
ORIGINAL RESEARCH ARTICLE
published: 18 September 2014

doi: 10.3389/fncom.2014.00104

Self-consistent determination of the spike-train power
spectrum in a neural network with sparse connectivity
Benjamin Dummer1,2, Stefan Wieland1,2 and Benjamin Lindner1,2*

1 Theory of Complex Systems and Neurophysics, Bernstein Center for Computational Neuroscience, Berlin, Germany
2 Department of Physics, Humboldt Universität zu Berlin, Berlin, Germany

Edited by:

Joshua H. Goldwyn, New York
University, USA

Reviewed by:

Moritz Helias, Research Center
Jülich, Germany
Yu Hu, University of Washington,
USA

*Correspondence:

Benjamin Lindner, Department of
Physics, Humboldt Universität zu
Berlin, Philippstr. 13, Haus 2,
10115 Berlin, Germany
e-mail: benjamin.lindner@
physik.hu-berlin.de

A major source of random variability in cortical networks is the quasi-random arrival of
presynaptic action potentials from many other cells. In network studies as well as in
the study of the response properties of single cells embedded in a network, synaptic
background input is often approximated by Poissonian spike trains. However, the output
statistics of the cells is in most cases far from being Poisson. This is inconsistent
with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a
recurrent network. Here we tackle this problem for the popular class of integrate-and-fire
neurons and study a self-consistent statistics of input and output spectra of neural spike
trains. Instead of actually using a large network, we use an iterative scheme, in which
we simulate a single neuron over several generations. In each of these generations,
the neuron is stimulated with surrogate stochastic input that has a similar statistics as
the output of the previous generation. For the surrogate input, we employ two distinct
approximations: (i) a superposition of renewal spike trains with the same interspike interval
density as observed in the previous generation and (ii) a Gaussian current with a power
spectrum proportional to that observed in the previous generation. For input parameters
that correspond to balanced input in the network, both the renewal and the Gaussian
iteration procedure converge quickly and yield comparable results for the self-consistent
spike-train power spectrum. We compare our results to large-scale simulations of a
random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and
show that in the asynchronous regime close to a state of balanced synaptic input from the
network, our iterative schemes provide an excellent approximations to the autocorrelation
of spike trains in the recurrent network.

Keywords: neural noise, recurrent neural networks, non-Poissonian spiking, spike-train statistics, spike-train
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1. INTRODUCTION
Neurons in different parts of the nervous system respond to
repeated presentation of the same stimulus with considerable
trial-to-trial variability (van Steveninck et al., 1997). There are
several true noise sources contributing to this variability: fluc-
tuations of stochastic ion channels (Schneidman et al., 1998;
White et al., 2000), unreliability of synaptic connections such as
transmission failure and spontaneous release (Branco and Staras,
2009), and Johnson noise (Manwani and Koch, 1999). These are
true noise sources in the sense that they result from the finite
number of stochastic elements in the system, be it ionic channels,
transmitter molecules, or charge carriers. In cases where synaptic
input is absent, e.g., in the neural periphery, the statistics of spon-
taneous spiking is mainly shaped by channel noise (see e.g., Fisch
et al., 2012 for an example); Johnson noise seems to be negligible
in many cases (Manwani and Koch, 1999).

Besides these true noise sources there is another source of vari-
ability that is most likely dominating for neurons embedded in
a network: the quasi-random input from other cells (Destexhe
et al., 2003). In contrast to the aforementioned true noise sources,

it is not per se clear what the input from other cells constitutes:
mainly irregular uncontrollable fluctuations (London et al., 2010)
or signals, possibly in a highly processed way (Stein et al., 2005;
Droste et al., 2013; Masquelier, 2013). No matter how these fluc-
tuations are interpreted, however, it appears reasonable that one
may describe them in a stochastic framework and that the statis-
tics of this irregular input is relevant for information transmission
and processing in neural networks.

On the theoretical side, unstructured networks with random
connections have been studied for a long time (Abbott and van
Vreeswijk, 1993; Gerstner, 1995; van Vreeswijk and Sompolinsky,
1996; Brunel and Hakim, 1999; Fusi and Mattia, 1999; Brunel,
2000; Latham et al., 2000; Hansel and Mato, 2003; Leibold, 2004;
Burkitt, 2006; Câteau and Reyes, 2006; Brunel and Hakim, 2008;
Hennequin et al., 2012; Grytskyy et al., 2013; Ostojic, 2014).
Besides various types of oscillatory and/or synchronous behavior,
these networks typically also show asynchronous irregular firing
if both excitatory and inhibitory connections are included, and
excitation and inhibition in the network balance each other (van
Vreeswijk and Sompolinsky, 1996). The irregular firing patterns
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observed in this asynchronous state resemble those of some corti-
cal neurons seen in experiments (Bair et al., 1994; Compte et al.,
2003).

An advanced mathematical treatment of stochastic activity in
unstructured networks is based on the Fokker-Planck equation.
The main assumption for this approach is that the input to the
single cell can be described by white Gaussian noise, the mean
and noise intensity of which is self-consistently determined by
the firing rates of the neurons in the network. Put differently,
the mean value and fluctuation intensity of the input spike trains
reflect the statistics of the output and the connectivity of the net-
work, where the latter is determined by the number and nature
of the connections as well as the synaptic strengths. The Fokker-
Planck approach has allowed for many insights into the transition
between various states according to the emergence of oscillations
and the degree of synchrony (Brunel and Hakim, 1999; Brunel,
2000; Brunel and Hansel, 2006). It has been recently extended
to the study of strongly heterogeneous network states (Ostojic,
2014).

As mentioned above, a necessary approximation when using
the Fokker-Planck approach in its simplest version is the assump-
tion that the stimulus seen by a single neuron in the network
is white Gaussian noise. This is usually justified by the dif-
fusion approximation for a superposition of weakly correlated
Poissonian spike trains. However, the spike trains generated by
single neurons in the recurrent network are rarely Poissonian, i.e.,
they display a temporal correlation similar to the experimentally
observed ones (Bair et al., 1994) or, equivalently, a non-flat spike-
train power spectrum. It is simple to show that the superposition
of independent non-Poissonian spike trains inherits the correla-
tions seen in the single spike train (Lindner, 2006). Furthermore,
the non-Poissonian nature of spike trains can have severe con-
sequences, e.g., for the output spike-train statistics (Ly and
Tranchina, 2009; Schwalger et al., submitted) or for the propaga-
tion of signals in feedforward networks (Câteau and Reyes, 2006).

One way to deal with temporal correlations in the input is to
extend the phase space of the Fokker-Planck equation by addi-
tional variables that can account for colored noise in the input.
This has been done by Câteau and Reyes (2006) for the case
of green noise (high-pass filtered noise) that arises by a presy-
naptic refractory period and it can be generalized and utilized
to relate output spike-train statistics to temporal input statistics
for a simple perfect integrate-and-fire neuron model (Schwalger
et al., submitted). Another approach assumes a high degree of
intrinsic or external uncorrelated noise that allows for a contin-
uous rate-equation-like description of the activity in the neural
network (see e.g., studies by Doiron et al., 2004; Lindner et al.,
2005b; Pernice et al., 2011; Trousdale et al., 2012 for networks
of integrate-and-fire neurons and the recent review by Grytskyy
et al., 2013 for other network types). In this essentially linear
description, a connection between input and output correlation
matrix is easily derived but the main assumption of the approach,
the linearization ansatz, is difficult to justify in general.

If the stochasticity of neural firing arises mainly from the net-
work input, the following self-consistency problem emerges (cf.
Figure 1). For any neuron randomly picked from a homogeneous
recurrent network, the second-order statistics of the input spike

FIGURE 1 | Basic problem addressed in this paper. Excitatory (red) and
inhibitory (blue) neurons interacting in a recurrent network (top) fire spike
trains with a temporal correlation that can be characterized by the
spike-train power spectrum. We focus on a homogeneous network, in the
sense that excitatory and inhibitory neurons share the same firing rate and
power spectrum. At the single-cell level (magnification at the bottom), a
neuron is driven by a superposition of spike trains, the power spectra of
which should be equal to the power spectrum of the neuron itself. This
poses a self-consistency problem that we attempt to solve numerically in
this paper in different approximations.

trains can be characterized by their input power spectra shown in
the magnification Figure 1 on the left. These spectra are in general
not as flat as that of a (temporally uncorrelated) Poisson process.
They should match the statistics of the neuron itself, in Figure 1
represented again by the same non-flat power spectrum shown on
the right. There are obvious generalizations possible if we think
of different types of neural subpopulations of neurons sharing a
common spike-train statistics (e.g., firing rates and power spec-
tra), which all must be consistent with each other depending
on the topology of the network. Even in the simple homoge-
neous version of the problem, the question has some interest on
its own: What is the temporal correlation of a shot noise that
would evoke a neural output with the same correlation statistics?
Mathematically, it is not even clear whether such a solution exist
and if so whether it is unique.

Lerchner et al. (2006) suggested a simple numerical procedure
to determine a self-consistent autocorrelation statistics of spike
trains in a sparse network using a Gaussian approximation. They
focused on the case of network input that is balanced between
excitation and inhibition and studied the dependence of the Fano
factor on synaptic strength.

In this paper, we use similar self-consistent numerical pro-
cedures to determine the temporal correlations of single neu-
ron activity in a sparse network of excitatory and inhibitory
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neurons in the asynchronous state. We employ exclusively the
leaky integrate-and-fire (LIF) model (Lapicque, 1907; Gerstner
and Kistler, 2002), that has been a standard choice in many studies
of recurrent networks.

We use an iterative numerical scheme to determine the self-
consistent second-order statistics of spike trains in a recurrent
neural network. In the nth step (henceforth referred to as the
nth generation) of this procedure, we stimulate an LIF neuron in
repeated trials with noisy input, the statistics of which is deter-
mined from the spike statistics of the previous generation. In
order to generate the input, we employ two approximations. In
one version, we use the ISI density of the LIF neuron to gener-
ate driving renewal spike trains for the next generation (renewal
approximation). In an alternative version (equivalent to the orig-
inal idea by Lerchner et al., 2006), we generate a Gaussian process
that has the same power spectrum as the LIF spike train to gener-
ate the input for the next generation (Gaussian approximation).

For a parameter regime of balanced excitatory and inhibitory
input from the previous generation, the spike-train power spec-
trum of the LIF neuron converges quickly over a small number of
generations to a stationary spectrum. If the inhibitory component
is too strong, however, our iterative scheme does not converge
but displays strong oscillations in the firing rate as a function
of the number of generations. As we will show, this instability
can be understood already within the framework of the diffusion
approximation.

We furthermore present results of extensive simulations for
a sparse recurrent homogeneous network of excitatory and
inhibitory LIF neurons, using parameters similar to the classical
study by Brunel (2000). In the regime where our approxima-
tion scheme converges, we compare the power spectra to results
from the renewal and Gaussian approximations. We find close
agreement of power spectra for parameters of the Brunel setup
for which the activity of neurons is asynchronous and the total
input coming from the network is almost balanced. We conclude
by discussing the implications of our results for a more faithful
description of neural noise emerging in recurrent networks.

2. MODELS AND METHODS
2.1. MODEL OF THE SINGLE NEURON AND SPIKE-TRAIN STATISTICS
We consider a leaky integrate-and-fire model receiving an input
current I(t) (here multiplied by the membrane resistance R) that
obeys the following dynamics

τ v̇ = −v + RI(t). (1)

where the membrane time constant is chosen τ = 20 ms through-
out this paper. Whenever the voltage reaches the threshold of
vT = 20 mV, a spike time ti is registered, and after an absolute
refractory period of τref = 2 ms the voltage is reset to a value vR,
for which we use two different values (0 and 10 mV, see results).
The current I(t) differs according to whether we consider a recur-
rent network or our self-consistent approximation schemes. In
all cases considered, we numerically integrate Equation 1 with a
simple Euler scheme using a time step of �t = 0.1 ms. Please
note that in all models studied in this paper, there is no Gaussian
white noise, which would require a smaller time step.

The spike times defined by threshold crossings can be used to
determine the statistics of the interspike interval (ISI) Ii = ti −
ti − 1. The statistics inspected in this paper are (i) the mean inter-
val 〈Ii〉 (〈·〉 indicates an ensemble average ), which is related to the
firing rate by ν = 1/〈Ii〉; (ii) the coefficient of variation (CV)

CV =
√〈(Ii − 〈Ii〉)2〉

〈Ii〉 , (2)

and (iii) the serial correlation coefficient among intervals that are
lagged by an integer k:

ρk = 〈(Ii − 〈Ii〉)(Ii + k − 〈Ii + k〉)〉
〈(Ii − 〈Ii〉)2〉 . (3)

The neural spike train is represented by a sum of delta functions
at the spike times

x(t) =
∑

i

δ(t − ti). (4)

The spike-train power spectrum is computed from the Fourier
transform of the spike train by

S(f ) = 〈x̃x̃∗〉
T

, (5)

where the Fourier transform for the time window is defined by

x̃(f ) =
∫ T

0
dte2π iftx(t). (6)

For the recurrent network, we assume that all neurons are statisti-
cally equivalent and that we can both average over realizations of
initial conditions in the membrane voltage of the single cell and
over different neurons when computing power spectra according
to Equation 5 as well as all other spike-train measures employed
in this work.

2.2. RECURRENT-NETWORK MODEL
We consider a connected random network of NE excitatory
and NI = γ NE inhibitory LIF neurons as studied by Brunel
(2000) in his model A. As the only topological constraint, exci-
tatory and inhibitory neurons are assigned the same number
CE and CI = γ CE of presynaptic excitatory and inhibitory neu-
rons, respectively. Both neuron types follow the same single-cell
dynamics; all parameter values of the LIF model are identical.
This setup can still be regarded as homogeneous in the sense
that in a large and sparse network power spectra of excitatory
and inhibitory neurons should coincide, as verified numeri-
cally for all used parameter values. Spectra in recurrent net-
works presented here are averaged over 103 randomly picked
neurons.

In the network simulations, the voltage variables v	(t) with
	 = 1, 2, . . . , NE(1 + γ ) all obey the same dynamics Equation
1 and fire-and-reset rule as explained above. The input current
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I	(t) = I	,loc(t) + I	,ext(t) to the 	th neuron in Equation 1
consists of a local part

RI	,loc(t) = τ

CE∑
j = 1

J
∑

i

δ(t − t	,i,j − D)

−τ

CI∑
j = 1

gJ
∑

i

δ(t − t	,i,j − D), (7)

comprising the input current from CE presynaptic excitatory
and CI inhibitory neurons in the network. Here g is the relative
strength of inhibitory amplitudes. The time instance t	,i,j denotes
the ith spiking time of the jth presynaptic neuron of the 	th
postsynaptic cell. The transmission delay is denoted by D. For
the external input, we either consider a Poissonian background
noise

RI	,ext(t) = τ

CE∑
j = 1

J
∑

i

δ(t − t	,i,j) , (8)

from an external population of excitatory neurons (to be consis-
tent with Brunel, 2000) or a constant input current equal to the
mean of the Poisson input:

RIext(t) = CEJνextτ . (9)

We will use the constant external input current Equation 9 if
not stated otherwise, in order to focus on noise (stochasticity)
that is generated solely by the internal dynamics of the network
itself.

For the standard network parameters, we follow (Brunel,
2000) by using γ = 0.25, CE = 103, D = 1.5 ms, J = 0.1 mV, but
choose a larger network size of NE = 105 (Brunel, 2000 used
NE = 104). Note that our value of γ implies that the input from
the recurrent network is balanced if g = 4. Furthermore, we
choose the constant external input such that RIext(t) = 30 mV,
which corresponds in Brunel (2000) to νext/νthr = 1.5, (νthr is
the frequency of the external Poisson input needed to set the
mean membrane potential to vT in the absence of local synaptic
input). With this choice of parameters, the network is in the asyn-
chronous firing regime for the range of values of g considered in
our study (g ∈ [3.5, 5]).

2.3. SELF-CONSISTENT DETERMINATION OF SPECTRAL STATISTICS
The numerical procedure to determine the self-consistent spec-
tral statistics uses essentially only a single model neuron in a
number of repeated simulations. First, the neuron is stimulated
by a combination of constant input and a Poisson process with
given rate. A sufficient number of trials is carried out to reliably
determine the output statistics of the neuron. This constitutes the
output statistics of the first generation (the Poissonian drive can
be regarded as the zeroth generation). In the next step we generate
surrogate input to the neuron of the second generation according
to one of the two approximations explained below. Again this is
repeated for as many trials as required to obtain a reliable output

statistics. The latter is used once more to generate surrogate data
for the third generation and the whole procedure is repeated until
the spike-train statistics converges, i.e., until the power spectrum
of the nth generation does not differ significantly anymore from
that of the (n − 1)th generation.

Our procedure is completely equivalent to simulating a feed-
forward network, in which layers correspond to the generations.
There are two peculiarities compared to the usual setup of feed-
forward networks. First, in the way we approximate the input,
all spatial correlations within a layer are neglected. Secondly, the
number of layers is solely determined by the convergence of the
spectra.

Because it is difficult to generate surrogate data with exactly
the same statistics as the output of the previous generation, we
employ two different approximations for the input, which are
explained in the following subsections.

2.3.1. Gaussian approximation for the input of the next generation
As an extension of the diffusion approximation the local spike-
train input is approximated by a Gaussian noise η(t) ≈ RIloc(t),
that is, however, not uncorrelated (white) as it would be in the
diffusion approximation. The mean value is given by the con-
stant current 〈η〉 = CEJ(1 − gγ )ντ , which represents the aver-
age of the overall local input current. The power spectrum
of the Gaussian noise equals the one of the summed spike
trains of all presynaptic neurons. With the assumption of inde-
pendent neurons this yields Sη(f ) = (CEJ2 + CIg2J2)τ 2Sx(f ),
where Sx(f ) is the spike-train power spectrum of the previous
generation.

The approximation only requires to measure the power spec-
trum in each generation. Surrogate Gaussian input for the next
generation that has this power spectrum can then be generated
with standard algorithms (Billah and Shinozuka, 1990). Briefly,
to generate a Gaussian time series η(tj) of N steps of size �t with
a prescribed power spectrum Sη(f ), we draw in Fourier space in
each frequency bin two independent Gaussian random numbers
η̃r(fk), η̃i(fk) with

〈η̃m(fk)〉 = 0, 〈η̃m(fk)η̃n(f	)〉 = δm,nδk,	

2�f
Sη(fk), m, n ∈ {r, i} (10)

where fk and �f = (N�t)−1 are center frequency and width of
the k-th bin, respectively. By construction, the complex-valued
sequence η̃(fk) = η̃r(fk) + iη̃i(fk) is uncorrelated between fre-
quency bins and has a variance proportional to the desired power
spectrum. Transformation into the time domain (e.g., by fast
Fourier transform) then yields the desired time series. Note that
the Gaussian approximation assumes a high overall firing rate
and a small synaptic efficacy (weight) and is expected to fail if one
or only a few input spikes can already elicit an output spike.

The iterative procedure put forward by Lerchner et al. (2006) is
similar in nature, drawing surrogate input statistics straight from
the previous generation’s autocorrelation function. As—unlike
there—we consider uniform (i) firing thresholds and (ii) num-
bers of presynaptic excitary/inhibitory neurons, our LIF dynamics
do not yield firing-rate heterogeneities in the network that would
need to be accounted for. This in turn considerably simplifies the
procedure and speeds up its numerical implementation.
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2.3.2. Renewal approximation for the input of the next generation
For this approximation, we also measure the interspike interval
histogram along with the spike-train power spectrum. This ISI
histogram can be used to generate surrogate spike-train input
for the next generation in form of renewal processes that have
by construction the same interspike interval histogram. To this
end, for each of the CE excitatory and CI inhibitory input spike
trains, we assume an initial spike at t = −T0 and draw in a large
time window [−T0, T] a sufficient number of interspike intervals
Ii such that

∑
Ii > T + T0. Partial sums of one, two, three etc.

intervals then yield the first, second, etc spike time of the respec-
tive input renewal spike train. Although the intervals of different
input spike trains are independent, all CE + CI renewal processes
are initially synchronized by the common initial spike at t = −T0.
To achieve a stationary asynchronous ensemble of renewal spike
trains (Cox, 1962) , we use only the spike trains in the subin-
terval [0, T]. The necessary equilibration period T0 can be esti-
mated as T0 ≈ (νC2

V )−1 (for CV < 1 as is the typical case in this
paper).

As a smart alternative, we may start at t = 0 and use as the first
spike time t1 a sample of the so-called forward recurrence (FR)
time, the probability density of which can be computed from the
ISI density ρ(t) as follows (Cox, 1962)

ρFR(t1) = ν

∫ ∞

t1

dt′ρ(t′). (11)

Thus, if we generate the first spike time t1 from ρFR(t1) and all
the following ti with i = 2, 3, . . . from drawing intervals accord-
ing to ρ(ti − ti−1), we will also generate an equilibrium renewal
spike train, avoiding the simulation period [−T0, 0] in the first
method. We tested that both methods to generate an equilib-
rium renewal point process yield similar numerical results in our
procedure.

Superposition of the CE excitatory renewal spike trains with
amplitude J and CI spike trains with amplitude −gJ in the time
window of [0, T] are used to stimulate the LIF model in the nth
generation. Note that the superposition of the renewal spike trains
is in general not a renewal process (Lindner, 2006) and thus there
is no simple way to generate surrogate data for the superposition
of the renewal spike trains directly instead of generating the single
processes and summing them up. Although for special renewal
processes (e.g., Gamma processes), efficient algorithms for the
generation of such sums exists (Deger et al., 2012), our prob-
lem does not allow to specify the nature of the point process in
advance. Hence, in particular for large CE, CI, the generation of
renewal input becomes numerically inefficient.

We expect that the renewal approximation will work well if
ISI correlations in the output spike train can be neglected. In
contrast to the Gaussian approximation explained above there
are no limitations regarding the spike amplitude and input rates.
However, it is important to keep in mind that the renewal
approximation cannot exactly yield what we are aiming at: a
self-consistent second-order statistics because the generation of
the surrogate data for the input is based on the ISI statistics
and not on the second-order spike-train statistics. Only if also
the output spike train is a renewal process, there is a unique

relationship between power spectrum and ISI probability density
(Stratonovich, 1967):

S(f ) = ν
1 − |ρ̃(f )|2
|1 − ρ̃(f )|2 , (12)

where ρ̃(f ) is the Fourier transform of the ISI density ρ(I). By
construction, Equation 12 yields the power spectrum for each of
the surrogate input spike trains and is also proportional to the
total sum of all independent input spike trains (Lindner, 2006).
However, the power spectrum of the output spike train (shar-
ing the same ISI density ρ(I)) does not obey Equation 12 unless
all (linear but also non-linear) correlations among ISIs can be
neglected. Briefly, output spectrum equals input spectrum only
if the output spike train is also a renewal process. For finite
ISI correlations, we can expect a discrepancy between the power
spectrum of the surrogate input (superposition of renewal pro-
cesses) and the power spectrum of the output spike train (which
is in general non-renewal), even if our scheme has converged
to a stationary output spike train. In contrast to the Gaussian
approximation, it is more difficult to estimate when the renewal
approximation will fail because it does depend on a property of
the output (interval correlations) and not on the input (e.g., the
size of amplitudes as for the Gaussian approximation).

2.3.3. Convergence and uniqueness of the algorithms
In general we consider Poisson spike trains as the input for the
first generation. This input has only one parameter, the firing
rate of the Poisson process. To see the difference between what
we would obtain in the diffusion approximation, we use the
firing rate determined in the network simulations below. The
firing statistics of the first generation is then close to what we
would expect to see in the diffusion approximation. Conveniently,
differences between the converged power spectrum and the
power spectrum of the first generation correspond to differences
between the actual and the approximated output spectra in a
theory based on the Poisson assumption.

We have tested in several cases that as long the procedure is
stable (see below), the initial statistics does not matter and con-
verged spectra are the same whether we start with asynchronous
periodic input (CE + CI completely periodic spike trains with
randomized initial spike times) or with Poisson input with a fir-
ing rate that differs significantly from the asymptotic value. So as
far as numerical evidence in a limited parameter regime can tell,
the procedure (if stable) converges to a unique spike-train power
spectrum power spectrum.

One simple condition for the convergence of power spectra is
that an even more essential statistics, the firing rate, converges.
As our scheme can be regarded as a map, for which the firing
statistics of the (n − 1)th generation determines that of the nth
generation, we have to require that this map possesses a stable
fixed point. Because the diffusion approximation captures this
first-order statistics of the spike train fairly well (Brunel, 2000),
we can employ the rate formula to estimate the map between the
input rate (from the (n − 1)th generation) to the output rate (that
of the nth generation by the well-known formula for the rate of a
white-noise driven LIF neuron (Brunel, 2000)
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νout =
⎛
⎝τref + τ

√
π

∫ μ(νin) − vR√
2D(νin)

μ(νin) − vT√
2D(νin)

dze z 2
erfc(z)

⎞
⎠

−1

. (13)

Here the constant input

μ(νin) = 〈RI(t)〉 = CEJτ [νext + (1 − γ g)νin] (14)

and the intensity of the white Gaussian noise

D(νin) = CEJ2τ (1 + γ g2)νin

2
(15)

both depend on the input rate νin (note that we assumed just a
constant external input, which does not contribute to the noise).
A stable fixed point of the map should be characterized by the
equality of input and output rates νout(νin) = νin, which become
apparent as intersection points of the graph νout(νin) with the
diagonal. Additionally, we have to require at this intersection
point a slope |dνout/dνin| < 1 to ensure that small perturbations
in the firing rate decay.

3. RESULTS
3.1. SELF-CONSISTENT SPECTRUM USING TWO DIFFERENT ITERATIVE

SCHEMES
We begin with an example for which our procedure leads to a
stable stationary output spike-train statistics (in terms of firing
rate and spike-train power spectrum) and where both approxi-
mations yield very similar spectra. In Figure 2 we show the power
spectra of the selected generations using the renewal approxima-
tion in A, the Gaussian approximation in B, and compare the
asymptotic spectra of both models in panel C. The number of
presynaptic neurons corresponds here to the standard values of
CE = 1000, CI = 250 used by Brunel (2000), while the strength
of inhibition g = 4 is chosen such that the network input is
balanced.

In the first generation the neuron is stimulated by a Poisson
spike train with a self-consistent firing rate1 according to the sta-
ble fixed point of Equation 13. The power spectrum of the first
generation (solid lines in Figure 2) gives us what we would expect
in the Poisson approximation of neural background activity: a
spectrum with reduced power at low frequency, indicative of a
stochastic process that one may refer to as a “green noise” (Guz
and Sviridov, 1998). This spectrum agrees remarkably well with
the analytical expression of the power spectrum of a white-noise
driven LIF (Lindner et al., 2002) with the effective base current
and noise intensity given by Equation (14) and (15), respectively
(not shown).

On the contrary, the self-consistent power spectrum of the
15th generation is a narrow-band noise with strong peaks around
frequencies equal to the firing rate or multiples of it. In the
self-consistent picture, the neuron of the 15th generation is not

1The resulting power spectrum of this first generation can be considered as the
asymptotic spectrum resulting from an iterative scheme, in which we approx-
imate the input as Poissonian spike trains that are solely determined by the
output rate of the previous generation.

FIGURE 2 | Power spectra resulting from the self-consistent procedure.

For balanced input from the previous generation (g = 4) and a large
presynaptic environment (CE = 103, CI = 250) both the renewal
approximation (A) and the Gaussian approximation (B) have converged to
unique stationary spectra, which are compared in (C). In the first
generation, the neuron is stimulated by a constant input 〈RI(t)〉 = 30 mV
and CE + CI Poissonian spike trains of rate νin = 71 Hz [solution for the
self-consistent firing rate Equation (13)] with amplitude J = 0.1 mV
(excitatory synapses) and −gJ = −0.4 mV (inhibitory synapses). Note the
rapid convergence of spectra for both approximations: the spectrum of the
fifth generation differs only slightly from the result for the 15th generation.

driven by a spectrally flat noise but by a narrow-band noise with
power around its firing rate that apparently leads to a much more
regular spike train than an uncorrelated noise (the Poisson spike
train) does.

In Figures 3A,B we show the rate and the CV as functions of
the generation, respectively. We use Poisson processes to generate
the input to the first generation, once with a firing rate close to
the asymptotic one (νin = 71 Hz), once with a substantially lower
rate (νin = 15 Hz). Apparently, the converged statistics after 15
generations do not depend on the initial value of the rate. While
the firing rate does not change much over the generations, the CV
drops from a value of 0.5–0.2. Hence the diffusion approximation
(equivalent to the statistics of the first generation) leads to a reli-
able estimate of the self-consistent value of the firing rate but not
of the CV. This discrepancy was already evident by looking at the
power spectra at low frequency, which is largely determined by
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the CV according to S(0) = νC2
V (true only for a renewal pro-

cess). Figure 3F illustrates the reason for the rapid convergence of
our procedure over the generations in terms of the map for the
firing rate Equation 13. The shallow dependence of the firing rate
curve νout(νin) around the intersection point with the diagonal
shown in Figure 3F implies that any initial perturbation from the
fixed point (indicated by the magenta spot) approaches the fixed
point monotonically over only a few generations (blue arrows).

Interestingly, although renewal and Gaussian approximations
yield similar results for rate, CV, and power spectra, they differ
in the stationary value of the first serial correlation coefficient ρ1,
displayed in Figure 3C. This value is positive for the considered
parameter set but in the renewal scheme we obtain only half the
value of the correlation coefficient, which is observed when we
use the Gaussian approximation and which is also close to the
value observed in network simulations.

The map for the firing rate can also be used to understand
why our procedure does not work for very strong inhibition. This
case is illustrated in Figures 3D,E for g = 5, for which we observe
oscillations in rate and CV that grow in amplitude over the gen-
erations (no instabilities are observed in the recurrent network
for these parameters). Here the map for the firing rate still has

FIGURE 3 | Evolution of ISI statistics over generations in stable

(A,B,C,F) and unstable (D,E,G) regimes. Starting with Poissonian spike
trains in the zeroth generation, the nth generation of the LIF neuron (n ≥ 1)
receives noise input according to the statistics of the previous generation.
Parameters as in Figure 2 yield the same stable rate (A) and CV (B)

irrespective of whether the initial Poisson stimulation (zeroth generation) of
the first generation (LIF neuron) is 15 or 71 Hz. The first serial correlation
coefficient is positive for both procedures but differs in magnitude (C).
Increasing the relative strength of inhibition to g = 5, our scheme is not
stable anymore and both rate (D) and CV (E) oscillate as functions of the
generation. Stability can be discussed in terms of the firing rate Equation 13
shown in (F,G) vs. input rate (black line) together with the identity line. In
the regime of (A–C), the map from input rate to output rate (F) has a stable
fixed point and small perturbations from it (magenta point) relax back into
the fixed point (blue arrows). In the regime of (D–E), small perturbations are
amplified (G), yielding an unstable fixed point.

a fixed point but it is an unstable one, i.e., |dνout(νin)/dνin| > 1
at the fixed point and small perturbations from the fixed point
grow in amplitude (cf. Figure 3G). Interestingly, the stability also
depends on the size of the presynaptic environment, even if we fix
the mean input from the previous generation because the number
of synapses also determine the effective noise level Equation 15.
For instance, a smaller presynaptic environment with g = 5, CI =
100, CI = 25 and J = 1 mV (leading to the same mean input as
our standard parameter), the slope of the firing rate curve is still
negative but its absolute value is smaller than one. Hence, here our
procedure still yields a self-consistent spike-train power spectrum
in this case (not shown).

For the parameter set in Figure 2 both approximations yielded
the same power spectrum because their respective assumptions,
i.e., small amplitudes J for the Gaussian approximation and inde-
pendence of ISIs for the renewal approximation, were sufficiently
closely matched. Below in Section 3.3 we will show two examples,
for which the two approximations result in visibly distinct power
spectra because one of their respective assumptions is not obeyed.

3.2. SPECTRA IN RECURRENT NETWORKS
We would like to compare our results for self-consistent spectra
to those measured in a recurrent neural network. Here we use
the model by Brunel (2000) (more specifically, Brunel’s model A)
within the parameter regime of asynchronous activity. Because
we want to focus on the sparse limit of the model, in which input
correlations can be neglected, we choose as a standard network
size NE(1 + γ ) = 1.25 · 105 (exceeding the one used by Brunel,
2000 by a factor of 10). We clarify to what extend spike-train
power spectra in the recurrent network depend on the transmis-
sion delay, the network size, and whether they are robust with
respect to external noise.

In the approximation schemes introduced above, there is no
synaptic delay D: the statistics of the (n − 1)th generation are
measured during an ideally very large time interval, and station-
ary stochastic input with similar statistics is used to stimulate the
neuron model in the nth generation; introducing here a delay
would have no consequences for the spike statistics of the nth gen-
eration at all. In contrast, in the recurrent network, degree and
character of synchrony in firing patterns depend strongly on D
(Brunel, 2000).

It turns out, however, that for a range of synaptic delays
in the asynchronous firing regime, single-neuron statistics are

FIGURE 4 | Delay dependence of power spectra in recurrent networks.

Asynchronous regime. Parameters: g = 4.5, and vR = 10 mV.

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 104 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Dummer et al. Self-consistent spectra in spiking networks

independent of the particular choice of D. As shown in Figure 4,
power spectra for delays that differ by a factor of 6 are very close
to each other. Thus, in the iterative procedure, a self-consistent
determination of the power spectrum in the asynchronous regime
is possible without incorporating a delay D.

Apart from the synaptic delay, also the network size does not
explicitly appear as a model parameter in our iterative procedures.
However, implicitly we have assumed in both approximations that
cross-correlations can be neglected, which in the recurrent net-
work can be achieved (if at all) by a large network size. Hence, size
is a concern and we have to check, how spike-train power spectra
change as we change the system size at fixed number of input neu-
rons. This is illustrated in Figure 5, where the smallest system size
NE = 2000 implies with CE + CI = 1250 a non-negligible over-
lap of input neurons for any two neurons and thus significant
cross-correlations among the neurons. However, for network sizes
NE = 104 (as used by Brunel, 2000) and NE = 105, the spike train
power spectra look very similar, justifying the choice of NE,I used
in the following.

Two more features of the system are inspected in Figure 6:
the robustness to external input and the dependence of spec-
tra on the spike amplitude J. With respect to the latter, we use,
besides our standard choice J = 0.1 mV with CE = 1000, CI =
250, also a larger amplitude of J = 1 mV with a reduced num-
ber of presynaptic neurons (CE = 100, CI = 25) such that the
mean input from the network remains the same. Note that our
change of parameters is different to that considered by Ostojic
(2014), because we reduce the number of synapses when increas-
ing the amplitude, avoiding in this way strong fluctuations in
the population rate as seen by Ostojic (2014). Increasing the
amplitude in our setting has the main effect of increasing the
noisy input for the single neuron, which leads in our setup to a
bursting behavior that becomes apparent by increased power at
low frequency. Replacing the constant input current μ with an
external Poissonian stimulus of the same mean generally does
not alter the firing regime (Brunel, 2000) because this noise is
only small compared to that coming from the recurrent network.
In fact, for J = 1 mV the spectra with external Poisson spikes
(dashed magenta line in Figure 6) and with a constant input of
the same mean (blue line) do not differ at all. The effect of such
an external noise is more visible for our standard choice: peaks
in the power spectrum (dashed orange line) become wider and

FIGURE 5 | System-size dependence of power spectra in recurrent

networks. Asynchronous regime for g = 4.5, and vR = 10 mV.

the power at low frequency is increased compared to the spec-
trum with a constant external input current (red line). These are
expected effects of external white noise on the power spectrum
of a spike generator in the mean-driven regime (see e.g., Lindner
et al., 2002).

After we have seen that power spectra in the recurrent net-
work neither depend on the specific value of delays (as long as
the existence of the asynchronous regime is ensured) nor on net-
work size (as long as it is large enough), and that they do not
change drastically with additional external noise, we turn now
to the comparison of network spectra with the spectra from the
self-consistent procedure.

3.3. COMPARISON OF SPECTRA IN RECURRENT NETWORKS AND THE
SELF-CONSISTENT SOLUTION

Besides the comparison to the results of our iterative scheme,
we use this section also to additionally inspect the variation of
another parameter, the reset potential vR. So far we have chosen
VR = 10 mV in accordance with (Brunel, 2000), corresponding to
a voltage that is reset between the resting potential and the thresh-
old. This is a reasonable choice for some cortical cells (Koch,
1999), but a reset closer to the equilibrium potential may be also
appropriate for others. Hence, it is of interest how power spectra
and also how our approximation schemes for them may depend
on the choice of vR. We will thus use in all plots of this subsec-
tion vR = 0 mV as an alternative setup. Based on previous work
(Vilela and Lindner, 2009) we can expect that with this value of
the reset, we will observe a lower firing rate and also a lower CV
than for vR = 10 mV.

Our main parameter to vary in the following is the relative
strength of inhibition g. We start with a value of g = 3.5 (see
Figure 7), which is close to the border of synchronization (Brunel,
2000). For g = 3.5, the spectra reveal strong peaks, i.e., although
neurons still fire asynchronously, their spike trains are rather reg-
ular. The Gaussian approximation leads in our self-consistent
procedure to a spectrum that captures the spike-train power spec-
trum of a neuron in the recurrent network very well. This holds
true for both a reset value of vR = 0 mV (panel A) and for vR =
10 mV (panel B). As anticipated above the firing rate is higher for

FIGURE 6 | Synaptic-amplitude dependence of power spectra and

difference between external constant and shot-noise input.

Asynchronous regime for g = 4.5 and vR = 10 mV.
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FIGURE 7 | Power spectra for dominating network excitation. Results
of recurrent network simulations and the two approximations from our
iterative schemes for g = 3.5 (excitatory local synaptic input). (A)

vR = 0 mV (firing rate ν = 86.1 Hz, CV = 0.045); (B) vR = 10 mV (firing rate
ν = 202.5 Hz, CV = 0.10). Inset shows serial correlation coefficients for (B).

vR = 10 mV and, consequently, also spectral peaks are located at
higher frequencies.

In contrast to the Gaussian approximation, for g = 3.5 the
renewal approximation used in our iterative scheme does not
yield a power spectrum that closely matches the spectrum in the
recurrent network. Peaks appear here at a somewhat higher fre-
quency, and the neuron also fires at a somewhat higher rate. This
discrepancy can be traced back to a non-renewal behavior indi-
cated by the positive ISI correlations at lag one and two (cf. inset
in Figure 7B for vR = 10 mV).

As we increase the relative strength of inhibition to g = 4,
both approximations agree well with the spectrum measured
in the recurrent network if we use the reset voltage of vR =
10 mV (cf. Figure 8B). This is not totally unexpected because
for these parameters we found already an agreement of both
approximations in Figure 2C. Because of the complementary
assumptions made in the two approximations, an agreement of
their self-consistent spectra is a strong hint that they both should
work—Figure 2C can be taken as a confirmation of this.

Interestingly, if we choose the reset value at vR = 0 mV (cf.
Figure 8A) and thus make the spike trains more regular, the
renewal approximation shows again some disagreement with the
power spectrum of recurrent network neurons. The Gaussian
approximation, on the contrary, yields once more the correct
spectrum.

For g = 4.5 (Figure 9), both renewal and Gaussian approx-
imations agree with each other and with the network spectra,
regardless of the value of the reset voltage. One might be tempted
to think that this agreement is achieved because the spike-train
statistics are closer to a renewal process. However, for this case we
observe in both approximations as well as in the network sim-
ulations ISI correlations of the same order of magnitude as in
Figure 7—only that correlations are negative in Figure 9, whereas
they were positive in Figure 7.

What causes the failure of the renewal approximation in some
of the cases considered above? Generally, it has become clear

FIGURE 8 | Power spectra for balanced network input. Results of
recurrent network simulations and the two approximations from our
iterative schemes for g = 4 (balanced local synaptic input). (A) vR = 0 mV

[firing rate ν = 44.5 Hz, CV = 0.05] and (B) vR = 10 mV (firing rate ν = 70.4
Hz, CV = 0.19).

FIGURE 9 | Power spectra for dominating network inhibition. Results of
recurrent network simulations and the two approximations from our
iterative schemes for g = 4.5 (inhibitory local synaptic input). (A) vR = 0 mV

(firing rate ν = 28.1 Hz, CV = 0.088); (B) vR = 10 mV (firing rate ν = 34.8
Hz, CV = 0.27). Inset shows serial correlation coefficients for (B).

that the self-consistent noisy current stimulus is temporally struc-
tured. It is a colored noise, that in general leads to a non-renewal
spike train of the driven neuron model (Middleton et al., 2003;
Lindner, 2004). In particular, a narrow-band noise as we observed
in Figures 7, 8A can lead to pronounced interval correlations
(Bahar et al., 2001; Neiman and Russell, 2005; Bauermeister et al.,
2013). Differences between the spectra in the recurrent network
and that of our self-consistent renewal scheme are therefore not
completely unexpected. Surprising is that the renewal scheme still
works in some cases in which we saw pronounced ISI correlations.

So far, the Gaussian approximation worked well for all chosen
parameters inspected. The reason for this is the small amplitude
of postsynaptic potentials (J = 0.1 mV) we have used in all simu-
lations. We finally show and discuss a case with a larger amplitude
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FIGURE 10 | Effect of larger synaptic amplitude on power spectra.

Results of recurrent network simulations and the two approximations from
our iterative schemes for a synaptic amplitude of J = 1 mV, a smaller
number of synapses CE = 100, CI = 25, and g = 4.5 (inhibitory local
synaptic input). (A) vR = 0 mV (firing rate ν = 38.6 Hz, CV = 0.58); (B)

vR = 10 mV (firing rate ν = 65.7 Hz, CV = 1.98).

(J = 1 mV in Figure 10). Because we do not want to change the
mean input to the cell, we also reduce the number of synapses by
a factor of 10. With a smaller number of synapses and a larger
synaptic amplitude, we increase the noise in the system, which
changes the shape of the power spectrum drastically, in particu-
lar, for the reset value of vR = 10 mV (Figure 10). Our main point
with Figure 10, however, is that the renewal scheme in this case
leads to a spectrum that is somewhat closer to the spectrum in the
network than the Gaussian approximation for both values of the
reset voltage. In this case, the assumption of the Gaussian approx-
imation seems to be more severely violated than the assumptions
of the renewal approximation are.

4. DISCUSSION
The efforts in this paper were directed toward a better under-
standing of temporal correlations in recurrent neural networks.
Here we focused on the simple case of a sparse homogeneous
network, in which the autocorrelation of a single spike train
is the only relevant temporal correlation of interest, i.e., cross-
correlations between neurons can be neglected. To this end we
introduced and compared two iterative simulation schemes, one
of which is a simplified and numerically more efficient version
of the framework put forward by Lerchner et al. (2006). Both
simulation schemes correspond to an infinitely sparse network,
because all input spike trains are completely independent of each
other and only share the same statistics. In this way we escaped
from the trap of complete synchronization, seen previously in
finite layer-feedforward networks (Wang et al., 2006), which does
not adequately describe the asynchronous state in a recurrent
network.

Our results demonstrate in line with previous results by
Lerchner et al. (2006) that the power spectrum of a single neu-
ron in an unstructured network in the asynchronous state may
be determined in some cases in a self-consistent approximation
using iterative simulations of essentially only one neuron. We offer,

to the best of our knowledge, the first comparison of such self-
consistent spectral statistics with the respective statistics of the
stationary state of the approximated LIF network. Moreover, we
obtain strong numerical evidence from network simulations that
these statistics do not vary with (a change of an uniform) synaptic
delay as long as the latter yields an asynchronous state.

We showed that the iterative schemes (be it renewal or
Gaussian one) do not work for too strong inhibition, because
here instead of approaching a stationary spectrum, already the
firing rate becomes unstable (an instability that is not present in
the recurrent network), preventing a self-consistent determina-
tion of the spectrum. On the other hand, both schemes fail in
any case for a non-sparse configuration (i.e., if CE/NE � 1 is not
obeyed), because cross-correlations between input neurons can-
not be neglected anymore and, hence, approaches solely based
on single-neuron statistics cannot reproduce the correct power
spectrum as measured in the recurrent network. Finally, our
approach requires that even in the sparse network no synchro-
nization emerges. This implies e.g., that we cannot reproduce the
spike-train power spectrum for g < 3 (dominance of excitatory
input coming from the network), for which strong synchroniza-
tion is observed (Brunel, 2000). Preliminary simulation results
for the recurrent network indicate that upon the transition to the
synchronous regime, a peak at the population frequency arises in
otherwise unchanged spectra.

In the important case of asynchronous activity close to the bal-
anced state, the two methods to generate surrogate input work
best in distinct limits. The Gaussian approximation can accu-
rately predict the spike-train statistics of a neuron in the recurrent
network as long as the synaptic amplitudes are sufficiently small.
The renewal approximation in turn shows systematic deviations
because of ISI correlations that are typical if a neuron is driven by
a correlated noise. It may work better than the Gaussian approx-
imation and the similar framework of Lerchner et al. (2006),
however, if the amplitude is larger, e.g., for a value of J = 1 mV
that is still within the physiological range (Koch, 1999). Here the
renewal approximation performs better because it maintains the
pulsatile nature of spike-train input (shot noise). Because it is
known that the shot-noise character of synaptic input may affect
firing rate and response properties substantially (Richardson and
Swarbrick, 2010), this limit of larger amplitudes is worthwhile
additional exploration. In particular, more elaborate generators
for surrogate spike trains with prescribed second-order statistics
(Brette, 2009) should be employed in this case.

From a more abstract point of view, our self-consistent scheme
boils down to the question of finding an input stimulus, tem-
porally correlated in such a way that it evokes in a non-linear
neuron model a spike train with the very same temporal corre-
lation. It is clear that without further constraints, this problem
could have several solutions. Here we showed that under the spe-
cial constraint of a Gaussian input statistics, the iterative scheme
converges in a parameter regime close to the so-called balanced
state to a unique second-order statistics. At the moment it is not
clear how one could prove the existence and uniqueness of the
solution mathematically.

The iterative scheme for the determination of self-consistent
spectra can be extended in several directions. For the sake of
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comparison to the classical study by Brunel (2000), we used in
this paper current-based synapses with an instantaneous spike
input. Preliminary results show that the self-consistent determi-
nation can be applied to neurons with conductance-based instead
of current-based input, including a first-order kinetics (low-pass
filter) for the synapse. Another manageable extension would be
to consider two populations of excitatory and inhibitory neu-
rons with different synaptic and neural parameters, which in
our framework would imply to simulate a single excitatory and
a single inhibitory neuron receiving different inputs. Last but
not least, it appears conceivable to determine the self-consistent
cross-correlations between two neurons in iterative scheme(s)
that employ simulations of two uncoupled neurons that receive
correlated input characterized by the power and cross-spectra of
the previous generation. Whether such a scheme can successfully
reproduce the spike statistics may also depend on the specific con-
nectivity and, in particular, on the amplitude of synaptic spikes,
as it has been recently shown that in networks in which the num-
ber of presynaptic neurons scales with the network size, so-called
spike echos additionally shape neural cross-correlations (Helias
et al., 2013).

Our results can be regarded as a further step toward a more
general theory of biological neural networks that takes the tem-
poral structure of neural activity in the network more faithfully
into account. Although in many instances, the Poissonian approx-
imation may give a lot of insights and even a network of Poisson
neurons may turn out to approximate the recurrent network rea-
sonably well (Ostojic, 2014), there are also examples where exactly
the temporal structure of spike trains matters (Câteau and Reyes,
2006). Helpful for analytical approaches would be formulas for
the spectral spike-train statistics of simple IF models, which are
driven by an Gaussian noise with an arbitrary (in particular, non-
flat) power spectrum. Once a formula is known that provides the
output spike-train power spectrum as a functional of the input
power spectrum of the stimulating Gaussian noise, this functional
could be regarded as a map, the fixed point(s) of which would
yield the stationary solution(s) of our numerical procedure. So
far, however, the problem of the spike statistics of a general IF
model driven by arbitrary colored noise is an open issue in com-
putational neuroscience. Most efforts have been focussed on the
special case of low-pass filtered input noise (see e.g., Brunel and
Sergi, 1998; Brunel et al., 2001; Brenner et al., 2002; Moreno-Bote
and Parga, 2006; Alijani and Richardson, 2011) and only rarely
more general forms of input correlations have been addressed
analytically (Câteau and Reyes, 2006; Bauermeister et al., 2013).

Progress along these lines may nevertheless be possible, as a
recent study by Schwalger et al. (submitted) illustrates: for the
special case of a perfect IF model driven by a weak Gaussian
noise with arbitrary input correlations, there exists a simple rela-
tion between the input correlation function (i.e., the Fourier
transform of the input power spectrum) and the output spike-
train statistics such as the ISI probability density and the interval
correlations. Other approaches for IF neurons with threshold
noise (Lindner et al., 2005a) or for threshold-crossing devices
(Tchumatchenko et al., 2010) also permit approximations for
the relation between spike-train power spectrum and colored
Gaussian input noise. Results like these may be useful to calculate

the self-consistent power spectrum in a recurrent network at
least semi-analytically by finding the fixed point of the non-linear
relation between input and output correlation functions.
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