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The cerebellum is known to play a critical role in learning relevant patterns of activity
for adaptive motor control, but the underlying network mechanisms are only partly
understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and
Purkinje cells (PCs), which is driven by the inferior olive (IO), can only account for
limited aspects of learning. Recently, the role of additional forms of plasticity in the
granular layer, molecular layer and deep cerebellar nuclei (DCN) has been considered.
In particular, learning at DCN synapses allows for generalization, but convergence to a
stable state requires hundreds of repetitions. In this paper we have explored the putative
role of the IO-DCN connection by endowing it with adaptable weights and exploring its
implications in a closed-loop robotic manipulation task. Our results show that IO-DCN
plasticity accelerates convergence of learning by up to two orders of magnitude without
conflicting with the generalization properties conferred by DCN plasticity. Thus, this model
suggests that multiple distributed learning mechanisms provide a key for explaining the
complex properties of procedural learning and open up new experimental questions for
synaptic plasticity in the cerebellar network.
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INTRODUCTION
Biological motor learning is characterized by several attributes:
it usually proceeds through a rapid convergence toward a stable
state, it can become consolidated into persistent memory, it can
be generalized to analogous cases, it can proceed along multiple
consolidation steps, and it can be saved. The cerebellum is known
to play a critical role in learning relevant patterns of activity for
adaptive motor control, but the underlying network mechanisms
are only partly understood.

The cerebellum is also widely assumed to act as a control mod-
ule which is embedded in a feedforward control loop (Goodwin
and Sin, 1984; Ito, 1984; Miall et al., 1993; Wolpert and Miall,
1996; Turrigiano and Nelson, 2004) capable of evaluating both
the incoming sensory information from the environment and the
information provided by the system itself (propioception) before
the motor control action is sent to the body plant. This means
that the cerebellar controller manages the sensory information

Abbreviations: PF, parallel fiber; MF, mossy fiber; CF, climbing fiber; GC, granule
cell; GoC, Golgi cell; PC, Purkinje cell; DCN, deep cerebellar nuclei; IO, inferior
olive; MLI, molecular layer interneuron; MAE, mean average error.

to deliver the best motor commands to accomplish the desired
movement.

CEREBELLAR MOTOR-CONTROL-LOOP CONSIDERATIONS
A pure feedforward control system is able to deliver the precise
set of motor commands for the body-plant and make corrections
during the movement without continuously checking the motor
output (Schweighofer et al., 1998). Conversely, a system equipped
with an adaptable forward controller exploits a previous trial-
and-error learning process in order to later recognize all possible
sensorial states that may be encountered and accordingly deliver
on-time efficient corrective terms. In a real manipulation task,
the environmental conditions are continuously changing and the
forward controller continuously tunes motor commands to cope
with these changing environmental conditions (Bastian, 2006).

According to this scheme (Figure 1A), the cerebellum oper-
ates as a forward controller for the motor commands generated
in the motor cortex. The motor cortex generates a crude inverse
model of the skeleton-muscular system. The cerebellum is able to
learn, refine, and store accurate models of the skeleton-muscular
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FIGURE 1 | The cerebellum operating in a feedforward control system. (A)

The mossy fibers are thought to provide information referring to the desired
plant motor output from motor cortex and the current sensory information
referring to the actual state of the body parts (i.e., joint positions/velocities of
the upper-limbs of the body-plant). According to the Marr–Albus model (Marr,
1969; Albus, 1971) the climbing fibers are assumed to carry error-related
information when moving, thus providing a teaching signal to the cerebellum.
By using this error-based-teaching signal the cerebellum is able to learn the
corrective actions in a trial-and-error process. When the cerebellar model is
not able to deliver add-on torque terms to compensate deviations in the

system (for instance during the early learning stages) the general rule consists
of adding a feedback to stabilize the open-loop system. (B) Different control
pathways during the learning process. The relevant information flow is
represented by dashed lines in each learning stage. A fast response gain
control is delivered by IO-DCN connection, thus supplying stability in early
learning-process stages (dashed blue lines). In later learning-process stages
the two control pathways (dashed red lines); the internal MF-GrC-PC-DCN and
the more external MF-DCN command the control action. Whilst IO-DCN action
decays throughout the learning process its control action is assumed and
improved by these two long-term adaptive pathways.

system providing both the precise timing of agonist-antagonist
muscle pairs and the force and stiffness control (Van Der Smagt,
2000). Obviously, the precise timing and force of muscles in a
manipulation task depend on the object to be handled (more
precisely, on the dynamic model of the object under manipula-
tion; Turrigiano and Nelson, 2004).The cerebellar model must
translate the actual/desired plant commands (in joint coordi-
nate space) to corrective/prior motor values (in torque control
actions). These latter corrective commands have to be fed into
the body-plant along with the crude inverse model terms. This
indeed represents a convenient solution, since several different
corrections could easily be accomplished by the adaptable for-
ward controller, whereas the possibility of switching/interpolating
between different inverse models to deal with this changeable
environment features (Wolpert and Kawato, 1998; Haruno et al.,
1999, 2001; Petkos et al., 2006; Chai et al., 2008) would demand
an overwhelming storage capability.

Whilst the cerebellum can indeed compensate mismatches in
the internal models, its trial-error learning process may require
a long time. This also means that, before the learning process
is completed, the motor system works in an open-loop and

any perturbation could easily destabilize the body-plant con-
trol scheme. This undesirable situation has been traditionally
circumvented by adding a sensory feedback control loop accom-
panied on most occasions with some kind of feedback controller
(Kawato and Gomi, 1992; Stroeve, 1997; Desmurget and Grafton,
2000; Kalveram et al., 2005). This latter ranges from a sim-
ple proportional—derivative control (Van Der Smagt, 2000),
which ensures stability (Arimoto, 1984), to other more sophis-
ticated controllers following the general structure shown in
Figure 1A.

THE OLIVARY-DEEP CEREBELLAR NUCLEI SYSTEM
An important advancement was brought in by the discovery of
long-term synaptic plasticity between parallel fibers (PFs), and
Purkinje cells (PCs), which drives learning under inferior olive
(IO) action, thus regulating the background activity of PCs and
supplying a teaching signal (Bazzigaluppi et al., 2012; De Gruijl
et al., 2012) to the cerebellum. Although this mechanism supports
the core process of error-correction in the motor learning theory
and subsequent derivations, this same mechanism alone can only
account for limited aspects of biological learning. A new spectrum
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of possibilities was opened by the discovery on multiple forms
of synaptic plasticity (Hansel et al., 2001; Evans, 2007; Ohtsuki
et al., 2009; D’Angelo, 2011; Gao et al., 2012). A recent model has
shown that plasticity at deep-cerebellar nuclei (DCN) synapses
can indeed account for learning on multiple time scales and for
generalization (Garrido et al., 2013a). Moreover, corrective torque
values are better determined by introducing granular layer plas-
ticity (Schweighofer et al., 2001). Detailed analysis of the granular
layer network has revealed that specific combinations of plastic-
ity at the different synapses can change the output pattern on the
millisecond time-scale (Garrido et al., 2013b). Moreover, model-
ing of long-term synaptic plasticity at DCN synapses has allowed
the explanation of the double learning time-scale characterizing
the cerebellum (Medina and Mauk, 1999, 2000). Nevertheless,
in all these cases, cerebellar learning demands hundreds of rep-
etitions, suggesting that additional mechanisms are required to
speed-up convergence. This problem has been circumvented by
most functional cerebellar approximations by means of combin-
ing the fundamental idea of a negative feedback control able to
handle explicit peripheral sensorial measurement with the notion
of some kind of adaptive inverse control (Kalveram et al., 2005).
In addition, the coexistence of different forms of plasticity based
on local activity levels require some kind of stabilizing mecha-
nisms operating in the local neural circuit to prevent instability as
a result of over-excitation or saturation (Turrigiano and Nelson,
2004). Therefore, there must be some biological mechanism
providing speed-up and stabilization of learning.

In this article we have considered the putative role of the IO-
DCN connection by endowing it with adaptable weights and
exploring its implications in a closed-loop robotic manipulation
task. DCN neurons are innervated by excitatory synapses from
climbing fiber collaterals (CFs) and MFs as well as by inhibitory
synapses from PCs. The effect that these excitatory and inhibitory
connections produce still remains uncertain (Bengtsson and
Hesslow, 2006; Uusisaari and De Schutter, 2011). Our results
show that IO-DCN plasticity accelerates convergence of learning
by up to two orders of magnitude without conflicting with the
generalization properties conferred by MF-DCN and PC-DCN
plasticity. By means of Hebbian rules, the IO-DCN connection
can adjust its synaptic weight and the excitability of DCN neurons
provides a built-in feed-back controller generating fast correc-
tions at early stages during learning. Thus, this model implies
that multiple distributed learning mechanisms may provide the
key for explaining the complex properties of biological learning
and prompts the search for yet undetermined forms of synaptic
plasticity in the cerebellar network.

METHODS
This section describes the working principles of the proposed
mechanistic cerebellar model as well as the existing relationship
between the functionality of the cerebellar system and its under-
lying layer structure. The section is divided into three main con-
ceptual blocks; starting with the description of both the cerebellar
topology and the implemented plasticity mechanisms; contin-
uing with the cerebellar control loop description and finishing
with the benchmark trajectory used for quantitative evaluation
experiments.

CEREBELLAR MODEL
In order to develop our cerebellar model, we adopted a func-
tional scheme in which the effort was focused on maintaining
the functional information processing features of the cerebellar
micro-circuitry but using cells with analog activity values (instead
of an explicit spiking representation) (Ostojic and Brunel, 2011).
To this aim, each cerebellar layer was implemented as a set of
values representing the firing rate of each cell, thus allowing the
mathematical study of the functional role that the IO-DCN con-
nection may have in both cerebellar motor learning and control.
The proposed cerebellar model took inspiration from the bio-
logical cerebellar micro-complex circuit. It uses several forms of
plasticity mechanisms at several cerebellar sites which work in
balance with the IO-DCN connection acting as control signal over
the cerebellar output in a neurobotics control scenario.

Our model consists of four main layers:

• Granular layer: a state-generator model following Yamazaki
and Tanaka’s hypothesis has been implemented. The granu-
lar layer acts as an internal clock generating different time
stamps along the executed trajectory (Yamazaki and Tanaka,
2005; Honda et al., 2011) (time stamps which are repeated in
each trial). The current time along the arm-plant trajectory
trial is unambiguously represented by using 500 different input
states. These 500 input states are the result of the division of
the arm trajectory duration (1 s) by the simulation time step
(2 ms). Adopting a sparse representation, these states emulate
500 PFs sequentially activated.

• Purkinje-cell layer: The activity at PCs is defined in
Equation (1):

PCi(t) = fi (PF(t)) ,

where i ∈ {
1, 2, . . . , Number of muscles

}
(1)

where PCi(t) represents the average firing rate of the PCs
associated to the ith muscle. Our robot arm-plant presents 3
agonist-antagonist pairs of muscles, representing a total of 6
muscles. fi defines the function which matches each granular
layer state (active PF) with a particular output firing rate at
each PC. This function is modified during the learning pro-
cess of a particular movement. In this model the output activity
at different cell layers (PCs, MFs, and CFs) has been normal-
ized between 0 (representing the absence of activity) and 1
(representing the maximum firing rate of the cell layer).

• Mossy fibers: Our cerebellar model assumes that mossy fibers
(MFs) transmit a baseline neural activity during the trajec-
tory execution according to studies of eye blink conditioning
experiments (Yamazaki and Tanaka, 2007a,b, 2009).

• DCN cells: The activity of these nuclei cells has traditionally
been related with both the excitatory-activity integration com-
ing from MFs and the inhibitory-activity integration from PCs,
neglecting the impact of IO-DCN connections. Due to the low
number of MFs and climbing fibers (CFs) in comparison to
granule cells (GrCs), the capacity of these fibers for generat-
ing a sparse representation of different cerebellar states seems
to be very limited (in fact, in our model MFs can be under-
stood more as a baseline global activity/term provider). This
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fact shows that the reported synaptic plasticity at MF-DCN
synapses (Racine et al., 1986; Medina and Mauk, 1999; Pugh
and Raman, 2006; Zhang and Linden, 2006) in balance with
the IO-DCN connection activity can induce the adjustment of
gain control through plasticity at DCN synapses. The Equation
(2) describes the DCN cell behavior:

DCNi(t) = WMF − DCN,i − PCi(t) ·
WPC − DCN,i + IOi(t) · WIO − DCN,i,

where i ∈ {
1, 2, . . . , Number of muscles

}
(2)

DCNi(t) represents the average firing rate of the DCN cells
associated to the ith muscular group and WMF − DCN,i is the
synaptic strength of the MF-DCN connection at the muscular
group i, WPC − DCNi represents the synaptic strength of the PC-
DCN connection of the ith muscle. Finally IOi(t) represents
the average firing rate of the CFs associated to the ith mus-
cle where WIO − DCNi represents the synaptic strength of the
IO-DCN connection of the ith muscle.

All these synaptic strengths are progressively adapted during the
learning process according to different synaptic plasticity mecha-
nisms which will be explained in detail in the following section.

SYNAPTIC PLASTICITY
The cerebellum model was endowed with multiple forms synaptic
plasticity, which can be summarized in the following equations.

PF-PC, MF-DCN, and PC-DCN long-term synaptic plasticity
Following on from our previous article (Garrido et al., 2013a), the
present model implements different forms of synaptic plasticity as
follows:

PF-PC synaptic plasticity:

�WPFj − PCi (t) =

⎧⎪⎪⎨
⎪⎪⎩

LTPMax

(IOi(t) + 1)α
− LTDMax · IOi(t),

if PFj is active at t
0 otherwise

where i ∈ {
1, 2, . . . , Number of muscles

}
(3)

where �WPFj − PCi (t) represents the weight change between the
jth PF and the target PC associated with the ith muscle. IOi(t)
stands for the current activity coming from the associated climb-
ing fiber (which represents the normalized error along the exe-
cuted arm plant movement), LTPMax and LTDMax are the max-
imum long term potentiation/long terms depression (LTP/LTD)
values, and α is the LTP decaying factor. In the experiments α is set
to 1000 in order to ensure a fast LTP action decreasing (Garrido
et al., 2013a).

MF-DCN synaptic plasticity:

�WMF − DCNi (t) = LTPMax

(PCi(t) + 1)α
− LTDMax · PCi(t),

where i ∈ {
1, 2, . . . , Number of muscles

}
(4)

where �WMF − DCNi(t) represents the weight change between the
active MF and the target DCN associated with the ith muscle,
PCi(t) is the current activity coming from the associated PCs,
LTPMax, and LTDMax are the maximum LTP/LTD values, and α

is the LTP decaying factor; α is set to 1000 in order to ensure a fast
LTP action decreasing (Garrido et al., 2013a).

PC-DCN synaptic plasticity:

�WPCi − DCNi (t) = LTPMax · PCi(t)α ·(
1 − 1

(DCNi(t) + 1)α

)
− LTDMax ·

(1 − PCi(t)) ,

where i ∈ {
1, 2, . . . , Number of muscles

}
(5)

where �WPCi − DCNi(t) is the synaptic weight adjustment at the
PC-DCN connection reaching the DCN cell associated with the
ith muscle, PCi(t) is the current activity coming from the associ-
ated PCs and finally DCN is the current activity regarding DCN
cells present. Again, α is set to 1000 in order to ensure a fast LTP
action decreasing (Garrido et al., 2013a).

For these synapses, considerations and parameterizations are
identical to those reported previously (Garrido et al., 2013a) and
are not repeated here.

IO-DCN synaptic plasticity
The MF-DCN synaptic plasticity mechanism was previously
hypothesized to be a proper cerebellar gain controller which
self-adapts its maximum output activity to minimize the inhibi-
tion impact of the inhibitory pathway already described (Garrido
et al., 2013a). Nevertheless, this cerebellar gain controller reaches
the adequate state through the learning process. This involves a
time period in which the control action is not delivered properly
which makes the system prone to become unstable. The cerebel-
lum, during this learning process, is able to supply enough control
action to avoid these possible destabilization inconveniences.
Furthermore, the feedback action in cerebellar motor control is
well accepted (Kawato and Gomi, 1992; Stroeve, 1997; Desmurget
and Grafton, 2000; Kalveram et al., 2005) and neurophysiologic
evidence also exists suggesting that the primary motor cortex is
involved in this feedback loop (Sergio et al., 2005). Concretely,
there is a dense projection from primary motor cortex to the
spinal cord, often directly onto motor neurons, and correlations
between primary motor cortex activity and end-effector kinemat-
ics (Todorov, 2000). Hence, proprioceptive signals encoding for
instance position error information (inputs) are put in relation
with the corrective cerebellar output, thus leading us to believe
that the IO-DCN connection might implement this loop.

According to Figure 1B, DCN input signals (proprioceptive
signals) are received from two differentiated pathways. The first
pathway reaches the DCN cells through the cerebellar cortex.
This feedback system has been widely hypothesized to be the
main adaptive pathway in which cerebellar learning takes place
(Strata, 2009). The second pathway reaches DCN directly by
means of the CF collaterals and MFs. The input information
(proprioceptive signals encoding, for instance, position errors)
is then related with the corrective cerebellar output. Whilst MF
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activity arriving to the DCN may work as a non-specific baseline,
which is modulated by the PC specific inhibition pathway; the
role of the second excitatory pathway consisting of CF collaterals
is unclear, but its location allows it to work as a feedback con-
troller as shown in Figure 1B. Our working hypothesis is based
on a fast response gain action delivered by IO-DCN connection,
thus supplying stability.

At the very beginning of any manipulation task, if the
hand carries an unknown object affecting the arm dynam-
ics/kinematics the inverse model does not match with the real
plant and the learning process starts acquiring the manipulated
object model. After some time (through the learning process)
this IO-DCN action decays and its control action is assumed and
improved by the two pathways whose actions have been previ-
ously described; the internal MF-GrC-PC-DCN and MF-DCN.
The assumption involving a relevant action of this connection
(IO-DCN) at early stages of the learning process implies that the
initial synaptic strength set by this learning law must be in the
same range as the one assumed in subsequent learning stages by
the other two control pathways (these pathways are illustrated in
Figure 1B).

According to Ito (2008) this possible feedback controller must
generate a command in motor cortex capable of tuning the vis-
coelastic properties of musculoskeletal system (tension-length
and tension-velocity relation). This assumption can be seen as
a fast and short adaptation of the cerebellar circuitry (synaptic
weight strength) to cope with this required initial control action.
Within our working hypothesis, the plasticity mechanism was
implemented to range adequately the initial synaptic strength of
DCN cells driven by the IO as defined by Equation (6).

�WIO − DCN,i(t) = MTPMax · IOi(t) − MTDMax

(IOi(t) + 1)α

where i ∈ {
1, 2, . . . , Number of muscles

}
(6)

where �WIO − DCN,i(t) represents the differential synaptic weight
factor related to the active connection at time t [whose associ-
ated activity state corresponds to IOi(t)]. The connection cor-
responds to the DCN cell associated to the ith muscle. This
weight can be seen as a fast modulation adaptation term, MTPMax

and MTDMax (modulating term plasticity) are both the maxi-
mum MTP/MTD values to be applied at any time. Both terms
present an enormous value in comparison to LTP/LTD values
previously described, thus ensuring a fast response and a negli-
gible contribution to the learning process in the long term. IOi

is the normalized current activity in the range [0, 1] coming
from the associated climbing fiber (which represents the cur-
rent error translated into a control signal along the executed
arm-plant movement), and finally α defines the MTD decaying
factor (set to 1000 in our simulations ensuring a fast MTD action
decreasing).

For instance, in a scenario with a significant mismatch between
the inverse model and the robot-arm plant, there is a high
activity at IO (ranged in [0, 1]), which means a high ongoing
error value. In this situation, the potentiation term dominates
the expression, the incremental difference �W to be applied
is high and in a very few time-steps this weighting factor is
adapted. Although from the beginning the action of the other

long-term synaptic mechanisms is active, it still requires some
time to arrive at stable weights (due to its slower dynamics).
When the error is low, the activity of the IO is closed to
0 and the depression term dominates, which means that the
weight factor is quickly decreased. As we can see the potentia-
tion/depression action compensates each other. What it is quickly
learnt due to an action is quickly forgotten due to the opposite
action.

In order to obtain a numerical evaluation of the modulated
term impact in the convergence speed process (Figure 6), the nor-
malized mean absolute error (MAE) convergence speed defined in
Luque et al. (2011b) has been used. This measurement is defined
as the number of needed samples (iterations of the movement) to
reach the final error average. To normalize the measurement, the
cerebellar configuration without IO-DCN corrective action was
conceived to be the worst possible scenario, thus assigning a value
of 1 to the obtained number of samples needed to reach the final
error average in the absence of IO-DCN terms (i.e., the slowest
possible convergence speed).

CEREBELLAR CONTROL LOOP
As we have pointed out, the adopted control loop is based on a
feedforward scheme in conjunction with a crude inverse dynamic
model of the arm plant (Figure 2A). This feedforward action is
complemented with the presented cerebellar model which acts as
a feedback controller in part due to the IO-DCN connection. In
our model, an inverse kinematic module translates the desired
trajectory into arm-joint coordinates. Another module (inverse
dynamics) based on a recursive Newton-Euler algorithm gener-
ates crude step-by-step motor commands corresponding to the
desired trajectory.

Some studies suggest that the central nervous system may,
in fact, plan and execute voluntary movements in a sequential
process. The brain would first plan the optimal trajectory in
task-space coordinates, then translate them into intrinsic-body
coordinates, and then finally, generate the appropriate motor
commands to achieve theses transitions (Houk et al., 1996;
Nakano et al., 1999; Todorov, 2004; Hwang and Shadmehr,
2005; Izawa et al., 2012; Passot et al., 2013). According to
these studies, the association cortex provides the desired tra-
jectory in body coordinates and conveys them to the motor
cortex which, in turn, calculates the motor commands by
using an inverse dynamic arm model. On the one hand, the
spinocerebellum-magnocellular red nucleus system provides an
internal neural accurate model of the musculoskeletal dynamics
of the system which is learned with practice by sensing the
result of movements (Kawato et al., 1987). Conversely, the
cerebrocerebellum-parvocellular red nucleus system is thought
to provide such a crude internal neural model of the inverse-
dynamics of the musculoskeletal system (Kawato et al., 1987).
The crude inverse dynamic model works in conjunction with the
dynamical model (given by the spinocerebellum-magnocellular
red nucleus system) to update the motor commands according
to a possible predictable error when executing a move-
ment. As illustrated in Figure 1A, the cerebellar pathways
follow a feedforward scheme, in which only information
about sensorial consequences of non-accurate commands is
available.
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FIGURE 2 | Cerebellar control loop and benchmark trajectory. (A) The
adaptive cerebellar module delivers corrective torque values (τcorrective) to
compensate for deviations in the crude inverse dynamic module when
manipulating an object of significant weight. In this feedforward control
loop, the cerebellum receives a teaching error-dependent signal and the
desired arm state (Qd , Q̇d , Q̈d ) so as to produce the adaptive corrective
actions. (B) Three-joint periodic benchmark trajectory suitable for testing
the kinematic and dynamical properties of the robot arm and the application
area. Fast movements in a smooth pursuit task composed of vertical and
horizontal sinusoidal components are able to reveal the whole robot arm
dynamic properties (Hoffmann and Petkos, 2007). The left panel represents
angular coordinate per joint followed by the light weight robot, the right
panel plots the robot end-effector trajectory in euclidean space.

BENCHMARK TRAJECTORY
We have integrated a simulated light-weight robot (LWR) arm
within our feedforward control loop. The simulated-robot-plant
physical characteristics can be dynamically modified to match
different contexts (in our experiments different contexts mean
that the object manipulated by the robot, payload, has different
weights). This LWR (Hirzinger et al., 2000; Albu-Schäffer et al.,
2007) robot is a 7-DOF arm composed of revolute joints. In our
experiments we used the first (we will refer to it as Q1), second
(Q2), and fifth joint (which we label as Q3), maintaining the
others fixed.

Our aim was to select a benchmark trajectory which reveals the
dynamic properties of our robot plant arm. The robot dynam-
ics have been fully considered as indicated in Supplementary
Material. The choice of a trajectory to test our cerebellar con-
trol relies on the kinematic and dynamical properties of the robot
arm and the application area. We have chosen fast movements in
a smooth pursuit task composed of vertical and horizontal sinu-
soidal components (Kettner et al., 1997; Van Der Smagt, 2000)
(1 s for the whole target trajectory) to study how inertial compo-
nents (when manipulating objects) are inferred by the cerebellar
module (Luque et al., 2011a,c). Slow movements would hide

changes in the dynamics of the arm+object model when manipu-
lating objects of different weights since they would have negligible
impact. The target trajectory describes an “8-shape” defined by
Equation (7) in angular coordinates.

Qn = An · sin
((−4πt3 + 6πt2) + Cn

)
where n = {

1, . . . , number of links
}

(7)

where An and Cn = n · π
4 represent the amplitude and phase

of the movement performed by each robot joint. The followed
trajectory uses cubic spline technique so as to provide not just
continuity but also a zero initial velocity per link which ensures a
correct physical implementation in a robot controller. This sort of
trajectory is easy to follow despite the non-linearity in the robot
joint angles, since both joint velocities and accelerations are con-
stricted to small bounds depending on the amplitude and phase
previously indicated (Figure 2B).

Aiming to quantitatively evaluate the movement performance
in terms of accuracy, the average of the MAE per robot joint was
calculated. The estimation of this measurement was monitored in
each trial, thus allowing the global movement accuracy evolution
during the learning process.

TEST-BED EXPERIMENTS
So as to provide the robot arm plant with a rich enough dynamic
scenario that could fully reveal the robot arm properties, two
different configurations have been tested:

• A set of different punctual heavy masses (payloads) attached
to the robot end effector producing dynamic deviations when
they are manipulated (light-2 kg-payload and heavy-10 kg-
payload).

• An external variable force (along x, y, and z axes) which is
applied to the end effector as described by Equation (8).

�F = [
Fx, Fy, Fz

]
(8a)

Fx,y,z = 100x,y,z · cos (2 · π · 10t + Cx,y,z)

where x, y, z = cartesian axes

and Cx,y,z =
(π

4
, 2 · π

4
, 3 · π

4

)
(8b)

This external force has 10 times the period of the trajectory move-
ment and is in the same range than the needed torque values
to operate the robot plant. This new scenario demands not just
fast adjustment in agonist-antagonist pair of muscles (the error
in each joint goes from positive to negative along the trajectory
execution) but also a fast control due to the quick changeable
working point that the robot-arm undergoes. This set up includ-
ing external forces is often used to evaluate potential roles of the
cerebellum in control tasks (Witney et al., 2000; Howard et al.,
2010).

RESULTS
In these simulations, the cerebellar model delivered to a robotic
arm the corrective actions needed to compensate for dynamic
deviations produced by manipulating heavy objects (Garrido
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et al., 2013a). Simulations were designed to evaluate whether
and how specific cerebellar architectures of the model (Figure 1)
could generate fast convergence and stable outputs in the initial
learning stages without the need for traditional feedback con-
trollers widely used in robotic literature (Kawato and Gomi, 1992;
Stroeve, 1997; Desmurget and Grafton, 2000; Kalveram et al.,
2005). We tested the hypothesis that such fast convergence could
be achieved by implementing the IO-DCN connection and by
endowing this latter with plasticity, thereby generating an internal
adaptable feed-back loop. Movies of learning simulations dur-
ing manipulation of a 2-kg load are shown in the Supplemental
Material.

DISTRIBUTED PLASTICITY DETERMINES LEARNING GENERALIZATION
In order to identify the impact of the different forms of plastic-
ity, the network was sequentially added with multiple adaptive
mechanisms. We have previously shown that plasticity at PF-PC
synapses was not sufficient to ensure a proper adaptive manip-
ulation of objects with different weight (Garrido et al., 2013a).
By changing payload from the initial setting, Purkinje cells were
easily saturated preventing them from generating appropriate
corrective torques. This limitation was overcome by implement-
ing MF-DCN and PC-DCN plasticity, thus allowing PC activity
to remain within its optimal frequency range independently from
the manipulated mass.

A first simulation was carried out to show how self-regulation
of MF-DCN and PC-DCN synapses could improve convergence
in the cerebellar control loop. During a manipulation task, a
mass was moved along a 1 s trial trajectory repeated 5000 times
(Figure 2). The learning process occurred when a 2-kg payload
was manipulated starting from a 0-kg initial configuration. After
DCN synaptic weight adaptation (Figure 3A1), the cerebellum
was able to deliver proper corrective torques reducing the error
of the robot-arm movement close to 0 (Figure 3A1). Once synap-
tic weights were stabilized, both PC and DCN neurons exploited
their whole firing range (Figure 3A2) allowing the cerebellum to
operate near its optimal performance. This system could effec-
tively generalize toward the subsequent application of a 10-Kg
payload (Figures 3B1,B2).

This correction was precise but learning was slow, as
it took about 500/1000 (2 kg/10 kg configuration) repetitions
(Figures 3A1,A2,B1,B2). Thus, the precise commands could not
be properly delivered by the control system until the cerebel-
lar learning process was complete. Throughout the adaptation
period, the cerebellum operated in open-loop (this was well evi-
dent during the first learning stages, where the cerebellum was
hardly starting to adapt). Therefore, an effective feed-back system
was required to accelerate learning.

THE IO-DCN CONNECTION ACCELERATES LEARNING WITH FIXED
IO-DCN WEIGHTS
In order to evaluate the effectiveness of the IO-DCN connec-
tion in controlling adaptation during the initial learning stages,
the IO-DCN synaptic weights were pre-calculated to handle dif-
ferent masses with the same values (light mass: 2 kg-payload;
heavy mass: 10 kg-payload). Then the IO-DCN synaptic weights
were kept fixed and the MF-DCN and PC-DCN weights were

allowed to self-adapt during the learning process composed of 1 s
trial trajectories repeated 5000 times using either light or heavy
payloads.

Using pre-calculated synaptic weights allowed the IO-DCN
connection to operate over the whole learning process providing
a rough control facilitating the DCN to operate in its pseudo-
optimal firing rate from the very beginning (Figures 4A2,B2).
Pre-calculated IO-DCN connections, even though with fixed
weight values, contributed to error reduction especially in the
first 200/600 trails (2 kg/10 kg configuration). The contribution
of IO-DCN connections was enough to enable a corrective
control that improved the precision of the manipulation tasks
(Figures 4A1,B1). Plasticity at MF-DCN and PC-DCN synapses
contributed to further increase the precision of the manipula-
tion task within about 500/1000 trials (Figures 4A1,B1). This
slow convergence was due to the inter-dependence of PC-DCN
learning on DCN activity which, in turn, depended on both
MF-DCN and PC-DCN adaptation (see Methods). Actually, the
fact that adaptation of MF-DCN and PC-DCN weights was slow
(Figures 4A1,B1) made IO-DCN connection the only DCN affer-
ent synapse able to control the manipulation task during the first
trials. Thus, the IO-DCN connection was crucial for facilitating
the cerebellar circuit to approximate the ideal corrective torques
from the very beginning of learning.

PLASTICITY AT IO-DCN SYNAPSES CONTRIBUTE TO THE DISTRIBUTED
LEARNING PROCESS ENHANCING MOTOR PERFORMANCE
In order to further evaluate its impact on the initial learn-
ing stage, the IO-DCN connection was made self-adaptive. We
evaluated how these adaptive IO-DCN synaptic weights opti-
mize payload manipulation. The IO-DCN weights were allowed
to self-adapt during a learning process composed of 1 s trial
trajectories repeated 5000 times using either light or heavy
payloads.

During the initial learning stage, the IO-DCN corrective
action dominated (Figures 5A,B, bottom). Then this corrective
action gradually decreased, whilst that provided by MF-DCN
and PC-DCN connections gradually increased (Figures 5A,B,
bottom). The transition between these two control phases was
regulated by PCs, whose activity was maintained within a
narrow frequency range through the adjustment of MF-DCN
and PC-DCN connections reverberated through the control
loop.

In this configuration, all the learning sites were working com-
plementing each other, generating an effective distributed learn-
ing network (Figure 5). The addition of self-adaptive IO-DCN
connections was crucial not only to accelerate delivery of cor-
rective torques stabilizing motor outputs during initial learning
stage, but also to facilitate the balanced learning at MF-DCN and
PC-DCN connections.

THE IMPACT OF THE “MODULATED TERM” AT SELF-ADAPTIVE IO-DCN
CONNECTIONS
In simulations shown in Figures 3–5, the IO-DCN correction
proved critical to provide effective control over the initial learn-
ing stage. This control was regulated by the modulating term
(MTP/MTD) (see Equation 6). The impact of the modulating
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FIGURE 3 | Learning generalization by means of distributed plasticity.

The system gain (external to the cerebellum) was properly set to
manipulate accurately the robot-arm without any object (no external
payload). Since the manipulated mass (payload) was not expected, the
existing plasticity mechanisms at MF-DCN and PC-DCN had to adjust the
cerebellar output to cope with this mass (2 kg/10 kg mass configuration).
(A1) Performance and learning when manipulating 2 kg mass. Evolution of
the average MAE of the three robot joints during the learning process,
5000 trials. In the initial learning trials (zoom in) the MAE averaged value
was about 10 times greater than the obtained MAE average value at the
end of the learning process. MF-DCN and PC-DCN adjustments took about
500 iterations to be set, meanwhile the cerebellar system was working in
open-loop and no action control was appropriately delivered. Plasticity
occurred at PF-PC, MF-DCN, and PC-DCN synapses. The evolution of
synaptic weights at MF-DCN, PC-DCN connections related to join 2 agonist
muscle is also shown. For the sake of clarity only the behavior of this
second joint is shown, however similar results were found throughout the
learning process in both joints 1 and 3. MF-DCN and PC-DCN synaptic
weight stabilization was obtained from the 500th trial. (A2) Normalized PC
Firing rate (top) and DCN firing rate (bottom) during different trials taken

from the initial stages of the learning process: trial 1, trial 250, and trial
500. MF-DCN and PC-DCN synaptic weight adjustments allowed the
PC/DCN firing rate to operate in a proper range. (B1) Performance and
learning when manipulating 10 kg mass. Evolution of the average MAE of
the three robot joints during the learning process, 5000 trials. In the initial
learning trials (zoom in) the MAE averaged value was, roughly speaking,
more than 30 times greater than the obtained MAE average value at the
end of the learning process. MF-DCN and PC-DCN adjustments took about
1000 iterations to settle down, meanwhile the cerebellar system was
working in open-loop, and hence no action control was appropriately
delivered. Plasticity occurred at PF-PC, MF-DCN, and PC-DCN synapses.
The evolution of synaptic weights at MF-DCN, PC-DCN connections related
to join 2 agonist muscle is also shown. For the sake of clarity only the
behavior of this second joint is shown, however similar results were found
throughout the learning process in both joints 1 and 3. MF-DCN and
PC-DCN synaptic weight stabilization was obtained from the 3000th trial.
(B2) Normalized PC firing rate (top) and DCN firing rate (bottom) during
different trials taken from the initial stages of the learning process: trial 1,
trial 500, and trial 1000. MF-DCN and PC-DCN synaptic weight adjustments
allowed the PC/DCN firing rate to operate in a proper range.
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FIGURE 4 | Weight evolution in the cerebellar model manipulating

different payloads with IO-DCN connection operating with multiple

plasticity mechanisms. Simulations were performed using plasticity
mechanisms at PF-PC, MF-DCN, and PC-DCN synapses using a
custom-configured IO-DCN connection for manipulating 2 and 10 kg external
payloads during 5000 trials. The initial cerebellar system gain was properly
set to operate with no payload. (A1,B1) Evolution of the average MAEs of the
three robot joints during the learning process for 2 and 10 kg payloads
respectively with/without IO-DCN fixed synaptic weights plus cerebellum or
with just the IO-DCN connection. Note that the configuration without IO-DCN
connection adjusted the DCN gain after approximately 500/1000 (2 kg/10 kg
configuration) trials on average. From the first trial to the 500th/1000th
(2 kg/10 kg configuration) the cerebellar system worked almost in open loop,

no remarkable corrective action was applied by the cerebellar adapting
system. The configurations with or just IO-DCN connection were capable of
supplying a proper adjustment from the beginning of the learning process.
(A2,B2) Evolution of synaptic weights at IO-DCN, MF-DCN, and PC-DCN
connections related to join 2 agonist muscle. For the sake of clarity only the
behavior of this second joint is shown, however similar results were found
along the learning process in both joints 1 and 3. MF-DCN and PC-DCN
weights stabilized in about 500/3000 trials (2 kg/10 kg configuration) at
different convergence speeds. This slow convergence was the consequence
of the existing inter-dependence between the PC-DCN learning and the DCN
activity which also depended on both MF-DCN and PC-DCN adaptation.
IO-DCN connection supplied cerebellar control action whilst MF-DCN and
PC-DCN synaptic weights were not stable yet.

term was assessed on manipulation of a 2 kg payload. In the
meantime, MF-DCN and PC-DCN weights were also allowed
to self-adapt during the learning process composed of 1 s trial
trajectories 5000 times.

Low MTP/MTD values (from 0.001 to 1) caused a smooth
self-regulated IO-DCN action or, in other words, an IO-DCN
optimal corrective action was not obtained at the very first trial
(Figure 6A). High MTP/MTD values (from 1 to 1000), caused a
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FIGURE 5 | Normalized synaptic contribution of each DCN afferent

throughout the learning process evolution using a self-adaptable

IO-DCN connection. Simulations were performed using plasticity
mechanisms at PF-PC, MF-DCN, and PC-DCN synapses using a self-adaptive
plasticity mechanism at IO-DCN connection for manipulating 2 and 10 kg
external payloads during 5000 trials. The evolution of the average MAEs of
the three robot joints during the learning process for 2 kg (A) and 10 kg
payloads (B) with a cerebellum equipped with IO-DCN connection
with/without self-adaptive synaptic weights is presented. The initial
cerebellar system gain was properly set to operate with no payload. Since
the manipulated masses were unexpected, the existing plasticity
mechanisms at MF-DCN and PC-DCN adjusted the cerebellar output to cope

with these masses. At initial learning stages, the cerebellar model presenting
an adjustable IO-DCN connection provided a more accurate corrective action
to properly perform the manipulation task. The distributed adaptation of
IO-DCN, MF-DCN, and PC-DCN synaptic strengths when using 2 kg (A) and
10 kg payloads (B) related to join 2 agonist muscle is also presented. For the
sake of clarity only the behavior of this second joint is shown, however
similar results were found throughout the learning process in both joints 1
and 3. The self-adjustable IO-DCN connection was capable of supplying a
proper adjustment from almost the beginning of the learning process. The
control action of this connection was relevant only in early learning stages;
once the learning process settled down, the IO control action became
negligible (see zoom-in of normalized synaptic weight evolution plots).

sharp self-regulated IO-DCN action. However, MTP/MTD val-
ues higher than 10e 6 (black line plot) made the arm-robot-
system unstable (Figure 6A). At this point, a windup effect
appeared. Wind-up occurred when the IO-DCN connection
control command exceeded the physical limits of the arm-robot-
system (i.e., the corrective actions delivered at each integration
step were more than those the arm-robot-system could handle).

In other words, the IO-DCN connection control momentum
was incapable of responding instantaneously to changes in the
next-integration-step-incoming error. In this case, the rate of IO-
DCN synaptic weight evolution was faster than the error-speed
of the robot-arm-system. Thus, the IO-DCN corrective action
control exceeded by far the optimal control value but it kept
on growing in the very same integration step. When the next-
integration-step-incoming error reached the cerebellar system,
the sign of the error was then reversed, thus causing the IO-DCN
control action to start “winding” down. (Figure 6A, black line
plot).

Therefore, beyond the unstable point, as predicted by the
windup theory, the output of the IO-DCN corrective action
was decoupled from the optimal IO-DCN synaptic weight. It
demanded a significant amount of time so as to recover the proper
optimal range, thus causing certain lags (overshooting transients)
in the cerebellar response as shown in Figure 6A, black line plot.
As in any other sort of windup effect, this process may occur
repeatedly or eventually converge depending on global cerebellar
control gain (IO-DCN, MF-DCN, and PC-DCN synaptic weigh
balance) and the robot-arm-system response.

The effect of the modulated term MTP/MTD is shown in
Figure 6B. In all cerebellar configurations equipped with an IO-
DCN connection the number of samples needed to reach the final
average error decreased exponentially with increasing MTP/MTD
values. When reaching a certain MTP/MTD value, the cerebel-
lar system was able to deliver the appropriate adjustment of
DCN synaptic weights from the very beginning of the learning
process. MTP/MTD values beyond this limit caused neither a
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FIGURE 6 | Modulated Term impact at self-adaptive IO-DCN connection.

Simulations were performed using plasticity mechanisms at PF-PC, MF-DCN,
and PC-DCN synapses using a self-adaptive plasticity mechanism at IO-DCN
connection for manipulating 2 kg external payload during 5000 trials. (A)

Evolution of the average MAEs of the three robot joints during the learning
process for a 2 kg payload with a cerebellum equipped with a self-adaptive
synaptic weight IO-DCN connection. The modulating term plasticity at
IO-DCN connection (see Equation 6) was ranged from base MTP/MTD values
of 0.001 to 1000 respectively. The higher the values, the faster and the

stabler the system converged. At values greater than 100 the system
became unstable, a sort of windup effect appeared. The IO-DCN connection
control command exceeded the physical limits of the robot-arm-system (it
delivered a more corrective action at each integration step than the system
could handle and needed). The IO-DCN connection control momentum was
incapable of immediately responding to changes in the next-integration-step
incoming error. (B) Normalized MAE convergences obtained during the
learning process for a 2 kg payload when the modulating term plasticity at
IO-DCN connection ranged from [0.001, 100].

faster convergence nor a better accuracy. The exponential nature
of the convergence speed meant that, when reaching a certain
MTP/MTD value, the cerebellar performance was stabilized. In
conclusion, the MTP/MTD regulated the speed at which the con-
tributions of IO-DCN and MF-DCN/PC-DCN connections pro-
gressively combined facilitating an accurate and stable learning
process and providing the cerebellar system with the capability of
self-adaptation from the initial learning stage.

IMPROVED CONTROL OF PERTURBING FORCES
To demonstrate whether the IO-DCN connection contributed to
cerebellar control in more demanding operative scenarios, the
system was exposed to an external force field. The force field
was made up of an external set of variables and periodical forces
(along x, y, and z axes) applied to the robot arm end-effector (see
Equation 8). In these simulations, all adaptation sites at PF-PC,
MF-DCN, PC-DCN, and IO-DCN synapses were enabled. The
learning process occurred over 1 s trial trajectories repeated 5000
times and the MTP/MTD value was set to 10.

The actual torque values operating the robot-arm-end effec-
tor under a variable periodic force field are shown in Figure 7B.
This force field made the torque values exceed the magni-
tude of ideal ones. To accurately perform the eight-shape
trajectory, the cerebellum was committed to compensate the
existing difference between them. As expected, the manipula-
tion problem increased its complexity compared to the unper-
turbed task; throughout a learning trial, both torque gra-
dient and torque value in each robot-arm-joint were con-
tinuously changing (sign and magnitude), thus making the
agonist-antagonist synaptic weight adaptation become crucial
during the learning process. The mismatch between actual
joint position and ideal ones was compensated thanks to
the IO-DCN connection (Figure 7A). An initial rough con-
trol action was delivered, allowing the cerebellar system to

provide a corrective torque in ameliorating manipulation
(Figure 7C).

The contribution of the IO-DCN (Figure 7A) connection
was maximal in the initial learning stage. However, the ago-
nist/antagonist balance could not be properly achieved initially.
The IO-DCN connection initially supplied a position error-based
control that made PF-PC synaptic activity to operate in its opti-
mal range. The position error was early compensated (Figure 7A)
whilst the agonist/antagonist balance required (Figure 7A) the
combined MF-DCN/PC-DCN adaptation (Figure 7C, green and
blue lines). Whilst time was passing, the IO-DCN contribu-
tion was progressively substituted by the distributed learning at
MF-DCN/PC-DCN synapses, and the contribution to the DCN
output at final learning stages was completely supplied by these
latter connections. During the final learning stages, the learning
process stabilized (Figure 7A, MAE plateau phase), thus infer-
ring and storing in DCN synapses the control action needed to
compensate the external variable force (Figure 7C).

DISCUSSION
By using closed-loop robotic simulations, this paper reveals the
internal dynamics of long-term plasticity and neuronal firing in a
cerebellar network model incorporated into a system control plat-
form. The cerebellar network exploits the IO-DCN connection to
implement an internal feed-back loop and embeds multiple forms
of synaptic plasticity (Garrido et al., 2013a). The main obser-
vation is that plasticity at the IO-DCN connection accelerates
convergence of learning by 1–2 orders of magnitude. In this way
learning approaches the speed demonstrated by behaviorally rel-
evant tasks such as eye-blink classical conditioning (Smith et al.,
2006) and force-field adaptation (Shadmehr et al., 2010).

IO-DCN plasticity was modeled as a Hebbian learning mech-
anism and was added to MF-DCN and PC-DCN plasticity, so
that three different forms of plasticity impinged on the same
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FIGURE 7 | MAE and synaptic strength evolution during the learning

process at IO-DCN, MF-DCN, and PC-DCN synapses when an external

variable force is applied to the end effector. Simulations were performed
using plasticity mechanisms at PF-PC, MF-DCN, and PC-DCN synapses
accompanied with a self-adaptive plasticity mechanism at IO-DCN
connection under an external variable force field during 5000 trials. (A)

Illustrates the mean absolute error evolution of the three robot joints
during the learning process throughout 5000 trials accompanied with a
zoom-in of the first 500 trials with/without the self-adaptive plasticity
mechanism at IO-DCN synapses. Plot (A) also illustrates the distributed
adaptation of the normalized synaptic strength evolution at MF-DCN,
PC-DCN, and IO-DCN connections (for the sake of clarity just second
agonist and antagonist paired joint muscle have been represented). The
contribution of the IO-DCN (red line) connection from the 1st trial was
maximal; but the agonist/antagonist balance was not properly settled

down. Agonist IO-DCN connection supplied a position-error-base- control
action, thus facilitating the proper PF-PC firing range operation. The
combined contribution of MF-DCN/PC-DCN connections (green and blue
lines) became strong enough from 500th trial to keep the system under
control allowing a fine-tuning of agonist/antagonist balance whilst the
IO-DCN contribution was progressively self-neglected. (B) Perturbing
torque values resulting from force field action compared to desired torque
values needed to perform the eight-like trajectory (C) Torque value
evolution during the learning process for the second joint with/without the
self-adaptive plasticity mechanism at IO-DCN synapses. Three time stamps
were shown: 1, 500, and 1500 trial. IO-DCN contribution was responsible
for correcting the initial torque output in a rough manner (first trial). With
the passage of time the fine agonist/antagonist balance at
MF-DCN/PC-DCN connections allowed the arm-robot-system to
compensate torque deviations due to force field action.
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DCN neurons. Significantly, IO-DCN plasticity caused a learning
acceleration that synergized with the error-detection and gener-
alization properties conferred by the other DCN synapses. This
model therefore suggests that a putative form of IO-DCN plas-
ticity may play a critical role in controlling DCN activity and
determining the cerebellar output, mainly at improving the learn-
ing speed and maintaining certain control stability from the very
initial stages, which is also important to avoid potential damage
caused by unstable behaviors.

THE IMPACT OF IO-DCN PLASTICITY ON CEREBELLAR LEARNING
These simulations revealed three remarkable functional aspects
involving the IO-DCN connection.

(1) Firstly, the feedback control loop through the IO-DCN con-
nection ensured stability during the initial phase of the
learning process.

(2) Secondly, the distributed learning process through different
pathways ensured a relatively fast synaptic weight strength
adjustment by using the PF-PC plasticity mechanism and the
subsequent slow adaptation of the excitation and inhibition
levels by means of the MF-DCN and PC-DCN synaptic plas-
ticity mechanisms. These mechanisms also helped to keep the
PF-PC synaptic weights working within their optimal range.

(3) Thirdly, regulation of DCN neuron discharge was dynamic in
that plasticity at its synapses evolved over time.

Thus, plasticity served to regulate DCN neuron excitability, and
this regulation required the dynamic intervention of the whole
cerebellar network.

INSIGHTS ON CEREBELLAR LEARNING
There is no agreement about the type of information conveyed
by the climbing fibers into the cerebellum or about their poten-
tial role. The Marr-Albus motor learning theory maintains that
climbing fibers carry either an error signal related to directional
information (Kawato and Gomi, 1992) or a binary teaching signal
(Houk and Barto, 1992; Bazzigaluppi et al., 2012; De Gruijl et al.,
2012). Conversely, considering the periodic nature of climbing
fiber activity, others (Llinas and Welsh, 1993) maintain that IO
activity is related with the timing of movement. However, inves-
tigations in which this periodicity was not observed (Keating and
Thach, 1995) suggested that the climbing fiber activity was cor-
related with the onset of movements. The controversy extends to
IO functional properties, which are not yet univocally defined (De
Zeeuw et al., 1998; Bengtsson and Hesslow, 2006; Welberg, 2009).
Finally, different cerebellar plasticity mechanisms have recently
been observed in the cerebellum suggesting that motor learning
may not be exclusively related to climbing fiber activity (Hansel
et al., 2001; Evans, 2007; Ohtsuki et al., 2009; D’Angelo, 2010).
In the present model, the climbing fibers provide a teaching sig-
nal driving long-term synaptic plasticity both at the IO-PC and
IO-DCN connections.

The present simulations suggest that cerebellar gain con-
trol can be adjusted through MF-DCN and PC-DCN synap-
tic plasticity working in equilibrium with IO-DCN plasticity.

The homeostatic mechanisms that allow this balance are imple-
mented by using different learning laws which drive the cerebellar
model to improve its learning accuracy. IO-DCN connections
ensure stable outputs in the early learning stages, when the
strength of MF-DCN and PC-DCN connections is not set yet
through the learning process. When the strength of the synaptic
weights of MF-DCN and PC-DCN connections begins to stabi-
lize, the synaptic strength of the IO-DCN connection diminishes.
Therefore, at the end of the learning process, the effect of the
IO-DCN connection in determining the cerebellar output is neg-
ligible. Nonetheless, the IO-DCN connection remains ready to act
when new unexpected patterns have to be learnt. In addition, a
proper synaptic weight adjustment at DCN synapses allows the
PFs to operate over their complete frequency range, enhancing
the precision of the cerebellar output.

To sum up, the IO-DCN pathway allowed a global feedback
error reduction facilitating early and fast corrections. The MF-PF-
PC-DCN system operated by achieving more accurate corrections
in the long term but it required slow learning (Luque et al.,
2011b).

BIOLOGICAL REALISM AND MODEL LIMITS
Here we have used a set of assumptions in order to generate
a model which is biologically realistic but also mathematically
tractable. The limits imposed by such a modeling approach,
which were previously discussed in Garrido et al. (2013a), are
considered here under the light of the improvements conferred to
network functionality by the introduction of IO-DCN plasticity.

(1) Two main assumptions are that PCs operate as state-error
correlators and that the granular layer acts as a state gener-
ator (states that are unambiguous throughout the trajectory,
they may be generated in relation with the movement timing
or with the sensory-motor states). Since the exact function
of these structures is not fully resolved, an assessment of the
assumption may come from a reverse engineering approach.
Electrophysiological analysis has revealed complex properties
in cerebellar neurons and plasticity mechanisms (D’Angelo
and De Zeeuw, 2009; De Zeeuw et al., 2011). Here, plasticity
mechanisms are implemented, neglecting details on signal-
ing cascades and the neurons are not spiking. It remains to
be established whether a biologically precise representation
of plasticity mechanisms and spike generation (e.g., Solinas
et al., 2010) could substantially modify the core conclusion
of this model.

(2) The feed-back signals required to correct the actual move-
ment, in addition to be conveyed to the cerebellum through
the internal feedback passing through the IO-DCN connec-
tion, also arrive through sensory afferents (MFs) and the
motor cortex (Kawato et al., 1987; Siciliano and Khatib,
2008). Moreover, the teaching signal is probably not only
conveyed through the IO but also through the granular layer
(Krichmar et al., 1997; Kistler and Leo Van Hemmen, 1999;
Anastasio, 2001; Rothganger and Anastasio, 2009). The intro-
duction of these further elements is expected to increase
the level of flexibility and efficiency in motor control and
learning.
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(3) We did not include the basal ganglia in our system controller.
Recent evidence has shown the existence of di-synaptic
pathways connecting the cerebellum with the basal ganglia
(Bostan et al., 2013). Both cerebellum (Swain et al., 2011)
and basal ganglia (Bellebaum et al., 2008) have been sug-
gested to contribute to reward-related learning tasks, but
how these subsystems interact and reciprocally improve their
operations remains an open issue.

(4) We have included in the model what, as far as we know, is the
most complex set of plasticity mechanisms ever considered
for the cerebellar network. However, there are multiple sub-
forms of plasticity in PC and GC connections as well as in PC
and GC intrinsic excitability (Hansel et al., 2001; Gao et al.,
2012; D’Angelo, 2014). The integration of the present model
into a spike-timing computational scheme including mul-
tiple PC plasticity mechanisms and MF-GC plasticity rule
remains a future challenge.

(5) Finally, and most importantly, it is worth mentioning that
there is neither a clear understanding of the information pro-
cessing nor a fully-detailed description of the DCN. Although
the implications that the IO-DCN excitatory pathway remain
yet to be demonstrated (Baumel et al., 2009; Uusisaari and
De Schutter, 2011), there are biological indications point-
ing to the existence of climbing fiber collaterals contacting
DCN (Uusisaari and Knöpfel, 2011) as well as MF collaterals.
In detail, there is physiological evidence in mice indicating
that both MF and CF collaterals are contacting the very same
sub region (neuron group) within the DCN (Uusisaari and
Knöpfel, 2011). Given the fact that the presence of specific
sites and signs of plasticity at DCN is an open issue together
with the MF/CF collaterals contacting the same DCN neuron
group which may lead to a plausible scenario where not only
MF-DCN collaterals undergo some form of plasticity.

Indeed, the lack of biological evidence in terms of IO-
DCN plasticity makes the presented working hypothesis
remain speculative awaiting new physiological experiments
that could provide evidence to refute/validate this.

THEORETICAL IMPLICATIONS
This model lies halfway between a classical black-box model
and a realistic biological model. A non-trivial consequence of
the way the model is constructed is that of providing a pre-
diction about the need for IO-DCN plasticity, which speeds up
learning. Moreover, this model could be compared to proto-
typical cases elaborated for dynamic neural networks (Spitzer,
2000; Hoellinger et al., 2013). In these networks, learning of
complex tasks is better accomplished when the number of hid-
den neurons increases, as they form complex categories that
are needed to interpret the multi-parametric input space. This
also introduced multiple time-constants. As a whole, the greater
the number of plasticity sites involved, the more extended and
diversified the learning properties approaching the complexity
observed in real life. This model thus suggests that multiple dis-
tributed learning mechanisms provide the key for explaining the
complex properties of biological learning and prompts the search
for yet unknown forms of synaptic plasticity in the cerebellar
network.

CONCLUSIONS
Whilst it has been claimed that “the cerebellum should be regarded
as a control machine rather than a learning machine” (Rokni et al.,
2008), a different view states that “the cerebellum certainly acts as a
control machine, but on top of that the cerebellum (particularly the
cerebellar cortex) provides a giant switchboard for associative learn-
ing” (Ohtsuki et al., 2009). Our model, though the intervention
of plasticity at the IO-DCN connection, establishes a connection
between these apparently divergent opinions. Whilst distributed
synaptic plasticity mechanisms may play an important role in
learning consolidation, the IO-DCN connection may act as an
embedded feedback controller ensuring stability in the first stages
of the learning process. These results also imply that degradation
or malfunctioning of the IO would affect fast adaptation in the
early stages of the learning of a control task. The predicted role
of the IO-DCN pathway for fast cerebellar adaptation could be
tested by using genetically modified animals (for review see Ito,
2013).
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