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1. INTRODUCTION
Recently, a novel class of system identification algorithms, called
Channel Identification Machines (CIMs), has been developed
for identifying dendritic processing in spiking neural circuits
(Lazar and Slutskiy, 2010, 2012). In the simplest setting, CIMs
allow one to identify a communication/processing channel in
[Filter]-[Asynchronous Sampler] circuits, where the effect of
the channel on an input signal can be described by a linear
filter and the output of the channel is mapped, or encoded,
into a time sequence by a non-linear asynchronous sampler.
Such [Filter]-[Asynchronous Sampler] circuits are known in the
literature as Time Encoding Machines (TEMs) and their spe-
cific embodiments in neuroscience include neural circuit models
in which an analog dendritic stimulus processor is followed
by a point neuron model encoding the aggregate dendritic
current produced by the processor. A few examples of asyn-
chronous samplers include asynchronous sigma/delta modula-
tors (ASDMs), conductance-based point neuron models such
as Hodgkin-Huxley, Morris-Lecar, Fitzhugh-Nagumo, Wang-
Buzsáki, Hindmarsh-Rose, oscillators with multiplicative cou-
pling and simpler models such as the integrate-and-fire neuron
or the threshold-and-fire neuron (Brown et al., 2004; Lazar and
Slutskiy, 2012, 2014a).

The above-mentioned asynchronous samplers incorporate the
temporal dynamics of spike generation at the axon hillock of
biological neurons and allow one to consider, in particular for
neuroscience applications, more biologically-plausible non-linear
spike generation (sampling) mechanisms. This is in contrast to
existing methods, such as the generalized linear model (GLM),
which typically assumes a simplified description of the spike gen-
eration dynamics by using a static non-linearity. The non-linear
contribution of a dynamical system such as the Hodgkin-Huxley
neuron model is not static, but dynamic and stimulus-driven
(Lazar and Slutskiy, 2014a). It changes from one spike to the

next and thus affects the estimation procedure if not properly
taken into account. Furthermore, since the non-linearity does
not fully capture the complex spike generation dynamics, the
filters fit to that non-linearity may not provide an adequate
description of the neural circuit, and in particular may con-
found dendritic processing and encoding (Lazar and Slutskiy,
2014a).

More recently, the CIM methodology has been extended to
neural circuits in higher brain centers that receive multidimen-
sional spike trains as input stimuli instead of continuous signals
and to circuits with extensive lateral connections and feedback
(Lazar and Slutskiy, 2014a). Together with TEMs and Time
Decoding Machines (TDMs) for decoding stimuli from spike
trains, CIMs provide a unified framework for studying encoding,
decoding and identification in neural systems.

The motivation for multidimensional CIMs (Lazar and
Slutskiy, 2013) is provided by the concept of a receptive field
that is well established in neuroscience. Introduced in 1906 by
Sherrington (Sherrington, 1906) to describe an area of the body
surface capable of eliciting a reflex in response to a stimulus, the
term “receptive field” has been extended to many different sen-
sory modalities and spans many different types of neurons. For
example, in the visual system, the receptive field of a photore-
ceptor is a 3-dimensional cone in space comprising all possible
directions in which light can hit the photoreceptor. In the audi-
tory system, receptive fields can correspond to certain spectral
regions of audio stimuli. More broadly, the receptive field is
that part of the the sensory space that can evoke a neuronal
response (Dayan and Abbott, 2005). Spatial and spatiotemporal
receptive fields have been successfully used in vision to model
retinal ganglion cells in the retina as well as neurons in the
lateral geniculate nucleus and the visual cortex (see DeAngelis
et al., 1995 for a review). Similarly, spectrotemporal receptive
fields have been used to describe responses of auditory neurons
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(Aertsen and Johannesma, 1981), neurons in cochlear nuclei
(Clopton and Backoff, 1991) and neurons in the auditory cortex
(Kowalski et al., 1996).

Circuits that process multidimensional feedforward input are
often encountered in biological systems (e.g., the retina, Pillow
et al., 2008). From a modeling standpoint, one can also con-
sider spiking neural circuits in which, in addition to feedforward
input, every neuron may receive lateral inputs from neurons in
the same layer. Furthermore, back-propagating action potentials
(Waters et al., 2005), or feedback, may affect computations per-
formed within the dendritic tree. Until now, CIMs for circuits
with lateral connectivity and feedback have only been considered
in the context of scalar or vector-valued signals of one variable,
e.g., functions of time u1(t), t ∈ R.

In this paper we discuss multidimensional channel identifi-
cation machines that allow one to identify signal transforma-
tions applied to multidimensional signals un(x1, . . . , xn), n ∈ N,
where xn typically designates the time variable. A few exam-
ples of multidimensional CIMs include (i) spatial CIMs, where
the input signal u2(x, y) is a function of a two-dimensional
space, describing, e.g., images; (ii) spectrotemporal CIMs, where
the input signal u2(ν, t) is a function of spectrum and time,
describing, e.g., auditory signals; (iii) spatiotemporal CIMs,
where the input signal u3(x, y, t) is a function of space and
time, describing, e.g., video signals. Signal transformations are
performed by dendritic stimulus processors. They are mod-
eled here as receptive fields whose output is encoded by
spiking neurons with lateral connectivity (cross-feedback) and
feedback.

The rigorous mathematical formalism employed here enables
us to obtain two key results: (i) the projection of the multi-
dimensional receptive field onto the input signal space can be
perfectly identified, and (ii) the problem of identification of mul-
tidimensional receptive fields is dual to the problem of neural
decoding. The duality result shows that the identification of a
multidimensional receptive field is equivalent to the problem of
encoding its projection with a neural circuit whose receptive field
has an impulse response that is exactly the multidimensional
input test signal. We provide an identification algorithm and
give detailed examples arising in spiking models of audition and
vision.

2. METHODS
2.1. MODELING MULTIDIMENSIONAL STIMULI AND THEIR

PROCESSING
2.1.1. The space of input stimuli
A multidimensional communication/processing channel of inter-
est is shown in Figure 1. An analog signal un(x1, . . . , xn) of
n dimensions is passed through a channel with memory that
describes a physical communication link or a signal processing
stage. The output of the channel v is then mapped, or encoded,
by an asynchronous sampler into the time sequence (tk)k∈Z. In
the example shown in Figure 1, the asynchronous sampler is a
(leaky) IAF neuron.

We model input signals as elements of a Reproducing Kernel
Hilbert Space (RKHS) (Berlinet and Thomas-Agnan, 2004). For
practical and computational reasons we choose to work with

the multidimensional space of trigonometric polynomials Hn

defined below. However, the results are not limited to this par-
ticular RKHS.

Definition 1. The space of trigonometric polynomials Hn is a
Hilbert space of complex-valued functions un = un(x1, . . . , xn),
where

un(x1, . . . , xn) =
L1∑

l1 = −L1

· · ·
Ln∑

ln = −Ln

ul1...ln el1...ln (x1, . . . , xn),

defined over the domain Dn = [0, T1] × [0, T2] × · · · × [0, Tn],
where ul1...ln ∈ C and

el1...ln (x1, . . . , xn) = 1√
T1 · · · Tn

exp

(
jl1�1x1

L1
+ · · · + jln�nxn

Ln

)
.

Here �i is the bandwidth in dimension xi, Li is the order, and Ti =
2πLi/�i is the period, for all i = 1, . . . , n, and Hn is endowed with
the inner product 〈·, ·〉 : Hn × Hn → C

〈un, wn〉 =
∫

Dn

un(x1, . . . , xn)wn(x1, . . . , xn)dx1 . . . dxn. (1)

Note that given the inner product in (1), the set of elements
el1...ln (x1, . . . , xn) forms an orthonormal basis in Hn. Moreover,
Hn is an RKHS with a reproducing kernel (RK) given by

Kn(y1, . . . , yn; x1, . . . , xn) =
L1∑

l1 = −L1

. . .

Ln∑
ln = −Ln

el1...ln (y1, . . . , yn) el1...ln (x1, . . . , xn).

In what follows we provide two- and three-dimensional signal
models that arise in audition and vision. For convenience, we use
a simpler and widely-used notation.

Example 1. We model spectrotemporal stimuli u2(ν, t) as ele-
ments of an RKHS of trigonometric polynomials H2 defined on
D2 = [0, T1] × [0, T2], where T1 = 2πL1/�1, T2 = 2πL2/�2,
with (�1, L1) and (�2, L2), being the (bandwidth, order) pairs in
the spectral direction ν and in time t, respectively. A signal u2 ∈ H2

can be written as

u2(ν, t) =
∑

|l1| ≤ L1

∑
|l2| ≤ L2

ul1l2 el1l2 (ν, t), (ν, t) ∈ D2,

where the coefficients ul1l2 ∈ C and functions

el1l2 (ν, t) = 1√
T1T2

exp

(
jl1�1ν

L1
+ jl2�2t

L2

)
form an orthonormal basis for the (2L1 + 1)(2L2 + 1)-dimensional
space H2.

Example 2. We model spatiotemporal stimuli u3(x, y, t) as ele-
ments of an RKHS of trigonometric polynomials H3 defined
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FIGURE 1 | Multidimensional problem setting. A known multidimensional signal un(x1, x2, . . . , xn), is first passed through a communication/processing
channel. A non-linear sampler then maps the output v of the channel into an observable time sequence (tk )k ∈ Z.

on D3 = [0, T1] × [0, T2] × [0, T3], where T1 = 2πL1/�1, T2 =
2πL2/�2, T3 = 2πL3/�3, with (�1, L1), (�2, L2), and (�3, L3),
being the (bandwidth, order) pairs in spatial directions x and y
and in time t, respectively. A visual stimulus u3 ∈ H3 can be
written as

u3(x, y, t) =
∑

|l1| ≤ L1

∑
|l2| ≤ L2

∑
|l3| ≤ L3

ul1l2l3 el1l2l3 (x, y, t), (x, y, t) ∈ D3,

where coefficients ul1l2l3 ∈ C and functions

el1l2l3 (x, y, t) = 1√
T1T2T3

exp

(
jl1�1x

L1
+ jl2�2y

L2
+ jl3�3t

L3

)

form an orthonormal basis for the (2L1 + 1)(2L2 + 1)(2L3 + 1)-
dimensional space H3.

2.1.2. Modeling multidimensional processing
In the simplest setting, the communication/processing channel is
described by a receptive field with a kernel hn(x1, . . . , xn). The
kernel is assumed to be causal in the time variable (if any) and
BIBO-stable. We also assume that the kernel has a finite support
of length Si ≤ Ti in each direction xi. In other words, each kernel
hn belongs to the space Hn.

Definition 2. The filter kernel space Hn is given by

Hn = {hn ∈ L
1(Rn)
∣∣ supp (hn) ⊆ Dn = [0, T1] × · · · × [0, Tn]

}
.

Since the length of the filter support is smaller than or equal to
the period of the input signal in each dimension, we effectively
require that for given Si and fixed input signal bandwidth �i,
the order Li of the space Hn satisfies Li ≥ Si · �i/(2π) for all
i = 1, . . . , n.

Definition 3. The operator P : Hn → Hn given (by abuse of
notation) by

(Phn)(x1, . . . , xn) = 〈hn(·, . . . , ·), Kn(·, . . . , ·; x1, . . . , xn)
〉

(2)

is called the projection operator.

Since Phn ∈ Hn, we have

(Phn)(x1, . . . , xn) =
L1∑

l1=−L1

· · ·
Ln∑

ln = −Ln

hl1...ln el1...ln (x1, . . . , xn).

2.2. MULTIDIMENSIONAL [FILTER]-[IAF] TEMs AND THEIR
T-TRANSFORMS

In this section we analyze the general single-input single-output
(SISO) multidimensional TEM shown in Figure 1 and describe
in detail its I/O behavior. We then provide two specific examples
of SISO multidimensional TEMs that are often encountered in
neuroscience.

Without loss of generality, we assume that memory effects in
the neural circuit arise only in the temporal dimension t of the
stimulus and interactions in other dimensions are multiplicative
in their nature. Consequently, the output v of the multidimen-
sional receptive field is given by a convolution in the temporal
dimension and integration in all other dimensions, i.e.,

v(t) =
∫

Dn

hn(x1, . . . , xn − 1, s)

un(x1, . . . , xn − 1, t − s) dx1 . . . dxn − 1 ds.

The temporal signal v(t) represents the total dendritic current
flowing into the spike initiation zone, where it is encoded into
spikes by a point neuron model, such as the (leaky) IAF neuron of
Figure 1 . The mapping of the multidimensional stimulus un into
a temporal sequence (tk)k ∈ Z is described by the set of equations∫ tk + 1

tk

v(t) exp

(
t − tk + 1

RC

)
dt = qk, k ∈ Z, (3)

also known as the t-transform (Lazar, 2004; Lazar and Tóth,
2004), where

qk = Cδ + bRC

[
exp

(
tk − tk + 1

RC

)
− 1

]
. (4)

Assuming the stimulus un(x1, . . . , xn − 1, t) ∈ Hn and using the
kernel representation, we have∫

Dn

hn(x1, . . . , xn − 1, s)un(x1, . . . , xn − 1, t − s) dx1 . . . dxn − 1 ds =
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∫
Dn

hn(x1, . . . , xn − 1, s)[∫
Dn

un(y)Kn(y; x1, . . . , xn − 1, t − s)dy

]
dx1 . . . dxn − 1ds =∫

Dn

un(y)

[∫
Dn

hn(x1, . . . , xn − 1, s)

Kn(x1, . . . , xn − 1, s; y1, . . . , yn − 1, t − yn)dx1 . . . dxn − 1ds

]
dy =∫

Dn

un(y)(Phn)(y1, . . . , t − yn) dy, (5)

where y = (y1, . . . , yn) and dy = dy1dy2 . . . dyn.
Let us now define the linear functional Lk : Hn → R

Lk(Phn) �
∫ tk + 1

tk

[∫
Dn

un(x1, . . . , xn − 1, s)(Phn)

(x1, . . . , xn − 1, t − s) dx1 . . . dxn − 1ds

]
exp

(
t − tk + 1

RC

)
dt = qk.

By the Riesz representation theorem there is a function φk ∈ Hn

such that

Lk(Phn) = 〈Phn, φk〉. (6)

We arrived at the following

Lemma 1. The SISO multidimensional TEM with a receptive field
described by a kernel hn = hn(x1, . . . , xn−1, t) provides irregular

samples, or quantal measurements of the projection Phn of the
kernel hn onto the input stimulus space Hn. In other words, the
t-transform may be rewritten as an inner product

〈Phn, φk〉 = qk

for every inter-spike interval [tk, , tk+1), k ∈ Z, where φk ∈ Hn.

Remark 1. The result above has a simple interpretation. First,
information about the receptive field is encoded in the form of
quantal measurements qk. These measurements can be readily com-
puted from the spike times (tk)k ∈ Z. Second, the information about
the receptive field is only partial and depends on the stimulus
space Hn used in identification. Specifically, qk’s are measurements
not of the original kernel hn but of its projection Phn onto the
space Hn.

Example 3. A SISO Spectrotemporal TEM is shown in Figure 2.
The signal u2(ν, t), (ν, t) ∈ D2 = [0, T1] × [0, T2], is the input to
a communication/processing channel with kernel h2(ν, t). The sig-
nal u2(ν, t) may represent the time-varying amplitude of a sound
in a frequency band centered around ν and h2(ν, t) the spectrotem-
poral receptive field (STRF) (Kowalski et al., 1996). The output v
of the kernel is encoded into a sequence of spike times (tk)k∈Z by
the leaky integrate-and-fire neuron with a threshold δ, bias b and
membrane time constant RC. A spectrotemporal TEM can be used to
model the processing or transmission of, e.g., auditory stimuli char-
acterized by a frequency spectrum varying in time (Kowalski et al.,

FIGURE 2 | Block diagram of a circuit with a spectrotemporal communication channel.

FIGURE 3 | Block diagram of a circuit with a spatiotemporal communication channel.
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1996). The operation of such a TEM can be fully described by the
t-transform∫ tk + 1

tk

[∫
D2

h2(ν, s)u2(ν, t − s) dν ds

]
exp

(
t − tk + 1

RC

)
dt = qk,

(7)

with qk given by (4) for all k ∈ Z.
Assuming the spectrotemporal stimulus u2(ν, t) ∈ H2, Equation

(7) can be written as

qk =
∫ tk + 1

tk

[∫
D2

u2(ν, s)Ph2(ν, t − s) dν ds

]
exp

(
t − tk + 1

RC

)
dt � Lk(Ph2), (8)

where Lk : H2 → R is a linear functional. By the Riesz represen-
tation theorem (Berlinet and Thomas-Agnan, 2004), there exists a
function φk ∈ H2 such that

Lk(Ph2) = 〈Ph2, φk〉.

Example 4. A simple SISO Spatiotemporal TEM is shown in
Figure 3. A video signal u3(x, y, t), (x, y, t) ∈ D3 = [0, T1] ×
[0, T2]| × [0, T3], appears as an input to a communica-
tion/processing channel described by a filter with a kernel h3(x, y, t).
The output v of the kernel is encoded into a sequence of spike times
(tk)k ∈ Z by the leaky integrate-and-fire neuron.

A spatiotemporal TEM can be used to model the processing
or transmission of, e.g., video stimuli characterized by a spatial
component varying in time. The t-transform of such a TEM is
given by ∫ tk + 1

tk

[∫
D3

h3(x, y, s)u3(x, y, t − s) dx dy ds

]
exp

(
t − tk + 1

RC

)
dt = qk, (9)

with qk given by (4) for all k ∈ Z.
Assuming the video stimulus u3(x, y, t) ∈ H3, Equation (9) can

be written as

qk =
∫ tk + 1

tk

[∫
D3

u3(x, y, s)(Ph3)(x, y, t − s) dx dy ds

]
exp

(
t − tk + 1

RC

)
dt � Lk(Ph3), (10)

where Lk : H3 → R is a linear functional. By the Riesz represen-
tation theorem, there is a function φk ∈ H3 such that

Lk(Ph3) = 〈Ph3, φk〉.

Example 5. A special case of the SISO Spatiotemporal TEM is
the SISO Spatial TEM, in which the communication/processing
channel affects only the spatial component of the spatiotemporal

input signal. In other words, the output of the receptive field is
given by

v(t) =
∫

D2

h2(x, y)u3(x, y, t)dxdy.

Note that because only the spatial component of the input is pro-
cessed, a simpler stimulus that does not vary in time may be
presented when identifying this system. For example, such a stimulus
may be a static image u2(x, y). Then,

qk =
∫ tk + 1

tk

[∫
D2

u2(x, y)(Ph2)(x, y) dx dy

]
exp

(
t − tk + 1

RC

)
dt � Lk(Ph2), (11)

where Lk : H2 → R is a functional. As before, by the Riesz repre-
sentation theorem, there is a function φk ∈ H2 such that

Lk(Ph2) = 〈Ph2, φk〉.

2.3. IDENTIFICATION ALGORITHMS
In the previous section we demonstrated a relationship between
the problem of identification of a receptive field and an irregular
sampling problem. Namely, we showed that a projection Phn of
the multidimensional receptive field hn is embedded in the output
spike sequence of the neuron as samples, or quantal measure-
ments, qk of Phn. A natural followup question to ask is how to
reconstructPhn from these measurements. We have the following
result.

2.3.1. Feedforward multidimensional SISO CIM
Theorem 1. (SISO Multidimensional CIM)
Let {u i

n | u i
n ∈ Hn}N

i = 1 be a collection of N linearly independent
stimuli at the input to a [Filter]-[Leaky IAF] circuit with a mul-
tidimensional receptive field hn ∈ Hn. If the number of signals
N ≥∏n − 1

p = 1 (2Lp + 1) and the total number of spikes produced in

response to all stimuli is greater than
∏n

p = 1 (2Lp + 1) + N, then
the filter projection Phn can be perfectly identified from a collection
of input/output (I/O) pairs {(u i

n, T
i)}N

i = 1 as

(Phn)(x1, . . . , xn − 1, t) =∑
|l1| ≤ L1

. . .
∑

|ln|≤Ln

hl1l2...ln el1l2...ln (x1, . . . , xn − 1, t),

where h = �+q. Here [h]l = hl1,...,ln , � = [�1; �2; . . . ;�N
]

and the elements of each matrix �i are given by

[
�i
]

kl
= RCLn

√
Tnui

−l1,...,−ln − 1,ln

jln�nRC + Ln[
eln

(
ti
k + 1

)
−eln

(
ti
k

)
exp

(
ti
k − ti

k + 1

RC

)]
(12)

with the column index l traversing all possible subscript combina-
tions of l1, l2, . . . , ln for all k ∈ Z, i = 1, 2, . . . , N. Furthermore,
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FIGURE 4 | Block diagram of the Multidimensional CIM. (A) Time encoding interpretation of the multidimensional channel identification problem. (B) Block
diagram of the multidimensional channel identification machine.

q = [q1; q2; . . . ; qN
]
,
[
qi
]

k = qi
k and

qi
k = Cδ + bRC

[
exp

(
ti
k − ti

k + 1

RC

)
− 1

]

for k ∈ Z, i = 1, . . . , N.

Proof: The representation (6) for stimuli ui
n takes the form

Li
k(Phn) = 〈Phn, φ

i
k〉 = qi

k

with φi
k ∈ Hn. Since Phn ∈ Hn and φi

k ∈ Hn, we have

(Phn)(x1, . . . , xn−1, t) =
∑

|l1| ≤ L1

. . .
∑

|ln| ≤ Ln

hl1...ln el1...ln

(x1, . . . , xn − 1, t),

and

φi
k(x1, . . . , xn − 1, t) =

∑
|l1| ≤ L1

. . .
∑

|ln| ≤ Ln

φi
l1...lnkel1...ln

(x1, . . . , xn − 1, t),

and, therefore,

qi
k =
∑

|l1| ≤ L1

. . .
∑

|ln| ≤ Ln

hl1...ln φi
l1...lnk.

In matrix form we have qi = �ih, with
[
qi
]

k = qi
k, where the

elements
[
�i
]

kl = φi
l1 ... lnk, with the column index l traversing

all possible subscript combinations of l1, l2, . . . , ln and [h]l =
hl1,...,ln . Repeating for all signals i = 1, . . . , N, we obtain q = �h
with q = [q1; q2; . . . ; qN

]
and � = [�1; �2; . . . ; �N

]
. This

system of linear equations can be solved for h, provided that the
rank r(�) of the matrix � satisfies r(�) =∏n

p = 1 (2Lp + 1). A

necessary condition for the latter is that the total number of spikes
generated by all N neurons is greater or equal to

∏n
p = 1 (2Lp +

1) + N. Then h = �+q, where �+ denotes a pseudoinverse of

�. To find the coefficients φi
l1...lnk, we note that

φi
l1...lnk = Li

k(el1...ln )

=
∫ ti

k + 1

ti
k

[∫
Dn

el1...ln (x1, . . . , xn − 1, t − s)ui
n

(x1, . . . , xn − 1, s) dx1 . . . dxn − 1 ds

]
exp

(
t − ti

k + 1

RC

)
dt

=
∫ ti

k + 1

ti
k

⎡⎣∫
Dn

el1...ln (x1, . . . , xn − 1, t − s)
∑

|l1| ≤ L1

. . .

∑
|łn| ≤ Ln

ui
l1...ln

el1...ln (x1, . . . , xn − 1, s) dx1 . . . dxn − 1 ds

⎤⎦
× exp

(
t − ti

k + 1

RC

)
dt

= √Tn

∫ ti
k + 1

ti
k

u i
−l1,...,−ln − 1,ln

eln (t) exp

(
t − ti

k + 1

RC

)
dt

= RCLn
√

Tnui
−l1,...,−ln − 1,ln

jln�nRC + Ln

[
eln (ti

k + 1) − eln (ti
k)

exp

(
ti
k − ti

k + 1

RC

)]
. (13)

Finally, we note that since the dendritic current v has a max-
imum bandwidth of �t , we only need 2Lt + 1 measurements
to specify it. Thus, in response to each stimulus ui

n, the neuron
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can produce a maximum of only 2Lt + 1 informative measure-
ments, or equivalently, 2Lt + 2 informative spikes on the interval
[0, Tt]. It follows that if the neuron generates ν ≥ 2Lt + 2 spikes
for each test signal, the minimum required number of signals
is N =∏n − 1

p = 1 (2Lp + 1)(2Lt + 1)/(2Lt + 1) =∏n − 1
p = 1 (2Lp + 1).

Similarly, if the neuron generates ν < 2Lt + 2 spikes for each
signal, then the minimum required number of signals is N =

∑n

p = 1 (2Lp + 1)/(ν − 1)�.
The block diagram of the identification procedure and algo-

rithm are shown in Figure 4. Identification of the filter hn has
been reduced to the encoding of the projection Phn with a SIMO
TEM whose receptive fields are ui

n, i = 1, . . . , N.

2.3.2. SISO multidimensional CIM with lateral connectivity and
feedback

Generalizing the ideas above, one can consider more complex
spiking neural circuits, in which every neuron may receive not
only feedforward inputs, but also lateral inputs from neurons in
the same layer and back-propagating action potentials may con-
tribute to computations within the dendritic tree. A two-neuron
circuit incorporating these considerations is shown in Figure 5.

Each neuron j processes a visual stimulus u
j
3(x, y, t) using a

distinct spatiotemporal receptive field h
1j1
3 (x, y, t), j = 1, 2. The

processing of lateral inputs is described by the temporal receptive
fields (cross-feedback filters) h221 and h212, while various signals
produced by back-propagating action potentials are modeled by

the temporal receptive fields (feedback filters) h211 and h222. The
aggregate dendritic currents v1 and v2, produced by the receptive
fields and affected by back propagation and cross-feedback, are
encoded by IAF neurons into spike times (t1

k )k∈Z, (t2
k )k∈Z.

Theorem 2. (SISO multidimensional CIM with lateral connec-
tivity and feedback)

Let
{[

u1,i
n , u2,i

n

] ∣∣ uj,i
n ∈ Hn, j = 1, 2

}N
i=1

be a collection of N lin-

early independent vector stimuli at the input to two neurons with

multidimensional receptive fields h
1j1
n ∈ Hn, j = 1, 2, lateral recep-

tive fields h212, h221 and feedback receptive fields h211 and h222. Let
(t1

k )k∈Z and (t2
k )k∈Z be the sequences of spike times produced by

the two neurons. If the number of test stimuli N ≥∏n−1
p=1 (2Lp +

1) + 2 and the total number of spikes produced by each neu-
ron in response to all stimuli is greater than

∏n
p=1 (2Lp + 1) +

2(2Ln + 1) + N, then the filter projections Ph211, Ph212, Ph221,

Ph222 and Ph
1j1
n , j = 1, 2, can be identified as (Ph211)(t) =∑Ln

l = −Ln
h211

l el(t), (Ph212)(t) =∑Ln
l = −Ln

h212
l el(t), (Ph221)(t) =∑Ln

l = −Ln
h221

l el(t) (Ph222)(t) =∑Ln
l = −Ln

h222
l el(t) and

(Ph
1j1
n )(x1, . . . , xn − 1, t) =∑

|l1|...≤...L1

. . .
∑

|ln| ≤ Ln

h
1j1
l1l2...ln

el1l2...ln (x1, . . . , xn − 1, t).

FIGURE 5 | Identifying spatiotemporal receptive fields in circuits with lateral connectivity and feedback.
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FIGURE 6 | Spectro-temporal example. Original and identified spectrotemporal filters are shown in the top and bottom plots, respectively. �1 = 2π · 80 rad/s,
L1 = 16, �2 = 2π · 120 rad/s, L2 = 24.

FIGURE 7 | Spatio-temporal example #1. Top row: Four frames of the
original spatiotemporal kernel h3(x, y, t). Here, h3 is a spatial Gabor function
rotating clockwise in space with time. Middle row: Four frames of the

identified kernel. �1 = 2π · 12 rad/s, L1 = 9, �2 = 2π · 12 rad/s, L2 = 9,
�3 = 2π · 100 rad/s, L3 = 5. Bottom row: Absolute error between four
frames of the original and identified kernel.

Here, the coefficients h211
l , h212

l , h221
l , h222

l and h
1j1
l are given by h =

[�1;�2]+ q with q = [q11, . . . , q1N , q21, . . . , q2N
]T

,
[
qji
]

k =
q

ji
k and h = [h1; h2

]
, where h j = [h1j1

−Ln,...,−Ln
, . . . , h

1j1
Ln,...,Ln

,

h
2[(j mod 2) + 1]j
−L ,. . . , h

2[(j mod 2) + 1]j
L , h

2jj
−L,. . . , h

2jj
L ]T, j = 1, 2, pro-

vided each matrix �j has rank r(�j) =∏n
p = 1 (2Lp + 1) +

2(2Ln + 1). The ith row of �j is given by [�1i
j ,�2i

j ,�3i
j ], i =

1, . . . , N, with

[�2i
j ]kl = √

T

∫ t
ji
k + 1

t
ji
k

t
[(j mod 2)+1]i
l el(t) exp

(
ti
k − ti

k + 1

RC

)
dt
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FIGURE 8 | Spatio-temporal example #1 in the frequency domain. Top

row: Fourier amplitude spectrum of the four frames of the original
spatiotemporal kernel h3(x, y, t) in Figure 7. Note that the frequency support
is roughly confined to a square [−10, 10] × [−10, 10]. Middle row: Fourier

amplitude spectrum of the four frames of the identified spatiotemporal kernel
in Figure 7. Nine spectral lines (L1 = L2 = 9) in each spatial direction cover
the frequency support of the original kernel. Bottom row: Absolute error
between four frames of the original and identified kernel.

and

[�3i
j ]kl = √

T

∫ t
ji
k + 1

t
ji
k

t
ji
l el(t) exp

(
ti
k − ti

k + 1

RC

)
dt,

l = −Ln, . . . , Ln. The entries [�1i
j ]kl are as given in Theorem 1.

Proof: Essentially the same as in Theorem 1, with an addition
of lateral and feedback terms. Each additional temporal filter
requires (2Ln + 1) additional measurements, corresponding to
the number of bases in the temporal variable t.

3. RESULTS
Figures 6–9, and corresponding figure legends demonstrate the
performance of the multidimensional Channel Identification
Machine.

In simulations pertaining to the spectrotemporal receptive
field (see also Figure 6), we used the short-time Fourier transform
of an arbitrarily chosen 200 ms segment of the Drosophila
courtship song as a model of the STRF. The space of spec-
trotemporal signals H2 had bandwidth �1 = 2π · 80 rad/s and

order L1 = 16 in the spectral direction ν and bandwidth �2 =
2π · 120 rad/s and order L2 = 24 in the temporal direction t.
The STRF appeared in cascade with an ideal IAF neuron (see
Figure 2), whose parameters were chosen so that it generated a
total of more than (2L1 + 1)(2L2 + 1) = 33 × 49 = 1, 617 mea-
surements in response to all test signals. We employed a total
of N = 40 spectrotemporal signals (which is larger than the
(2L1 + 1) = 33 requirement of Theorem 1) in order to identify
the STRF.

In simulations involving the spatiotemporal receptive field
(see also Figures 7, 8 we used a spatial Gabor function that was
either rotated, dilated or translated in space as a function of
time. The space of spatiotemporal signals H3 had bandwidth
�1 = 2π · 12 rad/s and order L1 = 9 in the spatial direction x,
bandwidth �2 = 2π · 12 rad/s and order L2 = 9 in the spatial
direction y, and bandwidth �3 = 2π · 100 rad/s and order L3 = 5
in the temporal direction t. The STRF appeared in cascade with
an ideal IAF neuron (see Figure 2), whose parameters were cho-
sen so that it generated a total of more than (2L1 + 1)(2L2 +
1)(2L3 + 1) = 19 × 19 × 11 = 3, 971 measurements in response
to all test signals. In order to identify the projection Ph3 we
employed a total of N = 400 spatiotemporal signals, a number
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FIGURE 9 | Spatial example #1. �1 = �2 = 2π · 15 rad/s, L1 = L2 = 12. A
minimum of N = 625 images are required for identification. 1.1 × N = 688
images were used. (A–C) Left to right: original spatial kernel h2(x, y ),

identified kernel and absolute error between the two. (D–F) Left to right:
contour plots of the original spatial kernel h2(x, y ), identified kernel and
absolute error. (G–I) Fourier amplitude spectrum of signals in (D–E).

that is larger than the (2L1 + 1)(2L2 + 1) = 361 requirement of
Theorem 1).

In simulations involving the spatial receptive field (see also
Figure 9), we used a static spatial Gabor function. The space of
spatial signals H2 had bandwidths �1 = �2 = 2π · 15 rad/s and
L1 = L2 = 12 in spatial directions x and y. The STRF appeared
in cascade with an ideal IAF neuron (see Figure 2 as a refer-
ence), whose parameters were chosen so that it generated a total of
more than (2L1 + 1)(2L2 + 1) = 25 × 25 = 625 measurements

in response to all test signals. In order to identify the projection
Ph2 we employed a total of N = 688 spatial signals (a number
that is larger than the (2L1 + 1)(2L2 + 1) = 625 requirement of
Theorem 1).

Identification results for the circuit in Figure 5 are shown in
Figure 10. The spatiotemporal receptive fields used in this simu-
lation were non-separable. The first receptive field was modeled as
a single spatial Gabor function (at time t = 0) translated in space
with uniform velocity as a function of time, while the second
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FIGURE 10 | Identifying spatiotemporal receptive fields in circuits with lateral connectivity and feedback. (A–D) Identifying the feedforward
spatiotemporal receptive fields of Figure 5. (E–H) Identifying the lateral connectivity and feedback filters of Figure 5.

receptive field was a spatial Gabor function uniformly dilated
in space as a function of time. Three different time frames of
the original and the identified receptive field of the first neuron
are shown in Figures 10A,B, respectively. Similarly, three time
frames of the original and identified receptive field of the second
neuron are respectively plotted in Figures 10C,D. The identi-
fied lateral and feedback kernels are visualized in plots (e-h) of
Figure 10.

4. DISCUSSION
4.1. IMPLICATIONS FOR MULTIDIMENSIONAL ENCODING AND

DECODING
The duality between multidimensional channel identification and
stimulus decoding problems allowed us to derive identification
algorithms for estimation of receptive fields of arbitrary dimen-
sions and precise conditions under which the identification is
possible. At this point it is important to pause and analyze the
relationship between the dual problems. As it often turns out,
looking at a dual problem can provide a tremendous insight about
the primal problem.

Interestingly, previous results for video time encoding and
decoding machines provided only the necessary condition of
having enough spikes to decode the video (Lazar et al., 2010;
Lazar and Pnevmatikakis, 2011). This condition naturally fol-
lows from having to invert a matrix in order to compute
the basis coefficients of the video signal. Since the matrix
needs to be full rank to provide a unique solution, and there

are a total of (2L1 + 1)(2L2 + 1)(2L3 + 1) coefficients involved,
(2L1 + 1)(2L2 + 1)(2L3 + 1) + N spikes are needed from a pop-
ulation of N neurons (the number of spikes is larger than the
number of needed measurements by N since every measurement
qk is computed using two consecutive spikes tk and tk + 1.).

Note that a necessary condition only tells us that the number
of spikes must have been greater than (2L1 + 1)(2L2 + 1)(2L3 +
1) + N if we were able to recover the video signal. In order to
guarantee that the video can be recovered we need a sufficient
condition.

The sufficient condition can be derived by drawing compar-
isons between the decoding and identification problems. In iden-
tification, estimation of a receptive field from a single trial is usu-
ally not possible, even if the neuron produces a large number of
spikes (Lazar and Slutskiy, 2014b). Intuitively, this is because the
output of the receptive field is just a function of time. In essence,
all dimensions of the stimulus are compressed into just one—
the temporal dimension—and we need only (2L3 + 1) measure-
ments to specify a temporal function. As a result, only (2L3 + 1)
measurements are informative and we do not gain any new infor-
mation if the neuron is oversampling the temporal signal. Thus,
if the neuron is producing at least (2L3 + 1) measurements per
each test stimulus, we need N ≥ (2L1 + 1)(2L2 + 1) different
trials to reconstruct a (2L1 + 1)(2L2 + 1)(2L3 + 1)-dimensional
receptive field. Similarly, to decode a (2L1 + 1)(2L2 + 1)(2L3 +
1)-dimensional input stimulus, we need N ≥ (2L1 + 1)(2L2 +
1) neurons, with each neuron in the population producing at
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least (2L3 + 1) measurements. If each neuron produces less than
(2L3 + 1) measurements, a larger population N is needed to
faithfully encode the video signal.

More generally, if the n-dimensional input stimulus is an ele-
ment of a (2L1 + 1)(2L2 + 1) . . . (2Ln + 1)-dimensional RKHS
(where the last dimension is time), and the neuron is produc-
ing at least at least (2Ln + 1) + 1 spikes per test stimulus, a
minimum of (2L1 + 1)(2L2 + 1) . . . (2Ln − 1 + 1) linearly inde-
pendent stimuli, or trials with linearly independent stimuli, are
needed to identify the receptive field. This condition is sufficient
and by duality between channel identification and time encoding,
complements the previous necessary condition derived for time
decoding machines.

4.2. EXTENSIONS
In the derivations above we implicitly assumed that the I/O sys-
tem was noiseless. In practice, noise is introduced either by the
channel or the sampler itself (Lazar et al., 2010). In the pres-
ence of noise it is not possible to identify the projection Phn

loss-free. However, the analysis/methodology presented above
can be extended within an appropriate mathematical setting to
I/O systems with noisy measurements. For example, we can still
identify an optimal estimate P̂hn of Phn with respect to an
appropriately defined cost function, e.g., by using the Tikhonov
regularization method. The regularization methodology exten-
sively discussed in Lazar and Slutskiy (2014a) can be adopted with
minor modifications to our setting here.

Finally we note that, for convenience and simplicity of nota-
tion, the asynchronous sampler used throughout this paper was
the IAF neuron. Extensions of our results to neural circuits built
with other biophysically-grounded neuron models can be read-
ily obtained by adapting the methodology developed in Lazar and
Slutskiy (2012, 2014a).
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