frontiers n

COMPUTATIONAL NEUROSCIENCE

REVIEW ARTICLE
published: 11 June 2014
doi: 10.3389/fncom.2014.00062

=

Learning modular policies for robotics

Gerhard Neumann'*, Christian Daniel’, Alexandros Paraschos’, Andras Kupcsik? and Jan Peters'?

" Department of Computer Science, Intelligent Autonomous Systems, Technische Universitdt Darmstadt, Darmstadt, Germany
2 School of Computing, National University of Singapore, Singapore
3 Empirical Inference, Intelligent Systems, Max Planck Institute, Tibingen, Germany

Edited by:
Andrea DAvella, IRCCS Fondazione
Santa Lucia, Italy

Reviewed by:

Aude Billard, Ecole Polytechnique
Fédérale de Lausanne, Switzerland
Scott Niekum, Carnegie Mellon
University, USA

*Correspondence:

Gerhard Neumann, Department of
Computer Science, Intelligent
Autonomous Systems, Technische
Universitat Darmstadit,

A promising idea for scaling robot learning to more complex tasks is to use elemental
behaviors as building blocks to compose more complex behavior. Ideally, such building
blocks are used in combination with a learning algorithm that is able to learn to select,
adapt, sequence and co-activate the building blocks. While there has been a lot of work
on approaches that support one of these requirements, no learning algorithm exists that
unifies all these properties in one framework. In this paper we present our work on a
unified approach for learning such a modular control architecture. We introduce new policy
search algorithms that are based on information-theoretic principles and are able to learn
to select, adapt and sequence the building blocks. Furthermore, we developed a new
representation for the individual building block that supports co-activation and principled
ways for adapting the movement. Finally, we summarize our experiments for learning

Hochschulstrasse 10, 64289
Darmstadt, Germany
e-mail: neumann@

ias.tu-darmstadt.de learning

1. INTRODUCTION

Robot learning approaches such as policy search methods (Kober
and Peters, 2010; Kormushev et al., 2010; Theodorou et al., 2010)
have been very successful. Kormushev et al. (2010) Learned to flip
pan-cakes and Kober and Peters (2010) Learned the game ball-
in-the-cup. Despite these impressive applications, robot learning
still offers many challenges due to the inherent high-dimensional
continuous state and action spaces, the high costs of generat-
ing new data with the real robot, the partial observability of the
environment and the risk of damaging the robot due to overly
aggressive exploration strategies. These challenges have, so far,
prevented robot learning methods to scale to more complex real
world tasks.

However, many motor tasks are heavily structured. Exploiting
such structures may well be the key to scale robot learning to
more complex real world domains. One of the most common
structures of a motor task is modularity. Many motor tasks can
be decomposed into elemental movements or movement primi-
tives (Schaal et al., 2003; Khansari-Zadeh and Billard, 2011; Rozo
et al,, 2013) that are used as building blocks in a modular control
architecture. For example, playing tennis can be decomposed into
single stroke-based movements, such as a forehand and a back-
hand stroke. To this end, we need a learning architecture that
learns to select, improve, adapt, sequence and co-activate the ele-
mental building blocks. Adaptation is needed as such building
blocks are only useful if they can be reused for a wide range of
situations, and, hence the building block needs to be adapted to
the current situation. For example, for playing tennis, the ball will
always approach the player slightly differently. Furthermore, we
need to learn how to sequence such parametrized building blocks.
Taking up our tennis example, we need to execute a sequence of
strokes such that the opponent player can not return the ball on

modular control architectures in simulation and with real robots.

Keywords: robotics, policy search, modularity, movement primitives, motor control, hierarchical reinforcement

the long run. For sequencing the building blocks, we ideally want
to be able to continuously switch from one building block to the
next to avoid abrupt transitions, also called “blending” of build-
ing blocks. Finally, co-activation of the building blocks would
considerably increase the expressibility of the control architec-
ture. Coming back to the tennis example, co-activating primitives
that are responsible for the upper body movement, i.e., the stroke,
and primitives that are responsible for the movement of the lower
body, i.e., making a side step or a forward step would significantly
reduce the number of required building blocks.

In this paper we present an overview over our work that
concentrates on learning such modular control architectures by
reinforcement learning. We developed new policy search meth-
ods that can select and adapt the individual building blocks
to the current situation, learn and improve a large number of
different building blocks as well as to learn how to sequence
building blocks to solve a complex task. Our learning architec-
ture is based on an information-theoretic policy search algorithm
called Relative Entropy Policy Search (REPS) proposed by Peters
et al. (2010). The main insight used by REPS is that the relative
entropy between the trajectory distributions of two subsequent
policies during policy search should be bounded. This bound is
particularly useful in robotics as it can cope with many of the
mentioned challenges of robot learning. It decreases the danger of
damaging the robot as the policy updates stay close to the “data”
generated by the old policy and do not perform wild exploration.
Moreover, it results in a smooth learning process and prevents the
algorithm from getting stuck prematurely in local minima even
for high dimensional parameter spaces that are typically used in
robotics (Peters and Schaal, 2008; Daniel et al., 2012a). While
there are several other policy search approaches which can either
learn the selection (da Silva et al., 2012), adaptation (Kober et al.,

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 1

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00062/abstract
http://community.frontiersin.org/people/u/73574
http://community.frontiersin.org/people/u/143563
http://community.frontiersin.org/people/u/162936
mailto:neumann@ias.tu-darmstadt.de
mailto:neumann@ias.tu-darmstadt.de
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

2010b; Ude et al., 2010) or the sequencing (Stulp and Schaal,
2011) of individual building blocks, to the best of our knowledge,
our approach offers the first framework that unifies all these
properties in a principled way.

A common way to implement the building blocks is to
use movement primitives (MPs). Movement primitives provide
a compact representation of elemental movements by either
parameterizing the trajectory (Schaal et al., 2003; Neumann,
2011; Rozo et al., 2013), muscle activation profiles (dAvella
and Pai, 2010) or directly the control policy (Khansari-Zadeh
and Billard, 2011). All of these representations offer several
advantages, such as the ability to learn the MP from demon-
stration (Schaal et al., 2003; Rozo et al., 2013), global stability
properties (Schaal et al., 2003), co-activation of multiple primi-
tives (dAvella and Pai, 2010), or adaptability of the representation
per hyper-parameter tuning (Schaal et al., 2003; Rozo et al,
2013). However, none of these approaches unifies all the desirable
properties of a MP in one framework. We therefore introduced
a new MP representation that is particularly well suited to be
used in a modular control architecture. Our MP representation is
based on distributions over trajectories and is called Probabilistic
Movement Primitive (ProMP). It can, therefore, represent the
variance profile of the resulting trajectories, which allows us to
encode the importance of time points as well as represent opti-
mal behavior in stochastic systems (Todorov and Jordan, 2002).
However, the most important benefit of a probabilistic represen-
tation is that we can perform probabilistic operators on trajectory
distributions, i.e., conditioning for adaptation of the MP and a
product of distributions for co-activation and blending of MPs.
Yet, such a probabilistic representation is of little use if we can-
not use it to control the robot. Therefore, we showed that a
stochastic time-varying feedback controller can be obtained ana-
lytically, enabling us to use the probabilistic movement primitive
approach as a promising future representation of a building block
in modular control architectures. We will present experiments on
several real robot tasks such as playing tether-ball and shooting a
hockey puck. The robots used for the experiments are illustrated
in Figure 1.

1.1. RELATED WORK

1.1.1. Movement representations

Different elemental movement representations have been pro-
posed in the literature. The most prominent one is the dynamic
movement primitive (DMP) approach (Ijspeert and Schaal, 2003;
Schaal et al., 2003). DMPs encode a movement in a parametrized

FIGURE 1 | (Left) The Barret WAM playing the game of tetherball. (Right)
The KUKA lightweight arm playing a modified a version of hockey.

dynamical system. The dynamical system is implemented as a
second order spring damper system which is perturbed by a
non-linear forcing function f. The forcing function depends non-
linearly on the phase variable z; which denotes a clock for the
movement. The evolution of the phase variable can be made
faster or slower by the temporal scaling factor 7, which finally
also changes the execution speed of the movement. The forcing
function is linearly parametrized by a parameter vector w and
can be easily learned from demonstrations. In addition to the
high dimensional parameters w, we can adjust meta-parameters
of the DMPs such as the goal attractor g of the spring-damper
system and temporal scaling factor. In Kober et al. (2010a), the
DMPs have been extended to include the final desired velocity
in its meta-parameters. DMPs have several advantages. They are
easy to learn from demonstrations and by reinforcement learning,
they can be used for rhythmic and stroke-based movements and
they have build-in stability guarantees. However, they also suffer
from some disadvantages. The can not represent optimal behav-
ior in a stochastic environment. In addition, the generalization to
a new end position is based on heuristics and not learned from
demonstrations and it is not clear how DMPs can be combined
simultaneously. Several other movement primitive representation
have been proposed in the literature. Some of them are based on
DMPs to overcome their limitations (Calinon et al., 2007; Rozo
et al., 2013), but none of them can overcome all the limitations
in one framework. Rozo et al. (2013) estimate a time varying
feedback controller for the DMPs, however, how this feedback
controller is obtained is based on heuristics. They also implement
a combination of primitives as a product of GMMs which is sim-
ilar to the work presented here on the probabilistic movement
primitives. However, this approach is lacking a principled way of
determining a feedback controller that exactly matches the trajec-
tory distribution. Therefore, it is not clear what the result of this
product is if we apply the resulting controller on the robot.

Most of the movement representations explicitly depend on
time (Ijspeert and Schaal, 2003; Neumann and Peters, 2009;
Paraschos et al., 2013; Rozo et al., 2013). For time-dependent rep-
resentations, a linear controller is often sufficient to model com-
plex behavior as the non-linearity is induced by the time depen-
dency. In contrast, time-independent models such as the Stable
Estimator of Dynamical Systems (SEDS) approach (Khansari-
Zadeh and Billard, 2011) directly estimate a state dependent
policy that is independent of time. Such models require more
complex, non-linear controllers. For example, the SEDS approach
uses a GMM to model the policy. The GMM is estimated such that
the resulting policy is proofed to be stable. Due to the simplicity of
the policy, time-dependent representations can be easily scaled up
to higher dimensions as shown by [jspeert and Schaal (2003). Due
to the increased complexity, time-independent models are typi-
cally used for lower dimensional movements such as modeling the
movement directly in task space. Yet, a time-independent model is
the more general representation as it does not require the knowl-
edge of the current time step. In this paper, we will nevertheless
concentrate on time-dependent movement representations.

1.1.2. Policy search
The most common reinforcement learning approach to learn the
parameters of an elemental movement representation such as a

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

DMP is policy search (Williams, 1992; Peters and Schaal, 2008;
Kober and Peters, 2010; Kober et al., 2010a). The goal of policy
search is to find a parameter vector of the policy such that the
resulting policy optimizes the expected long-term reward. Many
policy search methods use a stochastic policy for exploration.
They can be coarsely categorized according their policy update
strategy. Policy gradient methods (Williams, 1992; Peters et al.,
2003) are one of the earliest policy update strategies that were
applied to motor primitive representations. They estimate the
gradient of the expected long-term reward with respect to the pol-
icy parameters (Williams, 1992) and update the policy parameters
in the direction of this gradient. The main disadvantages of policy
gradient methods are the necessity to specify a hand-tuned learn-
ing rate, the poor learning speed and that typically many samples
are required to obtain a new policy without sample re-use.

More recent approaches rely on probabilistic methods. These
methods typically base their derivation on the expectation-
maximization algorithm (Vlassis et al., 2009; Kober and Peters,
2010) and formulate the policy search problem as inference
problem by transforming the reward into an improper proba-
bility distribution, i.e., the transformed reward is required to be
always positive. Such transformation is typically achieved by an
exponential transformation with a hand-tuned temperature. The
resulting policy update can be formulated as a weighted model
fitting task where each sample is weighted by the transformed
long-term rewards (Kober and Peters, 2010). Using a probabilis-
tic model fitting approach to compute the policy update results
in the important advantage that we can use a big toolbox of algo-
rithms for estimating structured probabilistic models, such as the
expectation maximization algorithm (Dempster et al., 1977) or
variational inference (Neal and Hinton, 1998). Additionally, it
does not require a user specified learning rate. These approaches
typically directly explore in the parameter space of the policy
by estimating a distribution over the policy parameters. Such
approach works well if we have a moderate number of parameters.

Another algorithm that has recently gained a lot of atten-
tion is the policy improvement by path integrals (PI?) algorithm
(Theodorou et al., 2010; Stulp and Sigaud, 2012). The path inte-
gral theory allows to compute the globally optimal trajectory
distribution along with the optimal controls without requiring
a value function as opposed to traditional dynamic program-
ming approaches. However, the current algorithm is limited to
learning open-loop policies (Theodorou et al., 2010; Stulp and
Sigaud, 2012) and may not be able to adapt the the variance of
the exploration policy (Theodorou et al., 2010).

1.1.3. Generalization of skills

An important requirement in a modular control architecture is
that we can adapt a building block to the current situation or task.
We will describe a task or a situation with a context vector s. The
context vector can contain the objectives of the agent, e.g., throw-
ing a ball to a desired target location, or physical properties of the
environment. e.g., the mass of the ball to throw. Ude et al. (2010)
use supervised learning to generalize movement primitives from
a set of demonstrations. Such approach is well suited to general-
ize a set of demonstrations to new situations, but can not be used
to improve the skills upon the demonstration. To alleviate this

limitation, da Silva et al. (2012) combines low-dimensional sub-
space extraction for generalization and policy search methods for
policy improvement. Finding such low-dimensional sub-spaces is
an interesting idea that can considerably improve the generaliza-
tion of the skills. Yet, there is one important limitation of the
approach presented in da Silva et al. (2012). The algorithms for
policy improvement and skill generalization work almost inde-
pendently from from each other. The only way they interact is that
the generalization is used as initialization for the policy search
algorithm when a new task needs to be learned. As a conse-
quence, the method needs to create many roll-outs for the same
task/context in order to improve the skill for this context. Such
limitation is relaxed by contextual policy search methods (Kober
etal., 2010b; Neumann, 2011). Contextual policy search methods
explicitly learn a policy that choses the control parameters 6 in
accordance to the context vector s. Therefore, a different context
can be used for each roll-out. Kober et al. (2010b) us a Gaussian
Process (GP) for generalization. While GPs have good generaliza-
tion properties, they are of limited use for policy search as they
typically learn an uncorrelated exploration policy. The approach
in Neumann (2011) can use a directed exploration strategy, but it
suffers from high computational demands.

1.1.4. Sequencing of skills

Another requirement is to learn to sequence the building
blocks. Standard policy search methods typically choose a sin-
gle parameter vector per episode. Hence, such methods can be
used to learn the parameters of a single building block. In order to
sequence building blocks, we have to learn how to choose multi-
ple parameter vectors per episode. The first approach (Neumann
and Peters, 2009) for learning to sequence primitives was based
on value-function approximation techniques, which restricted its
application on a rather small set of parameters for each primi-
tive. Recently, (Stulp and Schaal, 2011) adapted the path integral
approach to policy search to sequence movement primitives.
Other approaches (Morimoto and Doya, 2001; Ghavamzadeh
and Mahadevan, 2003) use hand-specified sub-tasks to learn the
sequencing of elemental skills. Such an approach is limited in its
flexibility of the resulting policy and the sub-tasks are typically
not easy to define manually.

1.1.5. Segmentation and modular imitation learning

Segmentation (Kulic et al., 2009; Alvarez et al., 2010; Meier et al.,
2011) and modular imitation learning (Niekum et al., 2012) is a
very important and challenging problem to autonomously extract
the structure of the modular control policy from demonstrations.
In Meier et al. (2011) and Alvarez et al. (2010), the segmentation
is done due to parameter changes in the dynamical system that
is supposed to have created the motion. In Chiappa and Peters
(2010), Bayesian methods are used to construct a library of build-
ing blocks. Repeated skills are modeled to be generated by one
of the building-blocks, which are rescaled and noisy. Based on
the segmentation of the demonstrations, we can infer the single
building blocks from the data by clustering the segments. One
approach that integrates clustering and segmentation is to use
Hidden Markov Models (HMMs). Williams and Storkey (2007)
used a HMM to extract movement primitives from hand-writing

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

data. While this is a very general approach, it has only been used to
rather low-dimensional data, i.e., 2-D movements. Niekum et al.
(2012) use a beta-process auto regressive HMM to estimate the
segmentation which has the advantage the number of building
blocks can also be inferred from data. DMPs are used to represent
the policy of the single segments. Butterfield et al. (2010) use a
HMM to directly estimate the policy. For each hidden state, they
fit a Gaussian Process model to represent the policy of this hid-
den state. The advantages of these imitation learning approaches
is that we can also estimate the temporal structure of the mod-
ular control policy, i.e., when to switch from one building block
to the next. So far, such imitation learning approaches have not
been integrated in a reinforcement learning framework, which
seems to be a very interesting direction. For example, in current
reinforcement learning approaches, the duration of the building
blocks is specified by a single parameter. Estimating the duration
of the building blocks from the given trajectory data seems to be
a fruitful and more general approach.

2. INFORMATION THEORETIC POLICY SEARCH FOR

LEARNING MODULAR CONTROL POLICIES
In this section we will sequentially introduce our information the-
oretic policy search framework used for learning modular control
policies. We start our discussion with the adaptation of a single
building block. Subsequently, we discuss how to learn to select a
building block and, finally, we will discuss sequencing of building
blocks.

After introducing each component of our framework, we
briefly discuss related experiments on real robots and in sim-
ulation. In this paper, we can only give a brief overview over
the experiments. For more details, we refer to the correspond-
ing papers. In our experiments with our information theoretic
policy search framework, we used Dynamic Movement Primitives
(DMP) introduced in Schaal et al. (2003) as building blocks in our
modular control architecture. In all our experiments, we used the
hyper-parameters of a DMP as parameters of the building blocks,
such as the final positions and velocities of the joints (Kober et al.,
2010a) as well as the temporal scaling factor of the DMPs for
changing the execution speed of the movement.

2.1. LEARNING TO ADAPT THE INDIVIDUAL BUILDING BLOCKS

We formulate the learning of the adaptation of the building
blocks as contextual policy search problem (Kober et al., 2010b;
Neumann, 2011; Daniel et al., 2012a), where we will for now
assume that we want to execute only a single building block.
Adaptation of a building block is implemented by an upper-level
policy m(@]s) that chooses the parameter vector € of the build-
ing block according to the current context vector s. The context
describes the task. It might contain objectives of the agent or
properties of the environment, for example, the incoming velocity
of a tennis ball. After choosing the parameters 6, the lower level
policy u; = f(x;, 0) of the building block takes over and is used
to control the robot. Note that we use the symbol x; to denote the
state of the robot. The state x; typically contains the joint angles
q: and joint velocities q; of the robot and it should not be con-
fused with the context vector s. The context vector s describes
the task and contains higher level objectives of the agent. For

example, such a lower level policy can be defined by a trajectory
tracking controller that tracks the desired trajectory of a dynamic
movement primitive (DMP) (Schaal et al., 2003).

Our aim is to learn an upper-level policy that maximizes the
expected reward

Je = / / ()7 (0]5)R(s, 0)dsdb,
R(s,0) = /p(r|s,0)r(1',s)d‘r, (1)

where R(s, 0) is the expected reward of the resulting trajectory
T when using parameters 8 in context s and p(s) denotes the
distribution over the contexts that is specified by the learning
problem. The distribution p(z|s, 8) denotes the probability of a
trajectory given s and @ and r(t, s) a user-specified reward func-
tion that depends on the trajectory 7 and on the context s. We
use the Relative Entropy Policy Search (REPS) algorithm (Peters
etal., 2010) as underlying policy search method, The basic idea of
REPS is to bound the relative entropy between the old and the new
parameter distribution. Here, we will consider the episode-based
contextual formulation of REPS (Daniel et al., 2012a; Kupcsik
et al., 2013) that is tailored for learning such an upper-level
policy. The policy update step is defined as constrained optimiza-
tion problem where we want to find the distribution p(s, 0) =
u(s)m(@]s) that maximizes the average reward given in Eq. 1
with respect to p(s,) and simultaneously satisfies several con-
straints. We will first discuss these constraints and show how to
compute p(s, @). Subsequently, we will explain how to obtain the
upper-level policy 7 (6s) from p(s,).

Generally, we initialize any policy search (PS) method with
an initial policy qo(s, @) = (s)qo(@]s), either obtained through
learning from demonstration or by manually setting a distribu-
tion for the parameters. The variance of the initial distribution
qo(s, @) defines the exploration region. Policy search is an iterative
process. Given the sampling distribution g (s, 8), we obtain a new
distribution p; (s, 8). Subsequently, p; is used as new sampling
policy g and the process is repeated.

PS methods need to find a trade-off between keeping the ini-
tial exploration and constricting the policy to a (typically local)
optimum. In REPS, this trade-off is realized via the Kullback-
Leibler (KL) divergence. REPS maximizes the reward under the
constraint that the KL-divergence to the old exploration policy is
bounded, i.e.,

€ > KL (p(s, 0)ll4(s,9)) - (2)

Due to this bound, we can choose between exploitation with the
greedy policy (high KL-bound) or continue to explore with the
old exploration policy (very small KL-bound). The KL divergence
in REPS bounds not only the conditional probability 7 (0]s), i.e.,
the differences in the policies, but also the joint state-action prob-
abilities p(s, @) to ensures that the observed state-action region
does not change rapidly over iterations, which is paramount to a
real robot learning algorithm. Using the (asymmetric) KL diver-
gence KL (p(s, 0)llq(s,0)) allows us to find a closed form solution
of the algorithm. Such closed form would not be possible with the
opposite KL divergence, i.e., KL (q(s, 0)|p(s, 0)).

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

We also have to consider that the context distribution p(s) =
[p(s,0)dé cannot be freely chosen by the agent as it is speci-
fied by the learning problem and given by 1(s). Hence, we need
to add the constraints Vs : p(s) = w(s) to match the given con-
text distribution w(s). However, for continuous context vector
s, we would end up with infinitely many constraints. Therefore,
we resort to matching feature averages instead of single prob-
ability values, i.e., fp(s)¢(s)ds =¢A3, where ¢(s) is a feature
vector describing the context and & is the mean observed
feature vector.

The resulting constrained optimization problem is now
given by

m;x//p(s,G)R(s,G)dst, s.t: € > KL (p(s,0)|lq(s, 9))
50

/S p(s)p(s)ds = ¢, / f p(s,0)dsdd = 1. 3)
s, 6

It can be solved by the method of Lagrangian multipliers and
yields a closed-form solution solution for p that is given by

p(5,0) o q(s,mexp(w) , ()

where V(s) = vI¢(s) is a context dependent baseline that is sub-
tracted from the the reward signal. The scalar 7 and the vector v
are Lagrangian multipliers that can be found by optimizing the
dual function g(n, v) (Daniel et al., 2012a). It can be shown that
V(s) can be interpreted as value function (Peters et al., 2010)
and, hence, estimates the mean performance of the new policy
in context s.

The optimization defined by the REPS algorithm is only per-
formed on a discrete set of samples D = {s[i], o1, Rl }i=
1,..., N, where Rl denotes the return obtained by the ith roll-
out. The resulting probabilities p (s[i], G[i]), see Equation (4), of
these samples are used to weight the samples. In order to obtain
the weight pl’l for each sample, we need to divide p (sm, 9[”)
by the sampling distribution g(s, @) to account for the sampling
probability (Kupcsik et al., 2013), i.e.,

o exp (M) O B)
n

i p (s, o)

q (s, 611
Hence, being able to sample from g is sufficient and g is not
needed in its analytical form.

The upper-level policy 7 (@[s) is subsequently obtained by
performing a weighted maximum-likelihood (ML) estimate. We
use a linear-Gaussian model to represent the upper-level pol-
icy 7(@|s) = N (@]a+ As, T) of the building block, where the
parameters a, A and X are obtained through the ML estima-
tion. As a building block is typically reused only for similar
contexts s, a linear model is sufficient in most cases. Figure 2
shows an illustration of how a linear model can adapt the
trajectories generated by a DMP. In practice, we still need

Joint Position q

0 100 20 30 40 50 60 A0 80 w0 1000

Time Step t

FIGURE 2 | The figure illustrates the joint trajectories that can be
generated when using a linear Gaussian to adapt the DMP parameters
according to a one dimensional context variable. In this illustration, we
show the color coding for the context variable in the color bar on the right
and show how the generated trajectories change in the main plot. For this
plot, we assumed no exploration noise and adapted ten basis functions of
the DMP. As we can see, complex behavior can emerge already with a
linear adaptation model due to the high-dimensionality of the parameter
space.

an initial policy g. This initial policy can either be obtained
through learning from demonstration or by selecting reasonable
parameters and variance if the experimenter has sufficient task
knowledge.

In Kupcsik et al. (2013), we further improved the data-
efficiency of our contextual policy search algorithm by learning
probabilistic forward models of the real robot and its environ-
ment. With these forward models, we can predict the reward
R (sm, 0[/]) for unseen context-parameter pairs sl and 8! and
use these additional samples for computing the policy update.
The data-efficiency of our method could be improved up to two
orders of magnitude using the learned forward models. As we
used Gaussian Processes (GPs) (Rasmussen and Williams, 2006)
to represent the forward models, this extension of our method
is called GPREPS. These forward models were used to generate
additional data points that are used for the policy update. For each
of these virtual data points, we generated 15 trajectories with the
learned forward models. We used the average reward of these pre-
dicted trajectories as reward used in the REPS optimization. We
used sparse GPs (Snelson and Ghahramani, 2006) to deal with
the high number of data points within a reasonable computation
time.

2.1.1. Experimental evaluation of the adaptation of building
blocks - robot hockey target shooting

In this task we used GPREPS with learned forward models to
learn how to adapt the building blocks such that the robot can
shoot hockey pucks to different locations. The objective was to
make a target puck move for a specified distance by shooting a
second hockey puck at the target puck. The context s was com-
posed of the initial location [by, by]T of the target puck and
the distance d* that the target puck had to be shoot, ie., s =
[bx, by, d*1T. We chose the initial position of the target puck to be
uniformly distributed from the robot’s base with displacements
by € [1.5,2.5]m and b, € [0.5, 1Jm. The desired displacement
context parameter d* is also uniformly distributed d* € [0, 1]m.

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

The reward function
r(z,s) = —mtin||xt —bll2 — |ldr — d*[|2

consist of two terms with equal weighting. The first term penalizes
missing the target puck located at position b = [by, by]”, where
the control puck trajectory is x1.7. The second term penalizes the
error in the desired displacement of the target puck, where dr is
the resulting displacement of the target puck after the shot. The
parameters 6 define the weights and goal position of the DMP.
The policy in this experiment was a linear Gaussian policy. The
simulated robot task is depicted in Figure 3.

GPREPS first learned a forward model to predict the initial
position and velocity of the first puck after contact with the racket
and a travel distance of 20 cm. Subsequently, GPREPS learned the
free dynamics model of both pucks and the contact model of the
pucks. We assumed that we know the geometry of the pucks to
detect a contact. If there is a contact, we used the contact model to
predict the state of both pucks after the contact given the state of
both pucks before the contact. From this state, we again predicted
the final puck positions after they came to stop with a separate GP
model.

We compared GPREPS in simulation to directly predicting
the reward R(s, @), model-free REPS and CrKR (Kober et al.,
2010b), a state-of-the-art model-free contextual policy search
method. The resulting learning curves are shown in Figure 3
(middle). GPREPS learned the task already after 120 interac-
tions with the environment while the model-free version of REPS
needed approximately 10000 interactions. Directly predicting the
rewards from parameters 6 using a single GP model resulted in
faster convergence but the resulting policies still showed a poor
performance (GP direct). The results show that CrKR could not
compete with model-free REPS. The learned movement is shown
in Figure 3 for a specific context. After 100 evaluations, GPREPS
placed the target puck accurately at the desired distance with an
error < 5cm.

Finally, we evaluated the performance of GPREPS on the
hockey task using a real KUKA lightweight arm. The learning
curve of this experiment is shown in Figure 3 (right) and con-
firms that GP-REPS can find high-quality policies within a small
amount of interactions with the environment.

2.2. LEARNING TO SELECT THE BUILDING BLOCKS

In order to select between several building blocks o, we add an
additional level of hierarchy on top of the upper-level policies
of the individual building blocks. We assume that each building
block shares the same parameter space. The parameters are now
selected by first choosing the building block to execute with a gat-
ing policy wg(ols) and, subsequently, the upper level parameter
policy wp(@]s, 0) of the building block o selects the parameters 6.
Hence, 7 (0|s) can be written as hierarchical policy

7(Bls) = Y 7Gols)p(@ls, o). (6)

In this model, the gating policy composes a complex, non-
linear parameter selection strategy out of the simpler upper level
policies of the building blocks. Moreover, it can learn multiple
solutions for the same context, which also increases the versa-
tility of the learned motor skill (Daniel et al., 2012b). While a
similar decomposition in gating policy and option policies has
been presented in da Silva et al. (2012), their framework was not
integrated in a reinforcement learning algorithm, and hence, gen-
eralization and improvement the building blocks is performed
by two independent algorithms, resulting in sample-inefficient
policy updates.

To incorporate multiple building blocks, we now bound the
Kullback-Leibler divergence between (s, 8, 0) and p(s, 0, 0). As
we are interested in versatile solutions, we also want to avoid
that several building blocks concentrate on the same solu-
tion. Hence, we want to limit the “overlap” between build-
ing blocks in the parameter space. In order to do so, we
bound the expected entropy of the conditional distribution
plols, 0),1ie.,

—/p(s,o)Zp(o|s,9)1ogp(o|s,e)dsd9 <«k. (7)

A low entropy of p(o|s, @) ensures that our building blocks do
not overlap in parameter space and, thus, represent individual
and clearly separated solutions (Daniel et al., 2012a). The new
optimization program results in the hierarchical version of REPS,
denoted as HiREPS. We can again determine a closed form solu-
tion for p(s, 6, 0) which is given in Daniel et al. (2012a). As in the

-0.05

reward
o
=

FIGURE 3 | (Left) Robot hockey target shooting task. The robot has to shoot
a puck at the target puck such that the target puck moves for a specified
distance. Both, the initial location of the target puck [by, by]T and the desired
distance d* to move the puck were varied. (Middle) Learning curves on the

evaluations

® GPREPS

» REPS

v REPS (GP direct) 015

& (CRkE - ® GPREPS
0 100 50 55 60 65 70 75 80

evaluations

robot hockey task in simulation. GPREPS was able to learn the task within
120 interactions with the environment, while the model-free version of REPS
needed about 10000 episodes. (Right) GPREPS learning curve on the real
robot arm.

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

previous section, the optimization problem is only solved for a
given set of samples that has been generated from the distribution
q(s,). Subsequently, the parameters of the gating policy and the
upper-level policies are obtained by weighted ML estimates. We
use a Gaussian gating policy and an individual linear Gaussian
policy 7 (8]s, 0) = N(8|a, + Ays, E,) for each building block.
As we use a linear upper-level policy and the used DMPs pro-
duce only locally valid controllers, our architecture might require
a large number of building blocks.

2.2.1. Experimental evaluation of the selection of building blocks -
robot tetherball

In robot tetherball, the robot has to shoot a ball that is fixed
with a string on the ceiling such that it winds around a pole.
The robot obtains a reward proportional to the speed of the ball
winding around the pole. There are two different solutions, to
wind the ball around the left or to the right side of the pole.
Two successful hitting movements of the real robot are shown in
Figure 5. We decompose our movement into a swing-in motion
and a hitting motion. As we used the non-sequential algorithm
for this experiment, we represented the two motions by a sin-
gle set of parameters and jointly learn the parameters 8 for the
two DMPs. We start the policy search algorithm with 15 options
with randomly distributed parameters sampled from a Gaussian
distribution around the parameters of the initial demonstration.
We use a higher number of building blocks to increase the prob-
ability of finding both solutions with the building blocks. If
we use two randomly initialized building blocks, the probabil-
ity that both cover the same solution is quite high. We delete
unused building blocks that have a very small probability of
being chosen, i.e., p(0) < 0.001. The learning curve is shown
in Figure 4 (left). The noisy reward signal is mostly due to the
vision system and partly also due to real world effects such as
friction. Two resulting movements of the robot are shown in
Figure 5. The robot could learn a versatile strategy that con-
tained building blocks that wind the ball around the left and
building blocks that wind the ball around the right side of
the pole.

Real Robot Learning Curve

5 10 15 20 25 30 35 40 45 50
lteration

FIGURE 4 | Average rewards for learning tetherball on the real robot.
Mean and standard deviation of three trials. In all of the three trials, after 50
iterations the robot has found solutions to wind the ball around the pole on
either side.

2.3. LEARNING TO SEQUENCE THE BUILDING BLOCKS

To execute multiple building blocks in a sequence, we refor-
mulate the problem of sequencing building blocks as Markov
Decision Process (MDP). Each building block defines a transi-
tion probability p(s’[s, @) over future contexts and an immediate
reward function R(s, 8). It is executed until its termination con-
dition #,(s, @) is satisfied. However, in our experiments, we used
a fixed duration for each building block. Note that traditional
reinforcement learning methods, such as TD-learning, can not
deal with such MDPs as its action space is high dimensional and
continuous.

We concentrate on the finite-horizon case, i.e., each episode
consists of K decision steps where each step is defined as the exe-
cution of an individual building block. For clarity, we will only
discuss the sequencing of a single building block, however, the
selection of multiple building blocks at each decision step can be
easily incorporated (Daniel et al., 2013).

In the finite horizon formulation of REPS we want to find
the probabilities pi(s, @) = pr(s)w(0]s), k < K, and px41(s) that
maximize the expected long term reward

K
7= [prr©Reaads+ Y [[puts.O0Rs1 0010,

k=159

where Rk 1 1 (sk + 1) denotes the final reward for ending up in the
state sk 41 after executing the last building block. As in the pre-
vious case, the initial context distributions is given by the task,
i.e., Vs : pi(s) = p1(s). Furthermore, the context distribution at
future decision steps k > 1 need to be consistent with the the past
distributions py — 1 (s, @) and the transition model p(s'[s, 8), i.e.,

vs' k> 1:p(s) :/ pr—1(s,0)p (s's,6) dsdf,
s, 6

for each decision step of the episode. These constraints connect
the policies for the individual decision-steps and result in a pol-
icy mr(@|s) that optimizes the long-term reward instead of the
immediate ones. As in the previous sections, these constraints are
again implemented by matching feature averages.

The closed form solution of the joint distribution pi(s, 8)
yields

Ai(s, 0
Dk(s,0) o gi(s, 0) exp (M) ,

Nk
Ak(s,0) = Ri(s,0) + Eps5.0) [Vi1 ()] — Vils).

We can see that the reward Ry (s, 8) is transformed into an advan-
tage function Ai(s, @) where the advantage now also depends on
the expected value of the next state Ey(ys6) [Vk+ 1 (s’)] This
term ensures that we do not just optimize the immediate reward
but the long term reward.

2.3.1. Experimental evaluation of sequencing of building blocks -
sequential robot hockey

We used the sequential robot hockey task to evaluate sequential

motor skill learning framework. The robot has to move the target

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

Left Swing

FIGURE 5 | Time series of a successful swing of the robot. The robot first has to swing the ball to the pole and, subsequently, when the ball has swung
backwards, can arc the ball around the pole. The movement is shown for a shoot to the left and to the right of the pole.

Average Reward
o

target pucks

FIGURE 6 | (Left) The sequential robot hockey task. The robot has two
pucks, the pink control puck and the yellow target puck. The task is to
shoot the yellow target puck into one of the colored reward zones. Since
the best reward zone is too far away from the robot to be reached with
only one shot, each episode consists of three strikes. After each strike,
the control puck is returned to the robot, but the target puck is only reset
after one episode is concluded. (Middle) Comparison of sequential motor

3 Real Robot Hockey

Reward

-0.5

Episodic <
—e— Sequential |, 15
0

1500

50 100 250 300

Episodes 1SI(E)pism:Iegoo
primitive learning to the episodic learning setup on the simulated robot
hockey task. The sequential motor primitive learning framework was able
to find a good strategy to place the puck in the third reward zone in most
of the cases while the episodic learning scenario failed to learn such a
strategy. (Right) One trial of the real robot hockey tasks. The robot starts
with a negative initial reward and learns to achieve an average reward of
2.5 after 300 episodes.

puck into one of three target areas by sequentially shooting a con-
trol puck at the target puck. The target areas are defined by a
specified distance to the robot, see Figure 6 (left). The robot gets
rewards of 1, 2, and 3 for reaching zone 1, 2 or 3, respectively.
After each shot, the control puck is returned to the robot. The
target puck, however, is only reset after every third shot.

The 2-dimensional position of the target puck defines the con-
text s of the task and the parameter vector 6 defines the goal
positions of the DMP that define the desired trajectory of the
robot’s joints. After performing one shot, the agent observes the
new context to plan the subsequent shot. In order to give the agent
an incentive to shoot at the target puck, we punished the agent
with the negative minimum distance of the control puck to the
target puck after each shot. While this reward was given after every
step, the zone reward was only given at the end of the episode
(every third step) as rx 4+ 1(Sg +1)-

We compared our sequential motor primitive learning method
with its episodic variant on a realistic simulation. For the episodic
variant we used one extended parameter vector 6 that contained
the parameters for all three hockey shoots. The comparison of

both methods can be seen in Figure 6 (middle). Due to the
high-dimensional parameter space, the episodic learning setup
failed to learn a proper policy while our sequential motor prim-
itive learning framework could learn policies of much higher
quality.

On the real robot, we could reproduce the simulation results.
The robot learned a strategy which could move the target puck to
the highest reward zone in most of the cases after 300 episodes.
The learning curve is shown in Figure 6 (right).

3. PROBABILISTIC MOVEMENT PRIMITIVES

In the second part of this paper, we investigate new representa-
tions for the individual building blocks of movements that are
particularly suited to be used in a modular control architec-
ture. In all experiments for our modular policy search frame-
work, we so far used the Dynamic Movement Primitive (DMP)
approach (Schaal et al., 2003). DMPs are widely used, however,
when used for our modular control architecture, DMPs suf-
fer from severe limitations as they do not support co-activation
or blending of building blocks. In addition, the DMPs use

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

heuristics for the adaptation of the motion. Hence, we focus
our discussion on our new movement primitive (MP) repre-
sentation (Paraschos et al., 2013) on a these two important
properties.

We use a trajectories 7 = {qt}t=0..4T’ defined by the joint
angles g, over time, to model a single movement. We will use a
probabilistic representation of a movement, which we call proba-
bilistic movement primitives (ProMP), where a movement primi-
tive describes several ways how to execute a movement (Paraschos
et al., 2013). Hence, the movement primitive is given as distribu-
tion p(t) over trajectories. A probabilistic representation offers
several advantages that make it particularly suitable to be used
in a modular control architecture. Most importantly, it offers
principled ways to adapt as well as to co-activate movement
primitives. Yet, these advantages of a probabilistic trajectory rep-
resentation are of little use if we can not use it to control the
robot. Therefore, we derive a stochastic feedback controller in
closed form that can exactly reproduce a given trajectory distribu-
tion, and, hence, trajectory distributions can be used directly for
robot control.

In this section, we present two experiments that we performed
with the ProMP approach. As we focused on the representation
of the individual building blocks, we evaluated the new repre-
sentation without the use of reinforcement learning and learned
the ProMPs by imitation. In our experiments, we illustrate how
to use conditioning as well as co-activation of the building
blocks.

3.1. PROBABILISTIC TRAJECTORY REPRESENTATION

In the imitation learning setup, we assume that we are given sev-
eral demonstrations in terms of trajectories 7;. In our probabilistic
approach we want to learn a distribution of these trajectories. We
will first explain the basic representation of a trajectory distribu-
tion and subsequently cover the two new operations that are now
available in our probabilistic framework, i.e., conditioning and
co-activation. Finally, we will explain in Section 3.3 how to con-
trol the robot with a stochastic feedback controller that exactly
reproduces the given trajectory distribution.

We use a weight vector w to compactly represent a single
trajectory 7. The probability of observing a trajectory t given
the weight vector w is given as a linear basis function model
p(rlw) =]_[t./\/ (yt|\lltTw, Ey), where y; = [q, qt]T contains the
joint position ¢q; and joint velocity g;, ¥, = [, 1/5] defines the
time-dependent basis matrix and €, is zero-mean i.i.d. Gaussian
noise.

We now abstract a distribution over trajectories as distribu-
tion p(w; @) over the weight vector w that is parametrized by the
parameter vector 8. The original trajectory distribution p(t;0)
can now be computed by marginalizing of the weight vector w,
ie., p(r;0) = fp(tlw)p(w;@)dw. We will assume a Gaussian
distribution for p(w; 8) = N (w|iy,) and, hence, p(t;) can
be computed analytically, i.e.,

p (Yt§ 0) =N (YtN’zILw, ‘I’tTEw‘I’t + Zy) .

As a probabilistic MP represents multiple ways to execute an ele-
mental movement, we also need multiple demonstrations to learn

p(w; 0). The parameters 8 = {u, X} can be learned by maxi-
mum likelihood estimation, for example, by using the expectation
maximization algorithm (Lazaric and Ghavamzadeh, 2010).

For multi-dimensional systems, we can also learn the cou-
pling between the joints. Coupling is typically represented by the
covariance of the joint positions and velocities. We can learn this
covariance by maintaining a parameter vector w; for each dimen-
sion 7 and learn a distribution over the combined weight vector

= [wT 7T
w=[w,...,wi].

To be able to adapt the execution speed of the movement,
we introduce a phase variable z to decouple the movement from
the time signal (Schaal et al., 2003). The phase can be any func-
tion z(t) monotonically increasing with time. The basis functions
Y are now decoupled from the time and depend on the phase,
such that ¥, = ¥ (z;) and 1//; = ¥'(zt)z. The choice of the basis
functions depends on whether we want to model rhythmic move-
ments, where we use normalized Von-Mises basis functions that
are periodic in the phase, or stroke-based movements, where we
use normalized Gaussian basis functions,

Gy _ ()
@, (Z)—eXp(o)

¢lyM(z) = exp (hcos 27 (z; — ¢j))) . (8)

The parameter h defines the width of the basis and ¢; the center
for the ith basis function. We normalize the basis functions ¢;

with ¥i(z:) = ¢i(2)/ 3_; 9;(2).

3.2. NEW PROBABILISTIC OPERATORS FOR MOVEMENT PRIMITIVES
The probabilistic formulation of MPs enables us to use new prob-
abilistic operators on our movement primitive representation.
Adaptation of the movement can be accomplished by condition-
ing on desired positions or velocities at time step ¢. Co-activation
and blending of MPs can be implemented as as product of two
trajectory distributions.

3.2.1. Adaptation of the building blocks by conditioning
For efficient adaptation, our building blocks should support
the modulation of hyper-parameters of the movements such as
the desired final joint positions or the joint positions at given
via-points. For example, DMPs allow for the adaptation of the
final position by modulation of the point attractor of the sys-
tem. However, how the final position modulates the trajectory
is hard-coded in the DMP-framework and can not be learned
from data. This adaptation mechanism might violate other task
constraints.

In our probabilistic formulation, such adaptation operations
can be described by conditioning the MP to reach a certain state
y; at time t. Conditioning can be performed by adding a new

desired observation x¢ = [y’f, E;] to our probabilistic model

where y} represents the desired position and velocity vector at
time ¢t and X7 specifies the accuracy of the desired observation.
By applying Bayes theorem, we obtain a new distribution over

w, Le., p(wlxf) x N (y;‘|\IItTw, 2;) p(w). As p(w|0) is Gaussian,

the conditional distribution p (wly}) is also Gaussian and can be

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

computed analytically

—1
prel — ():; n \IltTEw\Ilt> (y;‘ - \II,T,LW), 9)
1
vy,

Xw (10)

ZweW] =Xw— Xuw¥; (2; + \I’tTEw‘I’t>
We illustrated conditioning a ProMP to different target states
in Figure7A. As we can see, the modulation of a target state
is also learned from demonstration, i.e., the ProMP will choose
a new trajectory distribution that goes through the target state,
and, at the same time, is similar to the learned trajectory
distribution.

3.2.2. Combination and blending by multiplying distributions

In our probabilistic representation, a single MP represents a
whole family of movements. Co-activating two MPs should
return a new set of movements which are contained in both MPs.
Such operation can be performed by multiplying two distribu-
tions. We also want to weight the activation of each primitive o;
by a time-varying activation factor «;(¢), for example, to con-
tinuously blend the movement execution from one primitive to
the next. The activation factors can be implemented by tak-
ing the distributions of the individual primitives to the power
of «;j(t). Hence, the co-activation of ProMPs yields p*(7) o

[T Tipityo™®.
For Gaussian distributions p; (Yt) =N (YrWPJ,Z%lJ), the
resulting distribution p*(y;) is again Gaussian and we can

obtain its mean p} and variance X} analytically with variance
and mean

== (% (EE“/ai(t))l)_l,

wi=(z)" <Zi (Zgi]/ofi(t))i1 ugi]) . (11)

Both terms are required to obtain the stochastic feedback con-
troller that is finally used to control the robot. We illustrated
co-activating two ProMPs in Figure 7B and blending of two
ProMPs in Figure 7C.

3.3. USING TRAJECTORY DISTRIBUTIONS FOR ROBOT CONTROL
In order to use a trajectory distribution p(z|@) for robot control,
we have to obtain a controller which can exactly reproduce the
given distribution. As we show in Paraschos et al. (2013), such
controller can be obtained in closed form if we know the system
dynamics ¥ = f(y, u) + €, of the robot'. We model the con-
troller as time-varying stochastic linear feedback controller, i.e.,
u; = k; + Kyy; + €, where k; denotes the feed-forward gains,
K; the feedback gains and €, ~ N(0, Z,) the controller noise.
Hence, the controller is determined by k¢, K; and X, for each time
point. All these terms can be obtained analytically by predict-
ing the distribution ppodel(Yi+dt) from p(y:|6) with the known
model of the system dynamics and subsequently matching the
moments of p(y;+4|@) and the moments of the predicted distri-
bution pmodel (Yi+dt)- The resulting controller exactly reproduces
the given trajectory distribution p(7|@) (Paraschos et al., 2013).
While the ProMP approach has many similarities to the
approach introduced in Rozo et al. (2013) by Calinon and col-
leagues, there are also important differences to this approach.
They also learn a trajectory distribution which is modeled with
a GMM, where the output variables are the joint angles and the
time step t. The probability for the joint angles at time step ¢ is
then obtained by conditioning on ¢. However, it is unclear how
to condition on being at a certain state q; at time step, which
is very different then just conditioning on being in time step ¢.
In this case, the mixture components need to be changed such

1 Alternatively, we can assume that we use inverse dynamics control on the
robot, and, hence, the idealized dynamics of the robot are given by a linear
system. Such an approach is, for example, followed by the DMPs that also
assumes that the underlying dynamical system, that represents the robot, is
linear.

[— Demonstration 1
—— Demonstration 2
— Blendin

A — Demonstration 1
— Demonstration 2
—— Combinatio

0 0.3 0.7 1

time [s]

FIGURE 7 | (A) Conditioning on different target states. The blue shaded
area represents the learned trajectory distribution. We condition on
different target positions, indicated by the “x"-markers. The produced
trajectories exactly reach the desired targets while keeping the shape of
the demonstrations. (B) Combination of two ProMPs. The trajectory
distributions are indicated by the blue and red shaded areas. Both
primitives have to reach via-points at different points in time, indicated by

time [s]

time [s]

the “x"”-markers. We co-activate both primitives with the same activation
factor. The trajectory distribution generated by the resulting feedback
controller now goes through all four via-points. (C) Blending of two
ProMPs. We smoothly blend from the red primitive to the blue primitive.
The activation factors are shown in the bottom. The resulting movement
(green) first follows the red primitive and, subsequently, switches to
following the blue primitive.

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

that the trajectory distribution passes through q; at time step t.
How to implement this change with a GMM is an open problem.
Note that the ProMP approach is very different from a GMM.
It uses a linear basis function model and learns the correlation
of the parameters of the basis functions for the different move-
ments. Time is not modeled as random variable but as conditional
variable right away. Due to the learned correlations, we can con-
dition on reaching q; at time step t and the trajectory distribution
smoothly passes through qf with high accuracy.

Furthermore, a trajectory distribution alone is not sufficient
to control a robot as it requires a feedback controller that deter-
mines the control actions. How to obtain this feedback controller
from the trajectory distribution is based on heuristics in Rozo
et al. (2013). Le., when we apply the feedback controller on the
real robot, we will not reproduce the learned trajectory distri-
bution. The produced trajectory distribution might be similar,
but we do not know how similar. Therefore, for all operations
performed on the trajectory distributions (i.e., a combination of
distributions by a product), it is hard to quantify the effect of this
operation on the resulting motions that are obtained from the
heuristic feedback controller. In contrast, the ProMPs come with
a feedback controller that exactly matches the trajectory distri-
bution. Hence, for a combination of distributions, we know that
the feedback controller will exactly follow the product of the two
distributions.

3.3.1. Experimental evaluation of the combination of objectives at
different time-points

In this task, a seven link planar robot has to reach different target

positions in end-effector space at the final time point fr and at

a via-point t,. We generated the demonstrations for learning the
MPs with an optimal control law, (Toussaint, 2009) and adding
noise to the control outputs. In the first set of demonstrations,
the robot reached a via-point at f; = 0.25 s with its end-effector.
We used 10 normalized Gaussian basis functions per joint, result-
ing in a 70-dimensional weight vector. As we learned a single
distribution over all joints of the robot, we can also model the
correlations between the joints. These correlations are required to
learn to reach a desired via-point in task space. The reproduced
behavior with the ProMPs is illustrated in Figure 8 (top). The
ProMP exactly reproduced the via-points in task space. Moreover,
the ProMP exhibited the same variability in between the time
points of the via-points. It also reproduced the coupling of the
joints from the optimal control law, which can be seen by the
small variance of the end-effector in comparison to the rather
large variance of the single joints at the via-points. We also used a
second set of demonstrations where the first via-point was located
at time step #; = 0.75, which is illustrated in Figure 8 (middle).
We co-activated the ProMPs learned from both demonstrations.
The robot could accurately reach both via-points at f; = 0.25 and
t, = 0.75, see Figure 8 (bottom).

3.32. Experimental evaluation of the combination of simultaneous
objectives - robot hockey

In this task, the robot again has to shoot a hockey puck in different
directions and distances. The task setup can be seen in Figure 9A.
We record two different sets of demonstrations, one that con-
tains straight shots with varying distances, while the second set
contains shots with a varying shooting angle and almost con-
stant distance. Both data sets contained ten demonstrations each.

t=0s t=0.25s t=0.5s t=0.75s t=1.0s
6
4
2
0______ — — i s Y - = e s — — Y ¥ — = =
— 6
E
2 4
X
2
o ’ ‘s
>~.0______ - - - - ——— - — _
6
4
2
]
0______ - s ey Rt T Lo = e - = s s et fe = s e
2 0 2 46 -2 02 46 -2 02 46 -2 02 46 202 46
x-axis [m]
FIGURE 8 | A 7-link planar robot has to reach a target position at The demonstrations have been generated by an optimal control law. The
T = 1.0s with its end-effector while passing a via-point at t; = 0.25s ProMP approach was able to exactly reproduce the coupling of the joints from
(top) or t; = 0.75s (middle). The plot depicts the mean posture of the robot the demonstrations. The combination of both learned ProMPs is shown in the
at different time steps (black) and samples generated by the ProMP (gray). bottom. The resulting movement reached both via-points with high accuracy.

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

FIGURE 9 | Robot Hockey. The robot shoots a hockey puck. The setup
is shown in (A). We demonstrate ten straight shots for varying
distances and ten shots for varying angles. The pictures show samples
from the ProMP model for straight shots (B) and angled shots (C).
Learning from combined data set yields a model that represents

00“ :::'.

& Multiplication

e@P o

variance in both, distance and angle (D). Multiplying the individual
models leads to a model that only reproduces shots where both
models had probability mass, in the center at medium distance (E).
The last picture shows the effect of conditioning on only left or right
angles, the robot does not shoot in the center any more (F).

Sampling from the two models generated by the different data
sets yields shots that exhibit the demonstrated variance in either
angle or distance, as shown in Figures 9B,C. When combining the
data sets of both primitives and learning a new primitive, we get a
movement which exhibits variance in both dimensions, i.e., angle
and distance, see Figure 9D. When the two individual primitives
are combined by a product of MPs, the resulting model shoots
only in the center at medium distance, i.e., the intersection of both
MPs, see Figure 9F.

In this section, we present two experiments that we performed
with the ProMP approach. As we focused on the representation
of the individual building blocks, we evaluated the new represen-
tation without the use of reinforcement learning and learned the
ProMPs by imitation. In our experiments, we illustrate how to use
conditioning as well as co-activation of the building blocks.

4. CONCLUSION AND FUTURE WORK

Using structured, modular control architectures is a promising
concept to scale robot learning to more complex real-world tasks.
In such a modular control architecture, elemental building blocks,
such as movement primitives, need to be adapted, sequenced or
co-activated simultaneously. In this paper, we presented a unified
data-efficient policy search framework that exploits such control
architectures for robot learning. Our policy search framework
can learn to select, adapt and sequence parametrized building
blocks such as movement primitives while coping with the main
challenges of robot learning, i.e., high dimensional, continuous
state and action spaces and the high costs of generating data.
Moreover, we presented a new probabilistic representation of the
individual building blocks which show several beneficial proper-
ties. Most importantly, they support efficient and principled ways
of adapting a building block to the current situation and we can
co-activate several of these building blocks.

Future work will concentrate on integrating the new ProMP
approach into our policy search framework. Interestingly, the
upper-level policy would in this case directly specify the trajec-
tory distribution. The lower level control policy is automatically
given by this trajectory distribution. We will explore to incorpo-
rate the co-activation of individual building blocks also in our

policy search framework. Additional future work will concentrate
on incorporating perceptual feedback into the building blocks
and using more complex hierarchies in policy search.

REFERENCES

Alvarez, M., Peters, J., Scholkopf, B., and Lawrence, N. (2010). “Switched latent
force models for movement segmentation,” in Neural Information Processing
Systems (NIPS) (Vancouver), 55-63.

Butterfield, J., Osentoski, S., Jay, G., and Jenkins, O. C. (2010). “Learning from
demonstration using a multi-valued function regressor for time-series data,” in
Humanoids (Nashville), 328-333.

Calinon, S., Guenter, E, and Billard, A. (2007). On learning, representing and gen-
eralizing a task in a humanoid robot. IEEE Trans. Syst. Man Cybern. B Cybern.
37, 286-298.

Chiappa, S., and Peters, J. (2010). “Movement extraction by detecting dynam-
ics switches and repetitions,” in Neural Information Processing Systems (NIPS)
(Vancouver), 388-396.

dAvella, A., and Pai, D. (2010). Modularity for sensorimotor control: evidence
and a new prediction. J. Mot. Behav. 42, 361-369. doi: 10.1080/00222895.2010.
526453

Daniel, C., Neumann, G., and Peters, J. (2012a). “Hierarchical relative entropy pol-
icy search,” in International Conference on Artificial Intelligence and Statistics
(AISTATS) (La Palma).

Daniel, C., Neumann, G., and Peters, J. (2012b). “Learning concurrent motor skills
in versatile solution spaces,” in IEEE/RS] International Conference on Intelligent
Robots and Systems (Villamoura).

Daniel, C., Neumann, G., and Peters, J. (2013). “Learning sequential motor
tasks,” in IEEE International Conference on Robotics and Automation (ICRA)
(Karlsruhe).

da Silva, B., Konidaris, G., and Barto, A. (2012). “Learning parameterized skills,” in
International Conference on Machine Learning (Edinburgh).

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incom-
plete data via the EM algorithm. J. R. Stat. Soc. B 39, 1-38.

Ghavamzadeh, M., and Mahadevan, S. (2003). “Hierarchical policy gradient algo-
rithms,” in International Conference for Machine Learning (ICML) (Washington,
DC: AAAI Press), 226-233.

Tjspeert, A., and Schaal, S. (2003). “learning attractor landscapes for learning motor
primitives,” in Advances in Neural Information Processing Systems 15, (NIPS).
Cambridge, MA: MIT Press.

Khansari-Zadeh, M., and Billard, A. (2011). Learning stable non-linear dynamical
systems with gaussian mixture models. IEEE Trans. Robotics 27, 943-957. doi:
10.1109/TRO.2011.2159412

Kober, J., Miilling, K., Kroemer, O., Lampert, C. H., Scholkopf, B., and
Peters, J. (2010a). “Movement templates for learning of hitting and bat-
ting,” in International Conference on Robotics and Automation (ICRA)
(Anchorage).

Frontiers in Computational Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 62 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Neumann et al.

Learning modular policies for robotics

Kober, J., Oztop, E., and Peters, J. (2010b). “Reinforcement learning to adjust robot
movements to new situations,” in Proceedings of the Robotics: Science and Systems
Conference (RSS) (Zaragoza).

Kober, J., and Peters, J. (2010). Policy search for motor primitives in robotics. Mach.
Learn. 84, 171-203. doi: 10.1016/j.neunet.2008.02.003

Kormushev, P., Calinon, S., and Caldwell, D. (2010). “Robot motor skill coordi-
nation with EM-based reinforcement learning,” in Proceedings of the IEEE/RS]
International Conference on Intelligent Robots and Systems (IROS) (Taipei).

Kulic, D., Takano, W., and Nakamura, Y. (2009). Online segmentation and cluster-
ing from continuous observation of whole body motions. IEEE Trans. Robot. 25,
1158-1166. doi: 10.1109/TRO.2009.2026508

Kupcsik, A., Deisenroth, M. P,, Peters, J., and Neumann, G. (2013). “Data-efficient
contextual policy search for robot movement skills,” in Proceedings of the
National Conference on Artificial Intelligence (AAAI) (Bellevue).

Lazaric, A., and Ghavamzadeh, M. (2010). “Bayesian multi-task reinforcement
learning,” in Proceedings of the 27th International Conference on Machine
Learning (ICML) (Haifa).

Meier, E, Theodorou, E., Stulp, E, and Schaal, S. (2011). “Movement segmenta-
tion using a primitive library,” in 2011 IEEE/RS] International Conference on
Intelligent Robots and Systems (San Francisco), 3407—-3412. doi: 10.1109/IROS.
2011.6094676

Morimoto, J., and Doya, K. (2001). Acquisition of stand-up behavior by a real robot
using hierarchical reinforcement learning. Robot. Auton. Syst. 36, 37-51. doi:
10.1016/S0921-8890(01)00113-0

Neal, R., and Hinton, G. E. (1998). “A view of the Em algorithm that justifies incre-
mental, sparse, and other variants,” in Learning in Graphical Models, ed M. 1.
Jordan (Kluwer Academic Publishers), 355-368.

Neumann, G. (2011). “Variational inference for policy search in changing situa-
tions,” in Proceedings of the 28th International Conference on Machine Learning
(ICML) (Bellevue).

Neumann, G., and Peters, J. (2009). “Fitted Q-iteration by advantage weighted
regression,” in Neural Information Processing Systems (NIPS) (Vancouver: MIT
Press).

Niekum, S., Osentoski, S., Konidaris, G., and Barto, A. (2012). “Learning
and generalization of complex tasks from unstructured demonstrations,” in
Proceedings of the IEEE/RS] International Conference on Intelligent Robots and
Systems (Villamoura).

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2013). “Probabilistic move-
ment primitives,” in Advances in Neural Information Processing Systems (NIPS)
Cambridge, MA: MIT Press.

Peters, J., Miilling, K., and Altun, Y. (2010). “Relative entropy policy search,” in
Proceedings of the 24th National Conference on Artificial Intelligence (AAAI),
(Atlanta: AAAI Press).

Peters, J., and Schaal, S. (2008). Reinforcement learning of motor skills with policy
gradients. Neural Netw. 21, 682—-697. doi: 10.1016/j.neunet.2008.02.003

Peters, J., Vijayakumar, S., and Schaal, S. (2003). “Reinforcement learning for
humanoid robotics,” in Humanoids2003, 3rd IEEE-RAS International Conference
on Humanoid Robots, Karlsruhe (Karlsruhe).

Rasmussen, C. E., and Williams, C. K. L. (2006). Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). Cambridge, MA;
London: The MIT Press. ISBN: 026218253X

Rozo, L., Calinon, S., Caldwell, D. G., Jimenez, P, and Torras, C. (2013).
“Learning collaborative impedance-based robot behaviors,” in AAAI Conference
on Artificial Intelligence (Bellevue).

Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. (2003). “Learning movement
primitives,” in International Symposium on Robotics Research, (ISRR) (Siena).
Snelson, E., and Ghahramani, Z. (2006). “Sparse gaussian processes using
pseudo-inputs,” in Advances in Neural Information Processing Systems (NIPS)

(Vancouver: MIT press), 1257-1264.

Stulp, F, and Schaal, S. (2011). “Hierarchical reinforcement learning with move-
ment primitives,” in 2012 IEEE-RAS International Conference on Humanoid
Robots (Humanoids) (Bled), 231-238.

Stulp, E, and Sigaud, O. (2012). “Path integral policy improvement with covariance
matrix adaptation,” in [CML (Edinburgh).

Theodorou, E., Buchli, J.,, and Schaal, S. (2010). “Reinforcement learn-
ing of motor skills in high dimensions: a path integral approach,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference on
(Anchorage).

Todorov, E., and Jordan, M. (2002). Optimal feedback control as a theory of motor
coordination. Nat. Neurosci. 5, 1226—1235. doi: 10.1038/n1n963

Toussaint, M. (2009). “Robot trajectory optimization using approximate infer-
ence,” in Proceedings of the 26th International Conference on Machine Learning,
(ICML) (Montreal).

Ude, A., Gams, A., Asfour, T., and Morimoto, J. (2010). Task-specific generalization
of discrete and periodic dynamic movement primitives. Trans. Rob. 26, 800-815.
doi: 10.1109/TRO.2010.2065430

Vlassis, N., Toussaint, M., Kontes, G., and Piperidis, S. (2009). Learning model-free
robot control by a monte carlo EM algorithm. Auton. Rob. 27, 123-130. doi:
10.1007/s10514-009-9132-0

Williams, B., Toussaint, M., and Storkey, A. (2007). “Modelling motion primitives
and their timing in biologically executed movements,” in Advances in Neural
Information Processing Systems (NIPS) (Vancouver).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn. 8, 229-256. doi:
10.1007/BF00992696

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 22 November 2013; accepted: 21 May 2014; published online: 11 June 2014.
Citation: Neumann G, Daniel C, Paraschos A, Kupcsik A and Peters] (2014) Learning
modular policies for robotics. Front. Comput. Neurosci. 8:62. doi: 10.3389/fncom.
2014.00062

This article was submitted to the journal Frontiers in Computational Neuroscience.
Copyright © 2014 Neumann, Daniel, Paraschos, Kupcsik and Peters. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 62 | 13

http://dx.doi.org/10.3389/fncom.2014.00062
http://dx.doi.org/10.3389/fncom.2014.00062
http://dx.doi.org/10.3389/fncom.2014.00062
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Learning modular policies for robotics
	Introduction
	Related Work
	Movement representations
	Policy search
	Generalization of skills
	Sequencing of skills
	Segmentation and modular imitation learning

	Information Theoretic Policy Search for Learning Modular Control Policies
	Learning to Adapt the Individual Building Blocks
	Experimental evaluation of the adaptation of building blocks - robot hockey target shooting

	Learning to Select the Building Blocks
	Experimental evaluation of the selection of building blocks - robot tetherball

	Learning to Sequence the Building Blocks
	Experimental evaluation of sequencing of building blocks - sequential robot hockey

	Probabilistic Movement Primitives
	Probabilistic Trajectory Representation
	New Probabilistic Operators for Movement Primitives
	Adaptation of the building blocks by conditioning
	Combination and blending by multiplying distributions

	Using Trajectory Distributions for Robot Control
	Experimental evaluation of the combination of objectives at different time-points
	Experimental evaluation of the combination of simultaneous objectives - robot hockey

	Conclusion and Future Work
	References

