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In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to
reveal characteristics of control modules underlying the generation of muscle activations
when drawing figures with the outstretched arm. We asked healthy human subjects to
perform four different figure-eight movements in each of two workspaces (frontal plane
and sagittal plane). We then trained a DRNN to predict the movement of the wrist
from information in the EMG signals from seven different muscles. We trained different
instances of the same network on a single movement direction, on all four movement
directions in a single movement plane, or on all eight possible movement patterns and
looked at the ability of the DRNN to generalize and predict movements for trials that were
not included in the training set. Within a single movement plane, a DRNN trained on one
movement direction was not able to predict movements of the hand for trials in the other
three directions, but a DRNN trained simultaneously on all four movement directions could
generalize across movement directions within the same plane. Similarly, the DRNN was
able to reproduce the kinematics of the hand for both movement planes, but only if it was
trained on examples performed in each one. As we will discuss, these results indicate that
there are important dynamical constraints on the mapping of EMG to hand movement that
depend on both the time sequence of the movement and on the anatomical constraints of
the musculoskeletal system. In a second step, we injected EMG signals constructed from
different synergies derived by the PCA in order to identify the mechanical significance
of each of these components. From these results, one can surmise that discrete-rhythmic
movements may be constructed from three different fundamental modules, one regulating
the co-activation of all muscles over the time span of the movement and two others
elliciting patterns of reciprocal activation operating in orthogonal directions.

Keywords: rhythmic movement, muscular synergy, dynamic recurrent neuronal network, principal component

analysis, upper limb, figure-eight

INTRODUCTION
The concept of synergy, associated with basic motor modules of
activity, refers to two distinct notions. On the one hand, the large
variety of movements accomplished by a limb could be explained
by the activation of a reduced number of muscular synergies
(Saltiel et al., 2001; Ivanenko et al., 2004; d’Avella et al., 2006).
On the other hand, for a given movement, the establishment by
the central nervous system (CNS) of synchronous muscular syn-
ergies could explain how activity is distributed within a muscle
group (Weiss and Flanders, 2004; d’Avella and Bizzi, 2005; Klein
Breteler et al., 2007). The first notion gives rise to a simplifica-
tion in the number of degrees of freedom to be controlled by the
CNS for motor control while the second one links modules of

activity presented by limb muscles and their functional meaning
in the context of motor action. Non-invasive recording of the elec-
tromyographic (EMG) signals are widely used to extract muscular
synergies (d’Avella et al., 2003, 2008; Ivanenko et al., 2004; Klein
Breteler et al., 2007; Cheung et al., 2012; Frère and Hug, 2012).
These muscular synergies seem to be structured in the brain stem
and spinal cord (Cheung et al., 2009; Clark et al., 2010) and even
in the motor cortex for highly skilled movements (Gentner and
Classen, 2006; Rathelot and Strick, 2006).

Most attempts to define muscular synergies to date have relied
on tools such as principal component analysis or other forms
of factor analysis that extract stable relationships (structure)
between the activation patterns of multiple muscles. These
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techniques do not, however, serve to identify structure in the
mapping of EMG inputs to the actual motor output (e.g., move-
ment of the hand). In this context, the use of dynamic recurrent
neural networks (DRNN) to interpret biological signals com-
ing from the human body could be an interesting complemen-
tary approach to extract modules underlying the input-output
relationship between muscle activation patterns and movement,
where the input signal consist of the EMG signals provided by dif-
ferent muscles implicated in the movement and the output signals
of the DRNN would be the movement kinematics. Our propo-
sition is that using a DRNN to map EMGs to kinematics can
provide a new, indirect method to better understand motor orga-
nization in the CNS, for reasons that we will lay out in following
paragraphs.

DRNNs are recognized as universal approximators of dynam-
ical systems (Kuan and Hornik, 1991; Doya, 1996; Yi et al.,
2006; Tani et al., 2008; Bicho et al., 2011; Laje and Buonomano,
2013) and the attractor states reached through DRNN learning
of EMG-to-kinematic patterns correspond to biologically inter-
pretable solutions (Cheron et al., 1996, 2003, 2006, 2007, 2011;
Song and Tong, 2005; Liu and Buonomano, 2009). After the
learning phase, the identification performed by the DRNN offers
a dynamic memory which has been used, for example, to recog-
nize the physiological preferred direction of action for the studied
muscles (Cheron et al., 1996, 2003, 2006, 2007). But the correct
recognition by a trained DRNN of EMG patterns not included in
the training set may also be related to motor learning, as shown by
the following example. When humans learn a specific movement,
the initial solutions acquired through self-organized principle are
often unstable and become more stable with practice. This fea-
ture is apparent in the study by Dominici et al. (2011) where they
demonstrated that development of motor patterns from neonatal
to toddler consisted of learning new muscle synergies, adding new
patterns to the few basic patterns present already at birth. When
a DRNN was applied to EMG and kinematic data also acquired
from infants and toddlers (Cheron et al., 2001) we showed that
it is only when behaviors have been practiced sufficiently by the
children and when the task and the context are unchanging that
patterns emerged were sufficiently stable to allow the DRNN to
generalize (Cheron et al., 2011). Thus, the ability of a DRNN to
generalize across movements is a reflection of the stability and
maturity of the underlying building blocks. Here we apply a sim-
ilar concept to analyze a different question, that of how the CNS
generalizes the task of programming movements across different
kinematic and biomechanical conditions. We hypothesize that the
CNS accomplishes this task by exploiting modules to simplify the
computation of the motor command. If this hypothesis is valid,
then application of the DRNN can be used to characterize which
modules are stable across varying situations.

Taking into account Bernstein’s theory of motor control
(Bongaardt, 2001) where the motor program (also called engram)
used to generate a movement is organized at a higher level in the
CNS while the details of motor action (also called ecphoria) are
selected at a lower level, we can consider that in the EMG com-
mand one can find a mixture of the higher (topological) and
lower (metrics) aspects of motor action. If we extract the “syn-
chronous synergies” for a given movement, each module could

contain different levels of information ranging from the general
(what is the form to be reproduced by the hand) to the more
specific (what are the joint displacements and muscle activations
used to generate the movement of the hand). Applied to the anal-
ysis of a drawing movement, such as a figure-eight, we should
find in the EMG signals information corresponding to a gener-
alized “figure-eight” motor program mixed with the information
corresponding to the specific aspects of motor execution, such
as the movement’s velocity, amplitude, joint configuration and
biomechanical constraints.

We chose to study figure-eight movements. These gestures
require the displacement of the end-effector segment through
all the directions within the plane of the figure. Note, however,
that starting from the central point one can perform this figure
with one of four different initial directions. Given the fact that
EMG patterns are modulated by movement direction in 3D space
(Flanders et al., 1994, 1996; Hoffman and Strick, 1999), forcing
the DRNN to converge to any one of these four patterns of move-
ment should create an attractor state that reflects the directional
tuning of synergies within the workspace. Given also that a mus-
cle’s activation depends on its mechanical action, which in turn
depends on joint configuration (Hogan, 1985; Buneo et al., 1997),
a DRNN that converges to the four figure eights realized in one
part of the joint workspace may or may not recognize muscle
activities when the same movements are performed in a different
workspace region. Finally, considering that the precise structures
of some muscle synergies are subject-specific (Torres-Oviedo and
Ting, 2010), a DRNN trained with all the figure-eight movements
of one subject may or may not detect the tuning synergies of
another, depending on how stable the underlying modules are
across subjects. We therefore set out to measure the ability of a
DRNN to learn and recognize movements from EMG signals for
figure-eight movements performed in different directions and in
different parts of the workspace as a mean to assess the invariance
of movement modules or primitives across a variety of movement
conditions. We also used the DRNN in a novel fashion to identify
the physical manifestation, in terms of hand kinematics, of syn-
chronous synergies (d’Avella and Bizzi, 2005; Klein Breteler et al.,
2007) identified by principal component analysis in our previous
study (see companion paper, this issue).

MATERIAL AND METHODS
Data were collected from five right-handed subjects aged between
21 and 40 years. All were in good health, free from known neu-
rological disorders, and had given informed consent to take part
in the study, which was approved by the local ethics commit-
tee. They were asked to draw, as fast as possible, two series of
figure-eight movements in free space with the right arm fully
extended at the elbow (for more details see Bengoetxea et al.,
2010). Movements were initiated in the center of the figure
with an initial up-right (UR), down-right (DR), up-left (UL) or
down-left (DL) direction with respect to external coordinates.
Three subjects performed the task in both the frontal and sagittal
workspaces (in separate sets of trials) depending on the flexion
or abduction posture of the shoulder. Two additional subjects
(subjects 4 and 5) performed the movements only in the frontal
workspace.

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 100 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bengoetxea et al. A DRNN for studying movement modules

DATA ACQUISITION
Movements of the index finger were recorded and analyzed using
the optoelectronic ELITE system (2 CCD-cameras, sampling rate
of 100 Hz; BTS, Milan; Ferrigno and Pedotti, 1985). The cameras
were placed 4 m apart from each other and 4 m from the sub-
ject. Four markers were attached to the arm (on the acromion,
the lateral condoyle of the humerus, the radial apophysis of the
wrist and the index finger). Velocity signals were obtained by
digitally differentiating position signals using a fifth-order poly-
nomial approximation. Reconstruction of the arm movements by
the ELITE system using the trajectories of the 4 markers con-
firmed the visual observation that the upper arm, forearm, hand
and index finger acted as a rigid link (Bengoetxea et al., 2010).
Thus, we analyzed here only the marker on the index finger that
was used to trace the figure-eight.

Surface electromyographic activity (EMG) was recorded with
the TELEMG system (BTS, Milan) synchronized with the kine-
matic data. Silver-silver chloride electrode pairs (inter-electrode
distance of 2.5 cm) were placed over the belly of the following 7
muscles: posterior deltoid (PD), anterior deltoid (AD), median
deltoid (MD), pectoralis major superior and inferior (PMS and
PMI), latissimus dorsi (LD), and teres major (TM). Raw EMG
signals (differential detection) were amplified by a portable unit
with a gain of 1000 and transmitted to the main unit via a teleme-
try system (Telemg, BTS). A functional resistance test that isolated
specific muscles was made in order to verify the absence of cross
talk between adjacent muscles. Thereafter, EMGs were band-pass
filtered (10–500 Hz), digitized at 1 kHz, full-wave rectified and
smoothed by means of a third-order averaging filter with a time
constant of 20 ms (Hof and Van den Berg, 1981).

DYNAMIC RECURRENT NEURAL NETWORK
We used a DRNN, that consisted of 50 fully connected hidden
neurons, 7 input neurons and 2 output neurons. The network
included a looping mechanism (fully connected structure) that
enables this network to learn and store information (memory).
This feature allows the network to model complex situations with
multiple influences. This particular DRNN structure has varying
time constants as well as varying weights for the artificial neu-
rons. The adaptive time constants make the DRNN dynamic and
therefore capable of modeling time varying input and outputs.

The DRNN was governed by the following equation:

Ti dyi/dt = −yi + F (xi) + Ii (1)

where F(α) is the squashing function

F (α) = (1 + e−α)−1,

Yi is the state or activation level of unit i, Ii is an external input
(or bias), and xi is given by

xi =
∑

j
wij yj, (2)

which is the propagation equation of the network (xi is called
the total or effective input of the neuron, and wij is the synap-
tic weight between units i and j). The time constant Ti acts like a

relaxation process, allowing a more complex dynamical behavior
and improving the non-linearity effect of the sigmoid function
(Cheron et al., 1996; Draye et al., 1996, 1997). In order to make
the temporal behavior of the network explicit, an error function
is defined as

E =
∫ t1

t0

q
(
y (t) , t

)
dt (3)

where t0 and t1 give the time interval during which the correction
process occurs. The function q(y(t), t) is the cost function at time
t which depends on the vector of the neuron activations y and on
time t. We then introduce new variables pi (called adjoint vari-
ables) that are determined by the following system of differential
equations:

dpi

dt
= 1

Ti

∫ t1

t0

pi − ei −
∑

j

1

Tj
wijF

′ (xj
)

pj (4)

with boundary conditions pi(t1) = 0. After the introduction of
these new variables, we can derive the learning equations:

∂E

∂wij
= 1

Ti

∫ t1

t0

yiF
′(xj)pj dt; ∂E

∂Ti
= 1

Ti

∫ t1

t0

pi
dyi

dt
dt (5)

The training of the DRNN was supervised, involving learning-
rule adaptations of the synaptic weights and time constants of
each unit (for more details, see Draye et al., 1997). This algo-
rithm, called “backpropagation through time,” aims to mini-
mize the error value defined as the differential area between the
experimental and simulated output kinematics signals.

DRNN learning strategy
The DRNN used here was adapted from a previous version orig-
inally developed for the reproduction of a figure eight (Cheron
et al., 1996; Draye et al., 1997). Although in our previous study we
showed that the DRNN could recognize the preferential direction
of the muscles based on a single movement, it was not able to gen-
eralize from training on one movement to reproduce movements
based on EMG signals from trials with different initial directions
of the movement. In order to obtain this ability to generalize,
we developed a new learning procedure called “multi-pattern
learning” (Figure 1). In this figure we illustrated a multi-pattern
learning for four movements realized in the frontal workspace,
each one corresponding to a figure eight initiated in one different
direction. This DRNN was alternatively trained in sequential iter-
ations on one of the four patterns, in a random sequence. Three
types of multi-pattern training were performed, the first one with
the 4 movements realized in the frontal plane, the second one with
the 4 figure-eight movements realized in the sagittal plane and
the third one with the 8 figure-eight movements taken from both
planes. We compared the results of these training processes to the
results obtained when trained on a single movement, as reported
in our previous publication.

DRNN generalization
After training on data from a given workspace, EMG profiles cor-
responding to novel movements from either the same workspace
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FIGURE 1 | The central box symbolizes the DRNN. Inside each
corner of the box the four EMG patterns used to train the network
are illustrated, one for each of the four movement patterns shown
outside the box. Each EMG signal from a given movement was
sent to all 50 artificial neurons (hidden units) which converge on
two output units acting merely as summators. One output neuron

provides the vertical component of the finger velocity, the other the
horizontal component. Each iteration of the training was performed
with one pattern at a time in random order. Black velocity profiles
represent the learned output. Gray dashed velocity profiles
correspond to the experimental data. The corresponding experimental
trajectory is illustrated in each corner of the figure.

or from the other workspace were fed into the trained DRNN.
A comparison was then made between the velocity profiles pre-
dicted by the DRNN and the actual measured movements of
the index finger. In order to quantify the resemblance between
the measured and simulated velocity profiles, we calculated a

similarity index (SI), using the following equation:

SI =
∫

f1 (t) f2 (t) dt[(∫
f1 (t)2dt

) (∫
f2 (t)2dt

)] 1
2

(6)
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We looked for the effect of the injection of novel EMG profiles
in each of the 3 types of multi-pattern DRNN. For statistical
analysis, we first tested for normality in the distributions of SIs,
using the Kolgomorov–Smirnov test. We then used a repeated-
measures ANOVA followed by Scheffe’s test for post-hoc analyses
(Statistica ©Statsoft).

Synergy action identification via DRNN simulation
In the second part of our study we explored the physiological
meaning of purported muscle synergies by reconstructing the
EMG signals based on different combinations of components
computed by principal component analysis and injecting them
into the DRNN. The methods used to compute the principal
components as well as an analysis of the resulting synergies are
presented in our companion paper published in this issue. We
limited this analysis to the first three PCs, which accounted for at
least 75.28% of the total variance in each movement (mean across
movements: 83.01 ± 2.84% of the total variance). For each muscle
we reconstructed the EMG signals from components PC1, PC2,
and PC3 individually and compound EMG signals constructed
from PC1&2, PC1&3, PC2&3, and PC1&2&3, plus the move-
ments predicted from the full EMG signal (i.e., PC1-7), for a total
of 8 different sets of EMG signals. These sets of EMG signals were
then injected into the DRNN that has been trained on figure eight
movements performed in all four directions in both the frontal
and sagittal planes. A comparison was then made between the
velocity profiles predicted by the DRNN and the actual measured
movements of the index finger, using the SI. We performed a sim-
ilar procedure for EMG signals reconstructed from the first three
factors after a varimax rotation.

RESULTS
We first looked at the ability of the DRNN to predict patterns
of movement from EMG signals as a function of the set of
movements used to train the network. Figure 1 illustrates the
typical performance of the DRNN trained on the EMG pat-
terns (center) and movement recordings from a set of 4 frontal
workspace movements. To each side of the rectangle, represent-
ing the DRNN, we have superimposed the learned (black curves)
and the measured (gray dashed curves) velocity profiles. After a
learning phase involving 15,000 iterations, the DRNN trained on
this set of movements in the frontal workspace was able to repro-
duce the horizontal and vertical velocity profiles of the training
set with a mean error value of 0.004 ± 0.001.

Figure 2 shows a comparison of learning performance of the
network for different learning strategies. The learning sequence
for 1-pattern learning (left column), for 4-pattern learning cor-
responding to the figure-eight movements realized in the frontal
workspace (middle column) and 8-pattern learning trained with
the movements realized in the frontal and sagittal plane and
with the 4 different initial directions (right column). The first
40 iterations for each training session are plotted in the top row
showing the sequence of movements presented to the network on
each iteration, thus illustrating the difference between the three
training strategies.

The middle row of Figure 2 shows the RMS error as a func-
tion of iteration in the learning procedure. Note the change in

scale on the X axis. One can observe that the learning error
only reached the value of 0.001 that we observed in our previous
studies for the single pattern training, despite the greater num-
ber of iterations performed for the multi-pattern trainings. For
the multi-pattern training illustrated here, the mean error was
0.004 ± 0.001 and 0.009 ± 0.002 for 4- and 8-pattern training,
respectively. In terms of the ability of the network to converge to
a stable response, essentially all networks starting from a random
set of initial synaptic weights and time constants and trained on a
single movement pattern converged to a stable response. In con-
trast, out of the 90 multi-pattern trainings with 4 movements that
were initiated, 32.5% had asymptotic error curves with a mean
error of 0.016 ± 0.21. Similarly, out of the 79 sessions initiated for
multi-pattern trainings with 8 movements, 21.5% had asymptotic
error curves with a mean error of 0.011 ± 0.002.

The bottom row of Figure 2 shows the actual, measured hand
velocities (Vy and Vz) for a single movement pattern (Pattern
#3, which started in the upward/leftward direction) compared to
the simulated hand velocity produced by each of 3 DRNNs, after
1-pattern (left), 4-pattern (middle) and 8-pattern (right) learn-
ing. It is interesting to note that for the three learning conditions
shown in Figure 2, the temporal relationship was well reproduced
in all three cases between the real and the learned velocity pro-
files. The only differences between the actual and reconstructed
hand trajectories appeared in the magnitude of the peak veloci-
ties, as can be seen in the example shown here. These qualitative
differences were reflected in the similarity index for each of the
velocity components for this particular movement. For the exam-
ple shown, one can see that the SI for the vertical component
decreased from 0.99 to 0.97 to 0.95, and for the horizontal com-
ponent from 0.98 to 0.96 to 0.94, for 1-, 4-, and 8-pattern training,
respectively.

The mean SI ± SD for the vertical and the horizontal veloc-
ity components were respectively 0.98 ± 0.004 and 0.97 ± 0.001
for the 1-pattern training, 0.97 ± 0.01 and 0.97 ± 0.02 for the
4-pattern training and 0.93 ± 0.02 and 0.95 ± 0.01 for the 8-
pattern training. These values are illustrated in Figure 3A for
the 1-pattern and 4-pattern training and in Figure 3B for the
4-pattern and 8-pattern learning (filled circles). A Kolgomorov–
Smirnov test showed that the SIs followed normal distribution
for the two velocity components and for the three types of train-
ing. To test the ability of each training method to reproduce
the movements within the respective training sets, we performed
repeated-measures ANOVA on the SIs with training type (1-
pattern, 4-pattern, 8-pattern) and velocity component (Vy, Vz)
as independent factors. The ANOVA showed a significant main
effect of training type [F(2, 14) = 36.92; p < 0.001] and Scheffe’s
post-hoc analysis showed that the DRNN trained on 8-patterns
reproduced significantly less accurately the velocity curves than
either the 4- and 1-pattern trained DRNNs (p < 0.001 for both
comparisons). There was no main effect of velocity component
and although there was a significant cross effect between the two
factors [F(2, 14) = 6.04, p = 0.0128], indicating a difference in the
way that the SIs changed for the two velocity components across
training types, post-hoc analysis did not detect a significant differ-
ence between SIs for Vy and Vz within any of the three training
types.
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FIGURE 2 | Comparison of learning performance of the network for

different learning strategies. The top row illustrates the sequence for a
1-pattern learning (left column), for a 4-pattern learning (middle column) and
finally an 8-pattern learning (right column). Green and gray surfaces represent
the frontal and sagittal workspaces. The first 40 iterations for each training
session are plotted in the top row showing the sequence of movements

presented to the network on each iteration. The middle row shows the RMS
error as a function of iteration in the learning procedure. The bottom row
shows the actual, measured hand velocities (Vy and Vz) for a single
movement pattern (pattern #3, which started in the upward/leftward
direction) compared to the simulated hand velocity produced by each of 3
DRNNs, after 1-pattern (left), 4-pattern (middle) and 8-pattern (right) learning.

DRNN GENERALIZATION
To test the ability of each DRNN to predict movement pat-
terns from EMG signals that were not in the training set,
we injected various EMG patterns, corresponding to figure-
eights initiated with different directions and realized in both
workspaces, as inputs to the DRNN and compared the out-
put of the network to the corresponding movement. For the
generalization phase we used only the DRNN instances with
the best mean error for each learning condition. This set of
7 trained DRNNs (4 1-pattern, 2 4-pattern, and 1 8-pattern)
was used to test the ability of the networks trained in each
fashion to generalize across movements within the same move-
ment plane, to generalize across movement planes and to gen-
eralize across subjects, as we will describe in the following
paragraphs.

Generalization between movement directions
Consider first the generalization across movement patterns within
the same workspace. Four instances of the DRNN were each
exposed during the training phase to a single movement and the

corresponding EMG recordings in the frontal plane, one for each
of the four possible directions of movement. We then injected
EMG patterns from four additional movements performed by the
same subject in the frontal plane into each of the four instances of
the DRNN (for a total of 16 EMG/DRNN pairings) and computed
the similarity index between the predicted and actual movement
velocities in Y and Z. The resulting similarity indices were then
divided into four groups according to the pairing between the test
movement and the movement on which the particular instance
of the DRNN was trained. Four pairings consisted of test and
training movements that started in the same direction in both Y
and Z. Four pairings consisted of test and training movements
that started in the same direction in Y but opposite directions in
Z while conversely, four pairings consisted of test and training
movements that started in the same direction in Z but opposite
directions in Y. Finally, four pairings consisted of training and
test movements that started in opposite directions in both Y and
Z. To this we added one additional pairing in which each of the
four test movements were injected into an instance of the DRNN
that had been exposed to all four movements from the training
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FIGURE 3 | (A) Shows the mean and standard deviation of the similarity
index for the same and different movement directions within the frontal plane
for 1-pattern DRNN and 4-pattern DRNN trainings. (B) Presents similarity
indexes for same and crossed workspaces for 4-pattern DRNN and 8-pattern
DRNN trainings. SIs for learned and simulated curves correspond to black
and open circles, respectively. (C) Illustrates the simulated and experimental

velocity profiles for the four frontal movements (DR: down-right; DL:
down-left; UR: up-right; UL: up-left) injected into the frontal DRNN. (D)

Shows the simulated velocity profiles from injecting the sagittal EMG
patterns into the frontal DRNN. (E) Shows the simulated velocity profiles
from injecting the sagittal EMG patterns into the dual DRNN. The similarity
indexes are indicated above each profile’s graph.

set according to the multi-pattern learning scheme depicted in
Figures 1, 2.

Although an instance of the DRNN trained on a single move-
ment converged to a very low RMS error for predicting the
velocity of the hand from the EMG used to train the DRNN,
such 1-pattern trained DRNNs did a poor job, in general, of

reproducing from EMG signals figure-eight movements that were
not included in the training set (mean SI for the vertical and
horizontal velocity components were 0.63 ± 0.22 and 0.68 ±
0.15, respectively, across movements in all four directions). Of
greater interest is the effect of movement direction on the abil-
ity of a single-pattern DRNN to reproduce the movement. When
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the EMG came from a movement not in the training set, but ini-
tiated in the same direction as the training movement in both Y
and Z, the mean values of SI were 0.80 ± 0.16 and 0.76 ± 0.09
for the vertical and horizontal velocity components, respectively.
When the test and training movements shared the same initial
vertical component but had opposite initial horizontal compo-
nent, the mean SIs were 0.63 ± 0.14 and 0.66 ± 0.23 for Vy and
Vz, respectively, while when the two movements shared the same
initial horizontal component but opposite vertical component,
the corresponding SIs were 0.71 ± 0.22 and 0.68 ± 0.05. SIs were
lowest when both vertical and horizontal component were dif-
ferent, with values of 0.62 ± 0.08 and 0.55 ± 0.27, respectively.
An ANOVA with factors velocity component and DRNN/direction
pairing showed a significant effect of the pairing factor [F(4, 12) =
4.8398, p = 0.01477), with no significant difference between Vy
and Vz and no cross effect. The DRNN trained on all 4 patterns
from the same workspace was much better able to reproduce the
kinematics generated from the EMG recordings for other move-
ments performed within that workspace. Indeed, the 4-pattern
DRNN, with average SIs of 0.92 ± 0.03 and 0.91 ± 0.03 for Vy
and Vz, respectively across all movement directions (Figure 3A),
was better able to reproduce the hand velocities than a 1-pattern
trained DRNN could for figure eights performed in the same
direction as it’s own training movement.

Generalization between planes
Next we considered the ability of a DRNN to generalize between
different parts of the workspace (i.e., different movement planes).
For the frontal and sagittal movements, each simulated by the
appropriate frontal and sagittal DRNNs, the mean SIs for the
vertical and horizontal velocity components were 0.89 ± 0.06
and 0.91 ± 0.03, respectively (Figure 3B, “same workspace”).
Figure 3C illustrates a typical pair of simulated velocity profiles
(Vy and Vz) computed from EMG signals taken during move-
ments in the frontal plane that were not in the training set,
overlaid on the actual velocity profile.

DRNNs trained on all four movement patterns within one
plane were nevertheless much less able to predict the hand trajec-
tories from EMG signals recorded from movements in the other.
Figure 3D illustrates the simulated and actual velocity profiles for
the injection of the EMG patterns from a sagittal movement into
the DRNN trained on the 4 frontal movements. While the pre-
dictions of the horizontal velocity profiles (Vz) achieved levels of
SI similar to that produced by the 4-pattern DRNN for the same
workspace, the DRNN did not successfully reproduce the vertical
velocity component (Vy) across workspaces. The mean SI for sim-
ulated movements computed by the 4-pattern DRNN trained on
the “other” workspace was 0.84 ± 0.06 for the horizontal com-
ponent and 0.50 ± 0.13 for the vertical component (Figure 3B,
“different workspace”). On the other hand, an 8-pattern DRNN
trained on movements from both workspaces was able to repro-
duce movements in either workspace just as well as each of the
4-pattern DRNNs were able to reproduce movements within their
own workspaces. For the 8-pattern DRNN, the mean similar-
ity index for the vertical and horizontal velocity components
was 0.90 ± 0.07 and 0.92 ± 0.02, respectively (Figure 3B, “8
patterns”).

We used ANOVA to test for statistical significance of the obser-
vations described above. From all the movements recorded for the
one subject whose data was used to train the networks, we injected
the EMG signals from all the other movements that were not in
the training sets into each of three instances of the DRNN, the one
that had been trained on 4 movements in the frontal plane, the
one that had been trained on 4 movements in the sagittal plane
and one that had been trained on all 8 movements, resulting in
a total of 8 × 3 = 24 simulated movements. We then used the
pairing between the DRNN and the actual movement’s workspace
to divide the 24 simulated movements into 3 groups of 8 move-
ments each, those produced by the 4-pattern DRNN trained
on movements from the same plane, those produced by the 4-
pattern DRNN trained on the other plane and those produced
by the 8-pattern DRNN trained on both planes. This resulted in
a 3 × 2 multifactor ANOVA, with DRNN/EMG pairing (same-
plane, cross-plane, and dual-plane) and velocity component (Vy,
Vz) as within-group factors (i.e., a repeated measure for the same
movement produced by the subject). Note that the normality of
our data set was first verified by the Kolgomorov–Smirnov test
before the ANOVA was applied.

The ANOVA described above revealed a highly significant
main effect for the type of DRNN/EMG pairing [F(2, 14) = 23.61;
p = 0.0003]. There was a significant main effect of velocity com-
ponent [F(1, 7) = 7.58, p = 0.0284] and a significant interaction
[F(2, 14) = 6.04, p = 0.0129]. Scheffe’s post-hoc analysis showed
that there was no significant difference between the ability of each
of the three DRNN/EMG pairings to reproduce the horizontal
velocity component (Vz). On the other hand, the SIs for the ver-
tical velocity component (Vy) were significantly lower (worse) for
the cross-plane simulations than for the simulations produced
by either the same-plane or the dual-plane DRNN/EMG pairings
(illustrated in Figure 3B).

As a control, we considered whether the DRNN’s inability to
predict movements across planes could be attributed to differ-
ences in the kinematics of the figure-eight movements performed
in each plane. Figure 4A shows a comparison of the velocity com-
ponents for pattern #3 for the reference subject, performed in the
frontal (blue) and sagittal (red) planes. One can observe that the
movements were very similar both in terms of velocity amplitude
and in terms of the temporal characteristics. Figure 4B shows a
comparison of the mean similarity index (SI) computed between
the real test movement in one plane and the corresponding train-
ing movement from the other plane (real-trained) and between
the real test movement from one plane and the movement pre-
dicted from the corresponding EMGs by the DRNN that had been
trained on movements from the other plane. One can see that
on average the SIs between actual movements in different planes
were high for both the vertical and horizontal velocity compo-
nents (0.93 ± 0.04 and 0.92 ± 0.06, respectively). SIs between
actual movements and movements predicted by the DRNN from
EMGs were somewhat lower, especially for Vy (0.93 ± 0.04 and
0.6 ± 0.3). Statistical analyses revealed that although there was no
difference between the SI for the comparison of real movements
and predicted movements for the horizontal velocity compo-
nent (Vz), there was a significantly lower similarity between
predicted and actual movements for the vertical component
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FIGURE 4 | Comparison of similarity between actual and predicted

movements between the two planes. (A) An example of velocity profiles
for a single movement pattern performed in the frontal (blue) and sagittal
(red) planes. (B) Similarity indexes for the comparison of actual movements
performed in the frontal and sagittal planes, overlaid with the similarity
indexes for movements reconstructed from EMG collected in one plane by
a DRNN trained on movements performed in the other plane. The star
shows SIs that were significantly different (p < 0.005).

(Vy) (Scheffe’s post-hoc: p < 0.005), compared to the similarity
of actual movements performed in different planes [F(1, 14) =
10.986, p = 0.00511]. In other words, the inability of the DRNN
to generalize across movement planes in terms of Vy cannot be
attributed to differences in the movement kinematics performed
in each plane.

Finally, we asked whether the inability of the DRNN to gen-
eralize across movement planes could be related to changes in
muscle synergies as identified through principal component anal-
ysis of these same movements and EMG. In our companion paper
we showed that the loading vectors (synergies) varied, on aver-
age across subjects, between figure eights drawn in the frontal
and sagittal planes. Figure 5 shows the average loading for each
PC, computed for each of the two movement planes, for the ref-
erence subject alone. We performed an ANOVA on the loadings
with movement plane (frontal or sagittal) as a grouping factor and
muscle (AD, MD, PD, PMS, PMI, LD, TM) as a repeated measure.
For each of the 3 PCs, there was a significant main effect of the
muscle factor, a significant main effect of movement plane and
a significant cross effect between the two. But this ANOVA was
not performed with these global contrasts in mind. The pertinent
test from this analysis was the post-hoc analysis that we applied
to determine which muscle loadings, if any, changed between the
two movement planes within each PC. For PC1 and PC2, Scheffe’s
post-hoc test detected no significant changes in individual muscle
loadings between the frontal and sagittal planes. For PC3, how-
ever, there was a significant increase in the loading of LD and a
significant decrease in the loading of PMI when passing from the
frontal to the sagittal movement plane.

Synergy action identification via DRNN simulation
We then set out to see how the DRNN would interpret the action
of EMG signals associated with each of the different compo-
nents identified by principal component analysis and by varimax
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FIGURE 5 | Average loadings for each PC and each muscle, computed

for each of the two movement planes. Each graph shows the loading for
Anterior Deltoid (AD), Medial Deltoid (MD), Posterior Deltoid (PD),
Pectoralis Major Superior (PMS), Pectoralis Major Inferior (PMI), Latissimus
Dorsi (LD), and Teres Major (TM). In blue are represented the loadings for
movements performed in the frontal workspace, in red the loadings for
movements performed in the sagittal workspace. Stars show loading for
individual muscles that were significantly different between the frontal and
sagittal planes (p < 0.001).

factor analysis (see companion paper). The simulation phase con-
sisted of sending to the 8-pattern (dual plane) trained DRNN the
EMG signal reconstructed with the first, second and third compo-
nents and the combinations of components 1&2, 1&3, 2&3, and
1&2&3 for both the principal component (Figure 6) and vari-
max (Figure 7) decompositions. In these figures are illustrated the
simulations for EMG signals taken from the reference subject for
the same figure-eight movement (initiated down and to the right)
realized in the frontal and sagittal workspaces.
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FIGURE 6 | Simulations with the 8-pattern DRNN trained on move-

ments from both planes. In this figure are illustrated the simulations for
EMG signals reconstructed by means of PC1, PC2, PC3 (top part of the
figure) and PC1&2, PC1&3, and PC2&3 (bottom part) for the same
figure-eight movement (initiated down and to the right) realized in the

frontal (first row) and sagittal (second row) workspaces. Real curves are
represented by gray dashed traces and simulated curves by black and red
traces. Traces were drawn in red when the SIs exceeded a threshold
arbitrarily set to 0.5. SIs are indicated in the upper right corner of each
graph.

Principal components
The superposition of real (gray dashed curves) and simulated
(black and red curves) velocity curves in Figure 6 shows that the
EMG signals composed by PC2 and PC3 alone reproduced very
nearly the horizontal and vertical velocity component, respec-
tively, while the EMG signal reconstructed from PC1 alone pro-
duced simulated movements that did not resemble either of the

velocity components. Nevertheless, combining PC1 with either
PC2 or PC3 (lower part of Figure 6) increased the level of repro-
duction for the horizontal and vertical component respectively,
compared to any one component alone. Indeed, PC1 seems to
have an influence for the stability in the static phase existing
before and after the movement, as we can see in the simula-
tion velocity curves resulting from EMG reconstructed with the
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FIGURE 7 | Simulations with the 8-pattern DRNN trained on movements

from both planes. In this figure are illustrated the simulations for EMG
signals reconstructed by means of VM1, VM2, VM3 (top part of the figure)
and VM1&2, VM1&3, and VM2&3 (bottom part) for the same figure-eight

movement (initiated down and to the right) realized in the frontal (first row)
and sagittal (second row) workspaces. Real curves are represented by gray
dashed and simulated curves by black and red lines. SIs are indicated in the
upper right corner of each graph.

second and third, but not the first PCs combined. Compared
to the simulation from PC1, PC1&2, and PC1&3, the simulated
movements that did not contain PC1 (PC2, PC3, PC2&3) exhib-
ited a negative bias in Vy both before and after the figure-eight
movement, indicating that without the PC1 component the hand
would drift downwards.

We used ANOVA to test statistically the ability of each PC
or combination of PCs to reproduce the velocity profiles of the

actual movements. We compared the similarity indexes between
the 8 measured movement patterns for the reference subject with
the simulated movements from the eight different DRNN recon-
structions from the corresponding EMG signals (PC1, PC2, PC3,
PC1&2, PC1&3, PC2&3, PC1&2&3, PC1-7 = real EMG). Recall
that the EMG signals and movement recordings that were used
to simulate movements via the DRNN were different from the
EMG and movement recordings used to the train the DRNN.
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This resulted in an ANOVA with two repeated-measures factors
(PC combination, velocity component). The repeated measures
ANOVA showed that the SIs were significantly different depend-
ing on which combination of PCs were used to reconstruct the
EMG signal [main effect: F(7, 49) = 144.36, p < 0.0001]. Sheffe’s
post-hoc analysis showed that SIs obtained with EMG recon-
structed from P1&2&3 were not significantly different from the
movements simulated with the real EMG (mean SI: 0.80 ± 0.02
and 0.91 ± 0.01, respectively; p > 0.99]. SIs for movements sim-
ulated with PC2&3 (0.78 ± 0.02) were significantly lower than
those simulated from the real EMG (p = 0.046), but only slightly
worse than those simulated with PC1&2&3 (p > 0.99). For all
the other simulated movements with PC1, PC2, PC3, PC1&2,
PC1&3, or PC2&3 (mean SI 0.05 ± 0.04, 0.42 ± 0.03, 0.37 ±
0.02, 0.45 ± 0.03, 0.36 ± 0.03, respectively), the SIs were signif-
icantly lower than the reconstruction from the full EMG signal
(p < 0.001).

The repeated measures ANOVA did not show a significant
main effect of the velocity component factor [F(1, 7) = 4.26, p =
0.078] but there was a highly significant interaction between the
velocity component and the PC combination factors [F(7, 49) =
117.95, p < 0.0001]. Scheffe’s post-hoc analysis confirmed the
results illustrated in Figure 6:

(1) Simulation of the movements based on the EMG signals in
PC2 reproduced the horizontal velocity component of figure-
eight movements but not the vertical one (p < 0.001). The
mean SIs for the horizontal and vertical velocity component
were 0.82 ± 0.03 for Vz and 0.03 ± 0.05 for Vy.

(2) The simulated movements corresponding to PC3 reproduced
the vertical velocity component but not the horizontal one
(p < 0.001). The mean SI for the horizontal and vertical
velocity component were −0.02 ± 0.04 for Vz and 0.76 ±
0.03 for Vy.

(3) The EMG reconstructed with PC1&2, and with PC1&3 con-
firmed the preceding results. The mean SI for the horizontal
and vertical velocity component were 0.89 ± 0.02 and 0.01 ±
0.06 for PC1&2, and 0.02 ± 0.06 and 0.70 ± 0.04 for PC1&3,
respectively.

There were no differences in SIs for the horizontal and verti-
cal velocity components for EMGs composed with PC2&3, with
PC1&2&3 or for the real EMG (p > 0.99). The mean SI for the
horizontal and vertical velocity component were 0.81 ± 0.03, and
0.74 ± 0.02, 0.88 ± 0.02 and 0.72 ± 0.03, 0.92 ± 0.01 and 0.90 ±
0.02, respectively.

Varimax
The simulation of the velocity traces by the DRNN based on
EMG signals reconstructed from the varimax decomposition
(Figure 7) were more difficult to interpret in terms of the actions
of each component. We display the velocity signals in this figure
in black or red depending on whether the SIs for the varimax-
reconstructed EMGs were significantly different from the best
scores obtained for the principal component (Figure 6). From
this one can see that no single varimax component produced very
well either of the velocity components. Even the traces shown in

red manifest noticeable differences between the actual and pre-
dicted velocities. While VM3 produced the same number of peaks
in Vy, the predicted velocities were strictly negative while the real
velocity had both positive and negative components. For VM1,
the predicted and actual Vz showed similarities in the number of
peaks, but the DRNN predicted velocities that were not nearly as
strong as the actual measured velocities.

We used ANOVA to test statistically the ability of each PCA
method (unrotated or varimax) to reproduce the velocity pro-
files of the actual movements. We compared the similarity indexes
between the 8 measured movement patterns for the reference sub-
ject with the simulated movements from the 7 different DRNN
reconstructions from the corresponding EMG signals from the
principal component (PC1, PC2, PC3, PC1&2, PC1&3, PC2&3,
PC1&2&3) and varimax (VM1, VM2, VM3, VM1&2, VM1&3,
VM2&3, VM1&2&3). This resulted in an ANOVA with two
repeated-measures factors (EMG components X velocity compo-
nent). Figure 8 illustrates the mean and SD values for SIs obtained
for 8 measured figure-eight movements. In this figure we have
drawn a “threshold” line that separate the SI values that present
a significant difference from the best SIs values obtained with
unrotated PCA for EMG composed with PC1&2. One observes
that PC3 and VM3 were interpreted similarly as acting on the
vertical component of the movement whereas VM1 acted more
like PC2, each having a functional link with Vz. VM2 seems to
have a more complex combination of information concerning
both velocity components. When looking at the DRNN inter-
pretation by combining PCs 2-by-2, one observes that PC2&3
and VM1&3 are interpreted similarly by DRNN as having the
same level of action on Vy and Vz (Scheffe’s post-hoc p < 0.99).
The same situation is true for unrotated and varimax PC1&2.
But the pattern of SIs for VM1&3 did not bear any resemblance
to the patterns achieved with the principal components, since
it reproduced better Vy than Vz. This observation, added to
the fact that the mean SI for VM1&2 was not different from
the one obtained for PC1&3, leads us to conclude that VM2
corresponded to a synergy that acts partly on horizontal and
partly on vertical velocity component, without the clear demar-
cation between components that is found for unrotated principal
components.

We went further to ask whether the differences between the
principal component and varimax decompositions in terms of
the mapping of EMG components to hand velocity could be
explained simply by differences in the particular instances of the
trained DRNN, or whether the pattern is repeatable to any suc-
cessfully trained instance of the DRNN. In Figure 9 we compared
the behavior of 3 different instances of the DRNNs, all of which
were trained with the same 8 movement trials from the reference
subject, but each of which converged starting from a different
random set of initial weights and time constants. Globally, the
observations made for the single DRNN above were valid for all
three instances of the DRNN. PC2 was associated with Vz while
PC3 was associated with Vy. A Three-Way ANOVA, with PC com-
bination, velocity component and DRNN instance showed no
main effect of DRNN instance [F(14, 84) = 1.4213, p = 0.16], nor
any cross effects be DRNN instance and either of the other two
independent factors.
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FIGURE 8 | SIs for EMG composed by PCs and VMs for an 8-pattern DRNN trained. In blue, the SIs for the vertical component and in red the SIs for the
horizontal component of the index-finger velocity.

DRNN generalization between subjects
We then tested the ability of a DRNN trained on data from one
subject to simulate movements based on EMG signals recorded
from another. We fed EMG signals from five different subjects
to the same 8-pattern DRNN trained on movements from both
planes performed by a single subject. The set of five subjects
included the one subject whose data were used to train the net-
works, hereafter referred to as the reference subject, and four
other subjects who performed the experiment in the frontal plane.
Note that as in the previous analysis, the EMGs used to simu-
late movements for the reference subjects were different from that
subject’s EMG recordings used to train the network. The results
of this analysis are shown in Figure 10A, where we have over-
laid the velocity traces of for each subject and we have plotted
the similarity indexes for the comparison of the actual move-
ments and the movements predicted by the DRNN from the
EMG (dark symbols). For comparison, we have plotted the SIs
for the actual movements performed by each subject and the cor-
responding actual movements from the reference subject used to
train the network (gray symbols). ANOVA showed that in gen-
eral the DRNN predicted less well the velocity profiles of the
other four subjects and that in all cases the SIs for Vy (Scheffe’s
post-hoc: p < 0.05) were lower than for Vz [cross-effect between
subjects, velocities and real-trained movement vs. real-DRNN
predictions F(4, 49) = 15.156, p < 0.001]. This is in contrast to
the between-subject comparisons of the actual movement pro-
files, which showed SIs that were greater than those observed for

the DRNN-reconstructed movements and which did not differ
between Vy and Vz.

We performed a two-factor ANOVA to test the ability of
each DRNN to reproduce the measured hand velocities from the
recorded EMGs. As before, velocity component (Vy and Vz) was
treated as a repeated measure, to which was added the group-
ing factor subject to indicate which subject’s EMG data was used
to simulate each movement. This led to a 2 × 5 mixed-model
ANOVA. The ANOVA also showed a significant difference in
SIs between the five subjects [main effect of subject, F(4, 49) =
28.439, p < 0.0001]. Post-hoc tests showed that the DRNN did
a significantly better job, on average across both velocity com-
ponents, of reproducing the trajectories for the reference subject
(mean SI 0.91 ± 0.02) compared to all four other subjects
(p < 0.00001). There was no overall difference (p > 0.3) for the
simulations between three of the other subjects (mean SI was
0.64 ± 0.06, 0.52 ± 0.31 and 0.52 ± 0.37 for subject 2, 3, and
5 respectively). But subject 4 presented significantly lower SIs
(p < 0.05) than any of the other subjects (mean SI 0.33 ± 0.46).
There was, however, a significant cross effect between the subject
and velocity-component factors [F(4, 49) = 13.947, p < 0.0001].
Indeed, the main difference for the simulations between the ref-
erence subject and the other subjects was found for the vertical
velocity component: Scheffe’s post-hoc analysis showed a signifi-
cant difference (p < 0.0001) for Vy between the reference subject
(mean SI 0.9 ± 0.07) and three of the other four subjects (mean SI
0.3 ± 0.25, 0.004 ± 0.05, and 0.26 ± 0.19 for subjects 3, 4, and 5
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FIGURE 9 | SIs for EMG composed by PCs for 3 different instances of

8-pattern DRNNs trained from a random initial state. Each graph
represent the SIs for the simulations with the real EMG and the EMG

composed by means of PC1, PC2, PC3, PC1&2, PC1&3, PC2&3, PC1&2&3.
In black: the SIs for the vertical component and in gray the SIs for the
horizontal component of the index-finger velocity.

respectively) but not for subject 2 (p < 0.054) (mean SI 0.60 ± 0.2
for subjects 2). For the horizontal component, Scheffe’s post-hoc
analysis showed no differences between the reference subject and
the four others (mean SI were 0.92 ± 0.02, 0.68 ± 0.18, 0.73 ±
0.14, 0.66 ± 0.12, and 0.79 ± 0.03 for subjects 1, 2, 3, 4, and 5
respectively).

We went further to test whether the patterns in the map-
ping of EMG components to hand velocity was specific to this
particular instance of a trained DRNN, or whether the pat-
tern was repeatable to any successfully trained instance of the
DRNN. In Figure 10B we compared the behavior of three dif-
ferent DRNN instances, all of which were trained with the same
eight movement trials from the reference subject, but each of
which converged starting from a different random set of ini-
tial weights and time constants. We performed an ANOVA on
the similarity indices with DRNN instance (dual-plane A, dual-
plane B, and dual-plane C) and velocity component (Vy and
Vz) as repeated measures. To this was added the grouping fac-
tor subject to indicate which subject’s EMG data were used
to simulate each movement. This led to a 3 × 2 × 5 mixed-
model ANOVA. There was no significant effect between the three
instances of 8-pattern DRNNs [F(2, 98) = 0.31392, p = 0.73131]
nor was there a significant cross-effect between instances of 8-
pattern DRNN and the factor subject [F(8, 98) = 1.6801, p =
0.11275]. There was, however, a significant cross effect between

the velocity and subject factors [F(4, 49) = 16.861, p < 0.00001].
As we have observed in the other analyses, the main differ-
ence for the simulations between the reference subject and the
other subjects was found for the vertical velocity component:
Scheffe’s post-hoc analysis showed a significant difference (p <

0.05) between the reference subject and each of the other 4
subjects for Vy but not for Vz. We note, finally, that the three-
way interaction between subject, velocity component and 3
instances 8-pattern DRNN was not significant [F(8, 98) = 1.0999,
p = 0.36998].

We completed our analysis by examining the ability of a
DRNN trained on data from one subject to reproduce the hand
trajectories of the other subjects on the basis of EMG signals
reconstructed from different combinations of principal compo-
nents. The similarity index was computed between each simulated
movement and the corresponding actual movement and the SI’s
were subjected to a mixed-model ANOVA with subject as a group-
ing factor and PC combination (PC1, PC2, PC3, PC1&2, PC1&3,
PC2&3, PC1&2&3, PC1–7) and velocity component (Vy, Vz) as
repeated measures. This analysis showed that SIs depended on
which subject’s EMGs were fed to the DRNN [subject main
effect: F(4, 49) = 13.98, p < 0.0001], on which principal com-
ponents were used to reconstruct the EMG (PC combination
main effect: F(7, 343) = 175.65, p < 0.0001] and on the veloc-
ity direction (velocity component main effect: F(1, 49) = 91.757,
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p < 0.0001]. All interaction effects were highly significant (p <

0.0001). Figure 11 shows the overall results, from which one can
make the following observations:

(1) Reproduction of the horizontal velocity component
depended on the presence of PC2 in the reconstructed EMG.
For each subject, all SIs for Vz for reconstructions that
included PC2 (PC2, PC1&2, PC2&3, PC1&2&3) were as
good as the SI for Vz for the full EMG, while all SIs for Vy
for EMGs that did not include PC2 (PC1, PC3, PC1&3) were
equally bad.

(2) Reproduction of the vertical velocity component depended
on the presence of PC3 in the reconstructed EMG. For each
subject, all SIs for Vy for reconstructions that included PC3
(PC3, PC1&3, PC2&3, PC1&2&3) were equally good as the
SI for Vy for the full EMG and all SIs for Vz for EMGs that
did not include PC3 (PC1, PC1&2) were equally bad.

(3) The DRNN decoded the horizontal component of the hand
velocity (Vz) just as well across all subjects as it did for the
reference subject on whose data the network was trained.
Compared to the reference subject, however, the DRNN did a
much poorer job of reproducing the vertical component (Vy)
for the 4 other subjects.

Finally, we tested whether the ability of the DRNN to predict
movements for different subject could be related to differences
between subjects in the loading vectors (synergies) identified by
principal component analysis. We applied ANOVA to the load-
ing vectors obtained in our companion study for each subject
with subject as a grouping factor and muscle as a repeated mea-
sure. We limited this analysis to movements in the frontal plane.
Figure 12 shows the average loadings for subjects 2–5, compared
to the average loading for the reference subject (S1). Differences
in individual muscle loadings that were significant (as measured
by Scheffé’s post-hoc test) are indicated with a ∗. As shown in
our companion article, the identified principal components were
remarkably similar across subjects, with PC1 representing a global
activation of all 7 muscles over the course of the movement, PC2
indicating a reciprocal relationship primarily between AD, PMS,
and PMI on one side and MD and PD on the other, and PC3
showing a reciprocal relationship primarily between AD and MD
on one side and PMI and TM on the other. Differences between
the loadings of each subject and the loadings of the reference sub-
ject were restricted largely to PC3. This is consistent with the
observation that (1) PC2 is linked to Vz and PC3 is linked to
Vy and (2) that the DRNN predicted better Vz than Vy across
subjects. There is nevertheless an indication of a tradeoff between
the participation of TM, with this muscle sometimes participating
primarily in PC2 and sometimes in PC3.

DISCUSSION
In this study we looked for modularity in patterns of drawing
movements exemplified by the figure eights performed by our
subjects. We used the training of a DRNN as a means to iden-
tify structure in the mapping from muscle activations to hand
movements. While one might quibble over whether the DRNN
has learned the dynamics of the arm, it is certain that the DRNN
identified structure in the mapping of EMG signals to movements
of the hand. Otherwise, it would not be able to predict movements
from EMGs not included in the training set. But as we reported,
the DRNN was not always able to predict movements from novel
EMGs.

A failure of a trained DRNN to generalize to EMG inputs
from outside the training set can arise either because the DRNN
does not have enough degrees of freedom to learn the actual
movement dynamics or because the training set does not contain
enough contrasting information to reveal all the underlying struc-
ture. In our study, whenever the DRNN failed to generalize from
a given, limited set of training movements, it always succeeded
when presented with a broader set of examples during train-
ing. We concluded that the DRNN structure was sophisticated
enough to capture the EMG-to-movement relationship, if pre-
sented with a rich enough training set. It is therefore interesting
to contrast when the DRNN could and could not generalize from
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8-pattern DRNN. The graphs in left and right columns show the SIs for
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Each of the 5 subjects is identified by a different color.

one dataset to another, as this provides an indicator as to what
changes in conditions require modifications to the underlying
movement-generating modules.

In this article we have also proposed a novel use of the DRNN
to reveal properties of the modules that generate movement of the
human arm. In the past we fed to the already trained DRNN mod-
ified versions of the individual EMG inputs that were scaled in
amplitude (Cheron et al., 1996, 2003) or delayed in time (Cheron
et al., 2007), in order to identify the action of individual muscles.
In the current study we fed the trained DRNN with potential syn-
ergies that we identified through principal component analysis.
This more global approach addressed the question of the neural
organization of muscle activations from a modular point of view,
in contrast to our preceding anatomical viewpoint concerning
muscle mechanical actions.

SPATIAL vs. TEMPORAL
As shown by de Rugy et al. (2013), variability in synergies could
arise from specific behaviors or tasks to be accomplished. For the
same motor program (a figure-eight) we should find in the EMG
signals information corresponding to a general “figure-eight”
motor program mixed with the information corresponding to the
specific aspects of motor execution such as the movement’s veloc-
ity, amplitude, joint configuration and biomechanical constraints.
In this context, the cases where the DRNN failed to generalize can
be summarized as follows: (1) the DRNN could not generalize
from a single movement direction in a given workspace to the
other three movements in the same workspace, (2) the DRNN
could not generalize from movements performed in the four

different directions in one workspace to the same four movement
patterns in the other workspace, and (3) the DRNN could not
generalize from one subject to another. One might hypothesize
that the inability to generalize in any or all of these situations
could be due to differences in the kinematics of the movements
that were actually performed, i.e., the DRNN might fail to gen-
eralize if it has not been exposed to hand-velocity patterns in
the training phase that are included in the test dataset. While
this would be an interesting observation in itself, this was not
the case in the study reported here. All the movements reported
here corresponded to the realization of a figure eight. For the
movements in different directions in the same plane, we have
previously shown that the four movements were very similar in
terms of spatial parameters and the temporal aspects of the tra-
jectories (Cheron et al., 1999). Concerning the inter-workspace
and inter-subject comparisons, the analysis of similarity indices
between movements in the training and test datasets reported
here (Figure 4) reject the hypothesis that the inability of the
DRNN to generalize across these conditions can be attributed to
differences in the movement patterns themselves. The differences
detected by the DRNN between conditions must necessarily rep-
resent contrasts in the mapping between EMG and the movement
in each situation.

Consider, then, the inability of the DRNN to generalize
between movement directions within the same workspace. The
spatial aspects of each of the four movements were the same,
with the hand following the same spatial form (the figure eight),
and the arm was fully outstretched in all cases. The biomechan-
ical aspects of the different movements were therefore essentially

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 100 | 16

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bengoetxea et al. A DRNN for studying movement modules

-1

0

1

MUSCLE

-1

0

1
-1

0

1

-1

0

1

-1

0

1

MUSCLE

-1

0

1
-1

0

1

-1

0

1

AD MD PD PMS PMI LD TM AD MD PD PMS PMI LD TMAD MD PD PMS PMI LD TM

-1

0

1

S5
S1

MUSCLE

-1

0

1

S4
S1

-1

0

1

S3
S1

-1

0

1

S2
S1

Loadings PC1 Loadings PC2 Loadings PC3

S5
S1

S5
S1

S4
S1

S4
S1

S3
S1

S3
S1

S2
S1

S2
S1
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constant, at least in terms of the moment arms and preferred
directions for the muscles involved. The velocities and acceler-
ations of the hand were also similar across the four different
movement directions, although they were not presented in the
same order within each of the different movements. If the map-
ping from movement to EMG required to generate that move-
ment consists of a simple mapping of instantaneous position,
velocity or acceleration to muscle activations, the DRNN should
have been able to capture that simple, time-invariant relation-
ship from any one of the four movements in the same plane. The
fact that the DRNN was unable to generalize from one move-
ment direction to another suggests, therefore, that the modules
underlying movement generation must take into account the tem-
poral aspects of muscle activation patterns (Ivanenko et al., 2004;
d’Avella et al., 2008; Delis et al., 2014). As shown in our compan-
ion article concerning the synergy analyses of figure-eights, factor

loadings of the first three PCs did not show any systematic dif-
ferences with respect to different initial direction of movements,
but the temporal components for PC2 and PC3 were modulated
according to horizontal and vertical movement components,
respectively.

The fact that the DRNN trained with 4 figure-eights real-
ized only in the frontal workspace, was unable to generalize for
the sagittal workspace (and vice-versa) could indicate that it was
able to detect the biomechanical differences between the two
workspaces and the related retuning of the modular commands
(Hogan, 1985; Buneo et al., 1994; Cheung et al., 2005; Kamper
et al., 2006; d’Avella et al., 2008). Similarly, even though the
DRNN was able to generalize across all movements for the ref-
erence subject, if trained with all eight movement patterns, it was
not able to predict movement patterns from EMGs taken from
other subjects. In this context we note that across our 5 subjects
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the DRNN consistently associated the second principal compo-
nent with the horizontal component of the finger velocity; and
that the analyses of the loadings showed that for all the subjects
this second PC revealed the same muscular synergy: a recipro-
cal activation of muscles according to their line of action in the
horizontal plane. In contrast, the DRNN did not correctly predict
movements from EMG generated with the third PC for anyone
but the reference subject, and the loadings analyses showed sig-
nificant differences for grouping muscles between them. Studies
concerning kinematic and muscular synergies have already pro-
posed that the lower PCs may be responsible for the general
aspects of the movement and present less inter-individual vari-
ability whereas higher PCs would be responsible for more subtler
aspects and by consequence it present more inter-individual vari-
ability (Santello et al., 1998; Torres-Oviedo and Ting, 2007; Frère
and Hug, 2012). In the case of our vertical figure-eight the
invariant aspect necessary to accomplish the trajectory would be
expressed by the activation of PC1 and PC2 whereas the personal
“signature” would be the consequence of the activation of PC3.

Exactly the same invariant identification was observed for the
reference subject when we crossed the EMG/DRNN pairing. A 4-
pattern DRNN trained on movements from one plane was able
to reproduce the horizontal component of the finger velocity
for EMG from movements in the other plane, but was unable
to reproduce the vertical component. Factor loadings analyses
showed that PC2 maintained the same muscular synergy across
planes whereas the third PC loadings analyses showed signifi-
cant differences for grouping muscles between planes. One can
therefore conclude that the DRNN was able to detect direc-
tional, biomechanical and subject-dependencies in the mapping
from EMG to movement (Muceli et al., 2010; Torres-Oviedo and
Ting, 2010; Frère and Hug, 2012; Kristiansen et al., 2013). Indeed
it associated directional dependencies to temporal tuning and
biomechanical and subject dependencies to spatial tuning of the
third PC.

HORIZONTAL vs. VERTICAL
An interesting question emerges from the observation that the
DRNN was much more able to reproduce the horizontal com-
ponent of the hand’s velocity than the vertical component. A
4-pattern DRNN trained on movements from one plane was able
to reproduce the horizontal component of the finger velocity for
EMG from movements in the other plane, but was unable to
reproduce the vertical component. Similarly, an 8-pattern DRNN
trained on data from one subject was able to reproduce, in most
cases, the horizontal component but not the vertical component
of movements produced by the other subjects. This observation
indicates that the trained DRNN was able to identify an invariant
aspect corresponding to the figure-eight, i.e., the control of the
horizontal velocity.

Across all the movement conditions the only aspect that
remained invariant was the fact that all the movements cor-
responded to the realization of a figure-eight. Across all the
generalizations the only relationship that remained invariant was
the identification of the synergy extracted by PC2 with the fin-
ger horizontal velocity component. This synergy corresponded
to a reciprocal command that groups the shoulder muscles with

respect to their horizontal preferred action direction. In a pre-
vious work (Bengoetxea et al., 2010) concerning the temporal
activation pattern for a figure-eight, cross-correlation analyses
showed that the invariant aspect across shoulder position and
subjects was the emergence of two groups of muscles acting in
a reciprocal mode in relation with the horizontal direction. This
invariant synergy suggests the existence of an underlying oscilla-
tor module (Hogan and Sternad, 2012), acting in the horizontal
direction, and the DRNN seems to have identified this module.

The analyses of the loading corresponding to PC3 across sub-
jects indicates that the muscular synergies associated with the
vertical component of the figure-eight were more variable, com-
pared to the synergies defined by PC2 (see companion paper). We
can offer several possible explanations of this observation. The
first is purely methodological. The third principal component is
by definition the one that explains the least amount of variance in
the input signals, compared to the first and second. This means
that the signal associated with this purported synergy would be
smaller and thus more sensitive to noise. But that would seem
unlikely to explain the enormous difference in the ability to pre-
dict the horizontal or vertical velocity components. The second
is behavioral, as it could be that each subject has developed their
own idiosyncratic synergies depending, for instance, on their pro-
fessional activities or sports played. An alternative explanation
may be found in the phasic/tonic aspects of a discrete figure-eight
movement. For discrete reaching movement it has been shown
that synergies are stable across subjects and shoulder positions
(d’Avella et al., 2008). Modulations of synergies correspond to
a cosine tuning for postural and tonic synergies and more com-
plex pattern for phasic synergies. Tonic synergies are responsible
for antigravity and postural control, whereas phasic synergies are
responsible for overcoming inertia to accelerate and decelerate the
arm (d’Avella et al., 2008). In our case the DRNN had to learn
both tonic synergies, before and after movement, and phasic syn-
ergies during the movement. The fact that the DRNN was not
able to generalize the vertical component of the movement across
workspaces or subjects as well as their third PC could be due to
the fact that the postural synergy and the phasic synergy for the
vertical component of the movement were mixed.

Comparison of the principal component and varimax decom-
positions via the DRNN provides further fuel for our argument
that muscle synergies for discrete-rhythmic movements are best
captured by that identified by the principal components; i.e.,
one module controlling co-activation and two modules produc-
ing reciprocal activations, one in the horizontal and one in the
vertical direction. When we fed the trained DRNN with EMG
reconstructed by the first, second and the third PCs, we obtained
a clear identification of each two spatial velocity components of
the figure-eight movement. The reciprocal command extracted
by PC2, where muscles were partitioned by their horizontal line of
action, was clearly associated by the trained DRNN with the hor-
izontal component of the finger velocity. Similarly, the reciprocal
grouping by PC3, where muscles were partitioned by their vertical
preferred direction, was associated by the trained DRNN with the
vertical component of the finger velocity. The DRNN predicted
little or no movement from an EMG signal constructed only from
PC1, as would be expected from a co-activation module destined
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to tune the mechanical state of the system, rather to generate
movement per se. The hand velocities predicted by the DRNN for
the first three varimax components (VM1, VM2, VM3) were not
nearly so well demarcated, with each producing a combination of
vertical and horizontal velocity.

Using the DRNN to interpret the physiological meaning of the
muscle synergies that were previously identified through princi-
pal component analysis is therefore an interesting addition to the
tools that may be used to study modularity in movement control.
One might say that the DRNN has captured to some degree the
physiological and mechanical relationship between the muscles
and the motor output. Of course, use of the DRNN cannot replace
a thorough biomechanical model of muscle, bones and joints if
one wishes to fully understand the mapping from EMG to move-
ment. But like principal component analysis and other forms of
factor analysis, the analysis by DRNN can be useful to identify
structure in the underlying relationship, with the added advan-
tage of linking muscle activation to actual movement and with
the possibility of identifying causal relationships resulting from
neural connections as well as from biomechanical constraints.
The DRNN could potentially be coupled with other exploratory
techniques, such as more recent efforts to identify modularity in
temporal as well as spatial domains (d’Avella et al., 2003; d’Avella
and Bizzi, 2005; Delis et al., 2014). Indeed, the “memory” ele-
ments of the DRNN have the potential to identify dynamical
constraints that determine not only which muscles to activate for
a given movement, but also when.

CONCLUSIONS
A comparison of a DRNN’s ability to generalize between move-
ment conditions combined with principal component analysis
suggests that tuning of movement-generation modules for move-
ment direction seems to be related primarily to the temporal
aspects of the movement whereas tuning to take into account joint
biomechanics and inter-subject difference seems to be spatial (in
the sense of how activity is spread between muscles). Analysis of
the network’s interpretation of synergies identified by principal
component analysis provides further insight into how movement-
generating modules are defined. This tool may therefore be used
to motivate future experiments on the question of how human
motor behavior may be organized in a modular fashion.
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