
viously described (Goltstein et al., 2013). In short, for each image
frame i a single dF/F0 value was obtained for each neuron by cal-
culating the baseline fluorescence (F0i), taken as the mean of the
lowest 50% during a 30-s window preceding image frame i. dF is
defined as the difference between the fluorescence for that neuron
in the given frame and the sliding baseline fluorescence (dFi =
Fi − F0i) (Goltstein et al., 2013). The mean number of simultane-
ously recorded neurons/session was 118 (range: 95–144).

NEURONAL RESPONSES TO VISUAL STIMULI
A neuron’s response to a certain stimulus was defined as the mean
dF/F0 value of all frames recorded during that single trial’s stimu-
lus presentation (see Figure 1B for an example neuron). Stimulus
presentation lasted 3.0 s (77 frames) and a single stimulus presen-
tation yields a single response value R, equal to the mean dF/F0

over all 77 stimulus frames. To obtain a measure of a neuron’s ori-
entation selectivity, we calculated the orientation selectivity index
(OSI) as (1-circular variance), as previously described by Ringach
et al. (2002). To further parameterize neuronal orientation tun-
ing, we also calculated each neuron’s preferred direction by fitting
a double von Mises distribution to the neuron’s responses, where
the peaks of both von Mises functions are opposite to each other
(separated by 180◦):

f (x | θ, κ1, κ2, μ0) = e κ1cos(x − θ)

2π I0(κ1)
+ e κ2cos(x + π − θ)

2π I0(κ2)
+ μ0 (1)

Here, I0(κ) is the modified Bessel function of order 0 and x rep-
resents the stimulus angle. As can be seen in the equation, we
defined the free parameters as θ (preferred direction), κ1 (concen-
tration parameter at θ), κ2 (concentration parameter at θ + π)
and μ0 (baseline response). A neuron’s preferred direction was
defined as the angle with the highest concentration parameter
(which could be either κ1 or κ2).

SIGNAL CORRELATIONS
In many cases neuronal responses in V1 to drifting gratings can
be fairly accurately approximated by circular von Mises distribu-
tions. However, in order to more fully capture similarities and
differences between the responses that neurons show to drifting
gratings of different directions, we calculated signal correlations
between all neuronal pairs in each recording. We defined each
direction as a separate stimulus type and calculated a neuron’s
mean response vector R, where the elements of R are the
neuron’s mean responses to each direction θ (Rθ ):

R = [R0, R45 . . . R315] (2)

We then calculated the pairwise signal correlation as the Pearson
correlation between two neurons’ (i,j) response vectors:
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ρ
signal
i,j = corr(Ri, Rj) (3)

Since the decoding algorithms used to extract information from
the population response depend on the difference in response
between neurons for different stimulus directions, high signal
correlations between two neurons indicate that there is a large
redundancy in information that these neurons provide to the
decoder.

NOISE CORRELATIONS
Complementary to signal correlations, which provide an index of
the similarity between pairs of neurons in their mean response
to the different stimulus types, are noise correlations, which give
an indication of the similarity in trial-by-trial response variability
between neurons. We first calculated a response vector for each
stimulus type θ, where each element in the vector is the neuron’s
response to a single presentation i of that stimulus direction:

Rθ = [Rθi . . . Rθn ], (4)

where n is ten, since we have ten repetitions per direction. Because
we aim to compare a single noise correlation value per neuronal
pair, we took the mean noise correlation over all eight stimulus
directions θ = 0◦–315◦ (with steps of 45◦):

ρnoise
i,j =

∑315
θ= 0 corr(Ri,θ, Rj,θ)

8
(5)

The noise correlation is therefore an index of the mean shared
trial-by-trial variability over all stimulus directions.

DECODING SAMPLE BOOTSTRAPPING
All decoding algorithms (described in detail in the following
paragraphs) were tested on their ability to recover the presented
stimulus direction from the neuronal population activity dur-
ing single trials. To quantify their dependence on the number
of neurons included, we took random subsamples of neurons
(100 iterations) from each data set (ranging from 95 to 144 neu-
rons simultaneously recorded neurons) for all tested sample sizes
(1–90 neurons, each neuron was included only once). For each
random sample we trained the decoder on the activity of the
randomly included neurons for all 80 trials (8 directions, 10 repe-
titions) and subsequently decoded the presented direction of each
trial from the population activity of only these neurons. Since the
smallest data set consisted of 95 neurons, we ran our resampling
procedures up to a maximum population size of 90 neurons. We
performed these resamplings independently for each decoding
algorithm.

POPULATION VECTOR DECODING
To decode the presented stimulus direction during a given trial,
we used the population vector method (Georgopoulos et al.,
1986) as follows. For each trial, the activity of each neuron was
represented as a vector, where the angle (θ) represents the neu-
ron’s preferred direction and the magnitude (ρ) corresponds to
its activity level (dF/F0). A resultant population vector can then

be calculated by taking the circular mean over all neurons. When
the resultant angle was within 22.5 degrees of the actual stimulus
direction, it was counted as a “correct” decoding, in all other cases
it was marked as “incorrect.” After decoding all trials, the percent-
age correct decoded was then calculated over all trials, so it could
be plotted as in Figure 4.

TEMPLATE MATCHING ALGORITHM
One step up in complexity from the population vector is the
template matching algorithm (Lehky and Sejnowski, 1990; Zhang
et al., 1998; van Duuren et al., 2008, 2009). While in the popula-
tion vector method each neuron is represented only by a preferred
direction and its activity level, template matching compares the
population activity to response templates of different stimulus
types. These templates are generated by taking the mean activ-
ity across trials during the presentation of each stimulus direction
(θ) for each neuron, resulting in a “template population activ-
ity.” The similarity of this template (Rθ) to the actual population
activity (Rstim) is given by

�θ =
∑N

i = 1 Rstim
i · Rθ

i∥∥Rθ
∥∥ · ∥∥Rstim′ ∥∥ , (6)

where i indexes the N elements (neurons) of R, and · indicates
multiplication. The similarity index � is calculated for all eight
directions and the decoded output is determined by taking the
direction with the highest similarity to the population activity.

THE NON-SCALE SENSITIVE FANO FACTOR (rFANO)
The Fano factor provides an indication of the variability of neu-
ronal responses. Two-photon calcium imaging yields neuronal
responses that are given as dF/F0, where the relationship between
the actual spiking rate and the dF/F0 is approximately linear per
neuron, but varies over neurons (Kerr et al., 2005; Greenberg
et al., 2008). Compared to firing rates, neuronal dF/F0 responses
are therefore scaled by an arbitrary constant c by which both the
mean (μ) and standard deviation (σ) of its responses over the
entire recording are multiplied. The scaling sensitivity is described
by the following equation:

Fano = σ2 · c2

μ · c
(7)

Therefore, Fano factors calculated from calcium imaging data are
only accurate when c = 1, as scaling (of the firing rate) has a dis-
proportionally larger effect on the variance than the mean. For
this reason, raw Fano Factors from calcium imaging cannot be
simply translated to the Fano Factors of the raw firing rates. To
correctly calculate the variability of calcium transient data, the
variance and mean activity level per neuron must be normalized,
thereby removing the constant c from the equation. While it is
not possible to compute the raw Fano factors of the unknown fir-
ing rates, it is possible, however, to compute a Fano factor based
on relative changes in mean and variance across stimulus dimen-
sions. We therefore define the ratio Fano factor (rFano) as follows:
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rFano = σ 2
p /σ 2

np

μp/μnp
(8)

where μp and σ 2
p are the mean response and variance over trials

to the neuron’s preferred (P◦) and opposite (P◦ + 180◦) direc-
tion, and μnp and σ2

np are the mean response and variance to the
other six moving directions. This way, the mean and variance are
described as fractional increases in activity and variability from
non-preferred stimulus epochs to preferred stimulus epochs.
Because c2 appears in both variance terms and c appears in both
mean response terms, the rFano factor is no longer scale sensitive.

NORMALIZED TEMPLATE MATCHING
In an attempt to improve the performance of the template match-
ing algorithm, we performed a similar decoding operation, but
now on the z-scored rather than the raw dF/F0 activity values.
The new equation becomes

�θ =
∑N

i = 1 Zstim
i · Zθ

i∥∥Zθ
∥∥ · ∥∥Zstim′ ∥∥ , (9)

where Z is an index that describes a neuron’s dF/F0 response (R)
for any time point (i) as the number of standard deviations (σ )
from the mean dF/F0 calculated over the entire recording (Rall):

Zi =
(
Ri − Rall

)

σRall

(10)

Therefore a neuron that shows a high mean activation level (Rall),
but an even higher variability σRall (high Fano factor) will con-
tribute less to the template similarity than a neuron with a low
activation level and an even lower variability (low Fano factor).

BAYESIAN MAXIMUM-LIKELIHOOD (ML)
The final algorithm we used was a Bayesian decoder. Bayes’ rule is
given by

P
(
θ

∣∣ Apop
) = P

(
Apop

∣∣ θ
)

P(θ)

P
(
Apop

) , (11)

where P(θ), the prior, is the prior probability of having direc-
tion θ ; P(θ | Apop), the posterior, is the probability of this trial’s
population activity being caused by direction θ ; P(Apop | θ), the
likelihood, represents the probability that stimulus direction θ

will result in pattern Apop; and P(Apop) is the probability of acti-
vation pattern Apop, or model evidence—a normalization term.
It has been shown before that there is little difference in perfor-
mance between uniform and natural priors—at least for retinal
ganglion cells (Jacobs et al., 2009)—so for the following results we
assumed a uniform prior [P(θ) is equal for all directions] to sim-
plify computational procedures. Note that P(Apop) is identical for
all stimulus directions, since the term θ is not present. Therefore,
for a given direction θ , the posterior probability is proportional
to the likelihood.

The likelihood distribution for a certain direction, say θ = 90
degrees, for any neuron i was given by a Gaussian approximation

based on the mean (μ) and standard deviation (σ) of its response
to stimuli with that direction during training trials (Figure 2); in
our case, we included all 80 trials to determine the likelihood dis-
tributions. Note that these Gaussians are not tuning curves, but
rather an approximation of the dF/F0 response distribution for a
single stimulus direction. The posterior probability for that direc-
tion can then be extracted by taking the value of the Gaussian
likelihood distribution at the given neuronal activation level A.
The population posterior probability distribution for that direc-
tion can be calculated by taking the product over the posterior
probabilities for all n neurons:

P
(
θ

∣∣ Apop
) ∝

∏
n
i = 1P(θ | A)i (12)

Now the decoded direction can be read out by taking the
direction with the highest probability.

JACKKNIFING PROCEDURE
One question that can be addressed with these decoding algo-
rithms is whether certain properties of a neuronal response
correlate with decoding performance. We therefore performed a
bootstrapping procedure (1000 iterations) per recording to select
random groups of neurons (ranging in size from 2 to 15) from
the whole datasets of 95–144 neurons. Each bootstrap resam-
pling was followed by a jackknife procedure applied to all neurons

FIGURE 2 | Graphical representation of the Bayesian decoding scheme

shows the process for one example neuron i for a single stimulus

direction (90◦) in one test trial. The probability of responses to a 90◦
stimulus [P(Ai | θ = 90◦)] for this neuron is approximated by a Gaussian
distribution (blue curve) with a mean (μi , gray) and standard deviation (σi ,
black) equal to those estimated from training trials where this stimulus
direction was presented. For this example to-be-decoded test trial, the
neuron’s activation level (Ai, red) was close to the neuron’s mean response
to stimuli with a direction of 90 degrees; therefore the posterior probability
[P(θ = 90◦ | Ai), green] that the stimulus was 90 degrees is relatively high
based on only this neuron’s activation level and tuning. This procedure is
repeated for all stimulus directions and the posterior probabilities for all
neurons are multiplied. The stimulus direction with the highest probability
is subsequently chosen as the maximum-likelihood (ML) read out.
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in the randomly selected group to quantify the contribution of
these single neurons to the decoding algorithm’s performance.
A jackknifing procedure provides insight into the contribution
of a single neuron within a sample by taking away that neu-
ron from the rest of the sample and comparing the properties
(i.e., decoding performance) of the sample with and without this
neuron. This procedure can be repeated for each neuron in the
sample and yields a change in decoding performance per neu-
ron that can be compared to other properties of the neuron. For
example, jackknifing a certain neuron from a sample that has a
high OSI might result in a different change in decoding perfor-
mance than jackknifing a different neuron from the same sample
having a low OSI. This way, the impact of several neuronal prop-
erties on decoding performance can be assessed. We normalized
the decoding improvement effected by the jackknifed neuron for
the number of neurons in the sample by defining the decoding
improvement index Di as

Di = ND − (N − 1) D¬i (13)

where N is the sample size, D the decoding accuracy of the algo-
rithm using the entire cluster and D¬i is the accuracy using the
entire cluster except the jackknifed neuron (i). The decoding
improvement was then binned and averaged over all points per
bin from all 6 data sets (see Figure 6).

TUNING PROPERTY INTERDEPENDENCY
Three important factors that may influence how much informa-
tion on stimulus direction a neuron contributes to a neuronal
cluster are the neuron’s preferred orientation (PO), its signal cor-
relation (SC) and its noise correlation (NC) with other members
of the cluster. To further quantify if and how these proper-
ties show interdependencies, and vary with intersomatic distance
(ID) in the imaging plane, we performed a pairwise comparison
between neurons for these properties. For all neuronal pairs in all
sessions we computed the SC, NC, ID and angular difference in
preferred orientation (dPO). We then pooled data points from all
sessions and performed a regression analysis to test if there were
significant correlations between ID-SC, ID-NC, ID-dPO, SC-NC,
SC-dPO and NC-dPO. Two properties were judged to be signif-
icantly interdependent when the 99% confidence interval for the
regression slope did not overlap with 0. To determine the signif-
icance of a difference in slopes between dependent properties for
a given independent property (either ID or SC), we z-scored the
values of the dependent variable and performed another set of
linear regressions. Because of this normalization, we could now
quantitatively compare the relative slopes between ID-SC, ID-
NC and ID-dPO, and between SC-NC and SC-dPO by assessing
whether the 99% confidence intervals of these regression slopes
overlapped.

REMOVING BIASES IN TUNING PROPERTY INTERDEPENDENCY
As will be further elaborated in the Results section, it is pos-
sible that the previously described analysis shows significant
relationships between neuronal properties that depend on mean
differences in those properties between data sets, when in fact
these properties are not significantly related within data sets. To

control for such possible biases due to across-recording differ-
ences, we pooled all neuronal pairs into data bins for ID (0 to
200 with steps of 40 microns), SC (−0.7 to +0.7 with steps of
0.2) and NC (−0.175 to +0.275 with steps of 0.05). These bins
were chosen so that at least 90% of all neuronal pairs per data set
would be included in the analysis, with the number of points per
bin still sufficiently large for robust data analysis. We then com-
puted the minimal number of pairs for each bin for each calcium
imaging data set and used this number as the resample size for
a bootstrapping procedure (256, 305, and 84 pairs/bin/recording
for ID, SC, and NC respectively). For each bootstrapping iteration
(n = 1000), all bins received this number of randomly selected
data points (neuronal pairs) from each data set, so that no across-
recording differences in mean neuronal property values could
lead to biases in the pooled resampled data set. We then per-
formed a linear regression on each randomly sampled set and
computed the 99% confidence intervals of the regression slopes
to determine whether there was a significant correlation between
two neuronal properties.

RESULTS
THE CLASSICAL POPULATION VECTOR FAILS AT DECODING MOVING
DIRECTIONS
One of the simplest algorithms to decode neuronal popula-
tion activity is the population vector method (see Methods;
Georgopoulos et al., 1986). The only determinants of the con-
tribution of a neuron’s activity to the population vector are its
preferred stimulus property (i.e., preferred direction) and activity
level. Stimulus direction was decoded by calculating the resul-
tant vector over all neurons (Figure 3). The performance of the
population vector (Figure 4; green line), as measured by the per-
centage of trials that was decoded correctly, was above chance
level, but this decoder clearly performed much worse than more
complex algorithms. Moreover, the performance rose only slowly
with the number of neurons in the sample, such that it would take
a very large sample for its performance to catch up with the other
algorithms.

TEMPLATE MATCHING DECODING REVEALS A STRONG SENSITIVITY
TO HIGHLY ACTIVE, HIGHLY VARIABLE NEURONS
Secondly, we tested the decoding performance of a template
matching algorithm (Lehky and Sejnowski, 1990; Zhang et al.,
1998; van Duuren et al., 2008, 2009). Its performance (Figure 4;
purple line) was better than the population vector method, but it
suffered from a significant bias, as neurons with higher response
amplitudes dominated the algorithm. If the reliability of a neuron
would scale linearly with its response amplitude to the stimu-
lus (dF/F0), such a weighting might be beneficial, because the
inherent bias incurred by high response amplitudes would favor
reliable neurons. To examine whether there is indeed a bias and
whether this bias poses a problem for the algorithm, a calculation
of the Fano factor of the neuronal responses is in order (Fano,
1947).

The Fano factor is an index of variability and is defined as
σ2/μ (the variance of the response divided by the mean). With
neuronal spiking traces, simply pooling all spikes per neuron in
time bins allows the calculation of a Fano factor per neuron from
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FIGURE 3 | Example decoding trial where the population vector

algorithm fails to decode the presented stimulus direction. Each blue
circle in the polar plot is a single neuron where its preferred direction is
represented by θ (angle) and its activation level (dF/F0) is represented by ρ

(magnitude). The population vector algorithm’s output is calculated by
taking the circular mean over all vectors (neurons). Since most neurons are
sensitive to two moving directions that are separated by 180◦, calculation
of the resultant vector leads to mutual cancellation of the two peaks at 90◦
and 270◦, therefore resulting in an incorrectly decoded direction of 0◦.

the mean spiking rates and variance in those bins. However, Fano
factors calculated from the raw dF/F0 trace of calcium imaging
data are biased. Although there is a linear relationship between
dF/F0 and spiking activity for rates commonly observed in pyra-
midal cells (Kerr et al., 2005), the percentage increase in dF/F0

due to a single action potential can differ from one neuron to the
next. This means that the Fano factor has a scale sensitivity that
needs to be corrected per individual neuron. We therefore devel-
oped a non-scale-sensitive ratio Fano factor (rFano) instead (see
Methods).

The mean rFano calculated over all 6 recordings was 1.39 with
a standard deviation of 0.20 (see Figure 5), which is close to the
Fano Factor of 1 for a theoretical Poisson process and in the range
of the typically observed Fano Factors for experimental spiking
data (Dayan and Abbott, 2001). This value is higher than 1, which
implies that neurons with higher activation levels actually have
lower reliability on average. This would suggest that the tem-
plate matching algorithm is indeed prone to overrepresentation
of highly active and relatively variable neurons.

The dominance of the template matching algorithm by neu-
rons with high activity levels can be accommodated by taking the
mean z-score normalized activation level across trials for all neu-
rons instead of their actual activity level (see Methods). Consider
the hypothetical case that two neurons are used for decoding,
where one neuron is highly active and has a high Fano factor,
while the other is less active, but has a lower Fano factor. The

FIGURE 4 | Mean bootstrapped performance over all recordings

(N = 6) reveals superior performance of the Bayesian maximum-

likelihood (ML) direction decoding algorithm. Bootstrapping was
performed with 100 random resamplings with sizes ranging from 1 to 90
neurons. Dashed lines indicate standard error of the mean bootstrapped
performance. A Three-Way ANOVA (algorithm, recording, sample size)
revealed significant main effects of all three variables (p < 10−20). Post-hoc
t-tests with Tukey-Kramer correction for multiple comparisons showed
significant differences between all combinations of the 4 types of
algorithms (p < 10−10). In descending order of performance, the tested
algorithms are Bayesian ML (blue), Normalized Template Matching (red),
Non-normalized Template Matching (purple), and Population Vector (green).

former neuron’s mean stimulus-driven activation level over the
entire recording is 1.0 dF/F0 with a standard deviation of 1.0
dF/F0 and its response to a certain stimulus is 2.0 dF/F0 on aver-
age, while the latter neuron’s mean activation level is 0.5 dF/F0

with a standard deviation of 0.25 and this neuron’s response to
the same stimulus is 1.5 dF/F0 on average. In this case, both neu-
rons’ specific stimulus-responses are 1.0 dF/F0 higher than their
average response, so the original template matching algorithm
will weigh the activation levels of these neurons equally when
determining the probability of this stimulus direction. However,
the former, variable neuron’s response to the stimulus would on
average be one standard deviation away from its mean, while the
latter, reliable neuron’s response to the stimulus is four standard
deviations away from the mean. The more reliable neuron there-
fore provides much more information about stimulus identity
than the former neuron. Using z-scored activation levels there-
fore allows the template matching algorithm to take into account
the reliability of the neurons involved. The performance of the
normalized template matching algorithm (Figure 4; red line) is
indeed clearly superior to the non-normalized template matching
algorithm.

BAYESIAN MAXIMUM-LIKELIHOOD (ML) DECODING WITH
INTERMEDIATE TO LARGE SAMPLE SIZES SHOWS NEAR-PERFECT
DIRECTION DECODING
For further analysis of tuning property dependencies we created
a Bayesian maximum-likelihood (ML) decoder. In contrast to the
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FIGURE 5 | Main figure shows the mean and standard deviation per

recording session (n = 6 animals) in ratio variance (y-axis) and ratio

mean (x-axis) activation level differences between time bins

corresponding to the presentation of the neuron’s preferred stimuli

and non-preferred stimuli. The mean population ratio-Fano (rFano) is above
the dashed diagonal and therefore higher than 1, indicating that on average
the variance of a neuron increases more than its mean response when
presented with its preferred stimulus. The six colors correspond to the
different recordings. The upper right inset shows one example session
where each single neuron is represented by a single point. The black cross
shows the resultant mean ± SD for that session.

population vector and template matching algorithms we previ-
ously described, the ML decoder calculates posterior stimulus
probabilities on a single neuron basis and then takes the prod-
uct over probabilities contributed by all neurons per stimulus.
Because the probabilities are computed on a single-neuron level
and thereafter aggregated into population posterior probabilities,
the ML decoder inherently corrects for differences in response
reliability between neurons. The Bayesian ML decoder indeed
easily outperforms all other decoding algorithms (Figure 4; blue
line). We therefore performed all following decoding analyses
with the ML decoder.

SINGLE NEURON CONTRIBUTIONS TO DECODING ACCURACY DEPEND
CRITICALLY ON ORIENTATION SELECTIVITY INDEX, SIGNAL
CORRELATIONS AND NOISE CORRELATIONS AT LARGER NEURONAL
SAMPLE SIZES
One question that can be addressed with a decoding algorithm is
whether certain properties of a neuronal response have any effect
on decoding performance. For instance, an intuitive hypothesis
holds that decoding performance depends on a neuron’s orien-
tation selectivity index (OSI; see Methods). To investigate this
further, a bootstrapping procedure with 1000 iterations was per-
formed to select random clusters of neurons (2–15) and was
followed by a jackknife procedure on all neurons per cluster
to quantify the contribution of single neurons to the decoder’s
performance. We calculated each neuron’s contribution to the
decoding accuracy as an index normalized for sample size, allow-
ing us to compare the effects over different sample sizes [see

Equation (13); Figure 6A]. The results show that at small sample
sizes a neuron’s OSI has little effect on the decoding perfor-
mance. However, at larger sample sizes, the addition of a neuron
with a high OSI results in a larger improvement of the decoder’s
accuracy.

However, the OSI captures only a small part of the way a neu-
ron is tuned to properties of visual stimuli. To more fully capture
the similarity in visual responses between neurons we also cal-
culated the mean pairwise signal and noise correlations between
the jackknifed neuron and the other members of the sample.
The results of this analysis show a clear dependence of decoding
performance on the jackknifed neuron’s mean signal correla-
tion with the sample, where negative values are associated with
higher decoding performance (Figure 6B). Similarly to the pair-
wise signal correlations, strong positive noise correlations had a
deleterious effect on decoding performance (Figure 6C). For both
the signal and noise correlations, the effect was stronger for larger
clusters, indicating that response heterogeneity is important for
efficient coding by large assemblies.

ANALYSIS OF INTERDEPENDENCE BETWEEN RESPONSE PROPERTIES
REVEALS A DISSOCIATION BETWEEN STIMULUS TUNING PROPERTIES
AND RANDOM FLUCTUATIONS
The previous paragraph described the dependence of decoding
accuracy on similarity in stimulus tuning properties (signal cor-
relations and OSI) and random fluctuations (noise correlations).
While these neuronal response properties may exert independent
effects, it is also possible that they are strongly interdependent
and might in reality have a single origin that is partly reflected
in all response similarity indices. Because the spatial distance
between cortical somata strongly influences the probability that
two neurons are interconnected (Gilbert and Wiesel, 1983; Nicoll
and Blakemore, 1993), we first investigated whether neuronal
response properties depend on intersomatic distance. We there-
fore analyzed whether the angular difference in preferred orien-
tation (dPO), signal correlation (SC) or noise correlation (NC)
depend on the intersomatic distance (ID) by pooling all neuronal
pairs from all recordings and performing a linear regression to
test for significant interdependence (Figure 7).

As reported before in other animal species, such as cat (Ch’ng
and Reid, 2010) and macaque (Smith and Kohn, 2008), we found
that noise correlations significantly vary with intersomatic dis-
tance (Figure 7B; regression slope �= 0, p < 0.01), where pairs
of neurons that are closer together show higher noise correla-
tions. Noise correlations are assumed to reflect common input
between neurons (Nienborg and Cumming, 2010), so one could
hypothesize that if noise correlations are high, there should also
be high similarities in the tuning properties of neurons. However,
the spatial dependencies of preferred orientation difference and
signal correlations were non-significant (Figures 7A,C), indicat-
ing that there might be a dissociation in origin between stimulus
tuning properties and random fluctuations. It is important to
note here that mice do not possess orientation tuning columns
and that the spatial scale investigated is <400 microns, which
is much smaller than for example the scale on which Smith
and Kohn (2008) found a spatial dependency of correlations in
macaque V1.
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FIGURE 6 | The contribution of a single neuron to the decoding

performance of a Bayesian ML algorithm depends on the neuron’s

orientation selectivity index (OSI) and its mean correlation with

other neurons. (A–C) Graphs were created by using a bootstrapping
procedure for random cluster selection and a subsequent jackknifing
procedure to quantify the impact of a single neuron’s addition to the
cluster. Contiguous contour lines are plotted in white for increased
readability. (A) The influence of a neuron’s OSI on the decoding
performance of its cluster is stronger for larger clusters. Neurons with a
higher OSI improve the algorithm’s performance more. (B) The addition

of a neuron that has a negative mean signal correlation (ρ ≈ −0.2 −0.1
for N = 10–15) with the rest of its cluster leads to a larger increase in
decoding performance. (C) Slightly negative to low noise correlations
(ρ ≈ −0.3 0 for N = 10–15) improve decoding performance; as with
(A,B) this effect is stronger for larger sample sizes. (D) Population
distributions pooled over sessions. Top panel; population distribution of
orientation selectivity index (OSI), Middle panel; noise correlation,
Bottom panel; signal correlation. The means for the distributions of
noise and signal correlations do not correspond to the values that lead
to maximum decoding improvement.

We next investigated the dependence of dPO on SC and NC
to see if the similarity in stimulus tuning properties is corre-
lated with the strength of random fluctuations (Figures 7E,F).
As expected, we found that dPO is dependent on signal correla-
tions (Figure 7E; regression slope �= 0, p < 0.01). However, dPO
did not show any dependence on noise correlations (Figure 7F),
which—in line with the distance dependence analysis—supports
the conclusion that input fluctuations are dissociated from the
inputs that determine a neuron’s preferred orientation. The anal-
ysis of NC/SC dependence (Figure 7D regression slope �= 0, p <

0.01) verified previously published observations that NCs are

positively correlated with SCs (e.g., Lee et al., 1998; Kohn and
Smith, 2005; Cohen and Maunsell, 2009), suggesting that this
dissociation is not complete.

To check whether the suggested dissociation still holds
under more stringent statistical analysis, we tested whether the
confidence intervals for the regression slopes were significantly
different. After z-scoring the dPO, NC, and SC values in
order to quantitatively compare the slopes for these proper-
ties, we found that the ID-dependent slopes of NC-dPO (p <

0.01), but not of SC-NC or SC-dPO were significantly differ-
ent. Following the same approach, we also compared the signal
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FIGURE 7 | Analysis of interdependence between response properties

suggests dissociation in anatomical substrates of noise correlations

and preferred orientation. (A–F) Neuronal property interdependence
analyses showing means per bin (dark blue line) with standard error (blue
shaded area). Linear regression analyses were performed on the raw,
unbinned data to check for significant correlations between properties. If
the linear regression analysis indicated that the slope was significantly
different from 0 with an α (significance level) of 0.01, the regression line
(dark red line) was also plotted. (A–C) Signal correlation, noise correlation,
and difference in preferred orientation (dPO) as a function of intersomatic
distance (ID). Noise correlation, but not signal correlation or dPO, shows
distance dependence. Subsequent comparison of the confidence intervals
of regression slopes revealed a significant difference in ID-dependent
slopes between NC-dPO (p < 0.01), but not SC-NC or SC-dPO. This
suggests a different anatomical substrate of noise correlations and
preferred stimulus direction. (D) Noise correlation is positively correlated
with signal correlation (which entails multiple tuning properties), indicating
that there is not a complete dissociation for all tuning properties. (E) dPO is
negatively correlated with signal correlation and has a slope significantly
different from NC (D) (p < 0.01), but (F) shows no dependence on noise
correlation, providing further evidence for a dissociation of similarity in
preferred orientation from pairwise noise correlation. ∗p < 0.01.

correlation-dependent slopes of dPO and NC, and found them to
be significantly different (p < 0.01). Taken together, these results
indicate that a neuron’s preferred orientation is dissociated from
the similarity in random fluctuations in spiking activity. It also
indicates that there are stimulus tuning aspects (such as band-
width, peak-trough ratio, etc.) captured by signal correlations
that are different from the neuron’s preferred orientation, and
that these aspects might have anatomical substrates similar to
those of noise correlations (Figure 7).

When comparing property-dependent differences across ses-
sions such as described in the previous paragraphs, a corrective
measure must be employed to ensure that these significant inter-
property dependencies cannot be explained by across-session
differences. Suppose that we compare two hypothetical record-
ings where the mean noise correlations are higher for recording
1 than recording 2, and the field of view also differs between
recordings. In this case, recording 1 has a field-of-view resulting
in a mean intersomatic distance (ID) of 100 with a maximum

ID of 200 microns and the other recording has a mean ID of
150 with a maximum ID of 300 microns. Even if there were no
interdependence between noise correlation and intersomatic dis-
tance, a non-debiased analysis could detect a correlation, since all
neuronal pairs with IDs more than 200 microns will come from
session 2, which has a lower mean noise correlation. A regres-
sion analysis on the pooled neuronal pairs could then show a
significant negative correlation where there is none. One way to
correct for across-recording differences in mean or variance is to
z-score the values per session and then pool the z-scored data sets.
However, such a z-scoring approach does not correct for all biases.
Using the same hypothetical example recordings as described
above, z-scoring the intersomatic distance (ID) will create a bias
rather than correct for it, because it would equate neurons with
an ID of 100 in recording 1 with an ID of 150 in recording 2,
since they are both equal to the recording-mean. To control for
possible biases due to across-recording differences, we performed
a debiased property interdependence analysis that takes a fixed
and equal number of neuronal pairs from all recordings for sev-
eral data bins (see Methods). The debiased analysis confirmed the
results we obtained from the non-debiased regression analyses;
ID-NC, SC-NC, SC-dPO showed significant linear correlations
(p < 0.01), while ID-SC, ID-dPO, and NC-dPO did not. The
neuronal property interdependencies we found are therefore not
due to across-recording differences.

DISCUSSION
EXPLAINING THE WEAK PERFORMANCE OF THE POPULATION VECTOR
METHOD
The population vector exhibits the weakest performance of the
tested algorithms, because it relies on two important assumptions
that are violated. First, the population vector method assumes
a uniform distribution of preferred directions over the encoded
dimension. Clearly, decoding a stimulus direction with a sample
size of one neuron will not yield a uniform distribution of pre-
ferred directions. This results in a decoded direction that is biased
to the direction that is overrepresented by random resampling
from the entire population. Moreover, neurons’ preferred direc-
tions are not uniformly distributed in the visual cortex, but have a
bias toward overrepresentation of cardinal directions (Kreile et al.,
2011).

The second violated assumption is that each neuron has a
single preferred direction. In V1 most neurons are selective for
an axis of orientation (e.g., responding to both upward moving
and downward moving) rather than one specific direction (e.g.,
responding to only upward moving), resulting in a tuning curve
with two peaks rather than one (see Figure 3 for an example
trial). When the stimulus-driven population activity is divided
in two peaks that are separated by 180 degrees, taking a circu-
lar mean over the whole population will reduce the size of the
signal that is extracted. This reduction takes place because two
vectors with opposite directions will result in an average vector
that has a magnitude equal to the magnitude in the preferred
direction minus the magnitude in the opposite direction. When
the population responses in the preferred and opposite direction
have similar strengths, the resultant vector has a small magni-
tude and the decoded direction is especially prone to random
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imbalances in activation (noise). In essence, the bimodal nature
of orientation tuning curves leads to a large decrease in signal-
to-noise ratio (SNR) when decoding directions with a popula-
tion vector. Therefore, although population vector decoding of
orientations (Vogels, 1990) and of directions with only direction-
selective and no orientation-selective neurons work well (Seung
and Sompolinsky, 1993), direction decoding based on all (mixed)
neurons shows very low accuracy. Since fixing or avoiding these
two violations would require significant alteration of the popu-
lation vector algorithm, we conclude that the classical population
vector is not suitable for decoding visual stimulus directions using
populations of V1 neurons.

THE CRITICAL DEPENDENCY ON INPUT RELIABILITY SUGGESTS A
NEURAL MECHANISM FOR VARIABILITY NORMALIZATION
The template matching (TM) algorithm—which does not assume
any particular shape of tuning curves—performed much better
than the population vector method. However, our results showed
that the TM decoder is highly sensitive to dominance by unre-
liable, highly active neurons. It has been previously reported that
neuronal firing rate variability increases more than the mean spik-
ing rate; i.e., neuronal Fano factors are usually >1.0 (Tolhurst
et al., 1981; Baddeley et al., 1997; Dayan and Abbott, 2001). It has
been shown that such codes could serve to maximize the spike-
count entropy, and thereby the amount of information coded
by neurons (Baddeley et al., 1997). However, this interpretation
becomes problematic considering that the neuronal recordings in
the previously mentioned studies were performed using extra-
cellular microelectrodes, which are notoriously biased toward
detecting only the most highly active neurons (Olshausen and
Field, 1997; Wohrer et al., 2013). Because Fano factors >1.0
have a disproportionally large effect on highly active neurons,
the increase in informational entropy might come at the cost of
increased decoding complexity due to the discrepancy in variabil-
ity over different neurons.

This would entail that the previously mentioned analyses
of interactions between response variability and informational
entropy (Tolhurst et al., 1981; Baddeley et al., 1997; Dayan and
Abbott, 2001) hold for only a small subset of the entire popula-
tion of neurons. The results presented in the current paper are
based on two-photon calcium imaging; a non-biased recording
technique. Our analyses confirm the previous observations that
neuronal Fano factors are >1.0 for highly-active, but also for less
active neurons. However, our current analyses also show that nor-
malizing neuronal data by Z-scoring improves the decoder’s accu-
racy tremendously. While this operation does not negate response
non-stationarity, it does account for differences in spiking rates
and Fano factors. This stimulus-invariant response normaliza-
tion is somewhat reminiscent of the more general principle of
population divisive normalization that has already been used to
explain a host of other neuronal response properties, such as
contrast-invariant neuronal responsiveness, attentional modula-
tion, stimulus adaptation and multi-areal time-dependent atten-
tional progression effects (Lee and Maunsell, 2009; Reynolds
and Heeger, 2009; Ringach, 2010; Montijn et al., 2012; Benucci
et al., 2013). Possibly, the stimulus-invariant variability normal-
ization we applied to enhance the template matching algorithm’s

performance represents a neural mechanism enabling divisive
normalization at a neuronal population scale.

One way variability normalization might be neurally imple-
mented is through a simple Hebbian plasticity rule, if neurons
with a high variance in firing rates also produce unreliable spike
timings. The hypothesis holds that such neurons are presynap-
tic to neurons in higher visual areas and that their input strength
inversely correlates with their firing-rate variability. Given the
observation that synaptic plasticity is strongly dependent on the
exact timing of spikes, as in spike-timing dependent plasticity
(STDP) (Bi and Poo, 1998), this interpretation makes two testable
predictions: (1) neurons with high variances in stimulus-driven
spike rates have high variances in spike timing; and (2) the synap-
tic strength between orientation-tuned neurons and their targets
depends on the spike rate reliability over trials of the presynaptic
neurons.

BAYESIAN MAXIMUM-LIKELIHOOD DECODER SHOWS ROBUST
PERFORMANCE
The Bayesian maximum-likelihood (ML) decoder—with its
assumption of Gaussian response distributions within stimu-
lus types (Figure 2)—performs even better than the template
matching algorithm, even though Gaussian distributions are
often poor approximations of neuronal response distributions.
It would seem that in our case the exact shape of the response
distribution of any neuron is less important than the reliabil-
ity of its response. The Bayesian ML decoder also shows robust
performance despite another violated assumption. In our case,
the ML decoder assumes statistical independence between neu-
rons, because of its product-rule transformation from individual
posterior probabilities per neuron to a population posterior prob-
ability. Even though we have shown that inter-neuronal noise cor-
relations are non-zero, the decoder algorithm shows an accuracy
higher than that of all other tested algorithms, and reaches >90%
correct with a fairly small sample size (>28 neurons).

IN LARGER POPULATIONS NARROWLY TUNED NEURONS ENCODE
MORE INFORMATION THAN BROADLY TUNED NEURONS
Results from jackknifing single neurons from a larger cluster
show that orientation selectivity (OSI), signal correlations and
noise correlations can be important factors influencing decod-
ing performance. Orientation selectivity has a strong influence
on a single neuron’s information contribution in large clusters,
but has hardly any relation to the contribution in small clusters.
This observation can be related to the idea that sharply tuned
neurons would contribute more information than broadly tuned
neurons if the population size is sufficiently large to offer a com-
plete coverage of the stimulus dimension (Hinton et al., 1986;
Seung and Sompolinsky, 1993; Schoups et al., 2001; Kang et al.,
2004; Montemurro and Panzeri, 2006). Within this framework,
the relative unimportance of OSI at small sample sizes can be
explained by the trade-off between orientation selectivity and
having a tuning curve that encompasses a high proportion of
the entire stimulus dimension ([0–360] degrees). In the extreme
case of a sample size of 1 neuron, a highly selective neuron that
responds to only 1 stimulus direction out of 8 will provide much
information about 1/8th of all stimuli, but leaves the decoder to
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randomly guess in all other cases, while a more broadly tuned
neuron would allow the decoder to make educated guesses in all
8 cases. With larger sample sizes and highly selective neurons, the
chance decreases of having gaps in the representation of stimu-
lus space, while these cells would still offer the benefits of high
selectivity.

The idea that narrowing a neuron’s tuning curve often
increases its encoded information has been challenged more
recently, but no definitive conclusions have yet been reached. For
one, a computational study comparing two models for orienta-
tion selectivity that either included or excluded cortical sharp-
ening of tuning curves reported that the amount of information
coded by neurons is strongly dependent on the amount and struc-
ture of noise covariance (Seriès et al., 2004). While its results were
striking, an important confound was that the output of the model
was constrained to produce identical neuronal tuning curves. In
essence, the study looked at the effect of cortical tuning curve
sharpening, given the same output tuning curve of cortical neu-
rons before and after sharpening, by changing the input tuning
curves (LGN afferents). However, a more appropriate comparison
would have been the comparison of coded information between
pre- and post-sharpened tuning curves of cortical neurons, given
the same LGN afferent tuning curves.

Another consideration regarding the optimal shape of tun-
ing curves is that the stimulus information relies solely on the
Fourier amplitude spectrum of the orientation tuning curve and
not necessarily on other tuning curve properties that give a lower-
order approximation for this Fourier-space tuning curve, such as
bandwidth (Ringach, 2010). This would suggest that the narrow-
vs.-wide debate, including some seemingly contradictory results
regarding changes in bandwidth (e.g., Yang and Maunsell, 2004;
Goltstein et al., 2013), might simply result from looking at param-
eters that describe tuning curves in a way that does not correctly
capture the properties that are most important to their infor-
mation coding potential. Fully capturing a neuron’s information
coding potential in a single—or even a handful of—tuning curve
parameters might very well be impossible.

Perhaps even more importantly, the shape of neuron’s tuning
curve that allows maximum information coding potential is heav-
ily dependent on the distribution of tuning curves within its pop-
ulation, and tuning curves within sensory cortical populations are
very heterogeneous (Wohrer et al., 2013). Computational studies
that look into how tuning curve properties influence the maxi-
mum amount of encoded information are important to further
our understanding of stimulus coding in the visual system, but
their often relatively homogeneous population of neuronal tun-
ing curves and sometimes arbitrary parameter sets mean that
one should be cautious in applying their theoretical findings too
readily as a realistic model of sensory processing.

An important caveat to our observation that high OSI leads
to higher decoding accuracy in large samples is that the less
orientation-selective neurons we measured could have a lower
signal-to-noise ratio (SNR), which would thereby convey a low
orientation selectivity, as well as the measured, but not nec-
essarily neurally coded information. To draw definitive con-
clusions, one would have to correct for neuronal SNR while
analyzing the dependence of decoding accuracy on orientation

selectivity, which could be an interesting subject for future valida-
tive research. Despite this caveat, our results are consistent with
the more classical assumption that at least under our experimen-
tal conditions, greater orientation selectivity increases the amount
of encoded information for larger populations of neurons.

UNCORRELATED, HETEROGENEOUS NEURONAL RESPONSES
INCREASE THE AMOUNT OF ENCODED INFORMATION
Our results also show that the effect of signal- and noise correla-
tions on population coding is sample-size dependent. Moreover,
neurons that are added to a population increase the popula-
tion information coding most when their response is dissimilar
from the extant population (negative signal correlations) and they
are uncorrelated (noise correlations near zero). Heterogeneity
of a population becomes more important as the neurons’ rep-
resentation of stimulus space gets crowded, because there are
more neurons to represent the same space. This also means
that for decoders that do not take into account the entire
covariance structure of their input population, noise correla-
tions are detrimental. To further validate if the negative effect
of noise correlations on decoding we present in this paper is
truly detrimental or could be remedied by taking into account
the neuronal correlation structure, it would be an option to cre-
ate a decoder algorithm that takes into account this covariance
matrix. However, accurately estimating the covariance matrix of
a group of 90 neurons that respond to 8 different stimulus types
would require the fitting of eight 90-dimensional multivariate
Gaussians. Since the experiments we performed have only 10
repetitions per stimulus type, this would most probably result
in poor fits of the covariance matrix. If neurons can indeed
take into account the entire covariance matrix of their synap-
tic inputs (which can consist of up to 5 · 107 covariance values
Huttenlocher, 1979), this would mean that although our results
are strongly indicative of detrimental effects of noise correla-
tions on population coding in V1, they do not offer conclusive
evidence.

While extracting a proper covariance matrix from experimen-
tal data on populations of neurons is extremely difficult, several
modeling studies have addressed the effects of correlation on pop-
ulation coding. One approach would be to create a neuronal
network model and fit the model’s parameters to experimen-
tally measured data. For example, Pillow et al. (2008) showed
that a computational model can decode 20% more informa-
tion from experimentally measured retinal ganglion cell activity
when it does not assume independence of the cells’ responses.
In general, when the signal correlation and noise correlation of
a neuronal pair have opposite signs (i.e., negative vs. positive cor-
relations); encoding fidelity can be improved (Averbeck et al.,
2006). However, since high signal correlations between pairs of
neurons tend to often also show high noise correlations (Lee et al.,
1998), the theoretical possibility of increased performance from
correlations might in practice not apply to neural systems in the
cortex.

To settle this debate more definitively, two matters will have
to be addressed. First, future research would have to determine
whether neuronal pairwise noise correlations in V1 are station-
ary up to a point where synaptic plasticity could keep up with
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changes in the covariance matrix. If noise correlations are indeed
adequately stable over time, a sufficiently large number of func-
tionally connected neurons would then have to be measured over
a relatively long time period, so that enough neurophysiological
measurements can be collected to accurately estimate the covari-
ance matrix of that group of neurons. The actual action potential
firing of these neurons would then have to be compared to the
theoretically predicted pattern when the neurons are decorrelat-
ing their synaptic inputs. Suffice it to say, this is unfortunately
not possible with the currently used data set, but hopefully tech-
nical advances in ensemble recordings will make these kinds of
measurement possible in the near future.

NOISE CORRELATIONS AND STIMULUS TUNING PROPERTIES MAY
HAVE DIFFERENT ANATOMICAL SUBSTRATES
Noise correlations, but not signal correlations and angular pre-
ferred orientation difference, depend on intersomatic distance
(Figure 7). This could indicate that noise correlations reflect com-
mon input (Nienborg and Cumming, 2010), in the sense that
they are indicative of the temporal fluctuations in global synaptic
barrages on their many dendritic arbors, but that tuning prop-
erties arise from mechanisms unrelated to overall fluctuations in
spiking activity. In other words, robust visual response proper-
ties may depend on relatively reliable connections, while noise
correlations are more related to non-specific global barrages con-
veyed by locally correlated inputs that become uncorrelated across
anatomical space.

This last interpretation is in line with other research show-
ing that noise correlations can be strongly influenced by more
general modulatory processes, such as anesthesia, attention and
arousal (Greenberg et al., 2008; Mitchell et al., 2009; Pennartz
et al., 2013). It is also supported by the observation that layer 2/3
and layer 5 neurons display relatively high spiking correlations
(mean around 0.1), while populations within L4 show correla-
tions around 0.01; almost an order of magnitude smaller (Smith
et al., 2012). As has been suggested before, horizontal cortico-
cortical connections may be necessary for noise correlations (Ts’o
et al., 1986; Smith et al., 2012). Such recurrent circuitry is present
in superficial and deep layers, but probably not in layer 4 (Gilbert
and Wiesel, 1983; Douglas and Martin, 2004), which may explain
the difference in magnitude of noise correlations and provides
further evidence that noise correlations might indeed have spe-
cific anatomical substrates. Moreover, it has been reported that
L2/3 orientation tuned neurons in mouse V1 receive relatively
more inputs from neurons that are themselves tuned to that ori-
entation (Ko et al., 2011), which makes it plausible that stimulus
tuning depends on specific synaptic connections.

The idea that stimulus tuning and noise correlations are based
on different anatomical configurations also explains why we
found a dissociation between the spatial dependence of noise
correlations on the one hand, and the non-spatial dependence
of dPO and signal correlations on the other. A testable predic-
tion that follows from our hypothesis is that synaptic connec-
tions between similarly-tuned neurons should be stronger or
more reliable than connections between differently-tuned neu-
rons; meaning that the EPSPs they elicit have higher amplitudes or
should occur in closer temporal proximity to the EPSPs of other

similarly-tuned synapses connected to the same neuron, which
would lead to more efficacious temporal summation. Because
those synapses might also be originating from layer 4 neurons,
rigorously testing the hypothesis would require simultaneous
patching of layer 4 and layer 2/3 neurons in vivo.

To conclude, we have provided in-depth descriptions of sev-
eral analysis methods that can be used to investigate population
coding, including several of their drawbacks and advantages, and
we have suggested how to avoid problems and biases conveyed
by some of these methods, as applied to V1 data. The analyses
reveal the importance of input reliability for reading population
codes, suggest a role for response heterogeneity and decorre-
lation in population coding, and show there is a difference in
anatomical intersomatic distance dependence between pairwise
noise correlations and differences in preferred orientation. We
have interpreted these results within a neurophysiological frame-
work and presented testable predictions that follow from the
hypotheses that Hebbian plasticity might lead to spiking vari-
ability normalization, and that noise correlations and properties
underlying directional tuning arise from segregated anatomical
substrates.
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