ORIGINAL RESEARCH ARTICLE
published: 12 September 2014
doi: 10.3389/fncom.2014.00107

frontiers in
CONPUTATIONAL NEUROSCIENCE

=

Differential effects of excitatory and inhibitory
heterogeneity on the gain and asynchronous state of
sparse cortical networks

Jorge F. Mejias'?* and André Longtin??

! Center for Neural Science, New York University, New York, NY, USA
2 Department of Physics, University of Ottawa, Ottawa, ON, Canada
3 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada

Edited by:
Mark D. McDonnell, University of
South Australia, Australia

Recent experimental and theoretical studies have highlighted the importance of cell-to-cell
differences in the dynamics and functions of neural networks, such as in different types of
neural coding or synchronization. It is still not known, however, how neural heterogeneity
can affect cortical computations, or impact the dynamics of typical cortical circuits
constituted of sparse excitatory and inhibitory networks. In this work, we analytically and
numerically study the dynamics of a typical cortical circuit with a certain level of neural
heterogeneity. Our circuit includes realistic features found in real cortical populations,
such as network sparseness, excitatory, and inhibitory subpopulations of neurons, and
different cell-to-cell heterogeneities for each type of population in the system. We find
highly differentiated roles for heterogeneity, depending on the subpopulation in which it is
found. In particular, while heterogeneity among excitatory neurons non-linearly increases
the mean firing rate and linearizes the f-I curves, heterogeneity among inhibitory neurons
may decrease the network activity level and induces divisive gain effects in the f-I curves of
the excitatory cells, providing an effective gain control mechanism to influence information
flow. In addition, we compute the conditions for stability of the network activity, finding
that the synchronization onset is robust to inhibitory heterogeneity, but it shifts to lower
input levels for higher excitatory heterogeneity. Finally, we provide an extension of recently
reported heterogeneity-induced mechanisms for signal detection under rate coding, and
we explore the validity of our findings when multiple sources of heterogeneity are present.
These results allow for a detailed characterization of the role of neural heterogeneity in
asynchronous cortical networks.
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1. INTRODUCTION

Mathematical models of neurons and neural circuits have

and Mel, 2003; Jinno et al., 2007). Experimental observations
indicate that this type of structural heterogeneity has non-trivial

become, in the last couple of decades, a highly valuable tool to
analyze and understand real neural systems, from single cell to
behavior. Models are commonly used to test hypotheses or to
support experimental observations, and their potential useful-
ness increases as their predictions are refined to account for the
actual behavior of neurons (Gerstner and Naud, 2009). While it is
not uncommon to see a high level of biophysical detail in single-
neuron models, most of these details are usually neglected when
modeling larger systems, such as neural circuits of thousands of
neurons, for the sake of simplicity.

A particularly interesting case is the natural intrinsic vari-
ability found in the biophysical properties of neurons, which is
averaged out in most theoretical and computational modeling
studies. Real neural systems display a significant level of cell-to-
cell diversity at the neuron level, even among same-class neurons,
as well as other differences at the subcellular or synaptic level
(Bannister and Larkman, 1995a,b; Reyes et al., 1998; Hausser

effects on several neural information processing mechanisms.
For instance, neural heterogeneity has been shown to have an
impact in burst coding in vivo (Avila-Akerberg et al., 2010) and in
envelope coding and non-linear responsiveness of the electrore-
ceptors of weakly electric fish (Savard et al., 2011). The presence
of a certain level of heterogeneity at the cell-to-cell level has
also been recently reported to have a beneficial role for popula-
tion coding (Marsat and Maler, 2010; Tripathy et al., 2013), and
it can also induce the decorrelation of neuronal firing and the
optimization of information content (Padmanabhan and Urban,
2010; Angelo et al., 2012; Urban and Tripathy, 2012). These
experimental observations can not be explained by neural cir-
cuit models where, for instance, any given pyramidal neuron is
perfectly identical to all the other pyramidal neurons in the sys-
tem. Models which take into account the intrinsic heterogeneity
of neural systems are, therefore, necessary to understand neural
coding.
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In response to this increasing body of evidence, a significant
number of theoretical and computational studies, especially in
the last years, have contributed to explaining the properties and
dynamics of networks of heterogeneous neurons. In particular,
the role of heterogeneity on synchronization has been extensively
studied (Golomb and Rinzel, 1993; White et al., 1998; Neltner
et al., 2000; Golomb et al., 2001; Denker et al., 2004; Talathi
et al., 2008, 2009; Luccioli and Politi, 2010; Olmi et al., 2010;
Brette, 2012; Mejias and Longtin, 2012). More recently, the effect
of neural heterogeneities on neuronal correlations (Chelaru and
Dragoi, 2008; Yim et al., 2013), detection of weak signals (Tessone
et al., 2006; Perez et al., 2010) and different types of neural cod-
ing (Chelaru and Dragoi, 2008; Savard et al., 2011; Mejias and
Longtin, 2012; Hunsberger et al., 2014) have drawn special atten-
tion as well. Novel approaches and mean-field approximations
to tackle the problem of heterogeneity have also been recently
proposed (Nicola and Campbell, 2013; Yim et al., 2013). These
studies, however, typically focus on one type of cell (such as pyra-
midal neurons) and consider the presence of heterogeneity on
this specific population. The possible—and potentially relevant—
interplay between populations of different cell types, each one of
them presenting its own heterogeneity level, has remained a goal
for future work and has not been fully addressed vet.

In this work, we analytically and numerically study the prop-
erties of a typical cortical circuit with cell-specific heterogeneity
levels. Our basic circuit is constituted by a population of exci-
tatory (i.e., pyramidal) neurons and a population of inhibitory
neurons (i.e., interneurons), connected in a sparse manner. Both
the excitatory and the inhibitory populations have their own
independent level of intrinsic heterogeneity. This allows us to
quantitatively study the effect of heterogeneity of a given pop-
ulation (excitatory, or inhibitory, or both) and to characterize
its impact on the whole network dynamics. Our results indi-
cate highly differentiated roles for heterogeneity, depending on
the population in which it is introduced. In particular, hetero-
geneity among excitatory neurons (which we call here excita-
tory heterogeneity) non-linearly increases the mean firing rate of
the whole network and linearizes the input/output f-I curves.
On the other hand, heterogeneity among inhibitory neurons
(inhibitory heterogeneity) may decrease the network activity level
and induce divisive gain effects in the f-I curves of the excita-
tory population, providing an effective gain control mechanism
to influence the flow of information across the network. We also
compute the conditions for stability of the network activity and
provide an extension of the recently described heterogeneity-
induced mechanism which optimizes information transmission
under rate coding (Mejias and Longtin, 2012). Our novel mean-
field approach extends our previous theoretical results for fully
connected excitatory neurons (Mejias and Longtin, 2012) to
cortical-like sparsely connected networks of heterogeneous exci-
tatory and inhibitory cells, providing a strong analytical tool
to characterize the role of neural heterogeneity in cortical
networks.

2. MATERIALS AND METHODS

We consider a sparsely connected network of N integrate-and-
fire neurons (see Figure 1), where any two given neurons are

FIGURE 1 | Scheme of a network where (A) all the neurons have
identical firing thresholds, and (B) each neuron in the network has a
particular firing threshold value. The color code illustrates the value of
the firing threshold for each neuron (lighter color tones mean lower firing
threshold, while darker tones mean higher firing thresholds). Excitatory
neurons are shown in red, and inhibitory neurons in blue.

unidirectionally connected with a probability € (the average num-
ber of synapses onto a given neuron is then K = €N). A subset of
this population is constituted by y N excitatory neurons, while
the remaining (1 — y )N neurons in the network are inhibitory. A
given neuron i is governed by the dynamics

davi(t)
T,
" dr

= —V;(t) + RI™(t) + RIM (1), (1)

where 1, is the neuron membrane time constant, V; is the mem-
brane potential of the i — th neuron in the network, R is the
membrane resistance, and Ifx’, Ii”et are the external and recurrent
input to the i — th neuron, respectively. Each neuron i is assumed
to fire an action potential (AP) every time V; reaches a certain fir-
ing threshold, and after that the membrane potential is reset to
V; for a time period 7,,f. The external and recurrent input to the
i — th neuron are given, respectively, by

RIF () = pi+ 0 /Tui(1), ?
RIF!(1) = Ty ) ) T (0 — 1), )
ik

where p; is a constant input, &;(t) is a Gaussian white noise of
zero mean and unitary variance, o is the noise intensity, Jj; is
the coupling strength of the synapse from neuron j to neuron i
(considered zero if there is not such a synapse between both neu-
rons), and the k — th spike from neuron j arrives at neuron i at
t]l‘. The synaptic coupling strength between two neurons i, j takes
the value J;; = Jup, where o = {E, I} is a label denoting the popu-
lation to which the postsynaptic neuron belongs, and 8 = {E, I}
denotes the population to which the presynaptic neuron belongs.
We define the external input to the network as y; = p (arriving at
all excitatory neurons), and we also define a constant bias ;t; = o
for all inhibitory neurons.

In this framework, we assume that each neuron of the net-
work is characterized by a different distance-to-threshold value,
which may be related with several biophysical properties (such as
the membrane resistance, the firing threshold, or extra non-linear
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considerations). We assume here that such heterogeneity in
the distance-to-threshold corresponds to heterogeneity in fir-
ing threshold values, although heterogeneities in distance-to-
threshold can be translated into heterogeneities in other kind
of parameters in more sophisticated neuron models. In partic-
ular, each excitatory neuron has a firing threshold g ; which is
randomly distributed following a Gaussian profile Pg(6g) with
mean @ and standard deviation wg. Equivalently, each inhibitory
neuron has a firing threshold 6;; randomly chosen from a
Gaussian distribution P;(6;) with mean 6 and standard devia-
tion wr (see Figure 1). Such heterogeneity serves to reflect some
of the variability in the individual excitability properties of neu-
rons found in actual neural systems, while treating separately
the heterogeneity of excitatory and inhibitory cells will allow
us to discern the effects caused by each population. For conve-
nience, we will define a low-threshold neuron as a neuron whose
firing threshold value (or, more precisely, its distance between
the threshold for spiking and its resting state in absence of
input) is below the average for its population (i.e., excitatory
or inhibitory). A high-threshold neuron will therefore have a fir-
ing threshold value which is higher than the average for its
population.

In the following, and wunless specified otherwise, we
choose K =200 connections (in simulations, € = 0.2 for

N =1000 neurons), y =0.8, 7w, =20ms, V,=10mV,
o=3mV, 6 =20mV, Tref = 5ms, Jgg=J =0.05mV,
and Jgr=Jg = —0.08mV. These parameter values are

within the physiological range for cortical neurons, and
similar values have been used in previous modeling studies
(Brunel and Hakim, 1999; Brunel, 2000). When comput-
ing the response of the system (for instance, the network
mean firing rate for a given heterogeneity value), we average
over 10 trials (or simulation runs on a random realization
of the connectivity matrix) of 10s each. The results pre-
sented in this work hold for these other parameter choices
as well.

Together with the numerical simulations of the neural net-
work described above, we have obtained an analytical mean-
field solution of the model, which is described in detail in
the Supplementary Material (Section Mean-field approach). In
short, we have employed the diffusion approximation in the
input to a single IF neuron to compute its mean firing rate
in steady state conditions (Tuckwell, 1989; Brunel, 2000). Since
the input to any given neuron will depend on the activity of
the whole network (due to the recurrent nature of the sys-
tem), we can average over the heterogeneity and obtain a
mean-field description of the excitatory and inhibitory net-
work mean firing rate, which will be given, respectively, by
ve = ®g(vg, vr, wg, wr) and v = ®;(vg, v, wg, wy) (see Section
Mean-field approach in Supplementary Material for an explicit
form of these functions). An analytical estimation of the stabil-
ity of this solution has been obtained as well (see Supplementary
Material). The heterogeneity parameters wg and wy have an
important effect on the mean firing rates, and allow us to
use this mean-field solution, together with numerical sim-
ulations of the network, to explore the properties of the
system.

3. RESULTS

3.1. EFFECT OF HETEROGENEITY ON MEAN FIRING RATE

Our first step is to understand the effect of an increase of the level
of cell-to-cell heterogeneity on the stationary firing rate of the
neurons in the network. Due to input noise and the sparseness
of the network (which leads to a different number of incoming
connections for each neuron), the neurons in the network are
not characterized by a common unique mean firing rate (even in
the absence of threshold heterogeneity), but rather each neuron
has an individual mean firing rate, distributed around an aver-
age value following a Gaussian-like profile. This can be seen in
Figure 2A (in light red, for excitatory neurons) and Figure 2B
(in light blue, for inhibitory neurons). When we consider some
degree of heterogeneity in the neuron firing thresholds, this orig-
inal distribution of firing rates becomes wider and spans over
a large range of firing rate values. For instance, a heterogeneity
level of only wg = 2 mV for excitatory neurons lead the excitatory
firing rate distribution from the previous narrow, Gaussian-like
profile to a broad, long-tailed distribution which contains firing
rates from zero to even tens of Hertz (Figure 2A, dark red). The
same effect is observed for the inhibitory population: an increase
in wy from 0 to 2mV leads from a narrow, peaked distribution
(Figure 2B, light blue) to a long-tailed one (dark blue). Excitatory
(inhibitory) heterogeneity has also an effect on the shape of the
inhibitory (excitatory) firing rate distribution, although it is not
as strong as the effect of heterogeneity in a given population on
the firing rate distribution of that same population (not shown).

Heterogeneity has a significant effect not only on the shape
of the distributions, but on the mean firing rate of the popu-
lations in the network as well. The case of a single excitatory
population was already considered in a previous work (Mejias and
Longtin, 2012), where it was shown that an increase of neural het-
erogeneity triggered the appearance of a group of low-threshold
neurons with higher firing rates (similar to the long tail in the
dark-colored distributions in Figures 2A,B), and this group pro-
duced an extra recurrent input on the high-threshold neurons
forcing them to increase their firing rate. The effect had a strong
collective component, since a simple firing rate increase in the
low-threshold neurons would have been at least partially compen-
sated by a decrease in the high-threshold neurons, were they not
connected to each other. The overall recurrent activity generated
by the low-threshold neurons contributed to avoid a sudden drop
in the firing rate of high-threshold neurons, yielding an overall
quadratic-like increment in the network mean firing rate as the
heterogeneity level increased.

The situation is more complex in the present case, where
we have two different and interconnected populations of neu-
rons (the excitatory and the inhibitory population), and also one
heterogeneity parameter for each population. The results from
the mean-field approach as well as from the numerical simula-
tions can be seen in Figures 2C,D. Figure 2C shows the effect of
increasing the excitatory heterogeneity in the activity level of the
system. Our mean-field prediction, which agrees very well with
numerical simulations, shows that increasing the heterogeneity
level of the excitatory population leads to a rise in both excitatory
and inhibitory activity. This can be easily understood by consid-
ering that the increase of wg produces the effect in the excitatory
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FIGURE 2 | Effect of heterogeneity on the stationary firing rates. (A)
Probability density function of individual mean firing rates of excitatory
neurons, for wg = 0.1 mV (light red) and wg = 2mV (dark red). One can
observe the spread of firing rate values as a consequence of the increase in
the excitatory heterogeneity. (B) Distribution of individual mean firing rates of
inhibitory neurons, for w; = 0.1 mV (light blue) and w; = 2mV (dark blue). (C)
Effect of the excitatory heterogeneity on the network mean firing rate. Solid
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lines correspond to the mean-field solution, while symbols are the results
from numerical simulations. Here and in the following, error bars (which may
be within symbol size) denote standard deviation over trials. (D) Same as in
(C), but for the effect of inhibitory heterogeneity. We set a fixed value

w; = 0.1mV for (A,C), and wg = 0.1 mV for (B,D). For all panels, the external
input is determined by u = o = 15mV. Note the different scale for the
vertical axis in (C,D).

firing rate described above, and this in turn increases the input
entering from the excitatory to the inhibitory neurons, rising the
inhibitory firing rate as well. The increment in the inhibitory rate
also modulates back the excitatory population, which implies that
the effect of wg on the excitatory population is not as pronounced
as for the case of an isolated excitatory population.

The effects of increasing the inhibitory heterogeneity are, how-
ever, qualitatively different from those produced by its excitatory
counterpart. As Figure 2D shows, increasing the inhibitory het-
erogeneity produces a rise in the inhibitory activity but decreases
the excitatory activity. The origin of this effect is that increasing wy
leads to the appearance of low-threshold inhibitory neurons with
high firing rates, which increases the firing rate of the inhibitory
network. This in turn induces more inhibition in the excitatory
population, which lowers its level of activity as a consequence.
It is interesting to note that, due to the negative character of the
feedback within the inhibitory population, the increment in the
inhibitory firing rate with the inhibitory heterogeneity is only
due to the appearance of low-threshold inhibitory neurons, which
pull the average firing rate up. On the other hand, we have three
different factors that pull this average down: (i) the appearance of
high-threshold inhibitory neurons, (ii) the decay in the positive
contribution of the excitatory firing rate, and (iii) the presence
of negative feedback within the inhibitory population. Because of

this, the increase in the inhibitory firing rate with wy is not as
strong as the increase of the excitatory firing rate with wg, where
the feedback is positive. In particular, the effect of wg on the exci-
tatory firing rate is about twice as strong as that of wy in the
inhibitory firing rate, as one can see from the differences in the
scale of the vertical axis in Figures 2C,D.

3.2. HETEROGENEITY AS A GAIN CONTROL MECHANISM

After observing the strong effect that heterogeneity has on the
mean firing rate of a cortical network for a given external input, an
immediate question follows: how does neural heterogeneity influ-
ence the general input—output properties of cortical circuits? A
first approach to answering this question is to analyze the effect
of heterogeneity on the input—output dependence, or f-I curve,
of the neural network. The f-I curve of a given neural system
gives the relationship between a slow (usually considered con-
stant) input to the circuit and the readout or mean firing rate of
that circuit. There are a number of biophysical mechanisms which
are able to modify or control the shape of this curve (a strategy
commonly referred to as gain control). One can typically distin-
guish between several types of gain control, the most common
ones being subtractive, divisive, or non-monotonic gain control
(see Mejias et al., 2014 for an example of a system able to display
these three regimes).
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In this section, we will use our mean-field approach, together
with numerical simulations, to address the role of neural hetero-
geneity as a relevant factor for gain control. Our results are shown
in Figure 3, where different f-I curves are plotted, for both the
excitatory and the inhibitory populations and varying either wg
or wy. The effect of the excitatory heterogeneity on the f-I curves
of the system is shown in the top panels of the figure, where we
can see that increasing wg, linearizes the f-I curve for both the exci-
tatory (Figure 3A) and the inhibitory (Figure 3B) populations.
The effect of the excitatory heterogeneity is similar to the noise-
induced linearization effect in a recurrent spiking neural network
(Sutherland et al., 2009). As in the case of temporal fluctuations

in noisy input currents, the effect of cell-to-cell heterogeneity is
particularly important around the onset of the f-I curve, when
most of the neurons lie between the fluctuation-driven and the
mean-driven regime.

The effect of increasing the heterogeneity level in the
inhibitory population is, however, more complex. As we can see in
Figure 3C, the increase of wr leads to a decrease in the excitatory
firing rate for any given input value. Interestingly, the effect of wy
on the excitatory f-I curve is of a divisive nature, meaning that
the inhibitory heterogeneity can be used as a divisive gain con-
trol parameter to perform multiplicative and divisive operations
in cortical computations. Such a divisive gain control effect holds
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FIGURE 3 | Effect of modifying wg (top panels A,B, we keep

w; =0.1mV) and w; (bottom panels C,D, we keep wg =0.1mV) on
the f-l curves of the system. The input in the horizontal axis
corresponds to the external excitatory input w. The inhibitory bias
remains at wg = 17mV at all times. Left panels show the effect on the
excitatory population, while right panels do the same for the inhibitory
population. In (C), one can observe a clear divisive gain control of the
excitatory f-I curve when w; varies. This divisive effect is not present in

14
Input (mV)

the inhibitory f-I curve, as (D) shows. (E) The same divisive effect as in
(C) is displayed, but for up =12mV and Jg = —0.4mV. Circles
correspond to the w; =0 case (red line) but rescaled by a constant
factor to fit the other cases, indicating that the effect of w; can be
described as divisive gain control. The constant factor ¢ used to rescale
the w; =0 f-I curve was obtained for each case by minimization of the
squared distance A (see main text) and the resulting values are, for
increasing w;, the following: 0.772, 0.531, 0.355, and 0.223.
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for small and moderate values of the f-I curve, although as we
move to strongly mean-driven conditions (i.e., & > 20 mV) the
divisive control is lost (not shown). The main effect of increasing
wr on the inhibitory population is an increase in the mean fir-
ing rate for a wide range of input values, as Figure 3D shows; no
clear subtractive, divisive or linearization effect is apparent for the
inhibitory cells as their heterogeneity is increased.

Due to the relative complexity of the model (and, in partic-
ular, its recurrent connectivity nature), it is not easy to obtain,
even approximately, a theoretical proof of the divisive nature of
the gain control effect of wy. Indirect measurements, however,
can be used to test this hypothesis. For instance, in Figure 3E
we have computed, using our mean-field approach, the f-I curve
for the excitatory population and different values of w;. We have
set g = 12mV and Jgr = —0.4mV so that the divisive effect is
stronger and more easily identifiable than in Figure 3C for the
range of biases shown. By taking the f-I curve for wy = 0 (in red)
and multiplying it by a given constant factor ¢, one can obtain an
f-I curve for w; > 0. To do this systematically, we have defined the
squared distance between the rescaled wy = 0 f-I curve [namely
¢ ro(I)] and a given wy > 0 f-I curve [namely r,,(I)] as

n

A= 1) - RO, ()

i=1

where the subindex i runs over all the input values considered
in the numerical evaluation of the curve, and n = 25 is the total
number of these values. By systematically varying the rescaling
constant factor ¢, we find the value of this factor that minimizes
the squared distance between both curves. This fitting is possible
for all values of wy considered, and the squared distance at the
optimal rescaling factor is always small (<0.003). For instance,
by multiplying the original (w; = 0) f-I curve by a factor of ¢ =
0.772, we obtain an f-I curve that fits very well (A < 0.0022) the
f-I curve for w; = 2mV. The good overlap between the rescaled
wr = 0 curve (circles in Figure 3E) using different multiplicative
constants and the original mean-field solutions (in colored lines),
as demonstrated by the small values of A obtained and graphi-
cally displayed in Figure 3E, indicates that the observed effect is
indeed divisive. Simulation results are not displayed for Figure 3E
for an easier visual comparison with the rescaled curves, although
simulations agree very well with the mean-field predictions as in
the previous set of parameters (see Figure 3C for a reference).
We have further assessed the goodness of fit by checking that the
residuals for each fit are distributed around zero, with approxi-
mately two thirds of the data points falling within one standard
deviation of the data distribution, as expected for zero-mean
Gaussian statistics. Other quantities for measuring the goodness
of fit, like a normalized version of the quantity used here (which
prevents our fit to depend on the average firing rate), also give the
same results.

3.3. STABILITY AND PHASE DIAGRAM

So far, we have described the behavior of our cortical network
model by assuming fixed point conditions, which led us to asyn-
chronous steady-state solutions of the dynamics. Spiking neural
networks are known to display other non-linear dynamics for

certain conditions, such as multistability (Compte et al., 2000;
Wang, 2001), fast global oscillations (Brunel and Hakim, 1999;
Brunel, 2000), or winner-take-all dynamics (Wang, 2002; Wong
and Wang, 2006). Although our aim in this study is not to
fully characterize this kind of behavior in heterogeneous cortical
networks— which would require more advanced calculations— we
can study the local stability of the dynamics of the network to map
the regions in the parameter space where our conclusions hold. To
accomplish this, we compute the Lyapunov exponents of our sys-
tem (see Equation 15 in Supplementary Material) and estimate,
for a given value of the heterogeneity parameters, the maximum
external input p for which the asynchronous steady-state is sta-
ble (i.e., all eigenvalues have a negative real part). This limit
would give us a clear frontier between asynchronous (top panel
in Figure4A) and synchronous (bottom panel in Figure 4A)
network mean firing rate.

Figure 4B shows this maximum external input as a function of
the excitatory heterogeneity, for different values of inhibitory het-
erogeneity. We can observe that, for each wy value, the maximum
external input decreases linearly with the level of excitatory het-
erogeneity, as in the previously studied case of a purely excitatory
heterogeneous network (Mejias and Longtin, 2012). This indi-
cates that networks with highly heterogeneous excitatory neurons
are able to enter the synchronous regime with less external stimuli
than for the homogeneous case. The observed early synchroniza-
tion in heterogeneous networks arises due to the presence of
low-threshold excitatory neurons. This subset of neurons has a
higher firing rate, and therefore they generate a stronger recurrent
input that makes them closer to the bifurcation point from asyn-
chrony to synchrony. As a consequence, low-threshold neurons
become synchronous with less external input and they in turn
contribute to the early synchronization of the rest of the neurons
in the network, as we observe in Figure 4B.

The effect of the inhibitory heterogeneity is much less sig-
nificant (see Figure 4C), although one can distinguish a small
increase in the maximum external input for large enough values
of wy. This is to be expected, since a large wy value would increase
the inhibitory firing rate, inducing a decrease in the excitatory fir-
ing rate that must be compensated with a higher external input.
Therefore, the synchronization onset will be located at a higher
external input value. For both panels (Figures 4B,C), numerical
simulations (points) agree very well with our mean-field predic-
tions (lines). For large heterogeneity values (wg, w; > 2.5mV),
the quenched disorder together with the stochasticity of the sys-
tem make it difficult to accurately detect the synchronization
onset. To avoid this problem, we have restricted our analysis to sit-
uations in which both the excitatory and inhibitory heterogeneity
levels were small (wg, wy < 2.5mV).

We have also used our mean-field approximation to compute
a wg — wy phase diagram of the behavior of the system, which
is shown in Figure 4D. For both wg and wy small, the system is
in the asynchronous regime. The asynchronous state continues
being stable for increasing wy, since the subsequent increment
in the inhibitory firing rate contributes to stabilize the network
dynamics as explained above (see Figure 4C). Only when wy takes
moderate values and wg is significantly increased, synchronous
behavior appears in the network dynamics. As the inhibitory
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FIGURE 4 | Stability of networks of heterogeneous neurons. (A)
Examples of the excitatory network mean firing rate in the asynchronous
(top) and synchronous (bottom) regimes. (B) Critical external input as a
function of the excitatory heterogeneity wg, for ug = 12mV and different
values of w;. An external input higher than the critical one will induce
spontaneous synchronization in the network. Mean-field predictions (lines)
agree with numerical simulations (symbols). (C) Critical external input as a
function of w;, for ug = 12 mV and different values of wg. (D) Phase
diagram in the wg — w; space, obtained using the mean-field approach
from (B,C), for an external input of 17 mV and different levels of the
inhibitory population bias wg. For all panels, & = 1 mV.

bias o takes larger values, the stabilizing effect of increasing wy
reduces the area of the regime of synchronous dynamics. This
is due to the fact that wy allows for a stronger modulation of
the inhibitory firing rate when g is larger, as the activity of the
inhibitory low-threshold neurons will be higher in this case.

It is interesting to highlight that the results presented here
(together with other recent studies such as Mejias and Longtin,
2012) provide counter-intuitive situations where heterogeneity
promotes synchronization rather than impede it (Borgers and
Kopell, 2003; Denker et al., 2004). A comprehensive study of the
contrast between our results and the dynamical mechanisms pre-
viously reported is, however, beyond the scope of this study and
will be addressed in future work.

3.4. SIGNAL DETECTION

Since both excitatory and inhibitory heterogeneity have a sig-
nificant impact on the input—output characteristics for con-
stant input, it is convenient to extend our analysis to consider
the effect of heterogeneity in the transmission of more realis-
tic, time-varying signals. In particular, previous work showed
that the presence of a certain level of heterogeneity can opti-
mize the transmission of slow signals under rate coding in
excitatory populations (Mejias and Longtin, 2012). The phe-
nomenon was also present in cortical-like networks with sparse-
ness and inhibition, although in this more realistic case, no
theoretical approximations were provided to support these
claims.

The mean-field approximation presented in the
Supplementary Material (see Section Mean-field approach)
constitutes a useful tool to investigate these heterogeneity-
induced resonances in cortical-like network models, and to
evaluate the likelihood of this phenomenon to occur in real
cortical circuits. We consider an external input constituted by

f(t) = pu + So sin 27 fst), (5)

with the first part of the r.h.s. being a constant input and the sec-
ond part being a slow and weak modulation. Such a weak input
modulation is able to drive the excitatory mean firing rate of the
network under certain circumstances, a situation which is shown
in the inset of Figure 5B. A convenient measurement to quantify
this behavior is the zero-lag input—output covariance function,
which is given by

C = (a()ve(n)) — (a®) (ve(D)). (6)

Figure 5A shows this input—output covariance as a function of
the excitatory heterogeneity. For networks of homogeneous neu-
rons, the modulation part of the signal is typically too weak to be
noticed. For higher values of the excitatory heterogeneity, how-
ever, the sensitivity of the network to small inputs increases, due
to the existence of a larger number of low-threshold excitatory
neurons. As a consequence, the small input modulation is now
able to strongly drive the output (i.e., the excitatory network
mean firing rate). For even higher values of wg the overall activ-
ity of the network increases drastically and the variations due to
input modulations become slightly weaker. This makes the signal-
driven firing rate modulations too small compared to the baseline
firing rate, and as a consequence the quality of signal transmission
to a given linear readout system decreases. The overall effect is a
bell-shape dependence of the input—output covariance with wg
shown in Figure 5A, indicating that a certain non-zero level of
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FIGURE 5 | Signal transmission in networks of heterogeneous
neurons. (A) Zero-lag input-output covariance as a function of the
excitatory heterogeneity in the network, for w; = 0.1mV. The peak
indicates that a specific level of heterogeneity optimizes signal
transmission. The mean-field approach (line) reproduces the numerical
findings (symbols). Other parameters are Jgg = Jjg = 0.043mV,

Jg = Jy=-0.06mV, and pu = uo =15mV, and the signal is characterized
by Sp =0.5mV and fs =2Hz. (B) Same as in (A), but as a function of
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o
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the inhibitory heterogeneity and for wg = 0.1 mV. Inset: example of a
slow, weak sinusoidal signal (in gray) driving the excitatory mean firing
rate (in red). This situation would correspond to the peak in (A) (optimal
I/O covariance). (C) Same as (A), but for different input frequencies. Only
numerical results (averaged over 15 trials) are presented in this case,
since the mean-field predictions does not hold for high input frequencies.
(D) Same as (B), but for different input frequencies and only considering
the numerical results. (C,D) share the same color code.

excitatory heterogeneity optimizes signal transmission, as in the
simpler case of a purely excitatory population studied in Mejias
and Longtin (2012). Furthermore, our novel mean-field approach
for excitatory and inhibitory sparse populations closely follows
the numerical results.

The effect of inhibitory heterogeneity on signal transmission
is notably different from the situation explained above. As we
can see from Figure 5B, the input—output covariance tends to
be weaker in networks whose inhibitory neurons are highly het-
erogeneous. This is due to the fact that inhibitory heterogeneity
causes an increase in the inhibitory firing rate, which reduces
the sensitivity of the excitatory population to weak stimuli and
therefore hinders its capacity for signal detection. This is con-
sistent with recent experimental and theoretical findings which
show that correlations between two neurons decrease as their fir-
ing rate decrease (de la Rocha et al., 2007), and it suggests that
heterogeneity in inhibitory neurons may have an important role
in decorrelation between input signals and neural activity.

We can also see that the detection of the signal is frequency-
dependent. In Figure 5C the input—output covariance as a func-
tion of wg is computed for different values of the signal frequency
fs» with a small shift of the peak toward more heterogeneous
networks as the input frequency is increased. This behavior was
also observed for the case of one isolated excitatory popula-
tion (Mejias and Longtin, 2012), and suggests that the ability of

neural networks to efficiently detect and transmit signals of a
given frequency range depends on the heterogeneity level of the
network. The decrease of the signal detection as a function of
the inhibitory heterogeneity also depends on the input frequency
considered (Figure 5D), although for large enough wy the signal
is not detected regardless of the frequency.

3.5. MULTIPLE HETEROGENEITY SOURCES

As a final remark, it should be noted that, in all of the simula-
tions and analyses presented so far, either the excitatory or the
inhibitory heterogeneity was varied, while the heterogeneity of
the other population was kept fixed at a very low level (0.1 mV,
which would correspond to a almost homogeneous population).
In the situations in which the system under study behaves in a
linear fashion and the effects caused by parameter variations are
independent, this approach is convenient to systematically char-
acterize the behavior of the system. The neural network under
study, however, is known to display multiple kinds of non-linear
behavior (such as, for instance, the non-linear dependence of
the mean firing rate with the heterogeneity level, as shown in
Figures 2C,D). It is, therefore, unclear whether one can infer the
response of the system for arbitrary combinations of heterogene-
ity parameters from the curves and results presented in previous
sections, in which mainly only one type of heterogeneity was
analyzed at a time.
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In order to test the validity of our results in more complex sce-
narios, we have jointly increased both heterogeneity levels (wg
and wy) at the same time, and we numerically computed the
excitatory mean firing rate of the network as a function of this
combined heterogeneity level W (with W = wg = wy). To test
the linearity of the system to the presence of multiple sources of
heterogeneity, we also compute, using the mean-field solution,
the changes in the excitatory firing rate due to only wg or only
wr (while keeping the other heterogeneity level at zero value),
and we add these two contributions together. The comparison is
shown in Figure 6, where we can see that the simulation results
closely follows the linear prediction up to values of the combined
heterogeneity of ~ 4mV. This finding implies that the effects
of multiple types of heterogeneity can add up linearly in some
parameter regimes, such as the one in this preliminary investiga-
tion. Therefore, the results of the present work are also valid for
more realistic situations in which different types of heterogeneity
(i.e., excitatory and inhibitory) are simultaneously present in the
system.

4. DISCUSSION

The importance and roles of intrinsic neuronal heterogeneities on
the dynamics of neural networks is starting to being uncovered in
recent years (Marsat and Maler, 2010; Padmanabhan and Urban,
2010; Savard et al., 2011; Angelo et al., 2012; Tripathy et al., 2013).
Although commonly disregarded in most modeling studies, an
increasing level of attention has been drawn to the subject by the-
oretical and computational models as well (Golomb et al., 2001;
Denker et al., 2004; Luccioli and Politi, 2010; Mejias and Longtin,
2012; Nicola and Campbell, 2013). In particular, novel theoreti-
cal frameworks for addressing the heterogeneity of neural systems

15

linear prediction
simulations

10 -

Excitatory firing rate (Hz)

0 1 1 1 |
0 1 2 3 4

Combined heterogeneity (mV)

FIGURE 6 | Numerical results (symbols) of the excitatory firing rate for
a network in which both the excitatory and the inhibitory
heterogeneity levels are increased simultaneously (i.e., we plot the
excitatory firing rate as a function of the combined heterogeneity,
defined as W = wg = wj). The solid line is obtained with the mean-field
curves of Figures 2C,D (red curves), and assuming that both contributions
add up in a linear fashion. The agreement between simulations and the
mean-field under the linear hypothesis indicates that the system behaves
linearly in this case. All parameters as in Figures 2C,D.

have been proposed recently. Yim and colleagues, for example,
propose a theoretical approach especially useful for addressing
the relationship between neural heterogeneity and neural correla-
tions (Yim et al., 2013), and they sketch a possible explanation for
recent evidence of a positive role of heterogeneity on population
coding (Padmanabhan and Urban, 2010). In another recent work,
Nicola and Campbell provide a set of mean-field approaches used
to shed light onto a heterogeneity-induced change on the nature
of the Hopf bifurcation responsible for burst generation (Nicola
and Campbell, 2013).

The theoretical understanding of the effects of heterogeneity
on neural systems is still a young problem, though, and only
simple situations have been considered up to now. In this work,
we have analytically and computationally studied the interplay
between population-specific levels of cellular heterogeneity, an
important problem that has not been properly addressed to date.
Interestingly, the effects that excitatory heterogeneity produces
on neural networks are quite different from the ones produced
by inhibitory heterogeneity. Excitatory heterogeneity, as we have
shown, non-linearly increases the network mean firing rate with
respect to that of a homogeneous network, and the f-I curves of
the system are linearized as well. In this sense, excitatory hetero-
geneity may be viewed as a classical quenched disorder in excitable
systems, with similar effects on the f-I curve than that of pure
noise (Doiron et al., 2001). On the other hand, the introduc-
tion of inhibitory heterogeneity induces an increase (with respect
to homogeneous networks) in the inhibitory firing rate and a
decrease in the excitatory firing rate, and a divisive modulation
of the f-I curve as a result. Divisive gain control mechanisms
is often assumed as a key operation for neural computations
(Carandini and Heeger, 1994; Chance and Abbott, 2000), but
biophysical mechanisms for such a modulation have been hard
to identify, regardless of being network-based mechanisms (Holt
and Koch, 1997; Doiron et al., 2001; Chance et al., 2002; Mejias
et al., 2014) or cell-based mechanisms (Prescott and De Koninck,
2003; Mehaffey et al., 2005). The identification of neuronal het-
erogeneity in inhibitory populations as a biophysically realistic
mechanism for multiplicative and divisive gain control consti-
tutes one of the key achievements of the present study.

The analysis of the stability of the fixed point solutions of het-
erogeneous networks also provides useful information about the
effects of heterogeneity on neural networks. Again, the effects of
neural heterogeneity heavily depend on the population in which
it is found. Excitatory heterogeneity leads to an easier sponta-
neous synchronization of the neural network, while inhibitory
heterogeneity has a weaker effect and tends to slightly increase the
robustness of the asynchronous state. This produces a rich reper-
toire of stability behaviors in neural networks, with the stability
conditions of a given particular network depending on its balance
between excitatory and inhibitory heterogeneity.

In recent works, an optimal information transmission has
been shown to occur for heterogeneous populations of neurons
(Marsat and Maler, 2010; Padmanabhan and Urban, 2010), and
the presence of short-term synaptic plasticity has been suggested
to increase the efficiency of coincidence detection in the presence
of heterogeneity via the appearance of optimal frequencies (Mejias
and Torres, 2008). These findings indicate that heterogeneity may
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have an important role in information transmission in neural sys-
tems. In the present study, we have demonstrated here that the
optimization of signal detection by networks of heterogeneous
neurons under rate coding, first described in Mejias and Longtin
(2012), holds for the more realistic cortical-like network used
here, by means of both numerical simulations and mean-field
approaches. The improvement of signal detection in heteroge-
neous neural and excitable systems has been a recent focus of
interest. For instance, Tessone et al. (2006) found that global syn-
chronized events in response to weak, slowly modulated external
signals can be optimized in heterogeneous networks, a result that
has been also obtained in neural networks with electrical and
chemical synapses (Perez et al., 2010). Global synchronized events
in heterogeneous networks can also work at very short time scales,
being triggered by fast input and allowing for an efficient tem-
poral coding (Mejias and Longtin, 2012). Recent experimental
work has also highlighted an optimization of population coding
in networks of heterogeneous neurons (Marsat and Maler, 2010;
Padmanabhan and Urban, 2010; Savard et al., 2011; Angelo et al.,
2012), establishing a solid ground for neural heterogeneity as a
key ingredient of neural coding.

Finally, it is worth noting that, although we have studied exclu-
sively the case of heterogeneity in the distance-to-threshold of
LIF neurons, our mean-field approach can be used to study het-
erogeneity in other parameters as well. Indeed, there are many
potential biophysical sources of heterogeneity in neural systems,
both at the network level (i.e., heterogeneity in the network con-
nectivity, as in Olmi et al., 2010) and at the neuron level. In this
second group, possible heterogeneity sources can be defined in
terms of anatomical and morphological properties, or also at a
functional level, including neuronal excitability (Tessone et al.,
2006; Perez et al., 2010), different degrees of spike frequency
adaptation (Hemond et al., 2008; Nicola and Campbell, 2013),
or other biophysical properties (Padmanabhan and Urban, 2010;
Tripathy et al., 2013), to name a few. Understanding their individ-
ual or joint role in neural dynamics will require future modeling
work at different scales and levels of detail, for which mean-field
approaches could be of great help.
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