
EDITORIAL
published: 27 August 2014

doi: 10.3389/fncom.2014.00102

Correlated neuronal activity and its relationship to coding,
dynamics and network architecture
Robert Rosenbaum1,2*, Tatjana Tchumatchenko3 and Rubén Moreno-Bote4,5

1 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
2 Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
3 Department Theory of Neural Dynamics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
4 Research Unit, Parc Sanitari Sant Joan de Déu and Universitat de Barcelona, Barcelona, Spain
5 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
*Correspondence: robertr@pitt.edu

Edited and reviewed by:

Misha Tsodyks, Weizmann Institute of Science, Israel

Keywords: neuronal correlations, neural synchrony, neural coding, spike train analysis, neuronal networks, noise correlation

Correlated and synchronous activity in populations of neurons
has been observed in many brain regions and has been shown
to play a crucial role in cortical coding, attention, and network
dynamics (Singer and Gray, 1995; Salinas and Sejnowski, 2001).
However, we still lack a detailed knowledge of the origin and func-
tion, if any, of neuronal correlations. In this Research Topic, new
ideas about these long standing questions are put forward. One
group of studies in this Research Topic investigates the interaction
of neuronal correlations with cellular and circuit mechanisms
at the level of single neurons and cell pairs. Bolhasani et al.
(2013) study the interaction between direct synaptic coupling
between two neurons with correlated stochastic input to the neu-
rons. They find that excitatory synaptic coupling can alter the
transfer of pairwise correlations from current input to spike out-
put. Interestingly, there is an optimal value of synaptic coupling
strength for which the sensitivity of output correlations to input
correlations is maximized.

Bird and Richardson (2014) study the interaction between
long term plasticity, synaptic vesicle depletion at multiple release
sites and presynaptic spiking correlations. They find that there is
an optimal number of release sites for driving postsynaptic spik-
ing when synchrony is present in the presynaptic spike trains.
Schwalger and Lindner (2013) investigated correlations between
the interspike intervals of oscillator model neurons with adap-
tation. They reveal a fundamental connection between interval
correlations and the phase response curve of the neuron model.
They also show that when firing rates are high, negative interval
correlations cause long-timescale variability of a model neuron’s
activity to be small.

A second group of studies in this Research Topic investigates
neuronal correlations on the level of networks. The key questions
that these studies addressing are: (1) How are pairwise and higher
order correlations generated in networks and which of them are
important for a given network? and (2) How should we uncover
and interpret spike train correlations in a given dataset?

Four studies Zhou et al. (2013), Grytskyy et al. (2013), Barreiro
et al. (2014), and Jahnke et al. (2013) have focused on the first
question.

Zhou et al. (2013) investigated coupled pairs of neurons receiv-
ing temporally correlated input currents. They show that pairs

of neurons may be more synchronized if they have some degree
of heterogeneity in their intrinsic properties. Temporal correla-
tions in the noise that these neurons receive may also promote
synchrony.

Grytskyy et al. (2013) have addressed how recurrent neu-
ral networks can support the generation of pairwise correla-
tions. The authors put forward a unified framework for the
generation of pairwise correlations in recurrent networks and
hypothesize that many different single model neurons, when cou-
pled to a network, may generate the same pairwise correlation
structures. Interestingly, the authors could show the equivalence
of different single neuron models in a linear approximation
to a model with fluctuating continuous variables. This could
be a useful tool for assessing correlations across models and
experiments.

In a complementary study, Barreiro et al. (2014) have focused
on the emergence of pairwise and higher order correlations in
retina models. The authors find that maximum entropy pairwise
models capture surprisingly well the network spiking dynamics.
What is surprising about these results is that higher-order correla-
tions in this type of models can be constrained to be far lower than
the statistically possible limits and that their strength depends
more on the structure of the common input than on the synaptic
connectivity profile.

Jahnke et al. (2013) focused on spike patterns rather than
correlations and proposed a mechanism for precise spike time
pattern generation and replay in neural networks that lack strong
densely connected feed-forward structures. The authors put for-
ward the hypothesis that a non-linearity in synaptic summa-
tion rules may explain the lack of observed strong feed-forward
structures in live networks.

A team lead by Sonja Grün has tackled the second ques-
tion, how spike correlations may be detected in a given data set.
Torre et al. (2013) have extended our methodical toolbox and
proposed a new method for the extraction of statistically overrep-
resented spike patterns that may be the functionally significant
“cell assemblies” proposed by Abeles (1982). The challenge this
study has taken on is to extract from large number of simultane-
ously recorded neurons candidate assemblies that are systemati-
cally co-activated. This search algorithm may help to reveal how
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precise multi-neuron synchronization patterns that go beyond the
standard pairwise analysis may relate to behavior.

In an opinion article, Zanin and Papo (2013) also address
the second question. They suggest that one has to be cautious
about interpreting neuronal correlations between neurons or
brain areas, because typical measurements of effective connec-
tivity might lead to false positives even when the neurons or the
brain areas are indeed performing independent computations.

A third group of studies in this Research Topic addresses the
computational advantages of neuronal correlations in the brain.
Kilpatrick (2013) studied neuronal networks that sustain bump
attractors, a well-established model for the maintenance of spatial
cues in working memory tasks (Funahashi et al., 1989; Wimmer
et al., 2014). In these models, the position of the bump undergoes
a diffusion process, implying that the encoded memory degrades
as the time progresses. Notably, Kilpatrick found that connect-
ing several areas with similar bump attractors resulted in an
increased stability of the stored memories because the variability
within the areas could be averaged out. However, if the variability
across areas was correlated, the diffusion of the bump attrac-
tor underwent larger variability. This study, therefore, suggests
that correlated noise across neuronal areas can impoverish the
precision of the encoding of spatial cues in working memory task.

In another study, Dipoppa and Gutkin (2013) found that cor-
relations might have a positive role in working memory tasks
by a mechanism that they named “correlation-induced gating.”
These authors and others have previously showed that correla-
tions tend to destabilize the memory trace of an item stored in
working memory. This result might suggest that correlations are
deleterious for working memory, but Dipoppa and Gutkin argue
that this is not the case: correlations in working memory circuits
can be strongly beneficial to suppress the harmful interference of
distractors, irrelevant items that do not need to be stored in mem-
ory to solve the ongoing task. This study, therefore, shows in an
elegant way how changing correlations within specific neuronal
population can allow for flexible gating of sensory information
into working memory circuits.

Previous works have showed that synchronization between
neuronal ensembles might play an important role in the binding
of features belonging to a same object (Engel and Singer, 2001).
In a theoretical work presented in this Research Topic, Finger
and Koenig (2014) took an important step forward by show-
ing that binding of features in natural images can be mediated
by phase synchronization in a network of neural oscillators. The
authors also found that the network, trained with natural images,
developed small-world properties, and even allowed binding of
features over long distances. This study strongly supports the idea
that neuronal correlations in the brain might play an important
computational role.

In a study where the LFP and single-cell activity were recorded
in the hippocampal formation of epileptic patients, Alvarado-
Rojas et al. (2013) found that activity of a sizable fraction of
neurons preceded interictal epileptiform discharges, as measured
by LFP activity.

These studies give conspicuous examples for the ambivalent
nature of neuronal correlations: in some conditions correlations
might be a signature of dynamic instability of the network, but in

other conditions correlations might be used to perform complex
and flexible computations, such as binding or information gat-
ing. Although these works have provided new clues about the role
of neuronal correlations, there are yet many unsolved questions,
such as how neuronal correlations are generated and propagated
(Moreno et al., 2002; Moreno-Bote and Parga, 2006; de la Rocha
et al., 2007; Ostojic et al., 2009; Renart et al., 2010; Rosenbaum
et al., 2010, 2011; Tchumatchenko et al., 2010; Cohen and Kohn,
2011; Tchumatchenko and Wolf, 2011; Helias et al., 2014) and
how correlations are shaped by limited information in sensory
inputs and by neuronal computations. It is clear that the study of
the impact of neuronal correlations on information transmission
and brain computation, and vice versa, is still an arena for exciting
new discoveries.
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