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Winner-Take-All (WTA) networks are recurrently connected populations of excitatory and
inhibitory neurons that represent promising candidate microcircuits for implementing
cortical computation. WTAs can perform powerful computations, ranging from
signal-restoration to state-dependent processing. However, such networks require
fine-tuned connectivity parameters to keep the network dynamics within stable operating
regimes. In this article, we show how such stability can emerge autonomously through an
interaction of biologically plausible plasticity mechanisms that operate simultaneously on
all excitatory and inhibitory synapses of the network. A weight-dependent plasticity rule
is derived from the triplet spike-timing dependent plasticity model, and its stabilization
properties in the mean-field case are analyzed using contraction theory. Our main result
provides simple constraints on the plasticity rule parameters, rather than on the weights
themselves, which guarantee stable WTA behavior. The plastic network we present is
able to adapt to changing input conditions, and to dynamically adjust its gain, therefore
exhibiting self-stabilization mechanisms that are crucial for maintaining stable operation in
large networks of interconnected subunits. We show how distributed neural assemblies
can adjust their parameters for stable WTA function autonomously while respecting
anatomical constraints on neural wiring.
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inhibitory plasticity

1. INTRODUCTION
Competition through shared inhibition is a powerful model of
neural computation (Maass, 2000; Douglas and Martin, 2007).
Competitive networks are typically composed of populations of
excitatory neurons driving a common set of inhibitory neurons,
which in turn provide global negative feedback to the excita-
tory neurons (Amari and Arbib, 1977; Douglas and Martin, 1991;
Hertz et al., 1991; Coultrip et al., 1992; Douglas et al., 1995;
Hahnloser et al., 2000; Maass, 2000; Rabinovich et al., 2000;
Yuille and Geiger, 2003; Rutishauser et al., 2011). Winner-take-
all (WTA) networks are one instance of this circuit motif, which
has been studied extensively. Neurophysiological and anatomical
studies have shown that WTA circuits model essential features
of cortical networks (Douglas et al., 1989; Mountcastle, 1997;
Binzegger et al., 2004; Douglas and Martin, 2004; Carandini
and Heeger, 2012). An individual WTA circuit can implement a
variety of non-linear operations such as signal restoration, ampli-
fication, filtering, or max-like winner selection, e.g., for decision
making (Hahnloser et al., 1999; Maass, 2000; Yuille and Geiger,
2003; Douglas and Martin, 2007). The circuit plays an essential
role in both early and recent models of unsupervised learning,
such as receptive field development (von der Malsburg, 1973;
Fukushima, 1980; Ben-Yishai et al., 1995), or map formation
(Willshaw and Von Der Malsburg, 1976; Amari, 1980; Kohonen,
1982; Song and Abbott, 2001). Multiple WTA instances can be

combined to implement more powerful computations that can-
not be achieved with a single instance, such as state dependent
processing (Rutishauser and Douglas, 2009; Neftci et al., 2013).
This modularity has given rise to the idea of WTA circuits rep-
resenting canonical microcircuits, which are repeated many times
throughout cortex and are modified slightly and combined in
different ways to implement different functions (Douglas and
Martin, 1991, 2004; Rutishauser et al., 2011).

In most models of WTA circuits the network connectivity is
given a priori. In turn, little is known about whether and how
such connectivity could emerge without precise pre-specification.
In this article we derive analytical constraints under which local
synaptic plasticity on all connections of the network tunes the
weights for WTA-type behavior. This is challenging as high-gain
WTA operation on the one hand, and stable network dynamics on
the other hand, impose diverging constraints on the connection
strengths (Rutishauser et al., 2011), which should not be violated
by the plasticity mechanism. Previous models like Jug et al. (2012)
or Bauer (2013) have shown empirically that functional WTA-like
behavior can arise from an interplay of plasticity on excitatory
synapses and homeostatic mechanisms. Here, we provide a math-
ematical explanation for this phenomenon, using a mean-field
based analysis, and derive conditions under which biologically
plausible plasticity rules applied to all connections of a network
of randomly connected inhibitory and excitatory units produce
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a functional WTA network with structured connectivity. Due to
plastic inhibitory synapses, convergence of the model does not
rely on constant, pre-defined inhibitory weights or other com-
mon assumptions for WTA models. We prove that the resulting
WTA circuits obey stability conditions imposed by contraction
analysis (Lohmiller and Slotine, 1998; Rutishauser et al., 2011).
This has important implications for the stability of larger net-
works composed of multiple interconnected WTA circuits, and
thus sheds light onto the mechanisms responsible for the emer-
gence of both local functional cortical microcircuits and larger
distributed coupled WTA networks.

This article is structured as follows: We first define the network
and plasticity models in sections 2.1 to 2.3. Our main analytical
results are given in sections 2.4 and 2.5, and illustrated with simu-
lation results in section 2.6. The results are discussed in section 3,
and detailed derivations of the analytical results can be found in
section 4.

2. RESULTS
2.1. NETWORK TOPOLOGY
In its simplest abstract form, a WTA circuit (Figure 1A) con-
sists of a number of excitatory units that project onto a common
inhibitory unit. This unit, in turn, provides recurrent inhibitory
feedback to all excitatory units. Given appropriate connection
strengths, such inhibition makes the excitatory units compete for
activation in the sense that the unit receiving the strongest input
signal will suppress the activation of all other units through the
inhibitory feedback loop, and “win” the competition.

We design a biologically plausible network by taking into
account that inhibitory feedback is local, i.e., it only affects cells
within a cortical volume that is small enough such that the rel-
atively short inhibitory axonal arbors can reach their targets. We
assume excitatory and inhibitory neurons in this volume to be
connected randomly (see Figure 1B). Furthermore, we assume
that there are a finite number of different input signals, each acti-
vating a subset of the excitatory cells in the volume. We construct
a mean-field model by grouping the excitatory neurons for each
driving input stimulus, summarizing the activity of each group
of cells by their average firing rate. This results in a simplified
population model of the network which—in the case of two dif-
ferent input signals—consists of two excitatory populations (one
for each input), and one inhibitory population (see Figure 1C).
We assume full recurrent connectivity between all populations.
This scheme can easily be extended toward more input groups. In
particular, if an excitatory group receives multiple inputs, it can
be modeled as a new class.

Since inhibitory axons are (typically) short-range, distant
populations can communicate only via excitatory projections.
We combine multiple local circuits of the form shown in
Figures 1B,C by introducing excitatory long-range connections
between them, as illustrated in Figure 1D. Specifically, we add
projections from the excitatory populations of one local group
to all excitatory and inhibitory populations of the other group. A
similar connectivity scheme for implementing distributed WTA
networks has been proposed by Rutishauser et al. (2012). Unlike
their model, our network does not require specific wiring, but
rather targets any potential cell in the other volume. We will

FIGURE 1 | Illustration of the network model. (A) Abstract
representation of a WTA circuit, where several excitatory units project onto
a common inhibitory unit, and receive global inhibitory feedback from that
unit. (B) Example volume of the generic cortical structure that is assumed,
consisting of (initially randomly connected) excitatory (pyramidal) cells and
inhibitory interneurons. The color of the cells indicates the input channel
they are connected to: some cells only receive input from the blue, others
from the orange source. It is assumed that the volume is sufficiently small,
such that all excitatory cells can be reached by the (short-ranged) axons of
the inhibitory cells. If the connection strengths are tuned appropriately, the
population receiving the stronger input signal will suppress the response of
the weaker population via the global inhibitory feedback. (C) shows the
mean field model of the same network that we construct by grouping
excitatory neurons by their input source. The three resulting excitatory and
interneuron populations are connected in an all-to-all fashion. (D,E) show
multiple, distant volumes which are connected via long-range excitatory
connections. Projections from one volume to another connect to all cells of
the target volume. In (E), the two subgroups are approximated by networks
of the type shown in (C), consisting of one inhibitory and several excitatory
populations. The black, solid arrows represent exemplary excitatory
connections from one population of one group to all populations of the
other group. Equivalent connections, indicated by dotted arrows, exist for
all of the excitatory populations.

show in section 2.4.4 that this is sufficient to achieve competition
between units of spatially distributed WTA circuits.

2.2. NETWORK DYNAMICS
The activation of a neural populations xi, which can be excitatory
or inhibitory, is described by

τiẋi(t) = −xi(t) +
⎡
⎣∑

j

wijxj(t) + Iext,i(t) − Ti

⎤
⎦

+
, (1)

where τi is the time constant of the population, wij is the weight
of the incoming connection from the jth population, Iext,i(t) is
an external input given to the population, and Ti is the activation
threshold. Furthermore, [v]+ := max (0, v) is a half-wave rectifi-
cation function, preventing the firing rates from taking negative
values. Assuming identical time constants for all populations, i.e.,
τi = τ for all i, the dynamics of the full system can be written as
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τ ẋ(t) = −x(t) + [Wx(t) + Iext(t) − T]+ , (2)

where x = (x1, . . . , xN ) are the firing rates of the respective pop-
ulations (excitatory and inhibitory), W is the connectivity matrix
(describing local excitatory, local inhibitory, and long-range exci-
tatory connections), Iext(t) is a vector of external inputs, and
T = (T1, . . . , TN ) are the activation thresholds of the popula-
tions. For the single local microcircuit shown in Figure 1C, for
example, W would be a 3-by-3 matrix with all entries wij non-
zero except for the inhibitory to inhibitory coupling. For two
coupled microcircuits as in Figure 1E, the connectivity matrix
consists of 4 blocks, with the diagonal blocks describing local
connectivity, and the off-diagonal blocks describing long-range
projections from excitatory units to the other circuit.

2.3. PLASTICITY MECHANISMS AND WEIGHT DYNAMICS
In our model, we assume that all connections wij in Equation (2)
are plastic, and are subject to the following weight update rule:

ẇ = τ 2
s xprexpost

(
xpost(wmax − w) − (�w + Awxpre)w

)
. (3)

Here, xpre and xpost are the pre- and postsynaptic firing rates,
respectively, wmax is the maximum possible weight value, and �w,
Aw, and τs are positive constants, which we set to values that are
compatible with experimental findings (see Table 1). The learning
rate is determined by τs, and �w and Aw determine the point at
which the rule switches between depression (LTD) and potentia-
tion (LTP). We will show that in a plastic network, global stability
and circuit function are determined exclusively by those plastic-
ity parameters. The plasticity rule is derived from the mean-field
approximation of the triplet STDP rule by Pfister and Gerstner
(2006), which we augment with a weight-dependent term, effec-
tively limiting the weight values to the interval [0, wmax]. A more
detailed derivation of the learning rule can be found in the
Methods (section 4.1). The parameters �w and Aw are set dif-
ferently for excitatory and inhibitory connections, leading to two
types of simultaneously active plasticity mechanisms and weight
dynamics, even though the same learning equation is used. We
set �w = �exc and Aw = Aexc for all excitatory connections, and
�w = �inh and Aw = Ainh for all inhibitory connections. In par-
ticular, we assume Ainh to take very low values and set Ainh = 0 in
our analysis, effectively eliminating any dependence of the fixed
point of inhibitory weights on the presynaptic rate. According to
fits of the parameters to experimental data (see Table 1), this is a
plausible assumption. For the sake of simplicity, we also assume

the maximum possible weight value wmax to be the same for
all excitatory and inhibitory connections. Figure 2 illustrates the
weight change as a function of the pre- and postsynaptic activity.

2.4. STABILITY ANALYSIS
The WTA circuit is assumed to function correctly if it converges
to a stable state that represents the outcome of the computation it
is supposed to perform. Conditions under which these networks
converge to their (single) attractor state exponentially fast were
previously derived by Rutishauser et al. (2011). Here, we extend
those results to plastic networks and express stability criteria in
terms of global learning rule parameters, rather than individual
weight values. We first describe criteria for the stabilization of the
network and learning rule dynamics, then derive from them con-
ditions on the learning rule parameters. Our analysis leads to very
simple sufficient conditions that ensure the desired stable WTA
behavior.

The dynamics of the network activation and the weights are
given by Equations (2) and (3), respectively. In the following, we
will denote them by f and g, so the full dynamics can be written
as a coupled dynamical system

ẋ = f (x, w), (4)

ẇ = g(x, w), (5)

where f corresponds to the right hand side of Equation (2), and
g combines the update rules for all weights (with different sets
of parameters for excitatory and inhibitory connections) in one
vector-valued function. We first restrict our analysis to the sim-
plest case of a single winning excitatory population and derive
conditions under which the plastic network converges to its fixed
point. Later, we extend our analysis to larger systems of multiple
coupled excitatory populations.

2.4.1. Analysis of single-node system
Let us first consider a simplified system, in which only one exci-
tatory population is active, e.g., because one population receives
much more external input than all others, and the inhibitory
feedback suppresses the other populations. As silent populations
neither contribute to the network dynamics nor to the weight
dynamics, they can be excluded from the analysis. We can there-
fore reduce the description of the system to a single excitatory
population xE, and an inhibitory population xI, together with the
connections wE → E, wE → I, and wI → E between them.

Table 1 | Learning rule parameters A±
2

, and A±
3

from Pfister and Gerstner (2006).

Model A+
2

A+
3

A−
2 A−

3 � A τ2
s

All-to-all 5 × 10−10 6.2 × 10−3 7 × 10−3 2.3 × 10−4 18.19 0.06 1.3 × 10−5

Nearest spike 8.8 × 10−11 5.3 × 10−2 6.6 × 10−3 3.1 × 10−3 6.24 2.09 3.6 × 10−5

The values of �, A, and τs for the plasticity rule Equation (3) have been computed using Equations (14) to (16). The data corresponds to fits of the triplet Spike-

Timing Dependent Plasticity (STDP) model with all-to-all spike interactions (first row) and with nearest spike interactions (second row) to recordings from plasticity

experiments in rat visual cortex. Note that the time constants τx,y and τ± are not reproduced here. However, they all are of the order of hundreds of milliseconds

and can be found in Pfister and Gerstner (2006). In our simulations, we use parameters very similar to the “all-to-all” parameters for inhibitory connections, while

for excitatory connections we use ones that are close to the “nearest spike” parameters.
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For a given set of (fixed) weights wc, Rutishauser et al. (2011)
have shown by means of contraction theory (Lohmiller and
Slotine, 1998) that the system of network activations ẋ = f (x, wc)
converges to its fixed point x∗ exponentially fast if its generalized
Jacobian is negative definite. In our case, this condition reduces to

Re
(

wE → E − 2 + (
w2

E → E − 4 wI → E wE → I
)1/2

)
< 0. (6)

If condition (6) is met, the system is called contracting and is
guaranteed to converge to its attractor state

x∗
E = �Iext, (7)

x∗
I = �wE → IIext, (8)

exponentially fast for any constant input Iext, where the contrac-
tion rate is given by the left hand side of (6), divided by 2τ . Here,
� = (1 − wE → E + wE → I wI → E)−1 corresponds to the network
gain. A more detailed derivation of the fixed point can be found
in section 4.2. Note that we have set the activation threshold T
equal to zero and provide external input Iext to the excitatory pop-
ulation only. This simplifies the analysis but does not affect our
results qualitatively.

2.4.2. Decoupling of network and weight dynamics
In the following, we assume that the population dynamics is
contracting, i.e., that condition (6) is met, to show that the plas-
ticity dynamics Equation (5) drives the weights w to a state that
is consistent with this condition. Essentially, our analysis has to
be self-consistent with respect to the contraction of the activa-
tion dynamics. If we assume f and g to operate on very different
timescales, we can decouple the two systems given by Equations
(4) and (5). This is a valid assumption since neural (population)
dynamics vary on timescales of tens or hundreds of milliseconds

FIGURE 2 | Illustration of the learning rule. The weight change dw/dt is
plotted as a function of the post- and presynaptic firing rate for fixed pre- (left)
or postsynaptic (right) rates. The gray, dashed line shows the rule that we use
for inhibitory connections and whose threshold for LTP, in contrast to
excitatory connections, does not depend on the presynaptic rate. The black
line marks the transition between LTD and LTP. In this example, the
parameters of the learning rules were set to �exc = 6 Hz, �inh = 18 Hz,
Aexc = 2, wmax = 4, and the weight value was fixed at wmax/3 for excitatory
and wmax/2 for inhibitory connections.

(see Figure 5 for typical timescales of our system), while synap-
tic plasticity typically acts on timescales of seconds or minutes.
This means that from the point of view of the weight dynam-
ics g the population activation is at its fixed point x∗ almost all
the time, because it converges to that point exponentially fast. We
can thus model the activation dynamics as a quasi-static system,
and approximate the learning dynamics as a function of the fixed
point of the activation instead of the instantaneous activation.

g(x, w) ≈ g(x∗, w), (9)

The fixed point of this simplified system is found by setting
g(x∗, w) = 0, and according to Equation (3) is given by

w∗ = wmaxx∗
post

�w + Awx∗
pre + x∗

post
. (10)

Combining this expression with Equations (7) and (8) leads
to a system of non-linear equations that can be solved for the
fixed point weights w∗

E → E, w∗
E → I, w∗

I → E, and activations x∗
E, and

x∗
I . These values solely depend on the learning rule parameters

�w, Aw, wmax, and the external (training) input Iext.
Figure 3 shows the fixed points of the weight dynamics as a

function of �exc, and the input strength Iext. Notably, w∗
E → E and

w∗
E → I lie on a fixed line in the wE → E-wE → I plane for all parame-

ters �w and Aw. As the weight values are bounded by 0 and wmax,
the weights converge to a finite value for Iext → ∞. This is also
illustrated in Figure 4, which shows the final weight values as a
function of wmax, both for a finite training input and in the limit
Iext → ∞.

Importantly, the function of a WTA circuit critically depends
on the strength of the recurrent connection wE → E (Rutishauser
et al., 2011). If wE → E > 1, the network operates in “hard” mode,
where only one unit can win at a time and the activation of all

FIGURE 3 | Illustration of the fixed point in weight space. The values of
the final weights (in units of wmax) are plotted as functions of the parameter
�exc and the training input strength Iext, where bigger circles correspond to
greater Iext. The left panel shows the wE → I-wI → E plane, while the right
panel shows the wE → I-wE → E plane. Interestingly, the fixed point in
wE → I-wE → E space only gets shifted along a line for different values of
�exc and Iext. For Iext → ∞ the weights converge to a limit point, as is
illustrated in Figure 4. For these plots, the parameters Aexc and �inh were
set to 2 and 18 Hz, respectively, and wmax was set to 4.
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other units is zero. On the other hand, if wE → E is smaller than
1, the network implements “soft” competition, which means that
multiple units can be active at the same time. From Equation (27)
(Methods) it follows that wE → E > 1 is possible only if wmax >

A + 1. As we will show in the following section, this condition
is necessarily satisfied by learning rules that lead to stable WTA
circuits.

2.4.3. Parameter regimes for stable network function
We can now use the fixed points found in the previous section
to express the condition for contraction given by condition (6) in
terms of the learning rule parameters. In general, this new con-
dition does not assume an analytically simple form. However, we
can find simple sufficient conditions which still provide a good
approximation to the actual value (see Methods section 4.2 for
details). Specifically, as a key result of our analysis we derive the
following sufficient condition: Convergence to a point in weight
space that produces stable network dynamics is guaranteed if

Aexc + b < wmax < 2(1 + Aexc), (11)

where b is a parameter of the order 1, which is related to the mini-
mum activation xE (or the minimum non-zero input Iext) during
training for which this condition should hold. If the minimum
input Imin that the network will be trained on is known, then b can
be computed from the fixed point x∗

E,min = x∗
E (Iext = Imin), and

set to b = �exc/x∗
E,min. This will guarantee contracting dynam-

ics for the full range of training inputs Iext ∈ [Imin,∞). In typical
scenarios, b can be set to a number of the order 1. This is due to
the fact that the network activation is roughly of the same order
as the input strength. Setting �exc to a value of similar order leads
to b = �exc/x∗

E,min ≈ 1.

FIGURE 4 | Limit behavior of the fixed point of the weights for weak

and strong inputs. The final weight values (in units of wmax) are plotted as
a function of wmax, both for Iext = 15 Hz (solid lines) and in the limit of very
large inputs Iext → ∞ (dashed lines). In the limit case, wE → E and wI → E

converge to expressions that are linear in wmax, while wE → I increases
superlinearly. The learning rule parameters were set to �exc = 6 Hz,
�inh = 18 Hz, and Aexc = 2.

Note that condition (11) is independent of �exc and �inh. This
is due to a simplification that is based on the assumption Aexc +
b � 1, which can be made without loss of generality. If b and Aexc

are set to very low values, the full expressions given by 38 and
(39) (see Methods section 4.2) apply instead. Figure 5 shows the
the region defined by (11) for different b together with the exact

FIGURE 5 | Regions in learning rule parameter space that lead to

a stable, contracting network. All panels show the regions of
stability in wmax-Aexc space for different training input strengths.
Colored lines correspond to exact solutions, while black, dotted lines
correspond to the sufficient condition (11) for different values of b.
The top panels illustrate that relatively small values of b (e.g., 2)
roughly approximate the exact solution even for very small inputs
(e.g., Iext = 1 Hz; left), whereas b can be set to lower values (e.g.,
b = 0; right) if the input is larger. The gray-scale value represents the
convergence rate |λ| (in units of s−1) of the activation dynamics for
τ = 10 ms. The bottom panel shows in color the exact regions of
contraction for inputs Iext = 1, 10, 100 Hz and the approximation given
by condition (11) for b = 0, 1, 2. Some of the colored regions (and
dotted lines) correspond to the ones shown in the upper panels. It
can be seen that for higher input strengths the upper bound on
Aexc (or equivalently, the lower bound on wmax) quickly converges to
the b = 0 diagonal, which represents the asymptotic condition for
Iexc → ∞. For these plots, the learning rule parameters were set to
�exc = 6 Hz and �inh = 18 Hz.
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condition for contraction, indicating that (11) is indeed sufficient
and that b can safely be set to a value around 1 in most cases.

2.4.4. Extension to multiple units
So far, we have only studied a small network that can be regarded
as a single subunit of a larger, distributed WTA system. However,
our results can be generalized to larger systems without much
effort. In our model, as illustrated in Figures 1D,E, different local-
ized WTA circuits can be coupled via excitatory projections. These
projections include excitatory-to-inhibitory connections, as well
as reciprocal connections between distant excitatory units. In
order to demonstrate the effects of this coupling, we consider
two localized subsystems, x = (xE, xI) and x′ = (x′

E, x′
I), consist-

ing of one excitatory and one inhibitory unit each. Furthermore,
we add projections from xE to x′

E and x′
I, as required by our

model. We denote by wE → E′ the strength of the long-range
excitatory-to-excitatory connection, while we refer to the long-
range excitatory-to-inhibitory connection as wE → I′ . Note that
for the sake of clarity we only consider the unidirectional case
x → x′ here, while the symmetric case x ↔ x′ can be dealt with
analogously.

We first look at the excitatory-to-inhibitory connections. If
only xE is active and x′

E is silent, then xI and x′
I are driven by

the same presynaptic population (xE), and wE → I′ converges to
the same value as wE → I. Thus, after convergence, both inhibitory
units are perfectly synchronized in their activation when xE is
active, and an equal amount of inhibition can be provided to xE

and x′
E.

Besides synchronization of inhibition, proper WTA function-
ality also requires the recurrent excitation wE → E′ (between the
excitatory populations of the different subunits) to converge
to sufficiently low values, such that different units compete
via the synchronized inhibition rather than exciting each other
through the excitatory links. As pointed out by Rutishauser et al.
(2012), the network is stable and functions correctly if the recur-
rent excitation between populations is lower than the recurrent
self-excitation, i.e., wE → E′ < wE′ → E′ .

We now consider the case where xE and x′
E receive an exter-

nal input Iext. Whenever x′
E alone receives the input, there is

no interaction between the two subunits, and the recurrent self-
connection wE′ → E′ converges to the value that was found for
the simplified case of a single subunit (section 2.4.2). The same
is true for the connection wE → E if xE alone receives the input.
However, in this case xE and x′

E might also interact via the con-
nection wE → E′ , which would then be subject to plasticity. As x
projects to x′, but not vice versa, we require xE > x′

E if both xE

and x′
E receive the same input Iext, because xE should suppress x′

E
via the long-range competition mechanism. In terms of connec-
tion strengths, this means that w∗

E → I′ w∗
I′ → E′ > w∗

E → E′ , i.e., the
inhibitory input to x′

E that is due to xE must be greater than the
excitatory input x′

E receives from xE. In the Methods (section 4.3),
we show that a sufficient condition for this to be the case is

wmax > A + b + 1, (12)

which alters our results from section 2.4.3 only slightly, effec-
tively shifting the lower bound on wmax by an offset of 1, as can

be seen by comparing conditions (11) and (12). On the other
hand, making use of the fact that x′

E < xE, it can be shown that
wE → E′ converges to a value smaller than wE′ → E′ (see Methods
section 4.3), as required by the stability condition mentioned
above.

2.5. GAIN CONTROL AND NORMALIZATION
In the previous section, we showed how synaptic plasticity can
be used to drive the connection strengths toward regimes which
guarantee stable network dynamics. Since the actual fixed point
values of the weights change with the training input, this mech-
anism can as well be used to tune certain functional properties
of the network. Here we focus on controlling the gain of the net-
work, i.e., the relationship between the strength of the strongest
input and the activation of the winning excitatory units within
the recurrent circuit, as a function of the training input.

In the case of a single active population, the gain is given by
� = xE/Iext = (1 − w∗

E → E + w∗
E → I w∗

I → E)−1, as can be inferred
from Equation (7). Depending on the gain, the network can either
amplify (� > 1) or weaken (� < 1) the input signal.

Figure 6 shows how the gain varies as a function of the learning
rule parameters and the training input strength Iext. Low aver-
age input strengths cause the weights to converge to values that
lead to an increased gain, while higher training inputs lower the
gain. This can be regarded as a homeostatic mechanism, acting to
keep the network output within a preferred range. This provides
a mechanism for the network to adapt to a wide range of input
strengths, while still allowing stable WTA competition.

2.6. SIMULATION RESULTS
As a final step, we verify the analytical results in software sim-
ulations of a distributed, plastic WTA network, as illustrated in
Figures 1D,E. Note that here we consider the case where two
subgroups are coupled bidirectionally via excitatory long-range
projections, while in section 2.4.4, for the sake of clarity, we
focus on the unidirectional case. The desired functionality of

FIGURE 6 | Control of the network gain. The network gain is plotted for
different learning rule parameters �exc, Aexc as a function of the training
input strength Iext. �inh was set to 18 Hz and wmax was set to 4.
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the resulting network is global competition between the excita-
tory populations, i.e., the population that receives the strongest
input should suppress activation of the other populations, even
if the excitatory populations are not directly competing via the
same, local inhibitory population. We consider a network with
two groups, each consisting of two excitatory populations and one
inhibitory population (see Figure 1E). While the excitatory pop-
ulations are connected in an all-to-all manner, inhibitory pop-
ulations can only target the excitatory populations within their
local groups, but do not form long-range projection. Initially, all
connection weights (excitatory and inhibitory) are set to random
values between 0.3 and 1.8. Note that those values could poten-
tially violate the conditions for contraction defined in (6), but we
will show empirically that the plasticity mechanism can still drive
the weights toward stable regimes. As training input, we present
1000 constant patterns for 2 s each. In every step, four input values
in the ranges 5 ± 2 Hz, 10 ± 2 Hz, 15 ± 2 Hz, and 20 ± 2 Hz are
drawn from uniform distributions and applied to the four exci-
tatory units. The different input signals are randomly assigned to
the populations in every step, such that a randomly chosen popu-
lation receives the strongest input. Thereby, each population only
receives one of the four inputs.

Figure 7 shows the activation of the different populations
before and after learning. Before learning (left), the network does
not necessarily implement stable competition between the differ-
ent excitatory populations. Instead, it may end up in an oscillating
state or amplify the wrong winning unit. However, after training
(Figure 7, right), the network always converges to a stable state
representing the winner of the competition. Furthermore, it can

be seen that the inhibitory populations perfectly synchronize, as
described in section 2.4.4.

The change of weights is illustrated in Figure 8: Initially (top),
all weights were set to random values in the range [0.3, 1.8].
Since all populations receive the same average input, the weight
matrices should converge to symmetric states. For the specific
set of learning rule parameters we chose in this example, and
the specific input rates described above, wE → E converges to a
value around 1, which means that the network is at the edge of
the transition between hard and soft WTA behavior. The weights
wE → I, connecting excitatory to inhibitory units, converge to val-
ues around 2. Furthermore, the weights wI → E, which connect
inhibitory to excitatory units all converge to very similar val-
ues (around 1.1), such that inhibition is synchronized across the
whole network. Note that not all connections between excitatory
populations have converged to the same value. This is because as
soon as the network is close to the hard WTA regime, some con-
nections cannot change anymore as only one excitatory unit is
active at a time, and the weight change is zero if either the pre- or
the post-synaptic unit is inactive.

3. DISCUSSION
We have shown how neural circuits of excitatory and inhibitory
neurons can self-organize to implement stable WTA competi-
tion. This is achieved through an interplay of excitatory and
inhibitory plasticity mechanisms operating on all synapses of the
network. As a key result, we provide analytical constraints on
the learning rule parameters, which guarantee emergence of the
desired network function.

FIGURE 7 | Simulated evolution of the plastic network. 1000 input
patterns were applied for 2 s each. Two local subsystems, consisting of two
excitatory units and one inhibitory unit each, are coupled via all-to-all
excitatory connections, while inhibitory feedback is provided only locally. The
first three rows show the populations of the first group, where the first two
rows correspond to the two excitatory populations, and the third row shows
the activation of the inhibitory population. The last three rows show the
activations of the second group. The left panel shows the first 20 s after
initialization (before learning), while the right panel shows the network
activity during the last 20 s (after learning). Solid blue and orange lines
correspond to the firing rate of the respective population, whereby the

highlighted segments (orange) mark the winner among the four excitatory
populations. The input given to the individual units is plotted as a dotted black
or solid magenta line, where the highlighted segments (magenta) correspond
to the strongest signal among the four. Thus, the network operates correctly
if magenta and orange lines are aligned (the one population that receives the
strongest input wins the competition), while misaligned lines (the population
receiving the strongest input does not win the competition) indicate incorrect
operation. Initially, the network frequently selects the wrong winning unit and
even starts oscillating for some input patterns (around 18 s). After training
(right), the network converges to a stable state with only the winning unit
active for different input patterns.
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FIGURE 8 | Evolution of the connectivity matrices. The top panels show
the (initially random) weight matrices, and the lower panels show the final
weight matrices after 2000 s of simulated training time. The left panel shows
the connections between excitatory populations. The panel in the middle
represents the connections from inhibitory to excitatory populations. Note
that some inhibitory connections are set to zero as inhibitory units can only
project to targets within their own local group, according to our model. The
right panel shows the connections from excitatory to inhibitory units. Here,
connections from the same source converge to the same value, leading to
perfect synchronization of the two inhibitory units. The (rounded) weight
values are displayed on top of the image.

Although constraints on the weights for stable competition in
recurrent excitatory-inhibitory circuits have been derived before
(Xie et al., 2002; Hahnloser et al., 2003; Rutishauser and Douglas,
2009; Rutishauser et al., 2012), it has remained unclear how
a network can self-tune its synaptic weights to comply with
these conditions. The presented model achieves this and pro-
vides important insights regarding the mechanisms responsible
for this self-tuning. Our results predict a relationship between
the maximum synaptic weight wmax in a circuit and the learn-
ing rule parameter Aexc, which controls the contribution of
the presynaptic rate to the shifting of the threshold between
potentiation and depression. Furthermore, our model predicts a
relationship between the network gain and the amount of excita-
tory input into the circuit during development or training (see
Figure 6), indicating that high gain (amplification) should be
expected for weak inputs, and low gain for strong inputs, which
is in accordance with common assumptions about homeostasic
mechanisms (Turrigiano, 2011).

From a developmental perspective, the self-configuration of
functional WTA circuits through plasticity has the advantage of
requiring a smaller number of parameters to be encoded geneti-
cally to obtain stable and functional network structures (Zubler
et al., 2013). With self-tuning mechanisms like the ones sug-
gested here, only the parameters for the two different types of
plasticity in excitatory and inhibitory synapses, rather than the

strengths of all synaptic connections, need to be specified, and
the network can adapt to the statistics of inputs it receives from
its environment and from other brain regions.

Besides guaranteeing stability, it is also desirable to control
functional properties of the circuit, such as its gain. Experimental
data suggests that cortical recurrent circuits often operate in a
high gain regime and with strong (larger than unity) recurrent
excitatory feedback (Douglas et al., 1995). The strength of this
feedback determines whether the WTA is “soft” (multiple excita-
tory units can be active at the same time) or “hard” (only one unit
can be active at a time, i.e., the network operates in a nonlinear
regime) (Rutishauser et al., 2011). Many interesting computa-
tions that can be realized with these types of networks rely on
the non-linearities introduced by such strong recurrent excita-
tion (e.g., Vapnik, 2000), therefore it is important that similar
conditions can be achieved with our model. In addition, various
forms of learning rely on balanced WTA competition (Masquelier
et al., 2009; Habenschuss et al., 2012; Nessler et al., 2013), which
requires an adaptation of the gain as the excitatory connections
into the circuit undergo plasticity. In our network, the resulting
network gain is a function of both the learning rule parameters
and the strength of the training input signals. As a consequence,
our system can switch between high and low gain, and hard
or soft WTA behavior simply by receiving input stimuli of dif-
ferent (average) strengths. Thus, different parts of the network
might develop into different functional modules, depending on
the inputs they receive.

Our model does not specifically address the question of how
the network structure, which leads to our results (essentially ran-
dom all-to-all connectivity) might develop in the first place. For
instance, if certain long-range connections between multiple sub-
circuits do not exist initially, they will never be established by
our model, and the units of the different subcircuits can never
compete. On the one hand, this might be a desired effect, e.g.,
to construct hierarchies or asymmetric structures for competi-
tion, in which some parts of the network are able to suppress
other parts, but not vice-versa. On the other hand, structural
plasticity could account for the creation of missing synaptic con-
nections, or the removal of ineffective connections if the desired
stable function cannot be achieved with the anatomical sub-
strate. There is increasing evidence for activity dependent synapse
formation and elimination in both juvenile and adult brains
(Butz et al., 2009), in particular a coordinated restructuring of
inhibitory and excitatory synapses for functional reorganization
(Chen and Nedivi, 2013). Another approach, recently investigated
in simulations by Bauer (2013), is to set up the right network
topology by developmental self-construction processes in a first
step, and the tune the network using synaptic plasticity in a
second step.

Our model is based on a weight-dependent variation of the
learning rule proposed by Pfister and Gerstner (2006), but this is
by no means the only learning rule capable of the self-calibration
effect we describe in this article. By changing its parametrization,
the rule can subsume a wide variety of commonly used Hebbian,
STDP-like, and homeostatic plasticity mechanisms. Indeed, fur-
ther experiments, which are not presented in this manuscript,
indicate that a whole class of learning rules with depression at
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low and potentiation at high postsynaptic firing rates would lead
to similar results. We chose the triplet rule to demonstrate our
findings as its parameters have been mapped to experiments,
and also because it can be written in an analytically tractable
form. We have assumed here a specific type of inhibitory plas-
ticity, which analytically is of the same form as the simultane-
ous excitatory plasticity, but uses different parameters. With the
parameters we chose for the inhibitory plasticity rule, we obtain
a form that is very similar to the one proposed by Vogels et al.
(2011). By introducing inhibitory plasticity it is no longer neces-
sary to make common but biologically unrealistic assumptions,
like pre-specified constant and uniform inhibitory connection
strengths (Oster et al., 2009), or more abstract forms of sum-
ming up the excitatory activity in the circuit (Jug et al., 2012;
Nessler et al., 2013), because inhibitory weights will automat-
ically converge toward stable regions. Inhibitory plasticity has
received more attention recently with the introduction of new
measurement techniques, and has revealed a great diversity of
plasticity mechanisms, in line with the diversity of inhibitory
cell types (Kullmann and Lamsa, 2011; Kullmann et al., 2012).
Our model involves only a single inhibitory population per local
sub-circuit, which interacts with all local excitatory units. Not
only is this a common assumption in most previous models,
and greatly simplifies the analysis, but also is in accordance with
anatomical and electrophysiological results of relatively unspe-
cific inhibitory activity in sensory cortical areas (Kerlin et al.,
2010; Bock et al., 2011). However, recent studies have shown more
complex interactions of different inhibitory cell types (Pfeffer
et al., 2013), making models based on diverse cell types with
different properties an intriguing target for future studies. The
assumption of a common inhibitory pool that connects to all exci-
tatory units is justified for local circuits, but violates anatomical
constraints on the length of inhibitory axons if interacting pop-
ulations are far apart (Binzegger et al., 2005). Our results easily
generalize to the case of distributed inhibition, by adapting the
model of Rutishauser et al. (2012) (see Figure 1E). Our contri-
bution is to provide the first learning theory for these types of
circuits.

Since our model is purely rate-based, a logical next step is
to investigate how it translates into the spiking neural network
domain. Establishing similar constraints on spike-based learn-
ing rules that enable stable WTA competition remains an open
problem for future research, although Chen et al. (2013) have
shown empirically that WTA behavior in a circuit with topo-
logically ordered input is possible under certain restrictions on
initial synapse strengths, and in the presence of STDP and short-
term plasticity. Spiking WTA circuits can potentially utilize the
richer temporal dynamics of spike trains in the sense that the
order of spikes and spike-spike correlations have an effect on the
connectivity.

Potential practical applications of our model, and future
spiking extensions, lie in neuromorphic VLSI circuits, which
have to deal with the problem of device mismatch (Indiveri
et al., 2011), and can thus not be precisely configured a pri-
ori. Our model could provide a means for the circuits to
self-tune and autonomously adapt to the peculiarities of the
hardware.

4. MATERIALS AND METHODS
4.1. DERIVATION OF THE PLASTICITY MECHANISM
The learning rule given by Equation (3) is based on the triplet
STDP rule by Pfister and Gerstner (2006). Since we are interested
in the rate dynamics, we use the mean-field approximation of this
rule, which is provided by the authors and leads to an expected
weight change of

ẇ = xprexpost
(
A+

2 τ+ − A−
2 τ− + A+

3 τ+τyxpost

− A−
3 τ−τxxpre

)
, (13)

where xpre, xpost are the pre- and postsynaptic activations and
A±

2 , A±
3 , τ±, τx,y are parameters that determine the amplitude of

weight changes in the triplet STDP model. All of the parameters
are assumed to be positive. Through a substitution of constants
given by

τ 2
s := A+

3 τ+τy, (14)

�w := (
A−

2 τ− − A+
2 τ+

)
/τ 2

s , (15)

Aw := A−
3 τ−τx/τ

2
s , (16)

the rule in Equation (13) can be written in the simpler form

ẇ = τ 2
s xprexpost

(
xpost − (�w + Awxpre)

)
, (17)

where �w is in units of a firing rate and Aw is a unitless constant.
The terms in parentheses on the right of Equation (17) can be
divided into a positive (LTP) part that depends on xpost, and a
negative (LTD) part that depends on xpre. In order to constrain
the range of weights, we add weight-dependent terms m+(w) and
m−(w) to the two parts of the rule, which yields

ẇ = τ 2
s xprexpost

(
xpostm+(w) − (�w + Awxpre)m−(w)

)
. (18)

Throughout this manuscript, we use a simple, linear weight
dependence m+ = wmax − w and m− = w, which effectively lim-
its the possible values of weights to the interval [0, wmax]. We
chose this form, which is described by a single parameter, for
reasons of analytical tractability and because it is consistent with
experimental findings (Gütig et al., 2003). In Pfister and Gerstner
(2006), values for the parameters τx,y, τ±, and A±

2,3 of the rule
Equation (13) were determined from fits to experimental mea-
surements in pyramidal cells in visual cortex (see Table 1) and
hippocampal cultures (Bi and Poo, 1998, 2001; Sjöström et al.,
2001; Wang et al., 2005). We used these values to calculate plau-
sible values for �w, Aw, and τs using Equations (14) to (16). In
our simulations, we use parameters very similar to the exper-
imentally derived values in Table 1. Specifically, for inhibitory
connections we use parameters very similar to the ones found
from fits of experimental data to the triplet STDP model with
all-to-all spike interactions. On the other hand, we choose param-
eters for the excitatory plasticity rules which are close to fits of the
triplet STDP rule with nearest-neighbor spike interactions. The
parameters that were used in software simulations and to obtain
most of the numeric results are listed in Table 2. Note that for the
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Table 2 | Model parameters used in software simulation.

Parameter Value Description

�exc 6 Hz Learning rule parameter

�inh 18 Hz Learning rule parameter

Aexc 2 Learning rule parameter

wmax 4 Maximum weight value

τ2
s,exc 3.6 ms2 Exc. connection learning rate parameter

τ2
s,inh 1.3 ms2 Inh. connection learning rate parameter

τexc 5 ms Exc. population time constant

τinh 1 ms Inh. population time constant

weight-dependent rule in Equation (18) we have assumed that the
parameter �w influences only the LTD part. According to the def-
inition in Equation (15), this is the case if A−

2 � A+
2 , or �w ≈

A−
2 τ−/τs, respectively. Otherwise �w contains both a potentiat-

ing (A+
2 ) and a depressing (A−

2 ) component, and Equation (18)
should be replaced with a more complex expression of the form
of Equation (13).

4.2. DERIVATION OF THE STABILITY CRITERIA
In section 2.4, we outlined how the fixed points and stability cri-
teria for the WTA system can be found. In this section, we provide
the detailed derivations that led to these results.

As described in section 2.4, we first consider a simplified sys-
tem of one excitatory and one inhibitory population, xE and xI,
which yield an activation vector x = (xE, xI)

T . They are cou-

pled recurrently through a weight matrix W =
[

wE → E wI → E

wE → I 0

]
,

receive external inputs Iext(t) with weights μE and μI respectively,
and have thresholds TE, TI. Assuming that both units are active,
i.e., their total synaptic input is larger than their thresholds, their
dynamics are described by

τexcẋE = −xE + wE → ExE − wI → ExI + μEIext − TE, (19)

τinhẋI = −xI + wE → IxE + μIIext − TI, (20)

where τexc, τinh are the population time constants. The fixed
points of the activations can be found by setting ẋE = ẋI = 0. If
we assume, for simplicity, that TE = TI = 0 this yields the fixed
points

x∗
E = �Iext (μE − wI → EμI) , (21)

x∗
I = �Iext (wE → IμE − (wE → E − 1)μI) . (22)

where

� = (1 − wE → E + wE → IwI → E)−1 (23)

is the network gain. Furthermore, we can make the assump-
tion that μI = 0 and μE = 1, effectively disabling the external
input to the inhibitory population. This reduces Equations (21)
and (22) to

x∗
E = �Iext, (24)

x∗
I = �wE → IIext. (25)

These simplifications do not change the results of our
analysis qualitatively and can be made without loss of
generality.

Approximating xpre and xpost by their fixed point activities
(as described in section 2.4), and setting ẇ = 0 in the learning
rule Equation (18), the fixed point of the weight dynamics (with
w > 0) takes the form

w∗ = wmaxx∗
post

�w + Awx∗
pre + x∗

post
. (26)

Note that this fixed point in weight space always exists for any
given xpre and xpost, and is stable for the weight dependence
m+(w) = wmax − w; m−(w) = w that we chose in Equation (18).
In fact, this is true for all choices of the weight dependence satis-
fying ∂m+/∂w < 0 and ∂m−/∂w > 0, as can be shown by means
of a linear stability analysis.

We now derive the fixed points for the weights wE → E, wE → I,
and wI → E of the simplified system. For wE → E, Equation (26)
can be simplified by noting that x∗

pre = x∗
post = x∗

E, leading to
an expression that depends on the activation of the excitatory
population x∗

E:

w∗
E → E = wmax

�exc/x∗
E + Aexc + 1

. (27)

Similarly, we can compute the fixed point of wE → I as a func-
tion of x∗

E, noting that x∗
post = x∗

I = wE → Ix∗
E [see Equations (24)

and (25)]:

w∗
E → I = wmax − �exc/x∗ − Aexc. (28)

Finally, using the relationship x∗
I = wE → Ix∗

E from Equations
(24) and (25), and the previously computed value of wE → I

from Equation (28) with the fixed point equation for wI → E, we
obtain

w∗
I → E = wmax

�inh/x∗
E − Ainh

(
�exc/x∗

E + (Aexc − wmax)
) + 1

.(29)

In the following, we set Ainh = 0, as described in section 2.3.
An exact solution for the activation x∗

E at the fixed point of
the system is obtained by inserting w∗

E → E, w∗
E → I, and w∗

I → E
into Equation (24), and solving the resulting fixed-point prob-
lem x∗

E = f (x∗
E). This corresponds to finding the roots of the third

order polynomial

P(x) = a0 + a1x + a2x2 + a3x3 = 0 (30)

with coefficients
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a0 = �exc�inhIext, (31)

a1 = −�exc�inh + �excIext + �inhIext + �inhAexcIext

+�2
excwmax, (32)

a2 = −�exc − �inh − �inhAexc + Iext + AexcIext + �excwmax

+�inhwmax + 2�excAexcwmax − �excw2
max, (33)

a3 = −1 − Aexc + wmax + Aexcwmax + A2
excwmax − w2

max

− Aexcw2
max. (34)

The activation of the excitatory population xE at the fixed point is
then given by the positive, real root of Equation (30).

The fixed point of the activation x∗
E, and thus the fixed points

of the weights, are monotonic functions of the training input
strength Iext (see Figure 3, for example). In the following, we
investigate the behavior of the fixed point weight values for very
large and very small external inputs during training, respectively.
This helps us to find conditions on the learning rule param-
eters that lead to stable dynamics (of the network activation)
for any training input strength. We define a positive constant
b := �exc/x∗

E, and plug it into Equations (27)–(29). This yields

w∗
E → E = wmax

Aexc + b + 1
, (35)

w∗
E → I = wmax − Aexc − b, (36)

w∗
I → E = wmax�exc

b �inh + �exc
. (37)

Inserting Equations (35)–(37) into the condition for contrac-
tion of the activation dynamics given by (6), we can describe the
condition in terms of the learning rule parameters, and a new
constant �̃ := �exc/(�exc + b �inh):

1

(1 + Aexc + b)
< �̃ < 1, (38)

(Aexc + b)

(
1 + 1

�̃(1 + Aexc + b)2 − 1

)
< wmax

< 2(1 + Aexc + b),(39)

Assuming Aexc + b � 1 (note that we can always set Aexc to a
sufficiently large value), the conditions reduce to

0 < �̃ < 1, (40)

Aexc + b < wmax < 2(1 + Aexc + b), (41)

whereby the first condition can be dropped, since �̃ ∈ [0, 1]
always holds. The second condition still depends on b, and there-
fore on x∗

E. We will illustrate how to eliminate this dependence
under very weak assumptions. First, in the limit of very large
inputs x∗

E also takes very large values, leading to b → 0 for Iext →
∞. In that case, condition (41) becomes independent of b and can
be written as

Aexc < wmax < 2(1 + Aexc). (42)

On the other hand, in the case of very small inputs we have to
include the effects of b, as b can in principle take very large values.
In typical scenarios the output of the network can be assumed
to be roughly of the order of its input. If �exc is chosen to be of
the same order, then b ≈ 1. For any finite b, we can express the
stability condition that is valid for all inputs as the intersection of
the conditions for large inputs, condition (42), with the one for
arbitrarily small inputs, condition (41), leading to

Aexc + b < wmax < 2(1 + Aexc). (43)

Note that this condition can be met for any finite b by choos-
ing sufficiently large Aexc and wmax. However, as discussed above,
choices of the parameter b of the order 1 should be sufficient for
typical scenarios, whereas higher values would guarantee stable
dynamics for very low input strengths (e.g., Iext 
 �exc). This is
illustrated in Figure 5, where the exact regions of stability as a
function of wmax and Aexc are shown for different training input
strengths, together with the sufficient conditions given by (43).
In practice, a good starting point for picking a value b for which
the stability conditions should hold is to determine the minimum
non-zero input Imin encountered during training for which this
condition should hold, and setting b = �exc/x∗

E,min, where x∗
E,min

is the fixed point activation for Iext = Imin.

4.3. EXTENSION TO MULTIPLE UNITS
In this section, we illustrate how multiple subunits, as analyzed in
the previous section, can be combined to larger WTA networks
with distributed inhibition. For the sake of simplicity, we only
consider the unidirectional case, where a subunit x = (xE, xI)
projects onto another subunit x′ = (x′

E, x′
I) via excitatory con-

nections wE → E′ and wE → I′ . The bidirectional case x ↔ x′ can
be analyzed analogously. If xE and x′

E receive the same input, the
response of x′

E should be weaker, such that activation of xE causes
suppression of x′

E rather than excitation. This means that

w∗
E → E′ < w∗

E → I′ w∗
I′ → E′ (44)

must hold. We assume that both subsystems have been trained on
inputs of the same average strength, such that their local connec-
tions have converged to the same weights, i.e., w∗

E′ → I′ = w∗
E → I

and w∗
I′ → E′ = w∗

I → E. Furthermore, we assume that condition
(44) is true initially. This can be guaranteed by setting the ini-
tial value of wE → E′ to a sufficiently small number. Our task then
is to show that condition (44) remains true for all time. The
values of w∗

E′ → I′ and w∗
I′ → E′ , or w∗

E → I and w∗
I → E respectively,

are described by Equations (36) and (37). On the other hand,
according to Equation (26), the value of w∗

E → E′ is given by

w∗
E → E′ = wmaxx′∗

E

�exc + Aexcx∗
E + x′∗

E

. (45)

Plugging all this into condition (44) and simplifying the expres-
sion, leads to the condition

wmax > Aexc + b + x′
E

AexcxE + x′
E + �

, (46)
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which can be replaced by the sufficient condition

wmax > Aexc + b + 1, (47)

that guarantees x∗
E′ < x∗

E if both excitatory populations receive
the same input. On the other hand, this result implies
w∗

E → E′ < w∗
E′ → E′ , which is required for stable network dynamics

(Rutishauser et al., 2012), and can be verified by comparing the
respective fixed point equations

w∗
E → E′ = x′

E/
(
�exc + AexcxE + x′

E

)
, (48)

w∗
E′ → E′ = x′

E/
(
�exc + Aexcx′

E + x′
E

)
. (49)

4.4. SOFTWARE SIMULATION
Software simulations of our model were implemented using cus-
tom Python code based on the “NumPy” and “Dana” packages,
and run on a Linux workstation. Numerical integration of the
system dynamics was carried out using the forward Euler method
with a 1 ms timestep.
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