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The existence of an endophenotype of autism spectrum condition (ASC) has been recently
suggested by several commentators. It can be estimated by finding differences between
controls and people with ASC that are also present when comparing controls and the
unaffected siblings of ASC individuals. In this work, we used a multivariate methodology
applied on magnetic resonance images to look for such differences. The proposed
procedure consists of combining a searchlight approach and a support vector machine
classifier to identify the differences between three groups of participants in pairwise
comparisons: controls, people with ASC and their unaffected siblings. Then we compared
those differences selecting spatially collocated as candidate endophenotypes of ASC.
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1. INTRODUCTION
Autism Spectrum Condition (ASC) is a lifelong neurodevel-
opmental condition affecting approximately 1% of population
(Baron-Cohen et al., 2009), that causes impairments of social
communication alongside unusually repetitive behavior, narrow
interests and resistance to change. Despite research efforts carried
out over last few years, ASC is one of the more difficult condi-
tions to characterize (Brambilla et al., 2003) and its aetiology is
still largely unknown.

Historically postmortem studies have revealed neuroanatomic
abnormalities (Bailey et al., 1998) associated with ASC that can
also be analyzed by means of in vivo neuroimaging techniques.
Neuroimaging technology is advancing at an impressive pace and
is having a huge impact in both research and clinical environ-
ments. Magnetic Resonance Imaging (MRI) is a medical imaging
technology that allows detailed visualization of the internal struc-
tures of the body. It has been widely used in the neurosciences,
including in many studies of ASC. For example, in Sears et al.
(1999) and Courchesne et al. (2001), the authors compared the
size of several brain regions in controls and ASC participants from
structural MRI. A longitudinal study focusing on the volume of
the brainstem of controls and ASC participants was presented in
Jou et al. (2013). Additionally, in Hashimoto et al. (1992) the
brain volume and head circumference of participants with ASC
were examined and compared with control individuals.

Recent studies suggest the existence of an endophenotype [a
heritable biomarker associated with a pathology that individuals
may have regardless of whether they have developed the pathol-
ogy or not (Gottesman and Gould, 2003)] of ASC (Nydn et al.,
2011; Spencer et al., 2012) identifiable through the analysis of
unaffected relatives, typically parents or siblings of autistic indi-
viduals. In fact, according to (Constantino et al., 2010), siblings

of individuals with ASC are at increased risk of developing the
condition, with a prevalence estimated to be >20 times that of
the general population.

Recently developed machine learning techniques provide an
opportunity to analyse the differences between unaffected siblings
of autistic individuals and controls with no family history of ASC.
Differences co-located with phenotypic differences identified in
comparisons of controls and ASC participants are candidate
endophenotypes of ASC and may be attributed to effects at the
level of the genome or epigenome that confer familial risk for the
condition.

The analysis techniques used in neuroimaging are usually
divided into two groups. On the one hand, univariate tech-
niques perform a statistical analysis at each voxel separately and
do not take into account relationships amongst distant voxels,
although statistical inference of voxel clusters has improved sen-
sitivity. Despite this disadvantage, univariate methods are widely
used, in part because of the interpretability of results and access
to the methodology through standard software packages such
as Statistical Parametric Mapping (SPM) (Friston et al., 2011).
In fact, univariate methods have been recently used to study
the endophenotype of autism. For example in Dalton et al.
(2007), the authors used a t-test to analyse functional Magnetic
Resonance Imaging (fMRI) from controls and unaffected sib-
lings of ASC individuals. Another univariate approach was used
in Salmond et al. (2003) and Peterson et al. (2006). In these
works, MRI data from ASC children were analyzed by means
of Voxel Based Morphometry (VBM) (Ashburner and Friston,
2000). This approach allows investigation of focal differences in
brain anatomy by performing a voxel-wise comparison of the
local concentration or volume of gray matter between two or
more groups of participants. Indeed, VBM has been widely used
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in the study of ASC and several meta-analyses have been con-
ducted (Cauda et al., 2011; Radua et al., 2011; Via et al., 2011;
Nickl-Jockschat et al., 2012). Whilst there appears to be a con-
sistency in the reports of case-control differences in occipital,
temporal, and parietal lobes as well as the precentral gyrus, gen-
erally the extant literature is characterized by a significant level of
between-study variability. Such discrepancies between studies are
variously ascribed to methodological differences, variations in the
ages and IQs of participants, diagnostic criteria (Nickl-Jockschat
et al., 2012) and, most frequently, to the heterogeneity of the signs
and symptoms of ASC (Volkmar and Pauls, 2003). With these
issues in mind, techniques that increase statistical sensitivity have
added value in structural MRI studies of ASC and particularly
in study designs for endophenotype discovery where effect sizes
are potentially reduced by the introduction of a group (siblings)
hypothesized to lie intermediate between cases and controls.

On the other hand, multivariate approaches, including
machine learning, analyse each image as a whole and explicitly
consider the inter-relationships across voxels. Here, effects due
to brain structure or function as well as confounding and error
effects are assessed statistically both at each voxel and as interac-
tions among voxels (Friston et al., 2011). The main drawback to
be addressed is the so-called small sample size problem (Duin,
2000), which occurs when the number of variables (voxels in case
of neuroimaging) to be analyzed is significantly greater than the
sample size (i.e., number of images) used in the study.

Searchlight analysis (or information mapping) is a recently
described methodology based on multivariate pattern analysis
(MVPA) that address the small sample size problem by divid-
ing the brain volume into small regions of just a few voxels
(Kriegeskorte et al., 2006; Kriegeskorte and Bandettini, 2007).
It has been successfully used for classification problems [see for
example (Illán et al., 2011)]. However, in this work it is used to
highlight the locations where participants from two groups have
differing patterns of brain tissue volume.

Here we demonstrate an original methodology to analyse
structural MR images based on a multivariate exploration car-
ried out with a searchlight approach. The primary goal is to
discover evidence for the existence of an endophenotype of ASC.
This condition has been intensively studied through univariate
approaches, such as the ones mentioned above, and by directly
measuring the size of several brain regions (Rojas et al., 2004;
Webb et al., 2009). However, in our opinion, there is still room for
the application of multivariate strategies that provide higher sta-
tistical sensitivity and allow corroborating or refuting the results
reported in univariate studies. In addition, we hypothesized that
multivariate approaches like the one proposed in this work pro-
vide a better way of analysing neuroimaging data by looking for
differences between groups. Therefore, multivariate methods can
realize differences even when univariate methods find no dif-
ferences. Our hypothesis is based in the fact that multivariate
approaches analyse the data not only at voxel level but also tak-
ing into account the relations between voxels. Thus, differences in
those relations can be only found with multivariate methods.

We studied 132 whole-brain structural MRI from adolescents
divided into three groups: ASC participants, unaffected siblings
of ASC participants, and individuals with no family history of
ASC (Table 1), referred to hereafter as “ASC,” “siblings,” and

“controls” respectively. After normalizing the MRI volumes to
a standard stereotactic space, we performed a searchlight analy-
sis comparing “ASC” vs. “controls” and “siblings” vs. “controls.”
The resulting information maps identified overlapping regions of
between-group difference that may be considered as elements of
an endophenotype of ASC. It is worth noting that this cohort was
previously analyzed with VBM and no significant differences were
found.

2. MATERIALS AND METHODS
2.1. STUDY DESCRIPTION
The study cohort comprised 132 participants aged between 12
and 18 years. Fifty-two (52) had a diagnosis of ASC, either clas-
sic autism or Asperger syndrome, 40 participants were unaffected
siblings of individuals with ASC. Forty (40) controls with no fam-
ily history of ASC were also recruited. Demographic details are
gathered in Table 1.

All ASC participants met Diagnostic and Statistical Manual of
Mental Disorders, fourth edition criteria (American Psychiatric
Association et al., 1994) for autism or Asperger syndrome and
were positive on the Autism Diagnostic Interview-Revised (Lord
et al., 1994) and the ADOS-G (Losh et al., 2009). Further details
on recruitment are given in references (Spencer et al., 2011, 2012).

The study was given ethical approval by the Cambridgeshire 1
Research Ethics Committee, and all participants and their parents
provided written informed consent.

Data collection took place at the Medical Research Council,
Cognition and Brain sciences unit, on a Siemens Tim Trio
(Siemens Medical Solutions, AG, Erlangen, Germany) oper-
ating at 3T. High-resolution T1-weighted three-dimensional
magnetization-prepared rapid acquisition gradient-echo (MP-
RAGE) structural images were acquired with the following
parameters: slice thickness = 1 mm; TR = 2300 ms; TE =
2.98 ms; field of view = 256 × 240 × 176 mm; flip angle = 9◦;
voxel size = 1 × 1 × 1 mm.

All MRI datasets were first segmented into their component
tissues (gray and white matter) and then normalized to a stan-
dard stereotactic space of the Montreal Neurological Institute
(MNI) using SPM software (Friston et al., 2011). Specifically,
we used the Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra (DARTEL) (Ashburner, 2007). This
algorithm normalizes both segmented gray and white matter
images from all participants in an integrated, iterative proce-
dure by computing a flow field which can then be expressed
as both forward and backward image deformations. The MNI-
normalized gray matter volume maps were used in the subsequent
analyses.

2.2. MULTIVARIATE ANALYSIS BASED ON MACHINE LEARNING
During the last decade, many research efforts have been focused
on MVPA as a promising way of analysing high dimensional
data. The growth of multivariate approaches is partly due to the
recent advances in machine learning which provide more accu-
rate statistical classifiers with the benefits of generalization. In that
sense, support vector machines (SVM) have recently attracted
the attention of the pattern recognition community because of
the merits derived from statistical learning theory (Vapnik, 1995,
1998) developed by Vladimir Vapnik in late 1990s.
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Table 1 | Demographic details of participants.

Number Sex Age IQ

M F μ σ range μ σ range

ASC 52 35 17 14.49 1.74 12–18 104.6 15.89 73–146
Siblings 40 12 28 14.86 2.12 12–18 113.1 10.06 88–133
Controls 40 20 20 15.06 1.61 12–18 112.4 11.12 83–136

μ and σ are the average and the standard deviation, respectively.

A SVM classifier builds a function f : RN → {±1} using the
training data (N-dimensional patterns xi and their class labels yi)
so that f is able to predict the label y of a new example x. The
computation of function f is based on the calculation of a hyper-
plane, called the maximal margin hyperplane, that has the largest
distance to the closest training data point of any class. Then, this
hyperplane is used to classify new data points of unknown class.
Formally, the decision hyperplane is defined as:

g(x) = wT x + w0 = 0, (1)

where w is the weight vector, orthogonal to the decision hyper-
plane, and w0 is the threshold. When no linear separation of the
training data is possible, SVM can work effectively in combina-
tion with kernel techniques so that the hyperplane defining the
SVM corresponds to a non-linear decision boundary in the input
space (Müller et al., 2001).

SVM has been successfully used in a number of problems
in different fields and is one of the most prevalent classifiers
in neuroimaging-based classification tasks (Shen and Ji, 2009;
Swiderski et al., 2009; Cuingnet et al., 2011; Zhang et al., 2011),
such as the development of computer aided diagnosis systems for
neurodegenerative disorders (López et al., 2009; Segovia et al.,
2010, 2012). As with other statistical classifiers, SVM may be also
used to highlight the differences between two groups of images by
means of a searchlight approach. Searchlight (Kriegeskorte et al.,
2006) divides the brain volumes into small regions that are inde-
pendently analyzed. All the regions are of equal size and shape and
cover the entire parenchyma of the brain. They are defined by fol-
lowing a systematic procedure with no prior knowledge about the
groups that are being compared. As a result of applying this tech-
nique, a map is obtained derived from the discriminating power
of different brain regions.

In this work, we utilized a searchlight approach and support
vector machine classification to look for anatomical differences
between controls and ASC participants, and between controls and
unaffected siblings of ASC participants. Then, by comparing both
maps of classification accuracies we estimated potential endophe-
notypes of ASC. Thus, the exploration implemented here makes
two comparisons of two groups and creates a map that assigns
a discrimination power to each voxel. However, the analysis is
not carried out in a univariate way (voxel by voxel), but it is
performed over small regions and then the result obtained for
a region is assigned to all the voxels in that region. We defined
as many regions as voxels resulting in a high rate of overlap-
ping and allowing for exhaustive exploration of the image space.

Algorithm 1: Implementation of the SVM-based searchlight
approach.

Input:
D → Database with gray matter volumes of two

groups.
y → Labels for volumes in D.

Output:
M → Map indicating the discrimination power of

each voxel.

M = 3D matrix of 0s
foreach voxel position, p ∈ volumes in D do

m = mask defining a cube with side of l voxels and
centered on p
Dm = apply mask m to all volumes in D
a = accuracy of classifying volumes in Dm (using SVM
and CV)
p = estimate the p-value for accuracy a

if p ≤ 0.001 then
foreach mi ∈ m do

Mmi = maximum of Mmi and a
end

end
end

Cubic regions with a side of 5 voxels were used, leading to regions
containing 125 voxels.

For each region we used a k-fold cross-validation (CV) scheme
along with a SVM classifier to estimate the accuracy of classify-
ing the images in the two groups. A high accuracy rate indicates
that the analyzed region contains large differences between the
two groups. On the other hand, a low accuracy rate, about 50%,
suggests only small differences. The classification procedure used
a linear kernel along with the SVM classifier (with parameter C
fixed to the commonly accepted value of C = 1) and estimated the
accuracy rates by means of CV, which is an effective method for
estimating the risk of a classifier (Cortes and Vapnik, 1995; Müller
et al., 2001). Specifically, we used a 10-fold scheme that provides
similar estimation errors than leave-one-out (Varma and Simon,
2006) with a smaller computational load (an important issue to
be taken into account in our experiments since we performed
many thousands of CV loops).

Subsequently, the significance of the accuracy obtained with
each region was assessed with a non-parametric test. This
additional test consisted of repeating 1000 times the same
classification procedure but using random labels. In this way we
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were able to estimate the probability that an accuracy rate was
obtained by chance (Good, 2000). A p-value was then computed
as the number of repeats where the accuracy obtained with the
random labels was larger than that obtained with the true labels,
divided by 1000. In order to address the multiple comparison
problem (Miller, 1966), a false discovery rate control based on
the Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995) was applied. Accordingly, the tests with high p-values (i.e.,
p-values higher than an ad-hoc threshold related to the number
of simultaneous tests) were discarded.

Finally, we assigned to each voxel the highest accuracy rate
obtained for all the regions that included that voxel. The pseu-
docode for the searchlight procedure is shown in Algorithm 1.

3. EXPERIMENTS AND RESULTS
The experiments were performed in three steps: First, we esti-
mated the locations with different patterns in controls and ASC
participants using the multivariate approach described in section
2.2. Secondly, we followed the same procedure to differentiate
between controls and unaffected siblings of ASC participants.
Finally, we estimated the similarities between the two maps com-
puted in previous steps by finding the regions of significant differ-
ence common for both. The result of the first two steps is shown
in Figure 1 and the final comparison (step 3) is shown in Figure 2.
In order to analyse the locations of the regions highlighted by
the algorithm, we calculated the brain regions involved by means
of the Anatomical Labeling Atlas (AAL) (Tzourio-Mazoyer et al.,

FIGURE 1 | Location of the significant regions (estimated through the

Benjamini-Hochberg procedure with α = 0.05) when classifying controls

vs. ASC (top) and controls vs. siblings (bottom). The intensity of the white

color indicates the accuracy achieved for that region. The accuracy rate varies
from 65.22 to 77.17% for the first classification and from 66.25 to 82.50% for
the second one.

FIGURE 2 | Comparison of between-group difference maps shown in Figure 1. Red: significant regions for the controls vs. ASC participant’s classification;
blue: significant regions for the controls vs. siblings classification; white: the common regions for both classifications.
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Table 2 | Size of the significant regions for classifications of control

vs. ASC (second column) and controls vs. siblings (third column),

grouped by anatomical region.

Anatomical region Controls vs. Controls vs. Common

(hemisphere) ASC (%) siblings (%) area (%)

Cerebelum (left) 394 (9.71) 821 (20.24) 146 (3.60)
Parietal lobule (right) 123 (9.33) 162 (12.28) 100 (7.58)
Occipital (left) 239 (11.86) 289 (14.34) 74 (3.67)
Angular gyrus (left) 75 (18.25) 141 (34.31) 71 (17.27)
Inferior frontal gyrus (left) 89 (8.64) 265 (25.73) 67 (6.50)
Temporal gyrus (right) 426 (10.71) 377 (9.48) 62 (1.56)
Cingulate gyrus (left) 152 (11.27) 197 (14.60) 59 (4.37)
Parietal lobule (left) 111 (6.95) 79 (4.94) 41 (2.57)
Parahippocampal gyrus (right) 51 (13.35) 75 (19.63) 31 (8.12)
Hippocampus (left) 36 (11.92) 89 (29.47) 30 (9.93)
Thalamus (right) 64 (19.22) 38 (11.41) 27 (8.11)
Cerebelum (right) 262 (6.05) 273 (6.31) 24 (0.55)
Vermis 192 (26.82) 44 (6.15) 24 (3.35)
Cingulate gyrus (right) 394 (29.76) 62 (4.68) 23 (1.74)
Area triangularis (left) 101 (10.64) 91 (9.59) 21 (2.21)
Precuneus (right) 296 (24.79) 74 (6.20) 18 (1.51)
Calcarine sulcus (left) 31 (3.54) 178 (20.32) 17 (1.94)
Precuneus (left) 33 (2.52) 230 (17.60) 15 (1.15)
Putamen (left) 21 (5.98) 79 (22.51) 15 (4.27)
Thalamus (left) 65 (18.90) 139 (40.41) 11 (3.20)
Globus pallidus (left) 38 (43.18) 11 (12.50) 8 (9.09)
Middle temporal pole (right) 43 (9.35) 91 (19.78) 7 (1.52)
Superior frontal gyrus (right) 120 (3.94) 146 (4.79) 7 (0.23)
Supplementary motor area (left) 24 (3.38) 22 (3.09) 7 (0.98)
Amygdala (left) 8 (10.53) 6 (7.89) 6 (7.89)
Inferior frontal gyrus (right) 125 (10.48) 160 (13.41) 6 (0.50)
Fusiform gyrus (right) 10 (1.12) 65 (7.30) 5 (0.56)
Middle frontal gyrus (left) 142 (6.59) 252 (11.69) 5 (0.23)
Calcarine sulcus (right) 109 (15.55) 74 (10.56) 4 (0.57)
Caudate nucleus (left) 42 (11.54) 5 (1.37) 4 (1.10)
Lingual gyrus (right) 139 (16.22) 32 (3.73) 4 (0.47)
Angular gyrus (right) 13 (2.02) 22 (3.42) 3 (0.47)
Parahippocampal gyrus (left) 34 (10.12) 38 (11.31) 2 (0.60)
Superior temporal pole (right) 63 (11.71) 5 (0.93) 1 (0.19)
Area triangularis (right) 89 (10.29) 23 (2.66) –
Caudate nucleus (right) 1 (0.27) 42 (11.29) –
Cuneus (left) – 23 (4.09) –
Cuneus (right) 2 (0.40) 71 (14.12) –
Fusiform gyrus (left) 72 (9.13) 48 (6.08) –
Gyrus rectus (left) – 5 (1.51) –
Gyrus rectus (right) – 1 (0.37) –
Hippocampus (right) 3 (0.94) 16 (5.02) –
Insula (left) – 230 (33.82) –
Insula (right) 7 (1.07) – –
Lingual gyrus (left) 10 (1.27) 343 (43.69) –
Middle frontal gyrus (right) 130 (5.66) 167 (7.27) –
Middle temporal pole (left) – 62 (21.23) –
Occipital (right) 21 (1.30) 220 (13.58) –
Olfactory cortex (left) – 6 (6.00) –
Olfactory cortex (right) – 11 (9.48) –
Paracentral lobule (left) 9 (1.96) 67 (14.60) –
Paracentral lobule (right) 2 (0.70) 4 (1.40) –

(Continued)

Table 2 | Continued

Anatomical region Controls vs. Controls vs. Common

(hemisphere) ASC (%) siblings (%) area (%)

Postcentral gyrus (left) 48 (3.63) 81 (6.12) –
Postcentral gyrus (right) – 35 (2.55) –
Precentral gyrus (left) 8 (0.71) 17 (1.51) –
Precentral gyrus (right) – 124 (11.10) –
Rolandic operculum (left) – 52 (15.57) –
Rolandic operculum (right) 10 (2.16) – –
Superior frontal gyrus (left) 161 (5.09) 398 (12.57) –
Superior temporal pole (left) – 12 (2.43) –
Supplementary motor area (right) 114 (14.21) 1 (0.12) –
Supramarginal gyrus (right) 10 (1.48) – –
Temporal gyrus (left) 256 (6.99) 205 (5.60) –
Transverse temporal gyri (left) – 24 (28.92) –
Transverse temporal gyri (right) 1 (1.16) – –

The last column (fourth) contains the size of the common area for both classifi-

cations. The size is given in mm3 and as the percentage of the total volume of

the anatomical region.

FIGURE 3 | Percentage of ASC individuals correctly classified as ASC

by a classifier trained with controls and ASC data (abscissa) vs. the

percentage of siblings classified as ASC by the same trained classifier

(ordinate axis). Regions near to the blue line provide approximately the
same accuracy in both classifications. This suggests they have similar
patterns and corroborates the suggestion that they are endophenotypes of
ASC.

2002). Table 2 shows the structural regions containing areas high-
lighted in Figure 1 and the percentage of brain region they cover.
Regions covered by a relatively large area in both classifications
(shown in the last column) are candidate endophenotypes of
ASC. This analysis facilitates the comparison of results obtained
in this work with the extant literature.

In order to test if regions marked as common for both classifi-
cations indeed have the same pattern, an additional experiment
was performed. For each significant region in the first classi-
fication, a SVM classifier was trained using controls and ASC
participants, and the positive rate (percentage of ASC correctly
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FIGURE 4 | Histograms of the number of regions for which the SVM classifier achieved significant accuracy rates when classifying controls vs. ASC

participants (left) and controls vs. siblings of ASC participants (right).

classified) was then estimated through CV. Subsequently, the sib-
ling data was evaluated with that trained classifier. For about 20%
of the regions, the number of ASC individuals correctly classified
as such was approximately the same (equal or in the 10% range)
as the number of siblings classified as ASC. This reveals the exis-
tence of a common pattern for ASC and siblings in those regions
and strengthens the suggestion that they are endophenotypes of
ASC. Figure 3 plots the positive rate vs. the percentage of siblings
classified as ASC. Note that 20% of regions mentioned above are
located close to the blue line.

Regardless of the regional analysis it is reasonable to expect
that classification of controls vs. ASC participants would achieve
higher accuracy rates than classification of controls vs. siblings
of ASC participants. After all, the siblings have not developed
the condition and should be more similar to controls and thus
separating these groups should be expected to be relatively more
challenging. However, our experiments indicate the converse.
Figure 4 shows the histograms with the number of regions for
which the two classifications (controls vs. ASC and controls vs.
siblings) achieved significant accuracies. Note the large differ-
ences in the intervals of 70–75 and 75–80% of accuracy.

4. DISCUSSION
The results presented above demonstrate that structural differ-
ences exist in gray matter maps derived from neuroimaging data
comparing controls and ASC participants, as well as between
controls and unaffected siblings of ASC individuals. In the first
case the regions containing differences are mainly located in tem-
poral gyrus, cerebellum, right cingulate gyrus, right precuneus,
left occipital and vermis, whereas differences for the second
comparison are mostly located in cerebellum, left frontal gyrus,
right temporal gyrus, left lingual gyrus, left occipital, and insula
(a complete list of the regions is shown in Table 2). A large
number of common regions are located in the cerebellum, the

importance of which has been emphasized in previous studies
of ASC (Salmond et al., 2003). Specifically, left cerebellum was
suggested as a neuroendophenotype for ASC in Peterson et al.
(2006), where unaffected parents of autistic participants and con-
trols were compared. These authors found abnormalities in the
left cerebellar volume of the parents indicating the existence of
similarities in altered brain structures of autistic individuals and
their unaffected relatives.

The vermis is also a candidate region as a neuroendopheno-
type of ASC (group differences in both ASC compared to controls
and siblings compared to controls covering 23 mm3 were found
in this region). Smaller vermis volume in ASC participants than
in controls was found in Kilman et al. (1997) and, more recently
in Webb et al. (2009). Figure 2 and Table 2 show that differences
in this region are also extant in the comparison between controls
and siblings of ASC participants discovered in the present study.

Other previous works that looked for neuroendophenotypes
of ASC reported that the amygdala was smaller in adults with
ASC relative to the unaffected parents of children with ASC and
age-matched controls (Rojas et al., 2004). In our analysis we
found small differences in the left amygdala when comparing
ASC participants vs. controls and siblings vs. controls. In addi-
tion the regions highlighted in both comparisons are of similar
size. These results concur with those described in Dalton et al.
(2007), where the authors compared adolescents diagnosed with
ASC, unaffected siblings of ASC individuals and participants with
no personal or familial history of ASC. They found that amyg-
dala volume of ASC participants was similar to their unaffected
siblings and significantly smaller when compared with a control
group, which may have implications for social interaction and
communication difficulties in autism and potentially subtle traits
in siblings.

In general, it worth noting that an important part of the
regions highlighted in our analysis and enumerated in Table 2
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also appear relevant to differentiating between control and ASC
individuals in a number of univariate studies (Cauda et al., 2011;
Radua et al., 2011; Via et al., 2011; Nickl-Jockschat et al., 2012).

The results presented also suggest that our initial hypothesis
on the enhanced ability of multivariate approaches to finding dif-
ferences between groups of neuroimaging data is substantiated.
The proposed method found significant differences in a dataset
in which VBM had previously found no significant differences
at levels of significance controlling for multiple comparisons.
Furthermore, the locations of the observed differences match
those reported by univariate studies using other, larger datasets.

Finally, some considerations about the size and shape of
the regions, and the manner of exploration associated with the
searchlight approach can be drawn. The original searchlight
approach proposed by Kriegeskorte et al. (2006) used spher-
ical regions. However, here we used cubes for computational
simplicity, reducing the computation time of the procedure with-
out producing adverse effects. In fact, a cube-based searchlight
approach was successfully used in Illán et al. (2011) for clas-
sification purposes. In general, the size of the regions is a key
control parameter for this approach since it controls the trade-
off between localization and globalization. If the regions are
small, the results (highlighted regions) will be more accurate with
enhanced spatial localization, but the approach tends to the uni-
variate approach with its attendant disadvantages. In addition,
using smaller regions may result in an increase of the com-
putational burden if region overlapping is limited. Conversely,
if the regions are large, finding small areas of interest is more
difficult or, if found, will be included in regions much larger
than the area of interest, decreasing the localization power. As
described in section 3, we used regions of 125 voxels that,
in our opinion, represent a good trade-off between accuracy
and computational burden. Furthermore, the exploration of the
brain space may be undertaken with varying amounts of over-
lap of the regions. Clearly, overlapping allows a more exhaus-
tive exploration and is particularly important when regions are
large.

5. CONCLUSIONS
We have presented an original analysis of MRI images by means
of a multivariate approach in order to identify candidate neuroen-
dophenotypes of ASC. To this end, we first looked for differences
between controls and ASC participants, and then compared these
differences to those resulting from comparing controls and unaf-
fected siblings of ASC participants.

The main novelty presented in this study is the algorithm used
in the discovery of those differences: a multivariate approach that
consists of performing an exhaustive examination of the brain
space by means of a searchlight methodology combined with a
support vector machine classifier.

The results reported here indicate that differences in cerebel-
lum, parietal lobule, left occipital, left angular gyrus and, to a
lesser extent, other regions listed in Table 2 can be considered
neuroendophenotypes of ASC. Additionally, we corroborated the
existence of separate, significant differences between controls and
siblings of ASC participants that have not developed the condi-
tion. These findings, if replicated by other studies, may go some

way to explaining the increased likelihood of unaffected siblings
of ASC individuals developing the condition in later life.
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