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The antennal lobe (AL), olfactory processing center in insects, is able to process
stimuli into distinct neural activity patterns, called olfactory neural codes. To model their
dynamics we perform multichannel recordings from the projection neurons in the AL
driven by different odorants. We then derive a dynamic neuronal network from the
electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory
neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural
codes for the tested odorants. To construct the network, we (1) design a projection, an
odor space, for the neural recording from the AL, which discriminates between distinct
odorants trajectories (2) characterize scent recognition, i.e., decision-making based on
olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL.
We show that the constructed model is consistent with biological observations, such
as contrast enhancement and robustness to noise. The study suggests a data-driven
approach to answer a key biological question in identifying how lateral inhibitory neurons
can be wired to excitatory neurons to permit robust activity patterns.
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1. INTRODUCTION
In the olfactory system, neural codes take the form of spatial
firing-rate (FR) patterns exhibited by the output neurons of the
neural processing unit, the antennal lobe (AL) in insects and
olfactory bulb (OB) in mammals (Laurent, 1999, 2002; Stopfer
and Laurent, 1999; Galizia and Menzel, 2000; Riffell et al.,
2009a). They were established by the application of standard
data analysis techniques, e.g., Principal Components Analysis
(PCA), to the time series of FR responses recorded from the
output neurons (Broome et al., 2006; Harris et al., 2011). The
success of these methods indicates that the response of cell
assemblies is indeed low-dimensional so that for each individual
stimulus a unique trajectory in a low-dimensional subspace is
identified.

With these discoveries, it is intriguing to understand how sen-
sory neural networks are designed to produce such behavior.
Specifically, why do the encoding dynamics appear to be robust
even for noisy stimuli? and what is the network architecture capa-
ble to produce these patterns (Wilson, 2008; Nagel and Wilson,
2011)? For the first question, investigations suggest that cell
assemblies maintain several mechanisms for shaping the correct
output response. One such mechanism is known to be lateral inhi-
bition (Laurent, 1999; Egger et al., 2003), where both inhibitory
and excitatory neurons receive common input and interact to
mediate the response of excitatory neurons. A hallmark of lateral
inhibition is contrast enhancement, which signature is an increase
in signal to noise ratio, such that the amplitude or frequency of
the response is easily distinguished from the response to random

stimuli (Laughlin and Osorio, 1989; Yokoi et al., 1995; Cook and
McReynolds, 1998; Olsen and Wilson, 2008; Wilson, 2008).

For the question of determining the network architecture that
produces the neural codes it is required to model the actual
network of neurons responsible for the encoding. The model-
ing procedure involves reconstruction of the network wiring, i.e.,
modeling individual neuron dynamics and their network inter-
actions (connectome) (Seung, 2011; Jbabdi and Behrens, 2012).
However, the connectome of different sensory neuronal networks
may vary. For example, in vision, the retinal ganglion cells are
ordered such that locally neighboring cells are responsive to
neighboring parts of the visual stimulus, termed a retinotopic
map (Bock et al., 2011). In olfaction, output neurons are also
selective for certain odorant stimuli, providing a chemotopic map.
However, the neighboring output neurons are not necessarily
similar in their tuning to specific chemicals. Instead lateral inhi-
bition mediates and shapes the responses of the output neurons,
resulting in an effective chemotopic map between the input and
the output cells (Cleland and Linster, 2005; Linster et al., 2005;
Silbering and Galizia, 2007; Reisenman et al., 2008). Resolving
this mapping is critical for determining how neurons process
chemical information.

Inspired by the dimension reduction results and in order to
find the mechanism responsible for the low dimensional dynam-
ics several approaches were proposed to model the underlying
neuronal network (reviewed in detail in Buckley and Nowotny,
2012). Afraimovich et al. (2004) used the top–down approach
to construct the connectivity by restricting the network to
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have particular dynamics governed by low-dimensional homo-
clinic orbits deriving a ‘winnerless’ network able to produce
robust transient dynamics in low-dimensional space (see also
Rabinovich et al., 2001, 2006). Alternatively, Linster et al. (2005)
used a bottom–up approach to derive a qualitative model for
the honeybees AL where each neuron was modeled as a FR unit
and the connectivity chosen to be inhibitory and drawn from a
distribution that matches experimental knowledge (e.g., connect-
ing pairs proportional to the similarity of their odor-response
profiles). The model showed correspondence with experimental
data when compared with calcium imaging dynamics suggest-
ing that functionally organized inhibitory network, as opposed
to anatomically structured network (local), all-to-all or random
inhibitory network, best reproduces the input-output function
of the AL. The use of firing-rate models was later justified by
Buckley and Nowotny (2011) where it was shown that a net-
work of Hodgkin–Huxley neurons can be reduced to firing-rate
models and that stable fixed point dynamics are the most consis-
tent with the FR time series data. While these works show that
the AL is capable of extracting low dimensional features and can
be modeled using firing rate units, the wiring of lateral inhibi-
tion within the models is set randomly. Therefore, the structural
properties of the network that permit neural codes still remain
unresolved (Rabinovich et al., 2008). Without resolving the net-
work connectivity one cannot understand the observed features
of odor processing such as contrast enhancement.

Electrophysiological recordings that sample the output from
the AL could be potentially useful to infer candidates for such
wirings. The most suitable approach for solving this ‘inverse
problem’ would be the top–down approach, since it attempts to
construct a low-dimensional model and establish the underly-
ing mechanisms that determine network units and connectivity.
However, it is currently unknown how to calibrate the low dimen-
sional model using multi-neuron recordings (Mazor and Laurent,
2005; Rabinovich et al., 2008; Buckley and Nowotny, 2012). To
overcome this difficulty, we propose the dynamical dimension
reduction method that takes the top–down approach in con-
junction with multineuron recordings. With this methodology we
model the AL in the Manduca sexta moth a well-characterized
physiological and behavioral experimental neural system in olfac-
tion (Reisenman et al., 2008; Riffell et al., 2009a). The outcome
of the approach is a high-dimensional system that exhibits low-
dimensional dynamics. The method is fundamentally different
than standard top-down approaches, as it does not determine
parameters by simulation and fitting, which are biased by the
simulations performed (e.g., choice of initial conditions), fit-
ting of time-dependant signals and comparison metric. Instead,
it projects a high-dimensional dynamical system onto orthog-
onal modes to be derived from data. This step is implicit and
achieves a projected low dimensional system that is generic. As
such it could be applicable for modeling the AL across different
species and other neuronal networks. In the following step the
projected dynamical system is matched with the conjectured low-
dimensional dynamical system. We show that in the case of fixed
points the matching can be formulated as a convex optimiza-
tion problem. The system becomes explicit when the neural codes
obtained from recordings are plugged-in and the optimization

problem is solved to infer the wiring. For the AL, the match-
ing is based on the characteristic that the projected dynamics
onto the neural codes exhibit a trajectory toward a well separated
fixed point for each stimulus, a consistent feature in experimen-
tal observations and used for modeling in Buckley and Nowotny
(2012). Inputting the experimental neural codes as orthogonal
modes and solving a minimization problem infers a suggested
network wiring of the AL capable to encode given stimuli. The
model is then compared with the experimental dynamics for con-
sistency. Our results show that the wirings obtained using such
an approach produce neural codes that are unsusceptible to noise
and thus suggest that the introduced methodology can assist in
resolving the architecture of the AL and circuit-level properties.

2. MATERIALS AND METHODS
2.1. DATA DRIVEN TOP–DOWN MODELING APPROACH
The neural cell assemblies participating in the processing of olfac-
tory information in the AL are the receptor cells (RNs) that carry
the input from the environment, the projection (output) neurons
(PNs), and local interneurons (LNs) (reviewed by Hildebrand
and Shepherd, 1997; Hansson and Anton, 2000; Martin et al.,
2011). We model the network by three vectors �x, �y, and �z, where
each element in the vector represents a neuron and modeled by a
firing-rate unit (Linster et al., 2005; Capurro et al., 2012; Chong
et al., 2012). The three vectors correspond to the three anatomical
groups RNs, PNs, and LNs, respectively:

�̇x = −�x + �J, (1)

�̇y = −β�y + [A�x − B�z]+, (2)

�̇z = −γ �z + [C�x − E�z]+. (3)

The input into the PNs and LNs is modulated by a standard linear
threshold function denoted by [.]+, as in Linster et al. (2005) and
Buckley and Nowotny (2012). Figure 2A illustrates the threshold
function used here. The vector �J is the external input into the RNs
which is driven by the chemosensory processes in the antenna.

In the deterministic version of this model, where the input
is either constant or time dependant, the dynamics can be intu-
itively described. Specifically, when there is significant input into
the population of receptor neurons (�x), these neurons lock onto
the driving input �J (Buckley and Nowotny, 2011, 2012). In the
case of constant input, the receptor population will converge to a
fixed point �x0 = �J. This in turn excites both the projection neu-
rons (�y) and the interneuron populations (�z). A meaningful input
should excite a spatial stable pattern �yP in the projection neurons.
The stable spatial patterns �yP are thought of as library elements
which encode various recognized odorants. Note that the pattern
is not necessarily equal to the input, i.e., �yP �= �J.

Our goal is to understand how the network in Equations (1–3)
can be made capable to produce stable patterns and discriminate
between them. Particularly, we would like to find a network con-
nectome, consisting of the connectivity matrices A, B, C, and E,
that enhances the components in the input that correspond to
recognized patterns (�yP) and inhibits other remaining compo-
nents. In practice, the structure of the connectivity matrices A
and C is local and can be obtained from anatomical experimental
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knowledge, while the structure of the matrices B and E is mostly
unknown.

The method dynamical dimension reduction that we introduce
in this work provides a procedure to construct the unknown
matrices B and E. The first step in the method is to obtain
population encoding vectors (orthogonal patterns �yP) from the
electrophysiological recordings of PN neurons. We then show
that a projection of the PN dynamical equations, Equation (2),
onto the population encoding vectors provides a division of these
equations into two models: a reduced model for the dynamics
of population vectors and a model for the dynamics of remain-
ing patterns. Separating the system into two models allows us to
impose constraints on the dynamics of each model. Particularly,
we require stable patterns in the reduced model and rapid decay
of the remainder. We show that these requirements form a
convex minimization problem which solution is the unknown
connectome.

The projection is done as follows. If the system does not satu-
rate, then the excitable regime can be modeled by a linear version
of Equations (2–3) in which the brackets from the saturation
terms are removed. Additionally, if the �x dynamics are fast in
comparison to those of �y and �z (RNs drive the response in LNs
and PNs) (Geiger et al., 1997; Meyer et al., 2013), then �x can be
replaced by the input �J, i.e., its fixed point, and we derive the
following system

d�y
dt = −β�y + A�J − B�z, (4)

d�z
dt = −γ �z + C�J − E�z. (5)

In this system, the vector �y(t) describes the dynamics of the coef-
ficients of a standard basis [yi(t) is the dynamics of i-th PN
neuron]. However, we are interested in determining the dynam-
ics of the observed patterns. From this representation, it is not
immediately clear how to conclude which coding patterns in
�y appear while others do not, and what kind of connectivity
matrices support such formations. Thus, the next step in our
analysis is to decompose the system into encoding patterns and
the remainder. For such a decomposition, we assume that there
is a library matrix L of observed patterns L = {�yP

1 , . . . , �yP
l }. We

take into account that the library is a semi-positive matrix and
we normalize each column vector (pattern) in the matrix. We
then transform the matrix to an orthonormal matrix OP. In this
matrix, each column vector is called a population encoding vec-
tor and represents neurons and their expected firing-rates evoked
by a particular input-key. The transformation to the orthonormal
matrix is achieved by applying a threshold and a maximum rule
on each element lij of the matrix L. Thereby each element oP

ij in

the matrix OP is defined as follows

oP
ij = U1(lij) =

{
lij if lij = max (�li) ≥ τ.

0 otherwise

where τ is the threshold value (chosen as τ = 0.07 in Figure 5).
This construction results in a matrix with a single positive ele-
ment in each row vector or a zero row vector, such that the system
is effectively made orthogonal. The zero row vectors indicate PN

neurons that do not substantially contribute to any of the pat-
terns and thus these neurons will be considered to belong to the
remainder vector. To construct the remainder vector, �oR, we define
the transformation U2

�oR = U2(U1(lij)) =
{

1 if max (�li) = 0
0 otherwise.

that assigns the value of unity if the corresponding row in OP that
is a zero vector. As a final step we normalize �oR and augment the
matrix OP with the vector �oR to create the matrix O:

L =

⎡
⎢⎢⎣

...
...

�yP
1 . . . �yP

l
...

...

⎤
⎥⎥⎦

N×l

→U O =

⎡
⎢⎢⎣

...
...

...

�oP
1 . . . �oP

l �oR

...
...

...

⎤
⎥⎥⎦

N×l+1

.

This allows us to describe the dynamics of PNs with the following
low rank decomposition

�y(t) = p1(t)�oP
1 + . . . + pl(t)�oP

l + r(t)�oR

= O

⎛
⎜⎜⎜⎜⎝

p1(t)
...

pl(t)
r(t)

⎞
⎟⎟⎟⎟⎠ = O�p (6)

Here we multiply each of the population vectors (stationary) by a
dynamical coefficient pj(t) and the remainder population vector
by r(t). To derive the equations for the dynamics of the coeffi-
cients �p(t), we substitute the decomposition of Equation (6) into
Equation (4) and multiply the equations for �y by the transpose
matrix OT and use the fact that for semi-orthogonal matrices
OTO = I. Thus,

d�p
dt

= −β�p + OT(A�J − B�z), (7)

d�z
dt

= −γ �z + C�J − E�z.

This projection technique is based on the Proper Orthogonal
Decomposition method introduced in Sirovich (1987, 1996) and
applied to reduction of neuronal networks in Shlizerman et al.
(2012).

In this section we consider the case where the input is time-
independent and in the Results section explore the system dynam-
ics with time dependent and noisy inputs. Since the dynamics in
�z are independent of the dynamics in �p, we can solve the second
equation in Equation (7) for a fixed point (d�z/dt = 0)

�z0 = Ẽ−1C�J, Ẽ = E + γ I .

Then plugging-in into the first equation the expression of the
fixed point we receive
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d�p
dt

= M̃�p + �Je f f (8)

M̃ = −βI, �Je f f = OT(A − BẼ−1C)�J.
The resulting reduced system is a linear inhomogeneous system
of ODEs. For constant inputs, LNs will eventually equilibrate to
the fixed point �z0, determined by the values of γ and E. For pulsed
stimuli, which are often considered in experiments (e.g., the dura-
tion of stimulation used here is 200 ms), LNs typically respond
to the onset of stimulus with bursting and release fast GABA-A
transmitters (within 1–2 ms) (Christensen et al., 1998) and later
with slower GABA-B transmitters (100 ms) and are represented
by the matrix E. Since there is a separation of time-scales between
these types of transmitters, as a first order approximation the
matrix E represents fast connections, although both timescales
can be incorporated.

The system in Equation (8) has terms that include the param-
eter �p (multiplied by M̃) and non-homogeneous terms that are
the effective input. Note that since there is no input from �y
into �z (PN to LN) in Equations (4–5), the homogeneous term
is multiplied by a diagonal matrix M̃. The matrix M̃ has only
negative eigenvalues (λi = −β) and thus by Lyapunov’s stability
theorem the model in Equation (8) is globally asymptotically sta-
ble, i.e, the system will always converge to a stable equilibrium
�p0 = (1/β)�Jeff (Gajic and Lelic, 1996), see Figure 2C. In systems
which have additional input from the �y population into the �z
population, the matrix M̃ will involve non-diagonal terms that
express interactions of the patterns. For such wirings it should
be verified that the system is stable, i.e., the dynamics are as in
Figure 2C, by solving the Lyapunov equation that will involve the
connectivity matrices (Gajic and Lelic, 1996). The solution of the
equation, if exists, will impose constraints on the configuration of
the connectivity matrices such that the fixed point is stable. These
constraints will be added to the optimization problem (11).

While the stability theorem assures that the dynamics of the
patterns converge to an equilibrium, it does not guarantee sep-
aration of equilibria, which is required for a robust encoding-
decoding system. Moreover, the matrices B and Ẽ are unknown,
both in theory and in practice. For that purpose we need to
calibrate the effective input into the population encoding vec-
tors. Following the same procedure as for the output patterns
we construct an orthogonal library matrix, J0, for the input keys.
Then the calibration is reduced to solving the following system of
underdetermined equations

OT(A − BẼ−1C)J0 = W . (9)

with the prescribed matrix W of dimensions (l + 1) × (l + 1)
representing the calibration, and B and Ẽ are the unknown matri-
ces. Essentially, this is a linear system of equations with a specified
right hand side matrix W where the matrix elements of W deter-
mine physiologically relevant characterization of the importance
of various odors. This is a highly undetermined set of equations
that allows for an infinite number of solutions, i.e., there are an
infinite number of ways to specify B and Ẽ. Imposing further bio-
physical constraints could allow to obtain a unique biophysical
solution.

Each row in W encodes the effect of the different input keys,
including the remainder, on a particular population encoding
vector. For example, the element on the i-th row and k-th col-
umn, wi,k, defines how �Jk excites or inhibits pi(t). The elements of
W are set as follows

W =

⎡
⎢⎢⎢⎢⎢⎣

. . .

wi,i wi,k wi,l+1

. . .

wl+1,1 wl+1,k wl+1,l+1

⎤
⎥⎥⎥⎥⎥⎦ . (10)

The diagonal element on the i-th row, wi,i, defines how �Ji affects
pi(t), its corresponding population encoding vector, and has to
be set as positive (excitatory). The input from the other keys, �Jk,
k �= i, is encoded by wi,k and can be set 0 or negative. The input
from the last key is the input from the remainder and is encoded
by wi,l+1. The value of this element should be strictly set to 0, such
that the remainder does not have excitatory or inhibitory effect
on the population encoding vector. The last row in W denotes
the input into the remainder and thereby the elements, except the
diagonal element on that row should be always negative. See the
caption of Figure 2 for a possible configuration of the matrix W .

When A and C are known matrices, then the calibration is
accomplished by solving an inverse problem to find the matri-
ces Ẽ and B that satisfy these equations. Notice that the equations
are underdetermined, i.e., the dimensions of W are much lower
than of BẼ−1, indicating that the matrices B and Ẽ that satisfy
Equation (9) are non-unique. To find the appropriate candi-
dates for the matrices, we reformulate the inverse problem as a
minimization problem

minimize ||OT(A − BẼ−1C)J0 − W ||Fr (11)

subject to B, E ≥ 0,

where ‖ · ‖ is the Frobenius matrix norm. When the lateral con-
nections between PNs and LNs are exclusively inhibitory the
matrices B, Ẽ are non-negative. When one of the matrices is set
to particular wiring (e.g., Ẽ is random) we need to determine
only one matrix and the minimization problem is a semi-definite
convex minimization. When there are excitatory lateral connec-
tions or the zero minimum cannot be attained, the semi-definite
constraint is relaxed. Another possibility for negative terms in B
and Ẽ is when the input keys and the output codes differ from
each other in dimensions. Indeed, the matrices B and Ẽ permute
the lateral effect of the interneurons to support such a coding
scheme. Due to many degrees of freedom in the problem, addi-
tional constraints can be added. For example we can restrict the
magnitudes of the elements in B and Ẽ not to exceed a partic-
ular value. Moreover, the calibration is particular to the choice
of the matrices A and C (see an example in Figure 2B). To solve
the minimization problem (11) or its variants, we employ the
disciplined convex optimization package CVX implemented in
MATLAB Grant and Boyd (2011).

For input keys being identical to the output population vec-
tors, i.e., J0 ≡ O, the calibration creates a system that for a
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significant magnitude of one of the input keys, noise, and other
population encoding vectors will be suppressed to allow for a
decoding of the input-key (see Figure 4). Effectively this is a
mechanism that produces contrast enhancement as we discuss in
the Results section.

2.2. ELECTROPHYSIOLOGICAL PREPARATION AND STIMULATION
Manduca sexta L. (Lepidoptera: Sphingidae) male larvae were
obtained from the Manduca-rearing facility of the Department of
Biology of the University of Washington. Larvae were reared on
artificial diet (Bell and Joachim, 1976) under long-day light:dark
(LD) regimen (LD 17:7) at 25–26◦C and 40–50% relative humid-
ity (RH), and prepared for experiments 2–3 d after emergence.
In preparation for electrophysiological recording, the moth was
secured in a plastic tube with dental wax, leaving the head, and
antennae exposed. The preparation was oriented so that both ALs
faced upward, and the tracheae and sheath overlying one AL were
carefully removed with a pair of fine forceps. The brain was super-
fused slowly with physiological saline solution throughout the
experiment.

Electrophysiological recordings were made with 16-channel
silicon multielectrode recording arrays (a4 × 4–3 mm 50–177;
NeuroNexus Technologies, Ann Arbor, MI, USA). This micro-
probe allows the recording of neurons throughout the AL because
of the probes dimensions, with four shanks spaced 125 μm apart,
each with four recording sites 50 μm apart (Christensen et al.,
2000; Riffell et al., 2009b). The probe was positioned under visual
control using a stereo microscope. We use routine histological
methods (e.g., Riffell et al., 2009a) to visualize the tracks left
by the probes and identify the recording sites. Neural ensem-
ble activity was recorded simultaneously from the 16 channels
of the recording array using a RZ2 base station (Tucker-Davis
Technologies, Alachua, FL, USA) and a PZ2 peamplifier. Spiking
data from 16 channels (recorded at four sites on each of the 4
probes) were extracted from the recorded signals and digitized
at 25 kHz using the Tucker-Davis Technologies data-acquisition
software. Spike data were extracted from the recorded signals in
the tetrode configuration and digitized at 25 kHz per channel.
Filter settings (typically 0.6–3 kHz) and system gains (typically
5000–20,000) were software adjustable on each channel. Spikes
were sorted using a clustering algorithm based on the method
of principal components (PCs). Only those clusters that were
separated in three dimensional space (PC1–PC3) after statisti-
cal verification (multivariate ANOVA; P < 0.05) were used for
further analysis (6–15 units were isolated per ensemble; n = 11
ensembles in as many animals). Each spike in each cluster was
time-stamped, and these data were used to create raster plots
and to calculate the instantaneous firing-rates (iFRs). Based on
the spiking activity, recorded spike trains were identified as an
LN or PN (as in Brown et al., 2004; Riffell et al., 2009a, 2013;
Lei et al., 2011). All analyses were performed with Neuroexplorer
(Nex Technologies, Winston-Salem, NC, USA), or MATLAB (The
Mathworks, Natick, MA, USA), using a bin width of 5 ms, unless
noted otherwise.

Olfactory stimuli were delivered to the preparation by pulses
of air from a constant air stream were diverted through a
glass syringe containing a piece of filter paper bearing floral

odors. The stimulus was pulsed by means of a solenoid-
activated valve controlled by the acquisition software (Tucker-
Davis Technologies, Alachua, FL, USA). AL neurons were stim-
ulated with two pairs of odorants: (1) pair: “A”: β-myrcene, a
plant-derived odorant used to attract moths (Riffell et al., 2009a),
“B”: E10,Z12-hexadecadiennal (bombykal {Bal}), the primary
component of the conspecific females sex pheromone (Tumlinson
et al., 1989, 1994). (2) pair: “C” BEA-benzaldehyde, and “D”:
BOL-benzyl alcohol. Stimulus duration was 200 ms, and five
pulses were separated by a 10 s interval. The stimulus durations
reflect the time periods in which moths encounter odors when fly-
ing in their natural environment (Murils and Jones, 1981; Riffell
et al., 2008), and the odorants used to stimulate the preparation
are behaviorally effective stimuli, thus allowing neurobiological
experimentation in a naturalistic context for discovering how
neural circuits process odor information.

3. RESULTS
To study the AL’s neural encoding dynamics we computationally
model the AL as a network with each neuron modeled as a
FR unit. In keeping with the populations of AL cells, three
populations of FR units are considered: RNs that carry the
input from the periphery (RNs), projection (output) neurons
(PNs), and local inhibitory interneurons (LNs) (Figure 1).
The dynamics of the populations are represented by the state
vectors, �x, �y, and �z corresponding to dynamics of RNs, PNs, and
LNs, respectively. Each FR unit in each population is modeled
by a differential equation that describes unit’s self-dynamics
(decay in the absence of input), interaction with other units
and response to odorant stimulus (for a detailed description of
the construction see the Materials and Methods section). The
network can be calibrated to perform encoding functions, i.e.,
produce neural codes. Specifically, for each FR pattern that the
PNs population exhibits (called population encoding vector), there
is a FR pattern of the RNs population that evokes it (called input
key) (depicted in Figures 1, 2). The results that we obtain from
constructing the network establish how neurons’ connectivity
and network dynamics are linked together to produce these
encoding functions. Analyzing computational dynamics and
comparing them with experimental dynamics elucidates what
are the typical dynamics of neural codes and how they can be
perceived. We describe our results in detail below.

3.1. RECOVERING THE CONNECTOME OF AN EXAMPLE NETWORK
As an illustrative example of the theoretical construct proposed
here, we demonstrate how we establish the neuronal wiring on a
network of 10 neurons of each type: 10 RNs, 10 PNs, and 10 LNs
for a total of 30 neurons. The network is designed to encode two
input keys into two output population encoding vectors (codes)
identical to the input keys. The goal of the calibration is to deter-
mine the connectivity matrix B given the matrices A, C, and E
(Figure 1C). Specifically, we choose the matrices A and C to be
identity matrices, i.e., each receptor is connected to its corre-
sponding PN and LN. The matrix E is set as a random matrix
whose elements are drawn from a uniform distribution with
mean 0.25, i.e., the LNs are randomly connected between them-
selves. We then solve an optimization problem, Equation (11),
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FIGURE 1 | AL network structure and function. (A) Demonstration of a
neural code: FRs of the input neurons (gray bars) are processed by
neural dynamics in the Glomeruli (half circles) in the AL and result with
“shaped” FRs of the output neurons (blue bars). (B) Anatomical structure
of neuron types and wiring in the AL. Both PNs (blue shaded) and LNs
(yellow shaded) receive input from RNs (black balls). LNs synapse to LNs
and PNs in other glomeruli via local (red), global homogeneous
(orange)/heterogeneous (brown) with mainly inhibitory synapses. PNs as

output neurons have excitatory synapses to neurons outside the AL, the
mushroom body. (C) Schematics of a network that mimics the wiring in
the AL in moths divided into three populations: input excitatory RNs
(gray), interneurons inhibitory LNs (yellow) and projection excitatory PNs
(blue). A,B,C, and E denote the connectivity matrices between different
populations of neurons, i.e., the connectome. With correct calibration of
the inhibitory connections, marked by the question marks, the network
can produce neural codes as in (A).

derived in the Materials and Methods section, to determine the
elements of the matrix B. This is the optimal matrix that supports
such an input-output relation (Figure 2B). The matrices are
asymmetric, showing that our approach is consistent with exper-
imental anatomical data. Moreover, it is fundamentally different
than the Hopfield-type approach that uses symmetry constraint
for optimization (Hopfield and Tank, 1986; Reisenman et al.,
2008).

The calibration process produces connectivity matrices from
which the connectome of the full network is recovered. To visu-
alize the connectome we use the CIRCOS package (Krzywinski
et al., 2009) where the network is depicted in a ring shape: FR
units are drawn as arcs on the ring’s perimeter and the connec-
tions are the links between the arcs (Figure 3). The connectome
structure allows us to observe that indeed the remainder PNs,
labeled as (y2, y4 − y6, y9, y10), have stronger input inhibitory
connections (dark bold red curves) than the PNs that partici-
pate in the output codes, labeled as (y1, y3, y6, y7). We further
observe that these strong connections are output connections of
LNs, activated by RNs participating in one of the keys, labeled
as (x1, x3, x6, x7). This confirms that the strong inhibition of
the remainder PNs is activated only when there is enough input
from RNs participating in the keys. In addition, each input key
activates the suppression of the other key, though less strongly
than the suppression of the remainder. This is expected from the
calibration matrix W specification (see caption of Figure 2, and
the definition of W in Equation (10). The random connections
between the LNs, defined by the connectivity matrix E, are seen
in the graph as edges marked by light red color.

Once the connections are determined, the deterministic
dynamics of the calibrated connectome defined in Equations
(1–3) can be explored computationally in order to verify that
the calibration gives the desired low-dimensional dynamics. In
Figures 3B,C we depict the active pathways in the connectome,
i.e., the pathways activated by the input keys. We demonstrate
that for the input �J1 (Figure 3B) four excitatory edges are acti-
vated in the connectome, where the edges from x1 are stronger
than from x3 as expected. These edges excite LNs that activate

inhibitory pathways to PNs. The strongest inhibitory pathway is
invoked by z1 that suppresses strongly all remainder PNs. There
is also relatively strong suppression of the PNs that participate in
the input key �J2 and very weak suppression of PNs that should be
activated when the input is �J1. For the input key �J2 (Figure 3C)
the remainder is strongly suppressed again, but by a different LN
(z7). Moreover, the suppression of neurons that should respond
to �J1 is stronger than that of �J2 , i.e., the suppression is switched as
expected to support �J2 instead of �J1.

From the structure of the effective connectome, we can con-
clude that it indeed produces the expected low-dimensional
dynamics. Further verification is shown in Figure 2C where the
dynamics of the full network are exactly the dynamics of the pre-
scribed projected low dimensional system, Equation (7). When
�J1 is the input, Figure 2C (left), all trajectories are attracted to a
unique stable fixed point on the vertical axis, and when the input
is �J2, Figure 2C (right), the trajectory is attracted to the unique
stable fixed point on the horizontal axis.

3.2. NOISY INPUTS
Input into the AL varies significantly as a function of time due to
environmental effects, producing low signal-to-noise ratio input
signals to the AL. We can use the example network as a prototype
system to study the stochastic dynamics of such networks and the
implications on the calibration proposed here. To simulate noisy
inputs, we define the input as �J = α�Jk + ση(t) and define the
signal-to-noise ratio (SNR) as α/σ . The noise η(t) is modeled as
white noise with positive normal distribution, η(t) ∼ |N (0, σ )|,
and accounts in most general way for the overlap between the
stimuli, overlap between RN response and other effects such as
spontaneous activity, and channel noise. From recordings when
the stimulus was absent or when control stimulus (mineral oil)
was applied we estimated that σ = 0.3.

Our objective is to verify that for different SNR ratios, the
performance of the network produces the correct population
encoding vector, as observed in experimental studies of the
AL. To quantify the contrast enhacement, we introduce the
measure, contrast over time (CRT), for a noisy input key �Jk,
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FIGURE 2 | Modeling approach to the dynamics of the AL. (A)

Piecewise linear f-I curve that we use to model the neurons as FR units. (B)

Example of a calibration of a network, consisting of 10 neurons from each
class and encodes two neural codes. The input keys �J1, �J2, and the
population vectors �yP

1 , �yP
2 with given connectivity matrices A, C, E allow us

to reconstruct the matrix B. We use the matrix W =
⎡
⎢⎣

1 −0.4 0
−0.4 1 0
−1 −1 1

⎤
⎥⎦ to

prescribe the low-dimensional projected system. (C) Deterministic
dynamics projected to (p1, p2) plane, with the input being the key: �J1 (left)
or �J2 (right). When �J1 is applied, the fixed point is located at (p1, p2) = (1, 0)
and all trajectories are attracted to it (see blue sample trajectories with
initial conditions denoted by “x”). When �J2 input is applied, the trajectories
are being attracted to (p1, p2) = (0, 1) (see red trajectories).

defined as CRTk = pk(t) − ∑l
j = 1,j �= k pj(t) − r(t). This describes

the difference between the k-th population encoding vector, pk(t),
and the summed dynamics over all other population encoding
vectors, pj(t), and the remainder r(t).

Intuitively, the measure will be larger when there is a better
separation between the correct input and all other possible
inputs. We investigate the average CRT over time vs. SNR in
Figure 4 (left) for three different network structures where
the matrix B is calibrated, uncalibrated (random with different
magnitudes) and has no inhibiton (all zeros). It can be clearly
observed that the calibrated network achieves the best CRT out of
all other network wirings. The calibrated network exhibits a 1.5
to 4-fold increase in CRT values in comparison to its correspond-
ing uncalibrated networks, and a 10-fold increase over the case
where there is no inhibition. In particular, network calibration
is important at low SNR rations (1.5–3.5), which is the expected
noise band in the actual environment (Bhandawat et al., 2007;

Riffell et al., 2008, 2009b). Otherwise, the correct population
encoding vector cannot be separated from the background noise,
Figure 4A. Indeed, only the calibrated CRT curve is able to cross
the 0.75 CRT threshold (approximately 75% of separation) in
that SNR band. By varying the amplitude of the uncalibrated
connections we illustrate that the amplitude of the elements in B
do not necessarily improve the CRT. When the amplitude is low
(see gray curve for 0 amplitude) the performance is poor because
the activity is noisy. Incrementally increasing the amplitude
improves the performance such that it is able to cross the CRT
threshold when SNR exceeds 4 (red curves). However, for a
calibrated network the crossing of the threshold happens for
much lower values of SNR. Remarkably, even for SNR lower than
1 (where noise prevails over the signal) the calibrated CRT curve
(blue) is already crossing the threshold. Additional increase in
the amplitude of the inhibitory connections will inhibit both
noise and the signal, and we indeed observe that the CRT curve
(brown) drops lower than the lowest amplitude curves and does
not cross threshold in the 0-5 SNR band.

To understand the contrast enhancement more intuitively, we
show in Figure 4B the dynamics for SNR = 3. At this SNR, the
dynamics of RNs and LNs are very similar for all network wirings.
The dynamics of RNs are noisy, making it very difficult to recover
the input key from the data. The dynamics of LNs are cleaner,
but still do not have a clear signature of the input key signal. In
particular the ratio between the two elements of the key, neu-
rons 1 and 3, is incorrect. The dynamics of the PNs, however,
are very different for the three choices of network wirings. In the
calibrated network the dynamics of PNs are more distinguish-
able relative to other networks. Indeed, both FRs over time and
average FRs indicate that the output signal is the closest to the
population encoding vector oP

1 corresponding to the input key �J1

(the CRT value is around 1). For uncalibrated or no lateral inhi-
bition wirings, such a clear signature cannot be detected. Indeed
the CRT measure for uncalibrated network is 0.55 and for no
inhibition network is 0.2.

We also compared the calibrated and uncalibrated wirings
obtained from data (stimuli C and D) by adding noise of σ = 0.3
(SNR = 3) to the stimuli and computing the CRT trajectory over
time for each simulation (5 simulations per wiring), see Figure S1.
Indeed, the CRT trajectories produced by the calibrated model
cross the correct threshold, i.e., they approach the correct fixed
point, while trajectories produced by the random model do not
cross it. In addition, when the stimulus was turned off the trajec-
tories produced using randomly wired model became very sensi-
tive to noise to the extent that they can cross the wrong thresholds.

3.3. CONSTRUCTION OF THE DATA-DRIVEN MODEL
We proceed and construct a dynamical model using the experi-
mental data. In the first series of experiments we recorded from
130 PNs that were stimulated with two odorants: “A” (BAL-
Bombykal), “B” (MYR-β-Myrcene). These stimuli are behav-
iorally effective odorants: odorant A is a component of the moth
sex pheromone, and odorant B is a flower scent component.
These odorants excite distinct glomeruli in the AL [male sex
pheromone is processed in a distinct area—the macroglomerular
complex MGC (Christensen and Hildebrand, 1988; Homberg
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FIGURE 3 | Visualization of the Connectome. (A) The connectome
(neurons and their connections) of the reconstructed network depicted in a
ring shape. The nodes on the outer ring correspond to RNs, LNs, and PNs and
marked by black, yellow, and blue colors, respectively. The inner ring splits
each node into “in” and “out” terminals colored by gray and green colors.
The edges denote connections between the nodes. Excitatory connections

are displayed by gray color and inhibitory by red color. The shades and width
of the edges denote the strength of the connections (darker and wider curve
corresponds to a stronger connection). (B,C) Activated pathways in the
connectome when the input is the key: �J1 (B) or �J2 (C). The shades and
width of the “out” edges in the connectome scaled by the input into the
node. When there is no input into the node, its “out” edge is not shown.

et al., 1988; Hansson et al., 1991; Hildebrand and Shepherd,
1997)] and thus require a minimal orthogonalization of the
library. Therefore, we chose them to validate the data-driven
model construction part of our approach. Another reason for the
choice is that they are (negatively) correlated with each other—
when a particular stimulus is on, PNs associated with it are excited
while those associated with the other stimulus are inhibited (see
Figure S1). This suggests that these regions inhibit each other via
lateral inhibition. We also recorded from 77 PNs with two related
stimuli: “C” (BEA-benzaldehyde), “D” (BOL-benzyl alcohol) that
excite PNs in overlapping glomeruli. Both odorants are domi-
nant in floral scents related in chemical structure as oxygenated
aromatic volatiles.

The odorants are presented to the preparation at a realis-
tic time interval (200 ms) repeatedly for five stimulations sep-
arated by long intervals of no input. For more information
regarding the experimental setup and procedures see the sub-
section “Electrophysiological preparation and stimulation” in
the Materials and Methods section. The data is available in the
Supplementary Material. With the spike trains of each PN we have
computed the time series of the instantaneous FR (iFR) averaged
over the 5 trials of odor introduction. Sampling the iFR at a spe-
cific time after the beginning of the odor introduction (at 150 ms)
or performing a PCA reduction and taking the first dominant
mode, we obtained a histogram of iFRs for the neurons for each
of the odors. The neurons with substantial difference in iFR in

response to the two odorants were assigned as selective neurons
(37 neurons for A,B and 32 neurons for C,D). Those with low iFR
were assigned as remainder neurons (60 neurons for A,B and 45
neurons for C,D). The remaining neurons that exhibited high iFR
were not included in the calibration (33 neurons for A,B) since
there was not enough data to calibrate the inhibitory connections
to them.

Application of the orthogonalization procedure, defined in the
Materials and Methods section, for the 97 neurons for A,B and 77
neurons for C,D resulted in the two population encoding vectors:
�oP

1 for C (blue) and �oP
2 for D (red) as shown in Figure 5 (vectors

for A,B are shown in Figure S4). For A,B the required orthogo-
nalization is minimal, while for C,D it is significant as shown in
Figure S2.

This allows for the reconstruction of the connectome of the AL
network in a similar fashion to the example network. Here the
matrix E is taken as a random normal matrix and the matrix
B is calibrated. The full network consists of the three popula-
tions (PNs, LNs, RNs) of 77 neurons (231 neurons in total),
where in each population we depict (in the clockwise direc-
tion) the selective neurons followed by the remainder neurons
(active submatrix B Figure 5 left and connectome Figure 5 right).
Although many connections exist, the ring shaped visualization
demonstrates qualitatively the main features of the connectome:
(1) the suppression of the selective neurons seems to be non-
uniform and sparse while (2) the inhibition of remainder neurons
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FIGURE 4 | Comparison of stochastic dynamics of an example network

calibrated as in Figures 2B,C. (A) Contrast (CRT averaged over 10 runs) vs.
SNR for different choices of the connectivity matrix B: calibrated by (11)
(blue), elements drawn from a random uniform distribution with m × 0.5
mean: m = 1(pink), m = 2 (red) and m = 3 (brown), connections are blocked
B ≡ 0 (gray). (B) Dynamics of a network with noisy input �J1 (signal-to-noise
ratio SNR = 3) for different choices of the connectivity matrix B (from left to
right): calibrated by (11), elements drawn from random uniform distribution

with mean 0.5, connections are blocked B ≡ 0. The elements of the matrix E
are drawn once from a uniform distribution and fixed. The color raster plots
show the FR dynamics of the neurons in X (RNs), Y (PNs), and Z (LNs)
classes (blue:low FR, red:high FR). The bar plots on the right side of each
raster plot show the average FRs over the whole evolution. The bottom plots
show the projection of Y neurons onto the patterns �oP

1 , �oP
2 , and �oR

corresponding to p1(t), p2(t) and r (t) and depicted with red, blue, and black
colors, respectively.

FIGURE 5 | Library elements and the reconstructed connectome

produced from experimental data. Left: Part of the connectivity matrix B
connecting LN neurons with active PN neurons (PN-rows, LN-columns)
inferred using Equation 11 for patterns that correspond to BEA and BOL (C and
D) stimuli. Right: The connectome of a network of 77 neurons of each type
(231 in total), obtained from solving the minimization problem in (11) with the
matrices A, C chosen as identity matrices and E as a positive random matrix
with elements drawn from a normal distribution, i.e., eij ∼ |N(0, 0.02)|. The
connectome is visualized in a ring shape with similar choice of colors as in

Figure 3A. The orthogonal library matrix, O, used in the minimization, was
obtained from the electrophysiologically recorded data of two odorants BEA
and BOL (C and D) as described in subsection Construction of the Data-Driven
Model in Results section. The three library vectors �oP

1 , �oP
2 and �oR in O,

correspond to the odorants C (blue), D (red) and the remainder (gray),
respectively, are depicted section as bar-plots above the connectome at the
locations that correspond to RNs that evoke each of the vectors. To the right
of the connectome, the bar-plots of the vectors �oP

1 and �oP
2 are enlarged. The

threshold value, τ , used to construct the library vectors, is τ = 0.07.

is uniform and dense. The non-uniformity of the wirings is
consistent with the non-uniformity of the population encoding
vectors.

3.4. THE DYNAMICS OF POPULATION ENCODING VECTORS
The orthogonality of the population encoding vectors, �oP

1 and
�oP

2 , allows us to construct a two dimensional space, called the
odor space. We use it to project the iFR time series obtained

from either the data or the calibrated model. The data projec-
tion is used to assess whether the experimental dynamics are
consistent with the underlying dynamical mechanism in the con-
struction of the model. Specifically, there is a single, stable fixed
point in each encoding vector direction. Figure 6 shows the pro-
jection dynamics (gray) of five experimental trials along with
the average trajectory over the trials (black). Before the input is
applied, the projected trajectory hovers around the origin due
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FIGURE 6 | Projection of the experimental and model dynamics onto

orthogonal odor space. Top row: projected experimental dynamics of PNs.
Bottom row: projected dynamics of the calibrated model. Each column
shows 5 distinct trials per stimulus; (A) for A,B stimuli; (B) for C,D stimuli.

Gray trajectories are 5 distinct trials of the application of the odor. The
starting and ending points of the plotted trajectories are 100 and 600 ms,
respectively, after the beginning of the trial. The black bold trajectory is the
averaged trajectory over the trials.

to noise fluctuations. When the input is applied, the trajectory
begins an excursion toward the stable fixed point and when the
input is off, the trajectory returns to within the vicinity of the ori-
gin. The input of odor “A,” “C” corresponds to trajectories whose
fixed point lies on the vertical axis while odor “B,” “D” trajectories
evolve trajectories toward a fixed point on the horizontal axis.

Data projections from both the experimental data and the
calibrated model, Figure 6 and Supplementary Videos, clearly
demonstrate that different odorant inputs correspond to different
orthogonal fixed points in the projection space. Furthermore, tra-
jectories appear noisy while reaching the fixed point whereupon
they remain static for a while until the input is stopped and then
trajectory returns to the origin.

3.5. DECISION MAKING
In the experiments described here, the presentation of a stimulus
odor occurs for an extremely short period of time (approximately
200 ms). Such inputs correspond to realistic stimulus for which
the moth is flying and sampling odors in a turbulent environ-
ment. Thus, once we have characterized the dynamics of each
short trial, we examine possible classifiers for odor detection and
selection.

To formulate the decision making process, we analyze the
dynamics of a trajectory toward the orthogonal fixed point when
the stimulus is introduced as demonstrated in Figure 6. The
orthogonality of the fixed points allows us to construct thresh-
old lines for determining odor detection. The gray horizontal and
vertical lines in Figure 6 represent the threshold for the detection
of odor A and odor B, respectively. Application of a single odorant
ensures that the dynamical trajectory crosses only a single thresh-
old line on its way to its corresponding fixed point. Experiments
show that it spends only a small amount of time near the fixed
point (approximately 100 ms) before returning back to the origin.

While it is difficult to measure the convergence rate of the tra-
jectory to the fixed point, it is straightforward to detect a crossing

of the threshold line. Indeed, a common hypothesis in decision
making associates crossing of a threshold in neuronal activity as
equivalent to making a decision (Bogacz et al., 2006; Wong and
Wang, 2006). The crossing of the threshold line in our case can be
captured most effectively by computing the CRT measure, shown
in Figure 7, per each trajectory of each odorant. Results from this
analysis demonstrate that after the input is introduced, the CRT
curve tends toward one of the decision thresholds, passes it and
then returns back to the region where no clear contrast exists
between odorants. Thereby, passing of the threshold creates an
evidence toward one of the odorants. Integration of such evidence
over several trials can produce a significant bias toward a specific
odorant. When enough crossings from trial to trial occur, strong
evidence is accumulated to accurately determine an odorant.

From simulations we observe that there is a clear advantage in
repetitive introduction of the input in short bursts rather than a
single long input. Long input, when noisy, creates a correspond-
ing noisy trajectory that typically crosses the threshold line a
single time and then wanders around the fixed point so that the
decision is based only on one evidence. Other measures such as
the time the trajectory spent near the fixed point are typically
non-robust when noisy dynamics are considered. In contrast,
repetitive inputs generate a mechanism that allows for better inte-
gration of evidence since for each trial it is enough to just cross
the threshold once given by a simple measure like the CRT. Such
a mechanism thus provides a rapid, robust approach to odor
detection.

4. DISCUSSION
In this study we introduce a new method for data-driven model
construction of the AL. We validate our construction with two
novel extensive real multi-neuron recorded data sets, recorded
for several stimuli, both related (overlapping) and orthogonal
(pheromone and floral), repeated for at least five trials and
applied for realistic time scales. With the constructed model
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FIGURE 7 | CRT dynamics demonstrates the decision making

associated with odor detection. Left and right columns show the dynamics
of CRTA/B measure for one trial of stimulus A and B, respectively. The CRT
measure computed for stimuli A and B is: CRTA/B = pB(t)− pA(t) ± r (t). Top

row: the amplitude of the stimulus input over time. Middle and bottom

rows: CRT dynamics in the experiment and in the calibrated model,
respectively. The threshold decision lines are plotted with gray color at −0.75
(A) and 0.75 (B). When the CRT curve (black line with dots corresponding to
data points) crosses the threshold the data points are marked with
appropriate color of their dots: blue for stimulus A and red for stimulus B.

we are able to get valuable insights on the biological ques-
tions of how lateral inhibition is wired and show that calibra-
tion of wiring is required for contrast enhancement. While these
questions were observed and discussed in the cited literature,
(e.g., Laurent, 2002; Cleland and Linster, 2005; Mazor and
Laurent, 2005; Rabinovich et al., 2006; Buckley and Nowotny,
2012; Capurro et al., 2012), here for the first time we give con-
crete answer on how to calibrate the network and the impact of
wiring on contrast enhancement. Our results also link between
independent previous experimental observations, e.g., contrast
enhancement (Christie and Westbrook, 2006; Reisenman et al.,
2008) with non-local wiring (Silbering and Galizia, 2007; Riffell
et al., 2009a).

Contrasted with previous studies, (e.g., Afraimovich et al.,
2004; Cleland and Linster, 2005; Mazor and Laurent, 2005;
Buckley and Nowotny, 2012; Capurro et al., 2012), our work
introduces several novel components which allow us to con-
struct the data-driven model. The first component is that the
construction of the odor space introduced here is optimal and
allows for obtaining a discriminative set of orthogonal neural
codes in contrast to constructions based on PCA that are lim-
ited (Galán et al., 2004; Mazor and Laurent, 2005). This basis
allows us to achieve inference of the wiring from data vs. random
setup used in previous works (Cleland and Linster, 2005; Buckley
and Nowotny, 2012; Capurro et al., 2012). The advantage of the
method introduced here is that there is no additional fitting to
be done in the model and trajectories of our model, in response

to stimuli, show close resemblance when compared directly with
data. Prior to our approach, model generated trajectories were
theoretical and could not be compared with data on neural level.
We then show the important role that calibrated wiring plays
in contrast enhancement, which was observed as a phenomenon
in previous work but the mechanisms for it were not yet speci-
fied (Christie and Westbrook, 2006; Reisenman et al., 2008). To
quantify the effect of network wiring on the dynamics of both the
model and the data we define the contrast enhancement metric
(CRT metric) and show that the CRT performance of the cali-
brated network prevails random calibrated networks. In addition,
to explore the realistic transient dynamics and their relation to
olfactory decision making, we apply the stimuli for short realistic
times (200 ms) vs. much longer time scales in related work (3–
5 s) that showed fixed point dynamics, (e.g., Mazor and Laurent,
2005), and observe that trajectories are still able to approach the
fixed points, by crossing their associated threshold lines, both in
the model and data.

4.1. HIGH-DIMENSIONAL NEURAL NETWORK IS TUNED TO EXHIBIT
LOW-DIMENSIONAL DYNAMICS

Our primary contribution is the introduction of a new method-
ology that combines dimensionality reduction of dynamical
systems with experimental data in order to achieve a reliable
computational model, that highlights the exploitation of low-
dimensional encoding in the AL. To our knowledge, this is the first
successful model that combines such a data-driven methodology
in conjunction with dynamical equations of FR activity.

The methodology is divided into two stages. The first stage
is implicit, where we define an (implicit) library of population
(encoding) vectors and project the dynamic neuronal network
onto these vectors (Sirovich, 1996; Shlizerman et al., 2012).
The outcome is then restricted so that the system possesses
stable orthogonal fixed points, where each orthogonal direc-
tion is associated with a different population encoding vector.
This restriction determines a mapping from the high- to low-
dimensional system. At this stage, the connectivity is kept general
and expressed (implicitly) by the matrices A, B, C, E. As such it
is generalizable to modeling the AL across different species and
other neuronal networks. In particular, a similar approach could
be applicable to model networks that are further downstream in
olfactory processing such as the mushroom body (MB), a neu-
ronal unit that receives input from the AL and associated with
memory and learning of odors. Within the MB, Kenyon cells (KC)
receive input from PN neurons and synapse to extrinsic neurons
(EN). When recordings from EN become available, a similar con-
struction can be performed to recover the connectivity of KCs to
ENs (Froese et al., 2014). Furthermore, such a quasi approach
(modeling both the AL and the MB) can provide a data-driven
model for testing plasticity of connectivity in the AL and MB and
how strategies for learning-induced modulation adjust the odor
space representation and the metric for decision making (Faber
et al., 1999; Farooqui et al., 2003; Cassenaer and Laurent, 2012;
Dacks et al., 2012; Bazhenov et al., 2013). Such modulatory effects
on the encoding properties are work for future studies. The model
developed here provides an efficient platform for performing such
studies.
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In the second stage of the modeling, the constructed map-
ping is used in conjunction with experimental recordings to both
determine the population encoding vectors and reconstruct the
AL connectome associated with each odor in the library (see
Figure 4). The construct is consistent with AL experimentally
described functionality: while it is a high-dimensional neural
network consisting of thousands of neurons, it appears to be
tuned to exhibit low-dimensional coding dynamics.

4.2. MODEL SETUP AND EXTENSIONS
The model constructed here is based on experimental findings
and derivation that showed that dynamics induced by stimuli
converge to displaced fixed points in a low-dimensional
space (Galán et al., 2004; Mazor and Laurent, 2005; Buckley
and Nowotny, 2012). Lateral inhibitory connections (LN to PN),
the majority of connections within the AL, are supporting these
dynamics (Sachse and Galizia, 2002). Our methodology allows
for inference of these inhibitory connections by deriving the
minimization problem in Equation (11), where a first order
approximation of fixed points is being computed by calibrating
lateral inhibitory connections.

The propagation of information in the model is similar to
propagation of signals in the AL. Signal propagation in the AL
is initiated when the stimulus is turned ON. LN and PN dynam-
ics are then induced by the stimulus input. In LN population, the
dynamics respond to the input by releasing two GABA transmit-
ters GABA-A (fast, order of few ms) and GABA-B (slow) (Meyer
et al., 2013). The connections that are faster, GABA-A, are mod-
eled by the matrix E and correspond to the first order approxi-
mation of the fixed point. Indeed, we assume that fast GABA-A
dynamics allow for quick trajectory (faster than the single ON
duration of the stimulus) from quiescent state to the fixed point.
Adding GABA-B connections would be a second order correc-
tion for the fixed point and could improve the estimate, however,
it is not expected to play a significant role for the time scales
of the stimulus (of 200 ms) that we consider. In contrast to LN
population, PN population receives two inputs: directly from the
stimulus (RN to LN) and from LN (RN to LN to PN), such that
the timescale of PN response will be determined by these two
inputs. In the model they are controlled by norms of the matrices
A, B and parameter γ . The pathway that involves LN is longer
since LN is an intermediate step to reach PN. Previous works,
however, show that AMPA connections in GABAergic systems can
be much faster than in non-GABAergic suggesting that the two
pathways could be of comparable timescales, as we assume in the
calibration of the model (Geiger et al., 1997). Experimental and
computational explorations of the effects of different timescales
on the dynamics are left for future work.

In addition, excitatory LN to PN and PN to PN connections
were found in fruit flies, honeybees, although in much smaller
numbers than inhibitory LN to PN (Olsen et al., 2007; Root
et al., 2007; Shang et al., 2007; Sinakevitch et al., 2013). Their
presence suggests that incorporating these connections would be
important in deriving a data-driven generic AL model across
species. While related work is ambiguous about the impact of
these connections, e.g., see Serrano et al. (2013) where the gain
control condition of the AL depended only on the inhibitory
connections regardless of inclusion of excitatory connections, in

principle, such connections could have an impact on the stability
of the fixed points and their dynamics. For example, if one of the
fixed points loses stability, the dynamics then would be oscilla-
tory or expressed by homoclinic/heteroclinic orbits (Afraimovich
et al., 2004; Rabinovich et al., 2006). Even if all the fixed points
remain stable, the transient dynamics could differ, e.g., the trajec-
tories could spiral into the (stable focus) fixed point.

The data-driven construction can be extended to include exci-
tatory connections and these different dynamics. Incorporation
of excitatory connections and requiring that the dynamics are of
the same features (quick dynamics to a stable fixed point) would
add additional conditions to Equation (11). For example, a sta-
bility condition would restrict all the eigenvalues of the system
in Equation (8) to be negative. This condition can be formu-
lated as a Lyapunov equation, i.e., minimizing for an additional
matrix, usually denoted by Q, that solves the Lyapunov equa-
tion and is positive (Gajic and Lelic, 1996). Furthermore, in a
similar manner, by imposing pure imaginary eigenvalues in the
low dimensional space, the dynamics could be set to oscillatory
around some of the fixed points or unstable when the eigenvalues
have real positive components.

4.3. LATERAL INHIBITION AND CONTRAST ENHANCEMENT
With this framework established, we are able to suggest answers to
key questions in the behavior of the AL. One of primary impor-
tance is identifying the optimal network design that maximizes
contrast enhancement and reproduces the observed AL function-
ality. The model shows that the optimal design can be constructed
by tuning the lateral-inhibition so that the patterns of FR activity
are made robust (Rabinovich et al., 2008). In particular, we show
that asymmetric, non-local design of connections in a network of
neurons can lead to such low dimensional robust functionality.

Furthermore, we demonstrate that in a noisy environment,
network tuning is necessary for robust detection of an odor, even
when input keys and output codes are identical. We show that
lateral-inhibition, that has been tuned, shapes the noisy input
into reliable and repeatable trajectories, while inhibition that was
not tuned produces noisy and unreliable trajectories. This phe-
nomenon is experimentally observed and described as contrast
enhancement. Furthermore, our work suggests that absence of
inhibition will result in noisier responses and scattered trajec-
tories in the odor space. These predictions can be verified by
pharmacological treatment of the AL with GABA antagonists that
block inhibition.

Lateral inhibition is essential for shaping the response to com-
plex stimuli, i.e., a mixture of odorants (Laing and Francis, 1989;
Duchamp-Viret et al., 2003). Neural responses to these stimuli
were shown to be of non-linear nature and phenomenologically
classified into three major types: suppression (when the response
to a mixture is lower than of a single odorant), hypoadditiv-
ity (response is equivalent to a dominant single odorant) and
synergism (responses are magnified) (Capurro et al., 2012). The
inferred wiring in our model can permit these various types of
dynamics through competition. The responses are controlled via
the matrix W that specifies the weights of interaction between the
neural codes. Higher inhibitory weights for a particular odorant
indicates that the response might be of a winner-take-all type (i.e.,
hypoadditivity) regime. If several odorants are of comparable
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influence on inhibition then they are most likely to settle to a
lower response – mutual existence type and effectively exhibit
suppression type responses. For strongly overlapping stimuli we
can expect to observe the effect of synergism as well—a blend
of odorants can create a stronger effective stimulus into one of
the axes of the odor space. Although for achieving a significant
synergism excitatory LN-PN or PN-PN connections may play a
role. In future studies, simulations of the model and variation of
the elements of the matrix W (similarly to Capurro et al., 2012
for random connectivity), in conjunction with the decision mak-
ing algorithm and comparison with experimental trajectories, can
reveal the regimes that odor competition produces.

4.4. PROJECTION SPACE FOR ODOR DETECTION
In previous studies, a three dimensional projection space (odor
space) was constructed using PCA based dimension reduc-
tion. Projections of distinct odorant trajectories onto this low-
dimensional space appeared to be well separated from each
other (Laurent, 2002; Galán et al., 2004; Mazor and Laurent,
2005). Moreover, for each odor there was an associated fixed point
that was separated from all other odor fixed points. The construc-
tion demonstrated that odorants can be classified into distinct
groups and suggested that odor detection may be accomplished
solely from recordings and projection onto the odor space.

The odor space is the backbone of our model as well. There are
key differences, however, in the construction of our underlying
odor space. Specifically, we treat the data differently by dividing
the population of PNs into remainder and population encoding
vectors so that we achieve a model representing the dynamics
of the spatio-temporal FR patterns rather than single neurons.
Such a viewpoint of the data is useful since it constructs an odor
space (phase space of a dynamical system) with meaningful axes,
i.e., our dimensionality reduction gives an orthogonal basis where
each vector corresponds to an individual odorant (Figure S3) or
a remainder (Figure 2C). As a result, the odor space provides an
easy means for odor recognition and characterization.

4.5. DECISION MAKING AS A ROBUST MECHANISM FOR ODOR
PERCEPTION

The timescales of realistic inputs indicate that odor detection
occurs relatively fast and usually requires repetitive (over several
trials) exposure to the same odor (Koehl et al., 2001; Mainland
and Sobel, 2006). Some animals use sniffing or other mecha-
nisms to achieve fast repetition of similar input into the olfactory
system (Mafra-Neto and Carde, 1994; Vickers and Baker, 1994;
Mazurek et al., 2003; Riffell et al., 2009b). Furthermore, there
exists experimental evidence that shows that for a longer stim-
ulus duration (a few seconds), initial sharp response of PNs is
followed by more intermittent one (Christensen and Hildebrand,
1988; Marion-Poll and Tobin, 1992). These results suggest that
the optimal strategy for scent recognition is employed by sam-
pling the stimulus. For Manduca sexta, the optimal frequency for
behavioral response to the Datura flower appears to be 1 Hz with
the stimulus applied for 500 ms in each period (similar to honey-
bees Wright et al., 2009). Neural responses are observed to reach a
maximum fixed point at about 100 ms. These time scales indicate
that there is a 5-fold difference between neural and behavioral
responses which could be due to repetitive sampling of stimulus.

Our analysis suggests that indeed based on the dynamics of the
AL the exposure to multiple, short-time bursts of odor can be for-
mulated as a decision making process. More precisely, we are able
to prescribe an algorithm, possibly evoked by higher centers in
the brain such as the MB or the lateral horn, that poll the dynam-
ics of the AL in order to make a decision. Examination of the
projections of iFR data produced in both theory and experiment
indicates that in each short trial, the most plausible dynami-
cal response is an excursion in odor space along a trajectory
attracted toward an orthogonal fixed point. In fact, the orthog-
onality of the fixed points allows for an optimal separation of
trajectories for different odors. Due to the short timescale of the
odor burst, the trajectory does not necessarily converge to the
fixed point. Rather, it only approaches its vicinity (Figure 6 and
Supplementary Videos). In effect, it crosses the threshold line of
an odorant while staying away from crossing thresholds of other
odorants, see the horizontal and vertical lines in Figure 6 and
the trajectories that cross them. Indeed, a common hypothesis
in decision making is that the decision is made when neuronal
activity crosses a threshold (Bogacz et al., 2006). Tracking trajec-
tories that cross decision thresholds is accomplished by defining a
linear contrast measure over time as we demonstrate in Figure 7.
Repetition of the same odorant stimulus permits robustness of the
algorithm. With each threshold crossing, evidence is integrated
toward a specific odorant stimulus. After each trial, a probabil-
ity distribution is updated until there is a high probability that
supports a specific odorant stimulus. This indicates that enough
evidence was integrated toward one of the odorants, and thus
leads to a decision/perception for the odor, which is followed by a
behavioral response corresponding to that odorant. The signature
of this decision making mechanism is that integration for longer
time will cease to improve accuracy. In the context of mammalian
olfaction (rats) it was shown that indeed decisions do not neces-
sarily improve with additional time (Zariwala et al., 2013). Future
experiments that test behavior for various durations of stimuli
may provide more evidence into olfactory decision making and
its underlying mechanisms.

The proposed algorithm is scalable and can be used for per-
ception of complex odors, i.e., a mixture of odorants (Laing and
Francis, 1989; Duchamp-Viret et al., 2003). If the odorants in the
compound are of similar significance and strength, then the tra-
jectories in the odor space may cross several thresholds of distinct
odorants each time that a stimulus is applied. Repeating the appli-
cation of the same stimulus, eventually will lead to reconstruction
of a uniform probability distribution indicative of the distribu-
tion of odorants in the mixture. Note that to obtain a reliable
probability distribution the process may require many repetitions
than in the detection of a single odorant.
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