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We consider a class of neural circuit models with internal noise sources arising in sensory
systems. The basic neuron model in these circuits consists of a dendritic stimulus
processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus
processor is modeled as a set of nonlinear operators that are assumed to have a Volterra
series representation. Biophysical point neuron models, such as the Hodgkin-Huxley
neuron, are used to model the spike generator. We address the question of how intrinsic
noise sources affect the precision in encoding and decoding of sensory stimuli and the
functional identification of its sensory circuits. We investigate two intrinsic noise sources
arising (i) in the active dendritic trees underlying the DSPs, and (ii) in the ion channels
of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of
variability in synaptic transmission and dendritic interactions. Channel noise arises in the
BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic
differential equations formalism we show that encoding with a neuron model consisting
of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated
as generalized sampling with noisy measurements. For single-input multi-output neural
circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs
we theoretically analyze the effect of noise sources on stimulus decoding. Building on
a key duality property, the effect of noise parameters on the precision of the functional
identification of the complete neural circuit with DSP/BSG neuron models is given. We
demonstrate through extensive simulations the effects of noise on encoding stimuli with
circuits that include neuron models that are akin to those commonly seen in sensory
systems, e.g., complex cells in V1.

Keywords: Volterra dendritic stimulus processors, biophysical spike generators, noise, neural encoding, neural

decoding, functional identification, Hodgkin-Huxley neuron, phase response curve

1. INTRODUCTION
Intrinsic noise sources are diverse and appear on many levels
of a neuronal system ranging from electrical to chemical noise
sources (Faisal et al., 2008; Destexhe and Rudolph-Lilith, 2012)
and from single cells to networks of neurons. At the cellular
and subcellular level, variability in biochemical reactions leads
to stochastic transduction processes (Song et al., 2012), and ion
channel fluctuations (Neher and Sakmann, 1976; White et al.,
1998) result in variability in spike generation and propagation
(Faisal and Laughlin, 2007). At the network level, probabilistic
quantal release of neurotransmitters (Katz, 1962), background
synaptic activity (Destexhe et al., 2003; Jocobson et al., 2005) and
variability in timing of spikes from presynaptic neurons (Faisal
and Neishabouri, 2014) are sources of stochastic fluctuation of
synaptic conductances (Destexhe et al., 2001) that are believed
to have a major impact on spike time variability (Yarom and
Hounsgaard, 2011).

The existence of sources of noise also leads to variability in the
spike times even when neurons are subject to the same, repeated
inputs (Calvin and Stevens, 1968; Berry et al., 1997; de Ruyter van
Steveninck et al., 1997). Spikes are the primary form of carriers of

information in the nervous system and their timing is thought to
be relevant to the message neurons need to convey (Rieke et al.,
1999). Therefore, the variability of spike timing may reduce or
damage the information being transmitted. It is quite remarkable,
however, that sensory systems manage to be very robust even if
they are subject to interference due to noise. Visual and auditory
systems are two examples in which the stimuli are highly time
varying. These systems have been reported to convey information
with high spike timing precision (Butts et al., 2007; Kayser et al.,
2010).

Noise may be useful in facilitating signal detection (McDonnell
and Ward, 2011). Still, interference due to noise poses an impor-
tant limit on how well sensory systems can represent input
stimuli. It is not clear how intrinsic noise sources affect the rep-
resentation of sensory inputs based on spike times, and how they
impact the functional identification of sensory neurons.

We study the representation of sensory stimuli using a novel
neural circuit model, that extends previously proposed mod-
els (Lazar et al., 2010; Lazar and Slutskiy, 2014, in press) in
terms of architectural complexity and the existence of intrin-
sic noise sources. Our base level circuit architecture consists of
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two interconnected neurons, each with two cascaded stages. The
first stage comprises two types of dendritic stimulus processors.
The first dendritic stimulus processor performs nonlinear pro-
cessing of input stimuli in the feedforward path leading to the
spike generator. The second dendritic stimulus processor per-
forms nonlinear processing in the feedback loop whose inputs are
spike trains generated by biophysical spike generators (BSGs). The
BSGs constitute the second stage of the base level circuit.

Our nonlinear dendritic stimulus processors describe func-
tional I/O relationships between the dendritic outputs in the first
stage and inputs that are either sensory stimuli or spikes gener-
ated by BSGs. DSPs are modeled using Volterra series. Volterra
series have been used for analyzing nonlinear neuronal responses
in many contexts (Lu et al., 2011; Eikenberry and Marmarelis,
2012), and have been applied to the identification of single neu-
rons in many of sensory areas (Benardete and Kaplan, 1997;
Theunissen et al., 2000; Clark et al., 2011). Volterra dendritic
processors can model a wide range of nonlinear effects com-
monly seen in sensory systems (Lazar and Slutskiy, in press).
Here, in addition, we introduce nonlinear interactions between
neurons in the feedback and cross-feedback paths. This gives
rise to interesting neural processing capabilities directly in the
spike domain, e.g., coincidence detection (Agmon-Snir et al.,
1998; Stuart and Häusser, 2001). The relationships described
here by the Volterra model are functional and do not address
the underlying circuit/dendritic tree level interactions. However,
the latter have recently been subject to intense investigations
(London and Häusser, 2005; Wohrer and Kornprobst, 2009;
Werblin, 2011; Xu et al., 2012; Yonehara et al., 2013; Zhang
et al., 2013). Conductance-based, biophysical spike generators are
well established models that have been extensively used in stud-
ies of neuronal excitability and in large simulations of spiking
neural networks (Izhikevich, 2007). Following Lazar (2010), we
use formal BSG models to represent sensory stimuli under noisy
conditions.

We formulate the encoding, decoding and functional iden-
tification problems under the neural encoding framework of
Time Encoding Machines (TEMs). In this modeling framework
the exact timing of spikes is considered to carry information
about input stimuli (Lazar and Tóth, 2004). The separation into
dendritic stimulus processors and spike mechanisms mentioned
above allows us to study synaptic inputs and spike genera-
tion mechanisms separately, and hence independently model the
intrinsic noise sources of each component. We incorporate two
important noise sources into a general single-input multi-output
neural circuit model. The first is a channel noise source that arises
in spike generation (White et al., 2000). The second is a synap-
tic noise source due to a variety of fluctuating synaptic currents
(Manwani and Koch, 1999).

Based on the rigorous formalism of TEMs, we show how noise
arising in dendritic stimulus processors and in biophysical spike
generators is related to the measurement error in generalized sam-
pling. Dendritic stimulus processing and spike generation can
then be viewed as a generalized sampling scheme that neurons
utilize to represent sensory inputs (Lazar et al., 2010). Contrary
to traditional sampling where the signal amplitude is sampled at
clock times, neurons asynchronously sample all stimuli.

We systematically investigate how the strength of noise sources
degrades the faithfulness of stimulus representation and the
quality of functional identification of our proposed class of neural
circuits. Furthermore, since the representation is based on spike
timing, it is natural to investigate how spike timing variability
affects the precision in representing the amplitude information
of sensory stimuli.

The work presented here requires a substantial amount of
investment in the mathematical formalism employed throughout.
There are a number of benefits in doing so, however. Formulating
the problem of stimulus encoding with a neural circuit with
intrinsic noise sources as one of generalized sampling, i.e., of tak-
ing noisy measurements is of interest to both experimentalists
and theoreticians alike. Understanding that the problem of neu-
ral decoding and functional identification are dual to each other
is key to building on either or both. Finding how many repeat
experiments need to be performed for a precise quantitative iden-
tification of Volterra kernels is of great value in neurophysiology.
A further qualitative insight of our work is that for neural cir-
cuits with arbitrary connectivity, feedforward kernels are typically
easier to estimate than feedback kernels. Finally, our finding that
some key nonlinear neural circuits are tractable for detailed noise
analysis suggests a wide reaching analytical methodology.

2. MODELING NONLINEAR NEURAL CIRCUITS, STIMULI,
AND NOISE

We present in Section 2.1 the general architecture of the neural
circuits considered in this paper. In Section 2.2 we discuss the
modeling of the space of stimuli. Volterra DSPs are the object
of Section 2.3. Finally, in Section 2.4 we provide models of BSGs
with intrinsic noise sources.

2.1. NEURAL CIRCUIT ARCHITECTURE
The general architecture of the neural circuit considered here is
shown in simplified form in Figure 1. It consists of two neu-
rons with a common time-varying input stimulus. With added
notational complexity the neural circuit in Figure 1 can easily be
extended in two ways. First, multiples of such circuits can encode
a stimulus in parallel (see Section 2.1 in the Supplementary
Material). In this case only pairs of neurons are interconnected
through the feedback kernels. Second, more neurons can be con-
sidered in the neural circuit of Figure 1; all these neurons can be
fully interconnected through feedback loops.

Each neuron i, i = 1, 2, receives a single time-varying input
stimulus u1(t). The modeling of the input stimulus is discussed in
Section 2.2. The output of each of the biophysical spike generators
(BSGs) is a spike sequence denoted by (t1

k ) and (t2
l ), k, l ∈ Z.

The input stimulus u1(t) is first processed by a feedfor-
ward Dendritic Stimulus Processor (feedforward DSP) (Lazar
and Slutskiy, in press). The feedforward DSP models the aggre-
gated effect of processing in the neural circuits in the prior
stages and in the dendritic tree of neuron i = 1, 2. For exam-
ple, if the neurons in the model circuit are considered to be
Retinal Ganglion Cells (RGCs), then the feedforward Volterra
DSP models the processing that takes place in the outer- and
inner-plexiform layers of the retina as well as in the dendritic
trees of an RGC (Werblin, 2011; Masland, 2012). The feedforward
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FIGURE 1 | Diagram of the architecture of the neural circuits.

DSPs are modeled here as second order Volterra expansion terms
(Volterra, 1930). The first order terms h11i

1 (t) in the feedforward
DSPs are linear filters typically used in modeling receptive fields.
The second order terms h11i

2 (t1, t2) model nonlinear operations
on the stimulus u1(t).

A second group of Volterra DSPs models the cross-feedback
interactions between the two neurons. Instead of time-varying
stimuli, the output spikes generated by the BSGs are the inputs
to these DSPs. We therefore refer to these as feedback Dendritic
Stimulus Processors (feedback DSPs). The output spikes of
each individual neuron i are processed by the first order term

h
2ji
1 (t), i, j = 1, 2, i �= j. In addition, output spikes from both

neurons interact nonlinearly through the second order terms

h
2ji
2 (t1, t2), i, j = 1, 2, i �= j. The summed responses from the

first order feedback DSP h
2ji
1 and the second order feedback DSP

h
2ji
2 are fed back to neuron i as additional dendritic currents.

The dendritic currents consisting of the output of the DSPs
with added noise are subsequently encoded by biophysical spike
generators. BSGs are biophysically realistic axon hillock spike gen-
erator models that are governed by a set of differential equations
with multiple types of ion channels (Hodgkin and Huxley, 1952;
Izhikevich, 2007). The detailed BSG models are introduced in
Section 2.4. The spike times of output spikes generated by the
BSGs are assumed to be observable.

We identify two intrinsic noise sources of the proposed neu-
ral circuit. First, the feedforward DSPs and the feedback DSPs are
affected by additive Gaussian white noise. This noise arises from
the combined effect along the path from sensory transduction
to synaptic integration and includes synaptic background noise
and stochasticity in the dendritic tree (Manwani and Koch, 1999;

Fellous et al., 2003; Destexhe and Rudolph-Lilith, 2012). Since
the outputs of the feedforward and feedback DSPs are additively
combined, we consider, for simplicity, a single source of additive
Gaussian white noise. Second, the ion channels of the BSGs are
intrinsically stochastic and introduce noise in the spike generators
(White et al., 2000; Hille, 2001).

2.2. MODELING SIGNAL SPACES
Two signal spaces will be considered here. The first, models the
space of input signals to feedforward DSPs. The second models
the space of input spikes to feedback DSPs. These spaces will be
formally described below.

2.2.1. Modeling the space of input stimuli
We model the space of input stimuli as a Reproducing Kernel
Hilbert Space (RKHS) (Berlinet and Thomas-Agnan, 2004).
RKHSs are versatile vector spaces for modeling signals arising
in computational neuroscience, signal processing and machine
learning. For example, auditory signals, olfactory signals and
visual signals can readily be modeled as band-limited functions of
an RKHS with a sinc or Dirichlet kernel (Lazar et al., 2010; Lazar
and Slutskiy, 2013). A particular choice of RKHSs in this arti-
cle is the space of trigonometric polynomials. The computational
advantage of working on the space of trignometric polynomi-
als has been discussed (Lazar et al., 2010) and is closely related
to the algorithmic tractability of the Fourier series in the dig-
ital domain. If the biological signals have unknown bandwidth
with a spectrum that falls off fast enough, many Sobolev spaces
might be a suitable choice of RKHS (Berlinet and Thomas-
Agnan, 2004; Lazar and Pnevmatikakis, 2009). In such spaces the
norm may include the derivative of the signal, i.e., the rate of
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change of the signal that many neurons are sensitive to Kim et al.
(2011).

The space of trigonometric polynomials is defined as below.

Definition 2.1. The space of trigonometric polynomials H1
1 is a

function space whose elements are functions defined on the domain
D1 = [0, S1], S1 ∈ R+, of the form

u1(t) =
L1∑

l = −L1

ulel(t), (1)

where

el(t) = 1√
S1

e
jl�

1

L1 t
, l = −L1, · · · , L1, (2)

are a set of orthonormal basis functions. �1 denotes the bandwidth
and L1 is the order of the space.

H1
1 endowed with the inner product:

〈u1, v1〉 =
∫

D1

u1(t)v1(t)dt (3)

is a Hilbert Space. Intuitively, the basis functions el(t),
l = −L1, . . . , L1, can be interpreted as a set of discrete spectral
lines uniformly spaced in the frequency domain between −�1

and�1. For a given signal u1(t), the amplitude of its spectral lines
is determined by the coefficients ul, l = −L1, . . . , L1.

Remark 2.2. Functions in H1
1 are periodic over R with period

S1 = 2πL1

�1 . Therefore, the domain D1 covers exactly one period of
the function. Note that the ul’s are closely related to the Fourier
coefficients of the periodic signal u1(t), and can thereby be very
efficiently computed via the Fast Fourier Transform.

H1
1 is an RKHS with reproducing kernel (RK)

K1
1 (t; s) =

L1∑
l = −L1

el(t − s). (4)

It can be easily verified that the RK satisfies the reproducing
property

〈u1( · ),K1
1 (t; ·)〉 = u1(t),∀u1 ∈ H1

1, t ∈ D1. (5)

Definition 2.3. We shall also consider the tensor product space H1
2

on the domain D2 = [0, S1] × [0, S1], whose elements are of the
form

u2(t1, t2) =
L1∑

l1 = −L1

L1∑
l2 = −L1

ul1l2 el1l2 (t1, t2), (6)

where

el1l2 (t1, t2) = 1

S1
e

j l1
�1

L1 t1 e
j l2

�1

L1 t2 , (7)

are a set of functions forming an orthonormal basis.

H1
2 is again an RKHS with RK

K1
2 (t1, t2; s1, s2) =

L1∑
l1 = −L1

L1∑
l2 = −L1

el1l2 (t1 − s1, t2 − s2). (8)

Note that we use the subscript to indicate the dimension of the
domain of functions, i.e., the number of variables the functions
in the RKHS have, and use the superscript 1 to indicate the input
space.

Projections of functions onto the RKHSs introduced here can
be defined as follows:

Definition 2.4. Let h1 ∈ L1(D1), where L1 denotes the space of
Lebesgue integrable functions. The operator P1 : L1(D1) → H1

1
given by

(P1h1)(t) =
∫

D1

h1(s)K1
1 (t; s)ds,

is called the projection operator from L1(D1) to H1
1. Similarly, let

h2(t1, t2) ∈ L1(D2), the operator P1 : L1(D2) → H1
2 (by abuse

of notation) given by

(P1h2)(t1, t2) =
∫

D2

h2(s1, s2)K1
2 (t1, t2; s1, s2)ds1ds2,

is called the projection operator from L1 (D2) to H1
2.

2.2.2. Modeling the space of spikes
The feedback kernels of the neural circuit in Figure 1 receive as
inputs spike trains generated by the BSGs. Spike trains are often
modeled as sequences of Dirac delta pulses and, consequently, the
outputs of linear feedback kernels are the result of superposition
of their impulse responses (Keat et al., 2001; Pillow et al., 2008;
Lazar et al., 2010).

Dirac delta pulses have infinite bandwidth. Spikes generated by
the BSGs, however, have limited effective bandwidth. Following
(Lazar and Slutskiy, 2014) spikes are modeled to be the RK of
an one-dimensional Hilbert space H2

1 at spike time occurrence.
Here H2

1 is a space of trigonometric polynomials whose order L2,
period S2 and bandwidth �2 may differ from the input stimulus
space H1

1, where �2 shall be larger than the bandwidth assumed
for the feedback kernel, and S2 is much larger than the support of
the feedback kernel (Lazar and Slutskiy, 2014). A spike at time ti

k

of neuron i can then be expressed in functional form as K2
1 (ti

k; t),
where the superscript indicates that the RK belongs to the spike
input space.
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Due to the reproducing property, single or pairs of input spikes
have the property

h1(t) ∗ K2
1

(
ti
k; t

)
=
∫

D1

h1(t − s)K2
1

(
ti
k; s

)
ds = (P2h1

) (
t − ti

k

)

and∫
D2

h2 (t − s1, t − s2)K2
2

(
ti
k, t

j
l ; s1, s2

)
ds1ds2 = (P2h2

) (
t − ti

k, t − t
j
l

)

for i, j = 1, 2, i �= j. The operator P2 is similarly defined to
P1 above; it denotes, however, the projection onto the space
of spikes. Thus, not surprisingly, incoming spikes directly read-
out the projection of the feedback kernels. By letting L2 → ∞,(
P2h1

)
(t − tk) shall converge to h1 (t − tk) in L2 norm as the

RK converges to the sinc function and the RKHS becomes the
space of band-limited signals (Lazar et al., 2010). A more detailed
analysis is available in Lazar and Slutskiy (2014). This formalism
will be employed for solving the functional identification problem
formulated in Section 4.1.

2.3. VOLTERRA DENDRITIC STIMULUS PROCESSORS
As mentioned in Section 2.1, two forms of dendritic stimulus
processing appear in our model.

2.3.1. Feedforward Volterra dendritic stimulus processors
The feedforward DSPs are modeled as up to second order terms in
the Volterra series. The feedforward DSPs take continuous signals
in the stimulus space as inputs, while the output can be expressed
as (see also Figure 1)

∫
D1

h11i
1 (t − s)u1(s)ds +

∫
D2

h11i
2 (t − s1, t − s2) u1(s1)u1(s2)ds1ds2, (9)

where h11i
1 ∈ L1(D1) and h11i

2 ∈ L1(D2) denote, respectively,
the first and second order Volterra kernels, i = 1, 2. They are
assumed to be real, causal and bounded-input bounded-output
(BIBO)-stable. It is also assumed that both h11i

1 and h11i
2 have finite

memory. In addition, h11i
2 is assumed, without loss of generality,

to be symmetric, i.e., h11i
2 (t1, t2) = h11i

2 (t2, t1).

Example 2.5. We present here a Volterra DSP that is akin to a
model of dendritic stimulus processing of complex cells in the pri-
mary visual cortex (V1). The difference is that the complex cells
operate spatio-temporally, whereas in the example given below they
operate temporally. We first consider two first order kernels based on
Gabor functions,

gc(t) = exp

(
− (t − 0.13)2

2 · 0.0005

)
cos

(
2π · 10 · (t − 0.13)

)
,

gs(t) = exp

(
− (t − 0.13)2

2 · 0.0005

)
sin

(
2π · 10 · (t − 0.13)

)
.

The two filters are Gaussian modulated sinusoids, that are typically
used to model receptive fields of simple cells in the primary visual
cortex (V1) where the variables denote space instead of time (Lee,

1996; Dayan and Abbott, 2001). In addition, the two filters are
quadrature pair in phase. Both filters are illustrated in Figure 2A.
The response of applying the input stimulus u1 on the temporal fil-
ters with impulse response gc and gs is given by

∫
D1

gc(t − s)u1(s)ds

and
∫

D1
gs(t − s)u1(s)ds, respectively.

The responses of the two linear filters of the complex cell model
are squared and summed to produce the phase invariant measure vi

(Carandini et al., 2005), where

v i(t) =
[∫

D1

gc(t − s)u1(s)ds

]2

+
[∫

D1

gs(t − s)u1(s)ds

]2

=
∫

D2

gc(t − s1)h1(t − s2)u1(s1)u1(s2)ds1ds2

+
∫

D2

gs(t − s1)gs(t − s2)u1(s1)u1(s2)ds1ds2

=
∫

D2

[
gc(t − s1)gc(t − s2) + gs(t − s1)gs(t − s2)

]
u1(s1)u1(s2)ds1ds2

=
∫

D2

h11i
2 (t − s1, t − s2)u1(s1)u1(s2)ds1ds2,

(10)

where h11i
2 (t1, t2) = gc(t1)gc(t2) + gs(t1)gs(t2). Therefore, the oper-

ation performed by a complex cell can be modeled with a second
order Volterra kernel. h11i

2 is shown in Figure 2B.
We now take a closer look at the operation of the second order

kernel. The two dimensional convolution of the second order kernel
with u2(t1, t2) is shown in Figure 2C.

It is important to note that, since the second order kernel has
finite memory, it may not have enough support to cover the entire
domain D2 for u2(t1, t2). For example, as illustrated in Figure 2C,
the output of the second order feedforward DSP at time t is given
by the integral of the product of u2(t1, t2) and a rotated h11i

2 with
the origin shifted to (t, t) [see also (10)]. Since the shift is along the
diagonal, only u2(t1, t2) in the domain that is contained within the
black lines is multipled by nonzero values of h11i

2 . u2(t1, t2) elsewhere
in the domain is always multiplied by zero in evaluating the output.
Therefore, the output of the second order filter only contains infor-
mation about u2 within the domain located in between the black
lines in Figure 2C. This has implications on decoding the signal (see
also Remark 3.11 in Section 3.2)

2.3.2. Feedback Volterra dendritic stimulus processors
As already mentioned, the feedback DSPs do not operate on stim-
uli directly but rather on spikes generated by BSGs. We assume

that h
2ji
1 ∈ L1(D1), h

2ji
2 ∈ L1(D2), i �= j, are real, causal, BIBO-

stable and have finite memory. In addition, we assume that these
kernels are effectively band-limited (see also Section 2.2.2). In
functional form we denote a train of spikes as

∑
k K2

1 (ti
k; t). The

output of the feedback DSP i amounts to

∑
l ∈ Z

(
P2h

2ji
1

) (
t − t

j
l

)
+
∑
k ∈ Z

∑
l ∈ Z

(
P2h

2ji
2

) (
t − t

j
l , t − ti

k

)
(11)

with j �= i.
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FIGURE 2 | Examples of Volterra kernels. (A) First order kernels of
quadrature pair of Gabor functions modeling the receptive fields of simple
cells. (B) Second order kernel modeling receptive fields of complex cells. (C)

The mechanics of the two dimensional convolution operation between the u2

(S1 = 0.8, D2 = [0,0.8] × [0,0.8]) and h11i
2 . u2(t1, t2) = u1(t1)u1(t2) is shown

in the background. The inset shows the second order Volterra kernel h11i
2

rotated 180◦ around origin [see also (B)]. (h11i
2 is only shown in a restricted

domain and is zero elsewhere). For t = 0.3, the output of the convolution is
the integral of the product of the rotated Volterra kernel and the signal
underneath. Since the convolution is evaluated on the diagonal t = t1 = t2,
the second order kernel shifts, as t increases, along the arrow on the
diagonal. See also Supplementary Figure 5E.

In particular, the inputs to the second order term of the
feedback DSPs are generated by two neurons. This allows for
modeling nonlinear interactions between the two neurons in the
spike domain.

2.3.3. Overall output from DSPs
The overall inputs (without noise) to the two BSGs in Figure 1 are

vi(t) =
∫

D

h11i
1 (t − s)u1(s)ds +

∫
D2

h11i
2 (t − s1, t − s2) u1(s1)

u1(s2)ds1ds2 +
∑
l ∈ Z

(
P2h

2ji
1

) (
t − t

j
l

)
+
∑
l ∈ Z

∑
k ∈ Z

(
P2h

2ji
2

)
(

t − t
j

l , t − ti
k

)
, and i, j = 1, 2, i �= j.

(12)

The system of Equations (12) above functionally describe the
post-synaptic aggregate currents that are injected into the
BSG i.

There are a variety of noise sources to be considered. Synaptic
variability of feedforward DSPs adds noise sources to the cur-
rent input to the BSGs. These include thermal noise, synap-
tic background noise, etc. (Jonston, 1927; Calvin and Stevens,
1968; Manwani and Koch, 1999; Fellous et al., 2003; Destexhe
and Rudolph-Lilith, 2012). Feedback DSP kernels may them-
selves be subject to intrinsic noise sources that may lead to
variability in the spike generation process. Intrinsic variabil-
ity of BSG spike times can, e.g., contribute to the variability
of the aggregate current driving the axon hillock in feedback
loops.

Overall, the combined effect of DSP noise sources is mod-
eled as Gaussian white noise processes that are added to the
feedforward and feedback DSP outputs. The sum total of sig-
nal and noise represents the aggregate current input to the
BSGs (see Figure 1). Formal DSP noise models will be incor-
porated directly into the BSG model presented in the next
section.

2.4. BIOPHYSICAL SPIKE GENERATORS
2.4.1. BSGs and phase response curves
We consider biophysically realistic spike generators such as
the Hodgkin-Huxley, Morris-Lecar, Connor-Stevens neurons
(Hodgkin and Huxley, 1952; Connor and Stevens, 1971; Morris
and Lecar, 1981). The class of BSGs can be expressed in vector
notation as

dxi

dt
= f i

(
xi, Ii

)
, i = 1, 2, (13)

where xi are the state variables, fi are vector functions of the same
dimension, and Ii are the constant bias currents in the voltage
equation of each BSG.

Each input current vi(t) is applied to the neuron i by additive
coupling to the voltage equation, typically the first of the set of
ordinary differential equations, i.e.,

dxi

dt
= f i

(
xi, Ii

)
+
[

vi(t), 0
]T
, i = 1, 2, (14)

where 0 is a row vector of appropriate size.
We assume that the neuron is periodically spiking when no

external input is applied. This can be satisfied by a constant bias
current Ii additively coupled onto the voltage equation. The use
of Ii is necessary to formulate the encoding for the single neuron
case, and this assumption will be relaxed later in this article.

A large enough bias current induces a periodic oscillation of
the biophysical spike generator. Therefore, the phase response
curve (PRC) is well defined for this limit cycle (Izhikevich, 2007).
We denote the PRC of the limit cycle induced by the bias current

Ii as ψ i (t, Ii
) =

[
ψ i

1

(
t, Ii

)
, ψ i

2

(
t, Ii

)
, · · · , ψ i

Ni

(
t, Ii

)]T
with

appropriate dimension Ni, where ψ i
n

(
t, Ii

)
, n = 1, 2, · · · ,Ni,

are the PRCs associated with the nth state variable. Without loss of
generality, we assume that ψ i

1

(
t, Ii

)
is always the PRC associated

with the voltage variable.
An example of a Hodgkin-Huxley neuron model of a BSG can

be found in Section 2.2 in the Supplementary Material.

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 95 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lazar and Zhou Neural circuits with intrinsic noise sources

2.4.2. Channel noise in BSGs
As shown in Figure 1, we consider BSGs with noise sources in the
ion channels. The noise arises due to thermal fluctuations (White
et al., 2000; Hille, 2001) as the finite number of ion channels in
the BSGs open and close stochastically.

The differential equations that govern the dynamics of the
BSGs in (14) are deterministic. The set of stochastic differen-
tial equations (SDEs) below represent their stochastic counterpart
(Lazar, 2010):

d Yi = f i
(

Yi, Ii
)

dt + Bi
(

Y i
)

d Z i(t), i = 1, 2, (15)

where Bi is a matrix with state dependent values, dZi =[
vidt, dWi

2, dWi
3, · · · , dWi

Pi

]T
, and Wi

p(t), p = 2, · · · , Pi, are

independent Brownian motion processes. Note that Pi does not
necessarily have to be equal to Ni, the number of state variables.
The first element in the stochastic differential dZi is the aggre-
gate dendritic input vidt driving the voltage equation. The other
entries in dZi are noise terms that reflect the stochastic fluctuation
in the ion channels / gating variables.

Randomness is often added to BSGs by setting Bi = I, where
I is a Ni × Ni identity matrix. The later setting can be viewed as
adding subunit noise (Goldwyn and Shea-Brown, 2011). Recently,
it has been suggested that a different way of adding channel noise
into the BSGs may result in more accurate stochastic behavior
(Goldwyn and Shea-Brown, 2011; Goldwyn et al., 2011; Linaro
et al., 2011; Orio and Soudry, 2012). The SDEs in (15) are of
general form and do not preclude them. In fact, by setting Bi

to be a block matrix with blocks equal to be the square root
of the diffusion matrix for each ion channel, the channel SDE
model (Goldwyn et al., 2011; Orio and Soudry, 2012) can easily
be incorporated into (15).

Finally, we note that, under appropriate technical conditions
the SDE formulation applies to BSGs with voltage-gated ion chan-
nels as well as other types of ion channels. The conditions require
that the BSG model can be treated mathematically as a system of
SDEs of the form (15) and that the latter satisfies the assumptions
of Section 2.4.1.

2.4.3. Overall encoding of the neural circuit model
Taking into account the dendritic input from the feedforward
DSPs and feedback DSPs, the encoding by the neural circuit
model under the two noise sources is given by two systems of
SDEs. With the Brownian motion Wi

1 modeling the DSP white
noise, the encoding of neuron i, i = 1, 2, can be expressed as

d Yi = f i
(

Y i, Ii
)

dt + Bi
(

Yi
)

d Zi(t), (16)

where

d Z i =

⎡
⎢⎢⎢⎢⎣

v idt + dWi
1

dWi
2
...

dWi
Pi

⎤
⎥⎥⎥⎥⎦ ,

with vi(t) given by Equation (12).

Note that in the system of Equations (16) the two output
spikes trains

(
ti
k

)
, i = 1, 2, k ∈ Z, are the observables. Due to the

intrinsic noise sources in the DSPs and in the BSGs, spike timing
jitter may be observed from trial to trial by repeatedly applying
the same stimulus to the neural circuit (see Section 2.3 in the
Supplementary Material).

3. ENCODING, DECODING, AND NOISE
In Section 3.1 we present the mathematical encoding formalism
underlying the neural circuit in Figure 1. We formulate stimulus
decoding as a smoothing spline optimization problem and derive
an algorithm that reconstructs the encoded signal in Section 3.2.
Finally, we analyze the effect of noise on stimulus decoding in
Section 3.3.

3.1. ENCODING
In this section, we formulate a rigorous stimulus encoding model
based on the neural circuit shown in Figure 1. The input of
the circuit is a signal u1 modeling a typical sensory stimulus as
described in Section 2.2.1. The neural circuit generates a mul-
tidimensional spike train that is assumed to be observable. We
establish model equations by first describing the I/O relation-
ship (i.e., the t-transform) of a single BSG. We then provide
the t-transform of the entire neural circuit model that maps the
input stimulus amplitude into a multidimensional spike timing
sequence.

3.1.1. The I/O of the BSG
In the presence of a bias current Ii and absence of external
inputs, each BSG in Figure 1 is assumed to be periodically spik-
ing. Provided that the inputs are small enough, and by using the
PRC, the BSG dynamics of spike generation can be described in
an one-dimensional phase space (Lazar, 2010).

Definition 3.1. A neuron whose spike times (ti
k), k ∈ Z, i = 1, 2,

verify the system of equations

∫ ti
k + 1

ti
k

[
ψ i

(
s − ti

k + τ i
(

s − ti
k, Ii

)
, Ii

)]T

Bi
(

xi
(

s − ti
k + τ i

(
s − ti

k, Ii
)
, Ii

))
d Zi(s)

= Ti
(

Ii
)

−
(

ti
k + 1 − ti

k

)
, (17)

where

dτ i
(

t − ti
k, Ii

)
=

[
ψ i

(
t − ti

k + τ i
(

t − ti
k, Ii

)
, Ii

)]T
(18)

Bi
(

xi
(

t − ti
k + τ i

(
t − ti

k, Ii
)
, Ii

))
d Zi(t),

with τ i
(
0, Ii

) = 0 and xi
(
t, Ii

)
the periodic solution to (13) with

bias current Ii, is called a Project-Integrate-and-Fire (PIF) neuron
with random thresholds. In (17), [·]T denotes transpose and Ti(Ii)
is the period of limit cycle with bias current Ii.
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As its name suggests, the PIF projects a weighted version of
the input embedded in noise and the ion channel noise asso-
ciated with the gating variables (BidZi) onto the PRCs of the
corresponding gating variables on a time interval between two
consecutive spikes. Note that the integrand in (17) is identical to
the RHS of (19). τ i(t, Ii) on the LHS of (19) denotes the phase
deviation and is driven by the perturbation on the RHS. The LHS
of (17) represents the phase deviation measurement performed by
the PIF neuron. The RHS of (17) provides the value of the mea-
surement and is equal to the difference between the inter-spike
interval and the period of the limit cycle.

The BSG and the PIF neuron with random thresholds are, to
the first order, I/O equivalent (Lazar, 2010). In Lazar (2010) it was
also shown that a good approximation to the PIF neuron is the
reduced PIF with random threshold. The functional description
of the reduced PIF is obtained by setting the phase deviation in
(17) to zero.

Definition 3.2. The reduced PIF neuron with random threshold is
given by the equations

N∑
n = 1

∫ ti
k + 1

ti
k

ψ i
n

(
s − ti

k, Ii
)

bi
n1

(
xi
(

s − ti
k, Ii

))
v i(s)ds

= Ti(Ii) −
(

ti
k + 1 − ti

k

)
+ εi

k, (19)

where (εi
k), k ∈ Z, is a sequence of independent Gaussian random

variables with zero mean and variance

(
E

[
εi

k

]2
)(

Ii
)

=
Pi∑

p = 1

∫ ti
k + 1

ti
k

⎡
⎣ Ni∑

n = 1

ψ i
n

(
s − ti

k, Ii
)

bi
np

(
xi
(

s − ti
k, Ii

))⎤⎦
2

ds. (20)

For reasons of notational simplicity and without loss of general-
ity, and unless otherwise stated, we shall assume here that B = I
(Ni = Pi). The reduced PIF (rPIF) with random threshold can
now be written as

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, Ii
)

vi(s)ds = Ti
(

Ii
)

−
(

ti
k + 1 − ti

k

)
+ εi

k, (21)

where (εi
k), k ∈ Z, i = 1, 2, is a sequence of independent

Gaussian random variables with zero mean and variance

(
E

[
εi

k

]2
)

(Ii) =
Ni∑

n = 1

∫ ti
k + 1

ti
k

[
ψ i

n(s − ti
k, Ii)

]2
ds. (22)

The above analysis assumes that the inputs are weak and therefore
the BSGs operate on a limit cycle. Stronger signals can be taken
into account by considering a manifold of PRCs associated with
a wide range of limit cycles (Kim and Lazar, 2012). By estimating
the limit cycle and hence its PRC using spike times, we have the
following I/O relationship for each of the BSGs.

Definition 3.3. The reduced PIF neuron with conditional PRC and
random threshold is given by the system of equations

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) (
vi(s) − bi

k + Ii
0

)
ds = εi

k, (23)

where bi
k = [Ti]−1

(
ti
k + 1 − ti

k

)
, k ∈ Z, is the total estimated bias

current on the inter-spike interval [ti
k, ti

k + 1], Ii
0 is an initial bias

that brings the neuron close to the spiking region in the absence of
input and (by abuse of notation) εi

k, k ∈ Z, i = 1, 2, is a sequence
of independent Gaussian random variables with zero mean and
variance

(
E

[
εi

k

]2
)(

bi
k

)
=

Ni∑
n = 1

∫ ti
k + 1

ti
k

[
ψ i

n

(
s − ti

k, bi
k

)]2
ds, (24)

and ψ i
1(s, bi

k) is the conditional PRC (Kim and Lazar, 2012).

The conditional PRC formulation above allows us to sepa-
rate BSG inputs into a constant bias current and fluctuations
around it on short inter-spike time intervals. The bias current
can be estimated between consecutive spikes, making the devi-
ation from the limit cycle small in each inter-spike interval even
for strong inputs. Moreover, by considering the conditional PRCs,
the assumption that BSGs oscillate in the absence of input can be
nearly dropped. Thus, it is not required for BSGs to always be
on a limit cycle. Only when the neuron enters the limit cycle do
we consider formulating the encoding using the rPIF model with
conditional PRCs.

Remark 3.4. Note that by parametrizing each of the PRCs with bi
k,

the variance of the error in (24) depends on the estimated PRC on
each inter-spike interval. In conjunction with (23), we see that the
variability of spike times depends on the strength of the input to the
BSGs.

3.1.2. The t-transform of the neural circuit
The overall encoding by the neural circuit model can be
expressed as

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

)
vi(s)ds

=
(

bi
k − Ii

) ∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

)
ds + εi

k, i = 1, 2, k ∈ Z.

Substituting (12) into the above, we have

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) ∫
D1

h11i
1 (s − r)u1(r)drds

+
∫ ti

k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) ∫
D2

h11i
2 (s − r1, s − r2)u1(r1)

u1(r2)dr1dr2ds
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=
(

bi
k − Ii

) ∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

)
ds

−
∑
l ∈ Z

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) (
P2h

2ji
1

)
(s − t

j
l )ds (25)

−
∑
l ∈ Z

∑
m ∈ Z

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) (
P2h

2ji
2

) (
s − t

j
l , s − ti

m

)
ds

+ εi
k, i, j = 1, 2, i �= j.

We arrived at the following.

Lemma 3.5. The model of encoding in Figure 1 is given in operator
form by

T i
1ku1 + T i

2ku2 = qi
k + εi

k, i = 1, 2, k ∈ Z, (26)

where u1 ∈ H1
1, u2 ∈ H1

2, u2(t1, t2) = u1(t1)u1(t2), and, T i
1k :

H1
1 → R and T i

2k : H1
2 → R are bounded linear functionals

given by

T i
1ku1 =

∫ ti
k + 1

ti
k

ϕi
k(s)

∫
D1

h11i
1 (s − r)u1(r)drds,

T i
2ku2 =

∫ ti
k + 1

ti
k

ϕi
k(s)

∫
D2

h11i
2 (s − r1, s − r2)u2(r1, r2)dr1dr2ds,

qi
k = (bi

k − Ii)

∫ ti
k + 1

ti
k

ϕi
k(s)ds −

∑
l ∈ Z

∫ ti
k + 1

ti
k

ϕi
k(s)

(
P2h

2ji
1

)
(s−t

j
l )ds

−
∑
l ∈ Z

∑
m ∈ Z

∫ ti
k + 1

ti
k

ϕi
k(s)

(
P2h

2ji
2

) (
s − t

j
l , s − ti

m

)
ds,

ϕi
k(t) = ψ i

1(t − ti
k, bi

k)(
E
[
εi

k

]2
) 1

2

and εi
k, k ∈ Z, are independent random variables with normal dis-

tribution N (0, 1) and j = 1, 2, j �= i. Equation (26) is called the
t-transform (Lazar and Tóth, 2004) of the neural circuit in Figure 1.

Remark 3.6. The t-transform describes the mapping of the input
stimulus u1 into the spike timing sequence (ti

k), i = 1, 2, k ∈ Z.
Thus, the t-transform shows how the amplitude information of the
input signal is related to or transformed into the time information
contained in the sequence of output spikes generated by the neural
circuit.

We provide here further intuition behind the Equations (26).
By the Riesz representation theorem (Berlinet and Thomas-
Agnan, 2004), there exists functions φi

1k ∈ H1
1 such that

T i
1ku1 = 〈u1, φ

i
1k〉H1

1
, for all u1 ∈ H1

1,

and φi
2k ∈ H1

2 such that

T i
2ku2 = 〈u2, φ

i
2k〉H1

2
, for all u2 ∈ H1

2.

Therefore, (26) can be rewritten in inner product form:

〈u1, φ
i
1k〉H1

1
+ 〈u2, φ

i
2k〉H1

2
= qi

k + εi
k. (27)

Recall that inner products are projections that are typically inter-
preted as measurements. In the Equation (27) above, the signals
u1 and u2 are projected onto the sampling functions φi

1k and φi
2k,

respectively. We also note that traditional amplitude sampling of
a bandlimited signal u1 at times (tn), n ∈ Z, can be expressed as

〈u1( · ), sinc (tn − ·)〉L2(R) = u1(tn),

where sinc (t) = sin (�1t)
π t is the impulse response of the ideal

low pass filter bandlimited to �1 or in other words, the ker-
nel of the RKHS of finite-energy band-limited functions (Lazar
and Pnevmatikakis, 2009). Thus, the neural encoding model
described by the Equation (27) can be interpreted as generalized
sampling with noisy measurements with sampling functions φi

1k

and φi
2k.

The formulation of the encoding model can easily be extended
to the case when M neural circuits encode a stimulus in paral-
lel. This is shown schematically in Supplementary Figure 1. A left
superscript was added in the figure to each of the components to
indicate the circuit number.

3.2. DECODING
In the previous section, we showed that the encoding of a signal u1

by the neural circuit model with feedforward and feedback DSPs
and BSGs can be characterized by the set of t-transform Equations
(26). We noticed that the Equations (26) are nonlinear in u1 due
to the second order Volterra term. However, by reinterpreting the
second order term as linear functionals T i

2k on the higher dimen-
sional tensor space H1

2, (26) implies that the measurements taken
by each of the neurons are the sum of linear measurements in two
different vector spaces [see also Equations (27)].

In this section we investigate the decoding of signals encoded
with the neural circuit in Figure 1. The purpose of decoding is
to recover from the set of spike times the original signals, u1(t)
and u2(t1, t2), that respectively belong to the two different vector
spaces H1

1 and H1
2. We formulate the decoding problem as the

joint smoothing spline problem

(
û1, û2

) = argmin
u1 ∈H1

1,u2 ∈H1
2

⎧⎨
⎩λ1‖u1‖2

H1
1
+ λ2‖u2‖2

H1
2

+
2∑

i = 1

ni∑
k = 1

(
T i

1ku1 + T i
2ku2 − qi

k

)2

⎫⎬
⎭ , (28)

where ni + 1 is the number of spikes generated by BSG i = 1, 2.
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Theorem 3.7. The solution to (28) is of the form

û1(t) =
2∑

i = 1

ni∑
k = 1

ci
kφ

i
1k(t)

û2(t1, t2) =
2∑

i = 1

ni∑
k = 1

ci
kφ

i
2k(t1, t2),

(29)

where φi
1k(t) = T i

1kK1
1|t and φi

2k(t1, t2) = T i
2kK1

2|t1, t2
, i = 1, 2,

k = 1, · · · , ni,

c =
[

c1
1, · · · , c1

n1 , c2
1, · · · , c2

n2

]T
is the solution of the system of

linear equations

(
(�1 +�2)

2 + λ1�1 + λ2�2
)

c = (�1 +�2) q, (30)

where q =
[

q1
1, · · · , q1

n1 , q2
1, · · · , q2

n2

]T
, and

�i =
[
�11

i �12
i

�21
i �22

i

]
, i = 1, 2,

and

[
�mn

i

]
kl = 〈φm

ik , φ
n
il〉.

Proof: Proof of the theorem follows the Representer Theorem
(Berlinet and Thomas-Agnan, 2004) and is given in detail in
Appendix.

Remark 3.8. When λ1 = λ2, the solution c amounts to

c = (�1 +�2 + λ1I)−1 q,

where I is an identity matrix of appropriate dimensions.

Remark 3.9. Although (29) solves (28), in practice a minimum
number of spikes is needed to obtain a meaningful estimate of the
original signal. A minimum bound for the number of measure-
ments/spikes can be derived in the noiseless case. Clearly, the bound
has to be larger than the dimension of the space. This may require
the signal to be encoded by a circuit with a larger number of neu-
rons than the two shown in Figure 1 (Lazar and Slutskiy, in press).
A number of such neural circuits in parallel can be used to encode
input stimuli as shown in the Supplementary Figure 1. Theorem 3.7
can be easily extended to solving the smoothing spline problem

(
û1, û2

) = argmin
u1 ∈H1

1, u2 ∈H1
2

⎧⎨
⎩λ1‖u1‖2

H1
1
+ λ2‖u2‖2

H1
2

+
M∑

m = 1

2∑
i = 1

mni∑
k = 1

(
mT i

1ku1 + mT i
2ku2 − mqi

k

)2

⎫⎬
⎭ ,

where m = 1, 2, . . . ,M, denotes the circuits number in
Supplementary Figure 1. In addition, if the circuits consist of
only first order feedforward kernels, then only u1(t) can be recon-
structed. Similarly, if the circuits are comprised of only the second
order feedforward kernels, then u2(t1, t2) can be reconstructed but
not u1(t).

Remark 3.10. Since u2(t1, t2) = u1(t1)u1(t2) = u2(t2, t1), u2

belongs to a subspace of H1
2 whose elements are symmetric func-

tions. We also note that since the second order feedforward ker-
nels are symmetric, the sampling functions

(
φi

2k(t1, t2)
)
, i = 1, 2,

k = 1, · · · , ni, also belong to the same subspace. Therefore, if the
sampling functions span the subspace of symmetric functions in H1

2,
u2 can readily be reconstructed with only

(
L1 + 1

) (
2L1 + 1

)
mea-

surements/spikes, rather than
(
2L1 + 1

)2
, the dimension of H1

2.

Remark 3.11. The reconstruction of u2(t1, t2) on D2 strongly
depends on the support (in practice the finite memory) of the kernels
h11i

2 , i = 1, 2 (see also Figure 2C). In the reconstruction example of
the Supplementary Figure 5, we show that û2 approximates u2 well
in the restricted domain where h11i

2 is nonzero. Outside this restricted
domain, h11i

2 vanishes and u2 is not well recovered as suggested by the
large error in the Supplementary Figure 5E.

3.3. EFFECT OF NOISE ON STIMULUS DECODING
In this section, we investigate the effect of noise sources (i) on
spike timing of the reduced PIF neuron, and (ii) on the decoding
of stimuli encoded with a neural circuit. We will also present the
effect of an alternative noise source model on both spike timing
and stimulus decoding.

3.3.1. Effect of noise on measurement and spike timing errors of the
reduced PIF neuron

As suggested by (22), the variance of the measurement error of the
reduced PIF neuron is directly related to the PRC of the associated
limit cycle. We first characterize the variance of the measure-
ment error due to each individual noise source parametrized by
the bias current Ii. We then evaluate the spike timing variance
between the spike trains generated by the Hodgkin-Huxley neu-
ron and the reduced PIF neuron again as a function of the bias
current Ii. We start with a brief description of the key elements of
Hodgkin-Huxley neuron and the PIF neuron.

We consider the stochastic Hodgkin-Huxley equations

dYi = f i
(

Y i, I i
)

dt + dZ i(t), (31)

where fi is defined as in Section 2.2 of the Supplementary Material
with additional normalization such that the unit of time is in sec-
onds instead of milliseconds and the unit of voltage is in Volts
instead of milivolts as conventionally used. Zi(t) takes the form

dZ i(t) =

⎡
⎢⎢⎣

v idt + σ i
1dWi

1

σ i
2dWi

2

σ i
3dWi

3

σ i
4dWi

4

⎤
⎥⎥⎦ .
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Here Wi
n(t) are independent standard Brownian motion pro-

cesses and σ i
n, n = 1, 2, 3, 4, are associated scaling factors.

The variance of the measurement error of the reduced PIF neu-
ron due to each Brownian motion process Wi

n, n = 1, · · · , 4, is
given by [see also Equation (22)]

(
E

[
εi

kn

]2
)(

Ii
)

=
(
σ i

n

)2
∫ ti

k + 1

ti
k

[
ψ i

n

(
s − ti

k, Ii
)]2

ds. (32)

We show in Figure 3A the variance of the measurement error
in (32) associated with each source of noise of the reduced PIF
neuron for the unitary noise levels σ i

n = 1, n = 1, 2, 3, 4. The
variances given by (32) are plotted as a function of the bias current
Ii. Clearly, the noise arising in dendritic stimulus processing (Wi

1)
induces the largest error, and together with noise in the potassium
channels (Wi

2), these errors are about two magnitudes larger in
variance than those induced by the noise sources in the sodium
channels (Wi

3,Wi
4).

The above analysis is based on the analytical derivation of
the measurement error in (32) for the rPIF neurons. The mea-
surement error is closely related, however, to the spike timing
variation of the BSGs subject to noise sources. A variance of
10−6 in Figure 3A corresponds to a standard deviation of 1 ms
in spike timing. In practice the error between the spike times of
the Hodgkin-Huxley neuron and the reduced PIF neuron can be
directly evaluated.

In order to do so, we randomly generated a weak bandlim-
ited dendritic input. All evaluations were based on encoding a
signal with the Hodgkin-Huxley neuron model described above
with internal noise sources and bias current Ii. The spike times
(ti

k) of the Hodgkin-Huxley neuron were recorded. Starting from

each spike time ti
k, we encoded the appropriate portion of the sig-

nal by the reduced PIF neuron until a spike rti
k + 1 was generated.

The difference between rti
k + 1 and ti

k + 1 is the error in approximat-
ing the encoding using the reduced PIF formulation. This process
was repeated for each Ii. We computed the variance of the errors
based on some 3000–5000 spikes generated in encoding the input.

In Figure 3B, the variance of the spike timing error rti
k + 1 −

ti
k + 1 for σn = 0, n = 1, 2, 3, 4, is shown. Since the reduced PIF

is an approximation (even under noiseless conditions) and,
although small, the error is nonzero. From Figure 3B, the vari-
ance of the spike timing error is on the order of 10−9. We shall
evaluate the spike timing error variance of the intrinsic noise
sources in a range much larger than 10−9.

We also tested to what extent each individual source of noise
contributes to the variance of spike timing as suggested by the
theoretical analysis depicted in Figure 3A. Indeed, the error vari-
ance obtained through simulations in Figure 3C follows the basic
pattern shown in Figure 3A. Figure 3C was obtained by setting
one of the σn’s to a nonzero value and the rest to 0 (the nonzero
values were σ1 = σ2 = 0.01, σ3 = σ4 = 0.1). Each nonzero value
was picked to be large enough so that the error variance in the

FIGURE 3 | Variance of the measurement and spike timing errors.

(A) Error measurement variances computed from the PRCs of the
Hodgkin-Huxley neuron [Equation (32)]. Each individual variance is
parametrized by the bias current Ii . (B) Error variance between spike
times generated by the noiseless Hodgkin-Huxley neuron and its
reduced PIF counterpart. (C) The spike timing error variance due to
each source of noise, obtained from simulations of the Hodgkin-Huxley
neuron follow the pattern of the theoretically derived measurement
error shown in (A). The spike timing error variances are obtained by
setting, at each time, one of the σn’s to a nonzero value and the rest

to zero. The spikes generated by the Hodgkin-Huxley neuron are
compared with the spikes generated by its reduced PIF counterpart.
The variance of the differences between two spike times are
normalized by the nonzero σn mentioned before. (D) The spike timing
variance due to the simultaneous presence of multiple noise sources
approximates the sum of spike timing variances due to individual noise
sources. Blue curve shows the spike timing variance obtained by
simulating Hodgkin-Huxley equations using nonzero values for all
σn,n = 1,2,3,4. Red curve shows the sum of spike timing variances
obtained in (C) with proper scaling.
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absence of noise (Figure 3B) becomes negligible, and at the same
time, it was small enough such that the states of the neurons did
not substantially deviate from the limit cycle. To compare the with
the ones in Figure 3A we normalized the error variance obtained
in simulations by σn.

Next, we tested whether the variance of spike timing due to
presence of multiple noise sources is truly the summation of
error variances due to individual noise sources. We simulated
the Hodgkin-Huxley equations with σ1 = σ2 = 0.005, σ3 = σ4 =
0.05. The total spike timing error variance shown in Figure 3D
(blue curve) is very close to the sum of error variances in
Figure 3C with proper scaling (red curve in Figure 3D).

As suggested by the above analysis, the reduced PIF neuron
with random thresholds largely captures the encoding of stimuli
by BSGs subject to intrinsic noise sources.

3.3.2. Effect of noise on stimulus decoding
In order to quantitatively explore how noise impacts signal
decoding, we recovered from spikes the signal encoded by the
noisy neural circuit of Supplementary Figure 1. We started with
the base-level noise-less case described in Section 3.2 of the
Supplementary Material (M = 4) and proceeded to introduce
individual noise terms with a range of scaling factors. For exam-
ple, we set σ i

2 = σ i
3 = σ i

4 = 0 and varied σ i
1. We also tested the

case when 10σ i
1 = 10σ i

2 = σ i
3 = σ i

4 for the aggregated effect on

stimulus recovery. We choose to use σ i
3 and σ i

4 10 times larger

than σ i
1 and σ i

2 so that each noise source introduced a similar
error.

In all simulations, the Euler-Maruyama scheme (Kloeden and
Platen, 1992) was used for the numerical integration of the
SDEs. We performed 20 encoding and decoding experiments.
Each time, the input stimulus was generated by randomly pick-
ing from a Gaussian distribution the real and imaginary parts of
the coefficients ul in (1). We further constrained the stimuli to be
real-valued. (An example is given in Supplementary Figure 5.) For
each noise level, the input signal was encoded/decoded. The mean
Signal-to-Noise Ratio (SNR) across 20 experiments is reported
for each noise level. The SNR for the reconstruction of u1 was
computed as

SNR = 10 log10

[ ‖u1‖2

‖u1 − û1‖2

]
, (33)

where u1 is the original signal and û1 is its reconstruction. Note
that the spike time occurrences generated for the same signal are
different for each noise level. Since the sampling functions are
spike time dependent, the number of measurements/spikes may
not be the same for each noise level. Moreover, at times, the sam-
pling functions may not fully span the stimulus space. To reduce
the uncertainty caused by the stimulus dependent sampling we
averaged our SNR data over 20 different signals.

Figure 4A shows the SNR of the reconstruction of signal
u1(t) against different noise strength. Figure 4B shows the SNR
of the reconstruction of signal u2

1(t) = u2(t, t). The reconstruc-
tion SNR in Figure 4A largely matches the inverse ordering of
noise strength of each of the individual noise sources shown
in Figure 3A. DSP noise sources degrade the reconstruction

performance most strongly while noise sources associated with
gating variables m and h have a much smaller effect for the same
variance level. Since the variance of measurement error is the sum
of error variance in each variable, the case when 10σ1 = 10σ2 =
σ3 = σ4 = σ exhibits the lowest performance.

3.3.3. Effect of an alternative noise model on spike timing and
stimulus decoding

Biologically, the effect of channel noise on the operation of the
BSGs is due to the ON-OFF activity of a finite number of ion
channels. The Hodgkin-Huxley equations and the noise terms
used in Section 3.3.2 correctly capture the dynamics in the limit
of infinitely many channels. Recent research, however, suggests
that the model equations may not correctly model the ion cur-
rent fluctuations for a finite number of channels (Goldwyn and
Shea-Brown, 2011).

We consider here an alternative stochastic formulation of the
Hodgkin-Huxley model that more precisely captures the ion
channel kinetics. By using a finite number of ion channels the
strength of noise amplitude becomes directly related to the actual
number of ion channels. Therefore, the free variables are only the
number of potassium and sodium channels that are both biologi-
cally meaningful. The successful use of an alternative noise model
as described below also suggests that our analysis can be applied
to a wide range of stochastic formulations of BSGs based on SDEs.

We shall construct here stochastic ion channels using conduc-
tance noise rather than subunit noise as in the previous Sections
(Goldwyn and Shea-Brown, 2011; Goldwyn et al., 2011). This
stochastic Hodgkin-Huxley system is simulated using a diffusion
approximation following (Orio and Soudry, 2012). The system of
SDEs can be expressed as

d Y i = f i
(

Y i, I i
)

dt + B i
(

Y i
)

dZ i(t),

where Yi has 14 state variables and the full system can be found
in Section 3.3 of the Supplementary Material. Here i = 1 for
simplicity.

The variance of the measurement error is now given by (20).
We can decompose the variance into three terms as

E

[
εi

k

]2 = E

[
εi

kV

]2 + E

[
εi

kK

]2 + E

[
εi

kNa

]2
,

where εi
kV , ε

i
kK , ε

i
kNa are measurement errors associated with the

noise in the DSP, in potassium channels and in sodium channels,
respectively.

As εi
kV is quantitatively the same as that in Section 3.3.2, we

focus here on εi
kK and εi

kNa. The variance of the errors can be
respectively expressed as

(
E

[
εi

kK

]2
)

(Ii)

=
5∑

p = 2

∫ ti
k + 1

ti
k

[
6∑

n = 2

ψ i
n(s − ti

k, Ii)bi
np

(
xi(s − ti

k, Ii)
)]2

ds,
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FIGURE 4 | SNR reconstruction error of encoded signals with a total of

M = 2 circuits (4 neurons). Color legend: (Blue) σ i
1 = σ , σ i

2 = σ i
3 = σ i

4 = 0.
(Green) σ i

2 = σ , σ i
1 = σ i

3 = σ i
4 = 0. (Red) σ i

3 = σ , σ i
1 = σ i

2 = σ i
4 = 0. (Black)

σ i
4 = σ , σ i

1 = σ i
2 = σ i

3 = 0. (Magenta) 10σ i
1 = 10σ i

2 = σ i
3 = σ i

4 = σ . In-sets (on

the left) are typical reconstructions that yield corresponding SNR indicated by
arrows. The top left in (A) shows an example of reconstruction (green) whose
SNR is 25 dB when compared to the original signal (blue). (A) SNR of
reconstruction of u1(t). (B) SNR of reconstruction of u2

1(t) = u2(t, t).

and(
E

[
εi

kNa

]2
)

(Ii)

=
15∑

p = 6

∫ ti
k + 1

ti
k

[
14∑

n = 7

ψ i
n

(
s − ti

k, Ii
)

bi
np

(
xi(s − ti

k, Ii)
)]2

ds.

Note that bnp, n = 1, · · · , 14, p = 2, 3, · · · , 15, are functions
that dependent on either the number of potassium channels NNa

or the number of sodium channels NK , and the states of the
neuron.

We first evaluate (E
[
εi

kNa

]2
)(Ii) using the PRCs. The PRCs

are obtained by letting NNa = NK = ∞ and thereby making the
system deterministic. Since the measurement error variance for
fixed Ii is proportional to (NNa)−1, it is shown in Figure 5A
as a function of the bias current Ii for NNa = 1. Similarly, the

variance of the measurement error
(
E
[
εi

kK

]2
)

(Ii) for NK = 1 is

shown in Figure 5A, and it is proportional to (NK )−1 for a fixed
Ii. We notice that, when the number of channels is the same,
the measurement error due to the sodium channels is of the
same order of magnitude with the measurement error due to the
potassium channels. However, the number of sodium channels is
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FIGURE 5 | The variance of the measurement and spike timing error

associated with the sodium channels (blue) and the potassium

channels (red) of the Hodgkin-Huxley equations with alternative noise

sources parametrized by the bias current I . (A) The variance of the
measurement error computed from PRCs of Hodgkin-Huxley equations,
with NNa = 1 and NK = 1. Actual variance with different number of ion
channels is inversely proportional to NNa and NK , respectively. (B) Spike
timing variance obtained in simulations by comparing the spike times
generated by the Hodgkin-Huxley neuron with channel noise and the spike
times generated by its reduced PIF counterpart. Blue curve is obtained by
using NNa = 5 × 104,NK = ∞, and normalized to 1 sodium channel. Red
curve is obtained by using NK = 5 × 104,NNa = ∞, and normalized to 1
potassium channel.

typically 3–4 times larger than the number of potassium channels.
Therefore, in contrast to the previous case, the error induced by
sodium channels shall be larger than that induced by potassium
channels.

We also analyzed in simulations the difference between spike
times generated by the alternative stochastic formulation of the
Hodgkin-Huxley equations and those generated by the corre-
sponding reduced PIF neuron. We used in simulation NNa =
5 × 104,NK = ∞, to obtain the variance

(
E
[
εi

kNa

]2
)

(Ii) and

scaled it by NNa to compare it with Figure 5A. Similarly, we used

NK = 5 × 104,NNa = ∞, to obtain the variance E
[
εi

kK

]2
(Ii).

The spike timing variances of error across different Ii are shown
in Figure 5B The pattern of similarity between variances in
Figures 5A,B suggest that the reduced PIF with random threshold
associated with this formulation of Hodgkin-Huxley equations is
highly effective in capturing the encoding under internal noise
sources.

We now show how ion channel noise sources affect the decod-
ing of the input signal. We varied the number of sodium chan-
nels NNa and fixed the number of potassium channels to be
NK = 0.3NNa, a ratio typically used for Hodgkin-Huxley neurons
with the alternative noise source model. By decoding the input

FIGURE 6 | SNR of reconstruction of the signals. (A) SNR of u1(t). (B)

SNR of u2
1(t) = u2(t, t). (Blue) NNa = N, NK = 0.3NNa. (Green) NNa = N,

NK = ∞. (Red) NNa = ∞, NK = N.

stimulus we show how increasing the number of ion channels
improves the faithfulness of signal representation. The SNR of the
reconstruction of u1(t) and u2

1(t) are depicted in Figure 6. SNR
goes down to about 4 dB when 600 sodium channels and 180
potassium channels are used. This corresponds to a membrane
area of about 10 µm2 with a density of 60 µm2 in sodium chan-
nels and 18 µm2 in potassium channels (Goldwyn et al., 2011).
We also tested the reconstruction for the case when one type of
ion channels is infinitely large, i.e., deterministic, while varying
the number of ion channels of the other type. The result is also
shown in Figure 6. The noise from the dendritic tree shall have
similar effect on the representation since the voltage equation is
the same as in Section 3.3.2.

4. FUNCTIONAL IDENTIFICATION AND NOISE
In Section 4.1 we show how to functionally identify the feedfor-
ward and feedback DSPs of the circuit in Figure 1 under noisy
conditions. We assume here that the BSGs have already been iden-
tified using a methodology such as the one developed in Lazar
and Slutskiy (2014). In Section 4.2 we discuss the effect of noise
parameters on the quality of DSP identification.

4.1. FUNCTIONAL IDENTIFICATION
In the decoding problem analyzed in Section 3.2, we recon-
structed unknown input stimuli by assuming that the neural
circuit in Figure 1 is known and the spike trains are observable.
In contrast, the objective of the functional identification prob-
lem investigated in this section is to estimate the unknown circuit
parameters of the feedforward and feedback DSPs from I/O data.
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The I/O data is obtained by stimulating the circuit with control-
lable inputs and by measuring the time occurrences of the output
spikes. This basic methodology has been a standard practice in
neurophysiology for inferring the function of sensory systems
(Hubel and Wiesel, 1962). We assume here that either the BSGs
are known in functional form or the family of PRCs associated
with the BSGs have already been identified (Lazar and Slutskiy,
2014).

Although decoding and functional identification are seemingly
two different problems, they are closely related. By exploiting the
commutative property of linear operators, we can rearrange the
diagram of the neural circuit model of Figure 1 into the form
shown in Figure 7. We notice that the outputs of Figure 7 and
those of Figure 1 are spike time equivalent, as long as the RKs
K2

1 and K2
2 have large enough bandwidth. In what follows we will

evaluate the four Volterra terms, i.e., the four dendritic currents
feeding the BSG of Neuron 1 in Figure 7.

Formally, the first order (feedforward) Volterra term can be
written as (Lazar and Slutskiy, in press)

∫
D1

h11i
1 (t − s)u1(s)ds =

∫
D1

u1(t − s)(P1h11i
1 )(s)ds. (34)

Similarly, the second order (feedforward) Volterra term
amounts to

∫
D2

h11i
2 (t − s1, t − s2) u2 (s1, s2) ds1ds2 (35)

=
∫

D2

u2 (t − s1, t − s2)
(
P1h11i

2

)
(s1, s2) ds1ds2.

The above equations suggest that the projections of the feedfor-
ward kernels can be re-interpreted as inputs, whereas the signals
u1 and u2 can be treated as feedforward kernels.

In Section 2.2.2 we introduced two RKHSs, H2
1 and H2

2, for
modeling two different spaces of spikes. The elements of H2

1 are
functions defined over the domain [0, S2] with

S2 ≥ supp
{

h
2ji
1

}
+ max

{(
ti
k + 1 − ti

k

)}
i = 1,2,k ∈ Z

.

The period S2 is large enough to ensure that any spike that arrives

supp{h2ji
1 } seconds prior to the arrival of ti

k, or earlier, will not
affect the output of the feedback kernel on the inter-spike time
interval [ti

k, ti
k + 1]. Thus, such spikes will not introduce additional

error terms in the t-transform evaluated on the inter-spike time
interval [ti

k, ti
k + 1]. Note that the domain [0, S2] of the functions

in H2
1 may not be the same as the domain of the input space H1

1.
However, such a domain can be shifted on a spike by spike basis to
[ti

k + 1 − S2, ti
k + 1] for the inter-spike time interval [ti

k, ti
k + 1]. This

is important for mitigating the practical limitation of modeling
the stimuli as periodic functions in H1

1.
The response of the first-order feedback term to its spik-

ing input on the inter-spike time interval [ti
k, ti

k + 1] in Figure 7
amounts to (i �= j)

FIGURE 7 | Diagram of the neural circuit that is spike timing

equivalent with the one in Figure 1 highlighting the duality

between neural decoding and functional identification. Note that
the input stimuli and the DSP projections are reordered to reflect

that the unknowns are the DSP projections. The input stimuli u1
1(t),

u1
2(t1, t2), and the kernel representation of spikes (see also

Section 2.2.2) are intrinsic to the neural circuit. The DSP projections
are interpreted as inputs.
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(
P2h

2ji
1

)
(t) ∗

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

K2
1 (t

j
l , t) =

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

(P2h
2ji
1 )(t − t

j
l ).

(36)

It is clear from Section 2.2.2 that

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

(
P2h

2ji
1

)
(t − t

j
l )

L
2−→

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

h
2ji
1 (t − t

j
l )

if �2 is at least larger than the effective bandwidth of h
2ji
1 and

L2 → ∞.
Similarly, the response of the second-order feedback kernel

to its spiking input on the inter-spike time interval [ti
k, ti

k + 1]
amounts to

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

∑
n:ti

k + 1−S2 ≤ ti
n < ti

k + 1

(
P2h

2ji
2

) (
t − t

j
l , t − ti

n

)

L
2−→

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k +1

∑
n:ti

k + 1−S2 ≤ ti
n < ti

k + 1

h
2ji
2

(
t − t

j
l , t − ti

n

)

(37)

if�2 is large enough and L2 → ∞.
Combining (34), (36), (36), and (37), for each spike interval

[ti
k, ti

k + 1], the aggregated output current of the DSPs of Neuron i
in Figure 7, shall converge to the DSP aggregated output current
of Neuron i in Figure 1 for large enough�2. A direct consequence
of this equivalence is that, under the same additive Gaussian white
noise and channel noise in the BSGs, the t-transform of the circuit
in Figure 7 and in Figure 1 are identical.

Note that the outputs of the feedforward kernels are always
equivalent; the equivalence of the outputs of the feedback ker-
nels requires, however, the use of large enough bandwidth �2.
Otherwise, the equivalence in the t-transform is invalid and an
additional noise term appears in the t-transform of the Neuron 1
in Figure 7.

The projections of the Volterra DSP kernels of Figure 7 are
interpreted as inputs, while the input stimuli and the train of
RKs at spike times replace the impulse response of the corre-
sponding filters. Therefore, the functional identification problem
has been transformed into a dual decoding problem, where the
objects to decode are the set of projections of Volterra DSP ker-
nels and the neural circuit is comprised of “stimulus DSP kernels”
and “spike DSP kernels” with the same BSGs and noise sources.
The only difference is that, instead of a Single-Input Multi-
Output decoding problem, the identification was transformed
into a Multi-Input Multi-Output decoding problem. In addition,
multiple trials using different stimuli are needed; this procedure
is illustrated in block diagram form in Figure 8. By stimulating
the neural circuit with multiple stimuli in the functional iden-
tification setting, multiple neural circuits effectively encode the
projections of the DSP kernels.

We are now in the position to derive the t-transform of Neuron
1 in Figure 7. Assuming that m = 1, · · · ,M, trials are performed

for identification, the t-transform (26) can be written as

mL1i
1k[P1h11i

1 ] + mL1i
2k[P1h11i

2 ] + mL2i
1k[P2h

2ji
1 ] + mL2i

2k[P2h
2ji
2 ]

= mqi
k + mεi

k, (38)

for i, j = 1, 2, i �= j, k ∈ Z. Here mL1i
1k : H1

1 → R,mL1i
2k :

H1
2 → R are bounded linear functionals associated with the

feedforward DSP kernels, and mL2i
1k : H2

1 → R, mL2i
2k : H2

2 → R

are bounded linear functionals associated with the feedback DSP
kernels for each trial m. The above functionals are defined as

mL1i
1k[P1h11i

1 ] =
∫ mti

k + 1

mti
k

mϕi
k(s)

∫
D1

um
1 (s − r)(P1h11i

1 )(r)drds,

mL1i
2k[P1h11i

2 ] =
∫ mti

k + 1

mti
k

mϕi
k(s)

∫
D2

um
2 (s − r1, s − r2)(P1h11i

2 )

(r1, r2)dr1dr2ds,

mL2i
1k[P2h

2ji
1 ] =

∑
l:mti

k + 1−S2 ≤ mt
j
l<

mti
k + 1

∫ mti
k + 1

mti
k

mϕi
k(s)(P2h

2ji
1 )

(
s − mt

j
l

)
ds

mL2i
2k[P2h

2ji
2 ] =

∑
l:mti

k + 1−S2 ≤ mt
j
l <

mti
k + 1

∑
n:mti

k + 1−S2 ≤ mti
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2

and mεi
k, i = 1, 2, k ∈ Z,m = 1, · · · ,M, are independent ran-

dom variables with normal distribution N (0, 1).
The functional identification of the neural circuit in Figure 7

can then be similarly defined to the decoding problem. We for-
mulate the identification of the noisy neural circuit again as two
smoothing spline problems, one for each neuron,

⎡
⎢⎢⎢⎢⎣

̂(P1h111
1 )

̂(P1h111
2 )

̂(P2h221
1 )

̂(P2h221
2 )
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r ∈Hp

r

}r = 1, 2

p = 1, 2

⎧⎪⎨
⎪⎩

2∑
p = 1

2∑
r = 1

λ
p
r ‖Pph

pp1
r ‖2 (39)

+
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m = 1
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k = 1

⎛
⎝ 2∑
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2∑
r = 1

mLp1
rk

[
Pph

pp1
r

]
− mq1

k

⎞
⎠

2
⎫⎪⎬
⎪⎭
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FIGURE 8 | Diagram of the functional identification with multiple trials. The neural circuit is presented a different stimulus um
1 (t) for each trial m. See also

Figure 7 for details of a single trial.
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and

⎡
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1 )
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where mni is the number of spikes generated by Neuron i in
trial m.

The solution can be obtained in a similar way as in
Theorem 3.7.

Theorem 4.1. The solutions to (40) is

̂(P1h111
1 )(t) =

M∑
m = 1

mn1∑
k = 1

mck
mφ1k(t)

̂(P1h111
2 )(t1, t2) =

M∑
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mck
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where

c = [1c1 · · · 1c1n1 , · · · , · · · ,Mc1 · · · McM n1
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,

is the solution to the system of linear equations
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2�3 + λ2

2�4
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where
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,
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and finally [
�mn

i

]
kl = 〈mφik,

nφil〉.

In addition, the sampling functions mφik are given by

mφ1k(t) = mL11
1kK1

1|t,

mφ2k(t1, t2) = mL11
1kK1

2|t1, t2
,

mφ3k(t) = mL21
1kK2

1|t,
mφ4k(t1, t2) = mL21

2kK2
2|t1, t2

.

Proof: The proof is similar to the one of Theorem 3.7. �
Since each of the kernel projections may be in a different

RKHS, and their domain may also be different, the identification
of all filters resemble that of the multi-sensory Time Encoding
Machines. Recall that multi-sensory TEMs encode within the
same circuit time-varying and space-time varying sensory signals
while decoding remains tractable (Lazar and Slutskiy, 2013). The
solution to (41) can similarly be obtained as the solution to (40)
above.

Note that we are only able to identify the projection of the
Volterra kernels. This is because, in practice, we can only probe
the system with signals in a bandlimited space. By increasing the
bandwidth of the elements of the Hilbert space, the projection
of the kernels will converge to their original form (Lazar and
Slutskiy, 2012).

Remark 4.2. It is important to note that in order to have a good esti-
mate of the kernels, stimuli must fully explore all input spaces. This
can be quite easily achieved for the feedforward DSP kernels by using
many (randomly generated) signals that cover the entire frequency
spectrum. However, to properly identify the feedback DSP kernels,
spike trains must be diverse enough to sample its different frequency
components. This may not be easy to realize in practice. For first
order feedback kernels, spike trains with constant spike intervals are,
for example, undesirable. The Fourier transform of regular Dirac-
delta pulses is a train of Dirac-delta pulses in the Fourier domain.
This means that only certain frequency responses of the DSP kernels
are, for example the DC component, sampled. The rest of the fre-
quency components are essentially in the null space of the sampling
functions mφik, i = 1, 2,m = 1, · · · ,M. Similar effect applies to
the space of trigonometric polynomials. If the spike intervals exhibit
small variations, many of the frequency components may be sam-
pled but the energy at DC may be too dominant. In this case, noise
may contaminate more severely the measurement of non-DC com-
ponents and may yield unsatisfactory identification. This effect may
pose even more stringent requirements on the identification of the
second order feedback kernels, as it requires the interaction between
two spike trains.

4.2. EFFECT OF NOISE ON IDENTIFICATION
In order to evaluate the effect of noise on the identification of
the neural circuit in Figure 1 we included intrinsic noise into
the example neural circuit discussed under noiseless conditions
in Section 4.1 of the Supplementary Material. Randomly gener-
ated signals were used in the identification examples given here.
Chosen in the same way as in the decoding example in Section
3.3.2 all these signals are used here to identify the neuron in ques-
tion. Therefore, in this section, multiple signals are used in repeat
experiments to identify the parameters of a neural circuit. By
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contrast in Section 3.3.2, multiple neurons are used to encode a
single signal.

First, we evaluated the effect of noise on the quality of iden-
tification of DSP kernels of Neuron 1 in Figure 7 with a BSG
modeled by the SDE (31) with 10σ i

1 = 10σ i
2 = σ i

3 = σ i
4 = σ .

Figure 9 shows the SNR of the identified DSP kernels in Figure 7
across several noise levels σ . As expected, the general trend for
all four kernels is decreasing SNR with increasing noise levels. We
notice that the identified feedforward DSP kernels have similar
shape as the original kernel, even at high noise levels. However,
the feedback DSP kernels undergo a change in shape at high noise
levels. We can see that the time instance of the peak amplitude
in the first order feedback kernel is shifted to an earlier time
instance.

Second, we investigated the identification of DSPs for a BSG
noise model already described in Section 3.3.3. Figure 10 shows
the SNR of the identified DSP kernels across a different number of
sodium channels NNa while NK = 0.3NNa. The SNR plots suggest
that the identification quality increases as more ion channels are
present in the BSGs.

Additionally, as discussed in Remark 4.2, BSG noise sources
may degrade severely the identification of feedback kernels when
the spike trains generated in trials are not sufficient for explor-
ing the two spike input spaces. We show an example of the later
in Figure 11. The two BSGs have higher bias currents and lower
input current magnitude. The later was achieved by scaling down
the magnitude of the DSP kernels. The combined effect results
in regular spiking intervals in both neurons. The identification

FIGURE 9 | SNR of identified DSP kernels. Noise added using SDE (31), with
10σ i

1 = 10σ i
2 = σ i

3 = σ i
4 = σ . (A) Kernel h111

1 . In-sets provide a comparison
between the original and the identified kernel. (B) Kernel h111

2 . In-sets are

identified kernels. Original kernel is on the lower left. (C) Kernel h221
1 . In-sets

provide a comparison between the original and the identified kernel. (D)

Kernel h221
2 . In-sets are identified kernels. Original kernel is on the lower left.
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FIGURE 10 | SNR of identified DSP kernels. The BSG is described by the
Hodgkin-Huxley equations with a finite number of ion channels and
NK = 0.3NNa.

result under noiseless conditions is shown in Figure 11. Note that
since the t-transform of the Hodgkin-Huxley neuron is not exact,
a small error is introduced even if intrinsic noise is not present.
We see that the feedforward DSP kernels can be identified quite
well, yielding SNRs of around 17 dB. However, the feedback DSP
kernels are not well identified. In particular, the identified second-
order feedback kernel has a wide spread, similar to the high noise
case in Figure 9D. This suggest that the spike pattern is not suffi-
ciently exploring the space of feedback kernels. A large number of
frequency components are only weakly sampled and they can be
very easily contaminated by noise. The presence of both intrinsic
noise sources can exacerbate the condition further. This effect is
confirmed with a simulation of the circuit using Integrate-and-
Fire (IAF) neurons. Since the t-transform for the IAF neuron is
exact (Lazar and Tóth, 2004), both feedback kernels can be iden-
tified even if the generated spikes only weakly explore certain
frequency components. However, by artificially adding a small
measurement error to the t-transform of the circuit with IAF neu-
rons, similar results to those in Figure 11 can be obtained (data
not shown).

5. DISCUSSION
In this paper, we introduced a novel neural circuit architec-
ture based on a neuron model with a biophysical mechanism
of spike generation and feedforward as well as feedback den-
dritic stimulus processors with intrinsic noise sources. Under
this architectural framework, we quantitatively studied the effect
of intrinsic noise on dendritic stimulus processing and on
spike generation. We investigated how intrinsic noise sources
affect the stimulus representation by decoding encoded stim-
uli from spikes, and quantified the effect of noise on the
functional identification of neural circuits. We argued that a
duality between stimulus decoding and functional identifica-
tion holds. Therefore, the encoding framework based on the
neural circuit architecture studied here can be applied to both

the reconstruction of the encoded signal and the identifica-
tion of the dendritic stimulus processors. We systematically
showed how the precision in decoding is affected by differ-
ent levels of stochastic variability within the circuit. These
results apply verbatim to the functional identification of den-
dritic stimulus processors via the key duality property mentioned
above.

Our theoretical framework highlights two indispensable com-
ponents of modeling signal representation/processing in a neural
circuit—dendritic stimulus processing and spike generation. Such
a divide and conquer strategy is ubiquitous in engineering circuits
and leads to a separation of concerns. Recent experimental stud-
ies also showed that interesting nonlinear processing effects take
place first in the dendritic trees rather than in the axon hillock
(Yonehara et al., 2013).

We presented here two types of nonlinear dendritic stimulus
processors. The first type are feedforward DSPs that respond to
continuous input sensory stimuli. The second type are feedback
DSPs that respond to spiking inputs. We quantitatively demon-
strated how intrinsic noise sources would affect the identification
quality of all these DSPs. The examples in Section 4.2 suggest that
in identification feedback kernels are more vulnerable to internal
noise sources than feedforward kernels. In particular, the overall
shape of the identified feedback kernels differs significantly from
that of the underlying kernels when the strength of noise sources
becomes large. Meanwhile the identified feedforward kernels are
qualitatively preserved, albeit not accurately.

Most of the single neuron models (LIF, QIF) in the literature
have focused on the spike generation mechanism. The encoding
capability of these models is typically investigated based on rate
encoding (Eliasmith and Anderson, 2003; Lundstrom et al., 2008;
Ostojic and Brunel, 2011). For both decoding and identification
we used here the occurrence times of spikes generated by spik-
ing neuron models. Most importantly, the BSG models discussed
here were characterized by a PRC manifold (Kim and Lazar, 2012)
in the presence of noise, while many simplified models (such as
the LIF) can be effectively described with a single PRC. Other
sensory neuron models, e.g., GLM (Pillow et al., 2011), usually
rely on a rate-based output or Poisson spike generation that do
not take into account key advances in dynamical systems-based
spiking neuron models.

As already mentioned before, we investigated how intrin-
sic noise sources affect the stimulus representation by decoding
encoded stimuli from spikes. We are not suggesting, however,
that the decoding algorithm considered here is implemented in
the brain. Rather, we argue that decoding is effective in measur-
ing how well information is preserved in the spike domain. The
decoding formalism allowed us to investigate how noise affects
the fidelity of signal representation by a population of neurons by
reconstructing stimuli and comparing their information content
in the stimulus space.

While decoding can serve as an “oscilloscope” in understand-
ing stimulus representation in sensory systems, functional identi-
fication serves as a guide in experiments to functionally identify
sensory processing. Based on spike times, the identification algo-
rithm presents a clear bound on the number of spikes that are
necessary for perfect identification under noiseless conditions.
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FIGURE 11 | Examples of functional identification when the

generated spikes do not fully explore the space of feedback

kernels. (A) Original first order feedforward kernel (black) and identified
projection of the kernel (red). (B) Original first order feedback kernel
(black) and identified projection of the kernel (red). (C) Original second

order feedforward kernel. (D) Identified projection of second order
feedforward kernel. (E) Error of identified second order feedforward
kernel. (F) Original second order feedback kernel. (G) Identified
projection of second order feedback kernel. (H) Error of identified
second order feedback kernel.

Phrased differently, when a certain number of spikes are acquired
from a neuron of interest, the identification algorithm places
a constraint on the maximum DSP kernel bandwidth that can
perfectly be recovered.

In more practical terms, we advanced two important applica-
tions of the circuit architecture considered in this paper. The first
one considers dendritic stimulus processors that process infor-
mation akin to complex cells in V1. The second one adapts the
widely used Hodgkin-Huxley model known in the context of
neural excitability (Izhikevich, 2007) and analysis of neuronal
stochastic variability to stimulus encoding in the presence of
noise.

Based on the rigorous formalism of TEMs (Lazar and Tóth,
2004), we extended our previous theoretical framework (Lazar
et al., 2010) and argued that spike timing is merely a form
of generalized sampling of stimuli. By studying sampling (or
measurements) in the presence of intrinsic noise sources, we
showed to what extent neurons can represent sensory stimuli in

noisy environments as well as how much noise the identification
process can tolerate while preserving an accurate understanding
of circuit dynamics.

The reconstruction and identification quality are certainly not
only related to the strength of noise, but also the strength of the
signal. In particular, when the signal strength is small, two facts
may affect the quality of reconstruction. First, neurons may not
produce enough spikes that have valid t-transforms. Second, they
may be contaminated by even weak noise, i.e., the signal-to-noise
ratio is low. It is well known, however, that neural systems use gain
control to boost the relevant signal (Shapley and Victor, 1978;
Wark et al., 2007; Friederich et al., 2013). Such strategy may be
useful for increasing the signal strength relatively to the strength
of the noise. Gain control may also suppress large signals to fit
into the range of operation of the BSGs. The gain control itself,
maybe considered as a type of Volterra feedforward DSP kernel
(Lazar and Slutskiy, in press) and the interaction with feedback
loops driven by spikes. The lack of spikes may be compensated
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by adding other neurons that are sensitive to other features in the
input stimuli.

A key feature in our neural circuit model is the nonlinear
processing in the feedforward and feedback paths. Nonlinear
interaction between feedforward DSPs and feedback DSPs have
not been considered here. However, they are of interest and could
be addressed in the future. Self-feedback was not included in
the model for clarity, but can be considered within the frame-
work of our approach. Self-feedback was introduced to add
refractoriness to phenomenological neuron models (Keat et al.,
2001; Pillow et al., 2008). Our BSG models, on the contrary, are
conductance-based models that have a refractory period built in.

Throughout this paper we assumed that the BSGs themselves
have been perfectly identified. The intrinsic noise in the BSGs may
degrade the identification quality of conditional PRCs. This may
result in a lower identification quality as shown in the examples. It
is beneficial to investigate in the future a method that can identify
the entire circuit at once so that intrinsic noise in the circuit only
affects the identification process a single time.

The theoretical results obtained here suggest a number of
experiments in the early olfactory system of fruit flies. The
glomeruli of the antennal lobe can be modeled using the Volterra
DSPs discussed here and the projection neurons in the anten-
nal lobe are accessible by patch clamping (Lazar and Yeh, 2014).
Functional identification of DSPs can then be carried out for
studying olfactory stimulus processing in an accessible circuit
with intrinsic noise sources (Masse et al., 2009).
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APPENDIX
PROOF OF THEOREM 3.7
Proof: By the Riesz representation theorem (Berlinet and
Thomas-Agnan, 2004), there exists a function φi

1k ∈ H1
1 such

that T i
1ku1 = 〈u1, φ

i
1k〉, ∀u1 ∈ H1

1. Moreover by the reproducing
property

φi
1k(t) =

〈
φi

1k,K1
1|t
〉

= T i
1kK1

1|t .

Let H1
10 be a linear subspace of H1

1 spanned by φi
1k

H1
10 = span

({
φi

1k

}
, i = 1, 2, k = 1, · · · , ni

)

and let H1⊥
10 be a linear subspace of H1

1 defined by

H1⊥
10 =

{
u1 ∈ H1

1|T i
1ku1 = 0, i = 1, 2, k = 1, · · · , ni

}
.

Then, for any u1 ∈ H1⊥
10 and any

∑2
i = 1

∑ni

k = 1 ci
kφ

i
1k ∈ H1

10, we
have

〈
u1,

2∑
i = 1

ni∑
k = 1

ci
kφ

i
1k

〉
=

2∑
i = 1

ni∑
k = 1

ci
k

〈
u1, φ

i
1k

〉
=

2∑
i = 1

ni∑
k = 1

ci
kT i

1ku1 = 0.

Since H1
1 = H1

10 ⊕ H1⊥
10 , u1 can be represented as u1 =

u10 + u⊥
10 where u10 ∈ H1

10 and u⊥
10 ∈ H1⊥

10 are orthogonal.
Therefore,

‖u10 + u⊥
10‖2 = ‖u10‖2 + ‖u⊥

10‖2.

Similarly, there exists a function φi
2k ∈ H1

2 such that T i
2ku2 =

〈u2, φ
i
2k〉, where φi

2k(t1, t2) = T i
2kK1

2|t1t2
. u2 can be represented

as u2 = u20 + u⊥
20, where u20 ∈ H1

20 and u⊥
20 ∈ H1⊥

20 are
orthogonal, with

H1
20 = span

(
{φi

2k}, i = 1, 2, k = 1, · · · , ni
)
,

and

H1⊥
20 = {u2 ∈ H|T i

2ku2 = 0, i = 1, 2, k = 1, · · · , ni}.

Finally,

2∑
i = 1

ni∑
k = 1

(
T i

1ku10 + T i
2ku20 − qi

k

)2 + λ1‖u10‖2
H1

1
+ λ2‖u20‖2

H1
2

=
2∑

i = 1

ni∑
k = 1

(
T i

1k(u10 + u⊥
10) + T i

2k(u20 + u⊥
20) − qi

k

)2

+ λ1‖u10‖2
H1

1
+ λ2‖u20‖2

H1
2

≤
2∑

i = 1

ni∑
k = 1

(
T i

1k(u10 + u⊥
10) + T i

2k(u20 + u⊥
20) − qi

k

)2

+ λ1‖u10 + u⊥
10‖2

H1
1
+ λ2‖u20 + u⊥

20‖2
H1

2

Therefore, the minimizer to (28) must belong to the subspaces
H1

10 and H1
20.

By plugging (29) into (28) and setting the gradient with
respect to c to 0, we see that c is the solution to (30). �
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