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The monkey anterior intraparietal area (AIP) encodes visual information about
three-dimensional object shape that is used to shape the hand for grasping. We
modeled shape tuning in visual AIP neurons and its relationship with curvature and
gradient information from the caudal intraparietal area (CIP). The main goal was to gain
insight into the kinds of shape parameterizations that can account for AIP tuning and
that are consistent with both the inputs to AIP and the role of AIP in grasping. We
first experimented with superquadric shape parameters. We considered superquadrics
because they occupy a role in robotics that is similar to AIP, in that superquadric fits are
derived from visual input and used for grasp planning. We also experimented with an
alternative shape parameterization that was based on an Isomap dimension reduction
of spatial derivatives of depth (i.e., distance from the observer to the object surface).
We considered an Isomap-based model because its parameters lacked discontinuities
between similar shapes. When we matched the dimension of the Isomap to the number
of superquadric parameters, the superquadric model fit the AIP data somewhat more
closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that
the Isomap parameters could be approximated much more accurately than superquadric
parameters by feedforward neural networks with CIP-like inputs. We conclude that
Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a
promising model of AIP electrophysiology data. Further work is needed to test whether
such shape parameterizations actually provide an effective basis for grasp control.
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1. INTRODUCTION
The macaque anterior intraparietal area (AIP) receives input from
the visual cortex, and is involved in visually guided grasping. A
large fraction of neurons in this area encode information about
three-dimensional object shapes from visual input (Murata et al.,
2000; Sakaguchi et al., 2010). Responses are typically relatively
invariant to object position in depth (Srivastava et al., 2009).
The responses of some neurons are also invariant to other prop-
erties. For example, some are orientation-tuned but not highly
sensitive to object shape (Murata et al., 2000). AIP has a strong
recurrent connection with premotor area F5, which is involved
in hand shaping for grasping (Rizzolatti et al., 1990; Luppino
et al., 1999; Borra et al., 2008). Reversible inactivation of AIP
leads to grasping impairment, specifically a mismatch between
object shape and hand preshape (Gallese et al., 1994; Fogassi
et al., 2001). AIP is therefore thought to provide visual informa-
tion for grasp control (Jeannerod et al., 1995; Fagg and Arbib,
1998).

The focus of this paper is the pathway from V3 and V3A, to
the caudal intraparietal area (CIP), to visual-dominant neurons
in AIP (Nakamura et al., 2001; Tsutsui et al., 2002). This pathway
makes binocular disparity information available for grasp con-
trol. Most V3 neurons are selective for binocular disparity (Adams

and Zeki, 2001). V3 sends a major projection to V3A (Felleman
et al., 1997), which is also strongly activated during binocular dis-
parity processing (Tsao et al., 2003). Both V3 and V3A project
to CIP (Katsuyama et al., 2010). CIP neurons are selective for
depth gradients (Taira et al., 2000; Tsutsui et al., 2002; Rosenberg
et al., 2013) and curvature (Katsuyama et al., 2010). Neurons in
AIP receive disynaptic input from V3A via CIP (Nakamura et al.,
2001; Borra et al., 2008). Visual-dominant AIP neurons are selec-
tive for 3D object shape (Srivastava et al., 2009; Sakaguchi et al.,
2010) cued by binocular disparity, consistent with input from this
pathway.

AIP also receives many other inputs that we do not model
in the present study. The first of these is the premotor area
F5, which together with AIP forms a circuit for grasp-related
visuomotor transformations. AIP also receives input from the sec-
ond somatosensory (SII) cortical region (Krubitzer et al., 1995;
Fitzgerald et al., 2004; Gregoriou et al., 2006), which may provide
tactile feedback and memory-based somatosensory expectations
for grasping. Strong connections with other parietal areas are
also identified, as well as with prefrontal areas 46 and 12. Area
12 is implicated in high level non-spatial processing includ-
ing encoding of objects in working memory, suggesting that
AIP may be influenced by visual memory of object features
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(Borra et al., 2008). AIP also contains other neurons that fire in
conjunction with motor plans in addition to or instead of visual
input (Sakata et al., 1997; Murata et al., 2000; Taira et al., 2000).
Interestingly, AIP also receives subcortical input (via the thala-
mus) from both the cerebellum and basal ganglia (Clower et al.,
2005). Finally, AIP receives input from the inferotemporal cor-
tex (IT), which is likely to provide additional visual information
about shapes. Our present focus however is the visual input
from CIP.

The main goal of this study is to model the neural spike code
of object-selective visual-dominant AIP neurons. In particular, we
wanted to know whether there are certain sets of shape parameters
that are consistent with the responses of visual AIP neurons, and
which can furthermore be estimated in a physiologically plausible
way from the information available in CIP.

We therefore compared two ways of parameterizing shapes.
First we considered the superquadric family of shapes, a con-
tinuum that includes cuboids, ellipsoids, spheres, octahedra,
and cylinders, and which can also be extended in various ways
to model more complex shapes (Solina and Bajcsy, 1990). We
considered superquadrics because they play a role in robotic
grasp control (Duncan et al., 2013) that seems to be similar
to the role of AIP in primate grasp control, i.e., they represent
shapes compactly as a basis for grasp planning. We also con-
sidered an alternative shape parameterization that is based on
non-linear dimension reduction of the depth field. In particu-
lar, we used an Isomap (Tenenbaum et al., 2000). We considered
Isomap parameters partly because they are continuous, i.e., simi-
lar shapes have similar parameters. This is consistent with datasets
in which similar 3D stimuli elicit similar spike rate patterns
in AIP (Theys et al., 2012, Figure 10; Srivastava et al., 2009,
Figure 11C).

This study is one of the first to model the mapping from CIP to
AIP. Oztop et al. (2006) modeled AIP as a hidden layer in a multi-
layer perceptron network that mapped visual depth onto hand
configuration. The output layer of this model (corresponding to
F5) was a self-organizing map of subnetworks that corresponded
to different hand configurations. Prevete et al. (2011) developed a
mixed neural and Gaussian-mixture model in which AIP received
monocular infero-temporal input. This model did not include
stereoscopic input from CIP. The FARS grasping model (Fagg and
Arbib, 1998) did not address in detail how AIP activity arises from
visual input. While past AIP models have been relatively abstract,
here our goal is to fit published tuning curves from AIP record-
ings, and furthermore to do so using depth-related input from a
model of CIP. As far as we are aware, there have not been previ-
ous attempts to model AIP tuning in terms of either superquadric
parameters or non-linear dimension reduction of depth features.

2. MATERIALS AND METHODS
This study consists of three main parts. The first is a model of
tuning for depth features in the caudal intraparietal area (CIP,
see Section 2.1.1). The second is a model of tuning for three-
dimensional shape features in the anterior intraparietal area (AIP,
see Section 2.1.2). Finally, the third is an investigation of physi-
ologically plausible feedforward mappings between CIP and AIP
(see Section 2.5).

2.1. COSINE-TUNING MODELS OF NEUROPHYSIOLOGICAL DATA
We tested how well various tuning curves from the CIP and
AIP electrophysiology literature could be approximated by
cosine-tuned neuron models. In particular, given a vector x of
stimulus variables, we modeled the net current, I, driving spiking
activity in each neuron as

I = φ̃Tx + b, (1)

where b is a bias term and φ̃ is parallel to the neuron’s preferred
direction in the space of stimulus parameters. Longer φ̃ corre-
sponds to higher sensitivity of the neuron to variations along its
preferred direction.

We used a normalized version of the leaky-integrate-and-fire
(LIF) spiking model. In this model, the membrane potential V has
subthreshold dynamics τRCV̇ = −V + I, where τRC is the mem-
brane time constant and I is the driving current. The neuron
spikes when V >= 1, after which V is held at 0 for a post-spike
refractory time τref before subthreshold integration begins again.
These neurons have spike rate

r = 1

τref − τRC · ln (1 − 1
I )

. (2)

Except where noted, τRC was included among the optimization
parameters and constrained to the range [0.02s, 0.2s]. In some
cases (where noted), when the basic cosine-LIF model (above)
produced poor fits, we also added Gaussian background noise to
I. Such background noise more realistically reflects the input to
neurons in vivo (Carandini, 2004) and causes the LIF model to
emit more realistic, irregular spike trains. It also has the potential
to produce better tuning curve fits. The reason is that depend-
ing on the amplitude of the noise, the spike-rate function may
be compressive [as in Equation (2)], sigmoidal, or nearly linear.
In these cases we fixed τref = 0.005s and τRC = 0.02s, included
the noise variance as an optimization parameter, and interpo-
lated the spike rate from a lookup table based on simulations.
Given a tuning curve from the electrophysiology literature and
a list of hypothesized tuning variables, we found least-squares
optimal parameters φ̃ and b mainly, and either τRC or σnoise (as
noted in the corresponding sections), using Matlab’s lsqcurvefit
function. This function uses Matlab’s trust-region-reflective algo-
rithm, which is based partly on Coleman and Li (1994), to solve a
non-linear curve-fitting problem in the sense of least-squares. We
retried each optimization with at least 1000 random initial points
in order to increase the probability of finding a global optimum.

We preferred cosine tuning models over more complex non-
linear models for a number of reasons, including that they are
simple and that cosine tuning is widespread in the cortex and else-
where (Zhang and Sejnowski, 1999). (See more detailed rationale
in the Discussion).

2.1.1. CIP Tuning
We approximated CIP responses in terms of depth and its first
and second spatial derivatives. CIP has been proposed to encode
these variables (Orban et al., 2006), and they have been the basis
for several experimental studies of CIP responses (Sakata et al.,
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1998; Taira et al., 2000; Tsutsui et al., 2001; Katsuyama et al., 2010;
Rosenberg et al., 2013).

We fit cosine-tuned LIF neuron models to tuning curves from
Tsutsui et al. (2002) and Rosenberg et al. (2013), and from
Katsuyama et al. (2010), in which the stimuli varied in terms of
first and second derivatives of depth, respectively. The stimuli in
Katsuyama et al. (2010) consisted of curved surfaces with depth

z = 1

2

(
K1x2 + K2y2) . (3)

K1 and K2 were varied to produce two levels of “curvedness,”

C =
√

K2
max + K2

min

2

and a range of “shape indices”

SI = 2

π
arctan

Kmax + Kmin

Kmax − Kmin
,

where Kmax and Kmin are the larger and smaller curvatures along
the x and y axes, respectively.

In terms of the depth z, the principal curvature along the x
axis is

Kx = ∂2z/∂x2(
1 + (∂z/∂x)2

)3/2
(4)

(de Vries et al., 1993). For these stimuli ∂z/∂x = 0 at the center,
and so Kx = ∂2z/∂x2.

2.1.2. AIP Tuning
Following Sakata et al. (1998) and Murata et al. (2000) and con-
sistent with the role of AIP in grasping (Fagg and Arbib, 1998),
we took the visual-dominant neurons in AIP to be responsive
to three-dimensional shape. Available tuning curves (e.g., Murata
et al., 2000) span small numbers of data points relative to the large
space of shape variations that are relevant to hand pre-shaping.
For this reason we fit models to various “augmented” tuning
curves that matched published tuning curves for some shapes,
and made assumptions about how these neurons might respond
to other shapes (see Figure 2). These assumptions were based on
additional data for separate AIP neurons (see below). Our aug-
mented tuning curves spanned four of the shapes in Murata et al.
(2000), specifically a sphere, cylinder, cube, and plate. Two other
shapes (ring and cone) were omitted for simplicity, because they
require additional superquadric shape parameters (see Section
2.2). The augmented tuning curves spanned four sizes and four
orientations for each of the four shapes. Due to symmetries in the
shapes, there were a total of 36 points in these tuning curves (see
Figure 1). Four of these points corresponded to AIP data, and the
rest (the augmented points) were extrapolated from the data.

We based the augmented points on additional data from other
AIP neurons, including aggregate data. Murata et al. (2000)
provide shape-tuning curves for six different object-type visual-
dominant AIP neurons. We tested different augmented versions
of these curves with various combinations of size and orientation

FIGURE 1 | The complete set of 36 shapes used in the augmented tuning

curves. Four basic shapes (sphere, cube, plate, and cylinder) were adapted
from Murata et al. (2000). In order to constrain the models more fully, and in
particular to ensure that tuning curves included more points than there were
parameters in our models, we augmented these basic shapes by adding
copies with different sizes (shown with 4 different colors) and orientations
(i.e., horizontal, vertical, tilted forward 45◦, tilted backward 45◦). Note that due
to the symmetry of the basic shapes, some orientations are redundant (e.g.,
rotating a sphere does not create a distinguishable shape).

tuning (see Figure 2). Murata et al. (2000) reported (without
plotting shape tuning for these neurons) that most object-type
neurons were orientation selective, and that 16/26 were size-
selective. Therefore, we created two augmented tuning curves
for each of the six shape-tuning curves. Both were orientation-
selective; one was size-selective and the other was size-invariant.
For the size-selective tuning curves we assumed that spike rate
increased monotonically with size (consistent with Murata et al.,
2000, Figure 19; note that preference for intermediate sizes was
reported only for motor-dominant neurons). We assumed that
orientation tuning was roughly Gaussian and fairly narrow (con-
sistent with Murata et al., 2000, Figure 18). Some AIP neurons
are orientation selective with only mild selectivity across vari-
ous elongated shapes (Sakata et al., 1998). Therefore, we created
a final augmented tuning curve that was orientation selective
but responded equally to cylinders and plates. Figure 1 shows
an example of an augmented tuning curve and its relationship
to the data. This procedure made the tuning curve optimization
more challenging. This was important because even our simple
cosine-tuned neuron models had more parameters than the num-
ber of points in the published tuning curves (see Section 3). It also
allowed us to make use of additional AIP data.

2.2. SUPERQUADRICS
We modeled AIP shape tuning both on the parameters of the
superquadric family of shapes, and on an Isomap dimension
reduction of depth features. The superquadric family is a con-
tinuum that includes cuboids, ellipsoids, spheres, octahedra, and
cylinders as examples. Superquadrics are often used to approx-
imate observed shapes as an intermediate step in robotic grasp
control (Ikeuchi and Hebert, 1996; Biegelbauer and Vincze, 2007;
Goldfeder et al., 2007; Huebner et al., 2008; Duncan et al., 2013).
In this context, superquadric shape parameters are typically
estimated from 3D point-cloud data using iterative non-linear
optimization methods (Huebner et al., 2008).

Their role in robotics suggests that superquadrics are a
plausible model of AIP shape tuning. Specifically, they can
be parameterized from visual information and they contain
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FIGURE 2 | An example of an augmented AIP tuning curve. (A) Tuning
curve adapted from Murata et al. (2000), Selectivity for the shape, size,
and orientation of objects for grasping in neurons of monkey parietal area
AIP, 2580-2601, with permission. (See their Figure 11.) (B) The four points
from the same tuning curve that belong to the basic superquadric family (a
ring and cone are excluded from the current study). The spike rates are

plotted as 3D bars. (C) An augmented tuning curve that includes the
points in (B), as well as other rotations and scales. This augmented tuning
curve is both size-tuned and orientation-tuned, as were the majority of
object-type visual neurons in Murata et al. (2000). Another large minority
were orientation-tuned but not size-tuned. As in Figure 1, the colors
correspond to different sizes.

information about an object that is useful as a basis for grasp
planning. One goal of the present study was to examine their
physiological plausibility more closely, by fitting superquadric-
tuned neuron models to AIP tuning curves. The surface of a
superquadric shape is defined in x-y-z space as

(
x

A1

)1/ε1

+
(

y

A2

)1/ε2

+
(

z

A3

)1/ε3

= 0,

where A > 0 are scale parameters and ε > 0 are curvature param-
eters. Values of ε close to zero correspond to squared corners,
while values close to one correspond to rounded corners. For
example a sphere has A1 = A2 = A3 and ε1 = ε2 = ε3 = 1. We
also used another parameter, θ , that described the orientation
of the superquadric. θ was composed of three angles, one per
coordinate. The rotation of the superquadric is done applying the
rotation matrix described in Equation 5.

R(θ1, θ2, θ3) =
⎡
⎣ cos (θ2) · cos (θ3) cos (θ1) · sin (θ3) + sin (θ1) · sin (θ2) · cos (θ3) sin (θ1) · sin (θ3) − cos (θ1) · sin (θ2) · cos (θ3)

− cos (θ2) · sin (θ3) cos (θ1) · cos (θ3) − sin (θ1) · sin (θ2) · sin (θ3) sin (θ1) · cos (θ3) + cos (θ1) · sin (θ2) · sin (θ3)
sin (θ2) − sin (θ1) · cos (θ2) cos (θ1) · cos (θ2)

⎤
⎦ (5)

We generated a database of 40,000 shapes that included spheres,
cylinders, plates, and cubes as well as variations on these shapes
with different scales in each dimension, and rotated versions of
them. Our database contained roughly equal numbers of box-
like, sphere-like, and cylinder-like shapes. For round edges we
set ε = 1. For squared edges we drew ε from an exponential dis-
tribution that was shifted slightly away from zero, p = 10H(ε −
η) exp (−(ε − η)/0.1) with η = 0.01, where H is the Heaviside
step function. The shift away from 0 (perfectly sharp corners)
helped to avoid numerical problems. The objects had widths
between 0.02 m and 0.12 m. We also allowed arbitrary rotations
in three dimensions (except where symmetry made rotations
redundant), so that each shape had a total of nine parameters.

This study considers only the basic superquadric family, which
does not include all the shapes for which AIP responses have
been reported. However, the basic family can also be extended
in various ways to deal with more complex shapes. For exam-
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ple, hyperquadrics introduce asymmetry (Kumar et al., 1995),
and trees of superquadrics can be used to approximate complex
shapes with arbitrary precision (Goldfeder et al., 2007).

2.3. CREATION OF DEPTH MAPS
CIP receives input from V3 and V3A, which encode binocular
disparity information (Anzai et al., 2011). Disparity is monotoni-
cally related to visual depth, or distance from observer to surface.
As a simplified model of this input we created depth maps, i.e.,
grids of distances from a viewpoint to object surfaces. We cre-
ated depth maps from the shapes in our superquadric database
by finding intersections of the surfaces with rays at various visual
angles from the view point. We used a 16 × 16 grid of visual
angles. Grid spacing was closer near the center than in the periph-
ery, in order to reflect higher visual acuity near the fovea and
also to ensure that a few rays intersected with the smallest shapes
(specifically, distances from the center were a1.5, where a were
evenly-spaced points). The grid covered ± 10◦ of visual angle in
each direction. The object centers were at a depth of 0.75 m from
the viewpoint. Depth at each grid point was found as the intersec-
tion of the superquadric surface with a line from the observation
point (Figure 3).

2.4. ISOMAP SHAPE PARAMETERS
Within the superquadric family there is typically more than one
set of parameters that can describe a given shape. For example, a
tall box can either be parameterized as a tall box or a wide box
on its end. This is not very problematic in robotics, because an
iterative search for matching parameters finds one of these solu-
tions. However, our goal was to model a feedforward mapping
from depth (V3A) to shape parameters (AIP). In order to use the
superquadric parameters as the basis for an AIP tuning we there-
fore needed the superquadric-to-depth function to be invertible.

FIGURE 3 | Illustration of the depth map construction process. Each
superquadric was centered at (0, 0, 0.75) relative to an observer at (0, 0, 0).
Rays were traced between the observation point and a grid of points in the
frontoparallel plane at z = 0.75, and intersections (red dots) were found
with the superquadric surface. The depth map consisted of a grid of
distances from (0, 0, 0) to these intersections.

We achieved this by restricting the ranges of angles. For exam-
ple, for box-like shapes we restricted all angles to within ±π/4.
This resulted in a unique set of superquadric parameters for
each shape. However, large discontinuities remained, in that some
very similar shapes sometimes had very different parameters.
For example, a tall box at an angle slightly less than π/4 has
a depth map that is very similar to a wide box at angle just
greater than −π/4 radians. Similar discontinuities seem to exist
regardless of the angle convention. We anticipated that these
discontinuities would impair feedforward mapping in a neu-
ral network, so we also explored an alternative low-dimensional
shape parameterization.

In the alternative model, neurons were tuned to an Isomap
(Tenenbaum et al., 2000) derived from depth data. Isomap is a
non-linear dimension-reduction method in which samples are
embedded in a lower-dimensional space in such a way that
geodesic distances (i.e., distances along the shortest paths through
edges between neighboring points) are maintained as well as pos-
sible. This method ensured that similar depth maps would be
close together in the shape-parameter space, minimizing param-
eter discontinuities like those of the superquadric parameters. We
constructed an Isomap of the first and second spatial derivatives
of the depth maps in the horizontal and vertical directions.

We tested whether our augmented AIP tuning curves (above)
were consistent with cosine tuning for these shape parameters.
We also tested how well these shape parameters could be approx-
imated by a neural network with CIP parameters as input.

2.5. NEURAL NETWORK MODELS OF CIP-TO-AIP MAP
In addition to fitting cosine-LIF models to neural tuning curves
in CIP and AIP, we also developed feedforward networks to map
from CIP variables to AIP variables. Our general approach was to
decode shape parameters from the spike rates of CIP models.

We experimented with several different networks includ-
ing neural engineering framework networks (Eliasmith and
Anderson, 2003; Eliasmith et al., 2012), multilayer perceptrons
trained with the back-propagation algorithm (Haykin, 1999) and
convolutional networks (LeCun et al., 1998).

In each case the output units were linear. Linear decoding of
the tuning parameters was of interest because decoding weights
can be multiplied with preferred directions to give synaptic
weights for any cosine tuning curve over the decoded variables
(Eliasmith and Anderson, 2003). Specifically, suppose we have
presynaptic rates rpre and linearly decoded estimates p̂ = 
rpre

of shape parameters p, where 
 is a matrix of decoding weights.
In this case the family of cosine tuning curves over p̂ is

rpost = G
(
φ̃T p̂ + b

)
, (6)

where φ̃T p̂ + b is the driving current, φ̃ is the neuron’s preferred
direction, G is a physiological model of the current-spike rate rela-
tionship, and b is a bias current. Such a tuning curve can then be
obtained with synaptic weights (from all presynaptic neurons to a
single postsynaptic neuron)

wT = φ̃T
. (7)
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This allows us to draw general conclusions about how well our
various models can account for AIP tuning, and how they would
relate to future data.

Equations 6 and 7 are important components of the
Neural Engineering Framework (Eliasmith and Anderson, 2003;
Eliasmith et al., 2012), a method of developing large-scale neural
circuit models.

3. RESULTS
3.1. CIP TUNING
Figure 4 shows an optimal fit of a cosine-tuned LIF model to a
tuning curve from Katsuyama et al. (2010). Following their con-
vention the spike rates are shown as a function of shape index,
separately for the two curvedness levels. Inspection of the tuning
curve revealed that it contained an expansive non-linearity, so we
included Gaussian background noise in the model (as described
in Section 2). To improve the fit further, in addition to tun-
ing variables X = ∂2z/∂x2 and Y = ∂2z/∂y2 we introduced new
tuning variables 1

2

(
3(X)2 − 1

)
and 1

2

(
3(Y)2 − 1

)
. The rationale

for their inclusion was that these are the non-linear functions
for which linear reconstruction is (with reasonable assump-
tions) most accurate from populations of LIF neurons tuned to
X and Y (Eliasmith and Anderson, 2003). However, the fit to
the Katsuyama et al. (2010) data remained poor despite these
measures.

We considered whether a linear-nonlinear receptive field
model with depth inputs might produce a better fit. Such models
are essentially cosine tuning models with multiple input variables
on a grid. However, the depth stimuli in this case (see Equation
3) consisted of linear combinations of x2 and y2, so any receptive-
field model over the depth field has an equivalent cosine tuning
model over K1 and K2. Therefore, the neuron is not cosine tuned
to either depth or the curvature parameters.

Figure 5 shows an example of a more complex non-linear neu-
ron model that fits the data. This model is based on non-linear

interactions between nearby inputs on the same dendrite, which
suggest that pyramidal cells may function similarly to multilayer
perceptrons (Polsky et al., 2004). The input to this model was a
3 × 3 depth grid. The model contained 50 dendritic branches,
each of which was cosine tuned to the depths. The linear kernels
(analogous to preferred directions) were random. The output of
each branch was a sigmoid function of the point-wise product
of the depth stimulus and the linear kernel. The spike rate was
a least-squares optimal weighted sum of the branch outputs. This
was found using a matrix pseudoinverse that used 14 singular val-
ues. We also created another version of this model (not shown) in
which the tuning curve was augmented with additional stimuli
(completing the outer circle of points in Figure 5B) and it was
assumed that the neuron would respond to these stimuli at the
background spike rate. This version of the model therefore fit 26
points, and we used 20 singular values in the pseudoinverse. The
fit was similar in this case.

We also constructed another alternative model of this cell that
was based on a more detailed model of V3A activity. Specifically,
instead of a 3 × 3 depth grid, this model received input from
seven non-linear functions of depth at each point. Five of these
were Gaussian functions based on “tuned near,” “tuned zero,” and
“tuned far” neurons (Poggio et al., 1988). Two were sigmoidal
functions based on “near” and “far” tuning (Poggio et al., 1988).
This model (not shown) reproduced the tuning curve somewhat
less accurately than the non-linear cell model above. This was
the case regardless of minor variations in the set of input tuning
functions and their parameters.

Figure 6 shows a cosine-tuning fit of data from Tsutsui et al.
(2002). This tuning curve is an average over multiple cells that
were tuned to depth gradients of visual stimuli. The best fitting
cosine-tuning model has a notably different shape than the aggre-
gate data. In particular, the actual spike rates are fairly constant
far away from the preferred stimulus, while the model spike rates
continue to decrease farther from the preferred stimulus.

FIGURE 4 | Fit of CIP model (squares) to tuning curve (circles) of an

example neuron (0.04 ± 5.22 spikes/s; mean error ± SD). The tuning
curve is replotted from Katsuyama et al. (2010), with permission from
Elsevier. In our model of CIP, neurons are cosine-tuned to five
dimensions: depth, horizontal and vertical first spatial derivatives of

depth, and horizontal and vertical second spatial derivatives of depth.
The stimuli in Katsuyama et al. (2010) varied only in terms of the
second derivatives. We also added non-linear tuning functions to
improve the fit (see text). The left and right tuning curves are for
two different levels of curvedness.
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Rosenberg et al. (2013) provide several additional CIP tun-
ing curves over 49 different plane stimuli. Some of these tuning
curves are clearly not consistent with cosine tuning for first
derivatives of depth or disparity, e.g., with multimodal responses
to surface tilt. We fit the non-linear model of Figure 5 to seven of
these tuning curves (their Figures 4, 5B). Using 20 singular val-
ues, the correlations between data and our best model fits were
r = 0.98 ± 0.01 SD for the four tuning curves in their Figure
4, and r = 0.78 ± 0.09 SD for the three tuning curves in their
Figure 5B. (These fits are somewhat closer than fits reported by
Rosenberg et al. to Bingham functions, which is unsurprising
as our model has more parameters.) Using 40 singular values,
our correlations improved to r = 0.91 ± 0.02 SD for the tuning
curves in their Figure 5B.

FIGURE 5 | (A) Non-linear model (squares) of same neuron as in Figure 4

(circles). (B) The same spike rates as (A) (black circles), re-plotted as a
function of ∂2z/∂x2 and ∂2z/∂y2, and the best model fit (mesh)
(0.00 ± 1.82 spikes/s; mean error ± SD). The data plots (black circles) are
adapted from Katsuyama et al. (2010), with permission from Elsevier.

In summary, the spike rates of these CIP neurons varied
with the first and second spatial derivatives of depth, but not
in a way that is consistent with cosine tuning to either the
depth map, its first and second derivatives, or low-order poly-
nomial functions of these derivatives. Other models, which are
physiologically plausible but more complex, fit the data more
closely.

3.2. AIP TUNING
Figure 7 shows an example cosine-tuning fit of an augmented
tuning curve in superquadric space. This fit is based on a noise-
free LIF neuron. For this dataset the shapes were rotated only in
one dimension, so we avoided angle discontinuities by using a
2D direction vector in place of the angle. The optimized param-
eters were the 8-dimensional preferred direction vector φ̃, the
bias b, and the membrane time constant τRC . Across the 36
points in the augmented tuning curve, the spike rate error (differ-
ence between augmented and model spike rates) was 0.70 ± 1.57
(mean ± SD).

Figure 8 shows the means and standard deviations of spike-
rate errors for each of the augmented tuning curves. Good fits
were obtained for some of the neurons (#1 and #3 in Murata
et al., 2000, Figure 10, and the second in Figure 11, which we
label #5). This was true for both size-invariant and size-selective
augmented tuning curves. Neuron #1 had low spike rates for
the stimuli that we studied. Neurons #3 was highly selective for
cylinders, and #5 was more broadly tuned but also preferred
cylinders. The worst fits were obtained for neuron #6 which
responded strongly to plates and cylinders but not to cubes or
spheres.

Figure 9A shows the means and standard deviations of
spike-rate errors for each of the augmented tuning curves
in an 8-dimensional Isomap space. We plot the results for
the 8-dimensional Isomap in order to match the number of
superquadric parameters. The cosine tuning errors (−0.88 ±
10.68 spikes/s; mean ± SD) were larger than those in the
superquadric space (−0.53 ± 6.75 spikes/s). The difference
between these variances was significant according to Levene’s test
[W(1, 910) = 41.3; p < 0.001].

Figure 9B shows how the error declined with higher-
dimensional Isomaps. Error variance with the 16-dimensional

FIGURE 6 | Cosine tuning model (left) of spike rate data aggregated across neurons (right) (0.03 ± 3.00 spikes/s; mean error ± SD). The right panel is
from Tsutsui et al. (2002). Reprinted with permission from AAAS. In which N is the number of neurons and r is the regression coefficient.
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FIGURE 7 | Best fit of a model neuron that is cosine-tuned

over superquadric parameters to an augmented tuning curve.

This augmented tuning curve is size-invariant. Color corresponds to
the size of object (see Figure 1) Left: Augmented tuning curve.

This includes data replotted with permission from Murata et al.
(2000). Center: Best fit of a cosine-tuned neuron to the
augmented tuning curve. Right: Error (ideal minus model
augmented tuning curve).

FIGURE 8 | Quality of fit of cosine tuning model over superquadric

parameters with various augmented tuning curves. The plots
shows, for each tuning curve, the mean ± SD of the errors over the
grid of shapes, sizes, and orientations shown in Figure 7. Note that
in this model we can trivially achieve invariance to any superquadric
parameter by setting the corresponding component of the preferred
direction to zero.

Isomap (−1.77 ± 6.35) was not significantly different from that
of the 8-parameter superquadric [Levene’s Test; W(1, 910) = 1.83;
p = 0.18]. (Recalculating the variances around 0 instead
of −1.77 and −0.89 did not make the difference signifi-
cant; p = 0.058). The cosine-tuning fits were excellent in the
32-dimensional Isomap space, with significantly lower vari-
ance [−0.17 ± 1.29 spikes/s; W(1, 910) = 316.2; p < 0.001].
This higher-dimensional shape representation is therefore
consistent with the data and with the augmented tuning
curves.

3.3. MAPPING FROM CIP TO AIP
We trained multi-layer perceptrons in order to understand
whether the superquadric or Isomap models of AIP were more
consistent with mapping from CIP input. Because CIP neurons
are sensitive to depth and to first and second spatial derivatives
of depth, we used these as inputs to the networks. Specifically

the inputs consisted of 16 × 16 depth maps, their 16 × 16 hor-
izontal and vertical derivatives, and their 16 × 16 horizontal and
vertical second derivatives. The derivatives were approximated
by convolving with 3 × 3 kernels (e.g., [ 1 1 1 ]T[ 1 0 −1 ] and

[ 1 1 1 ]T[ 0.5 −1 0.5 ]). The total number of inputs was therefore
16 × 16 × 5 = 1280. The hidden layers had logistic activa-
tion functions. The weights and biases were trained with the
backpropagation algorithm in Matlab’s Neural Network Toolbox.
The output layer had a linear activation function in order to
model the input to cosine-tuned neurons, as described in the
Methods. A dataset of 40000 rotated superquadric objects was
generated, from which depth and curvature images were derived.
This dataset was divided into 28000 objects for training the net-
work and 12000 objects to validate the results obtained in the
training.

Figure 10 shows results from networks with two hidden lay-
ers, the first with 600 units and the second with 300 units. The
scatter plots show the network’s output vs. the actual values of
the validation dataset. In Figure 10A is the network’s result for
the superquadric shape parameter ε1. The other scatterplots in
Figures 10C,E illustrate the network’s approximation of the scale
and orientation parameters A1 and θ1. Approximation of the
other six parameters was similar (e.g., the scatterplots for ε2 and
ε3 resemble that for ε1). The scatterplots Figures 10B,D,F illus-
trate the network’s approximation of Isomap parameters. The
first, fourth, and seventh dimensions are shown as illustrative
examples.

Approximation of the Isomap parameters was much more
accurate than approximation of the superquadric parameters.
This outcome was very consistent across a variety of networks of
different sizes, with one or two hidden layers, with pre-training
of hidden layers as autoencoders, etc. We also experimented with
networks that contained a hidden layer of LIF neurons with ran-
dom preferred directions over various local kernels, and optimal
linear estimates of the shape parameters from the hidden-layer
activity (Eliasmith and Anderson, 2003). The results were also
similar in this case, although (as expected) more neurons were
required to achieve performance like that of the more fully-
optimized multilayer perceptrons.
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FIGURE 9 | Quality of fit of cosine tuning model over Isomap parameters

with the same augmented tuning curves. (A), Mean ± SD of errors with
8-dimensional Isomap (the same number of parameters as the superquadric

family used in Figure 8). Across tuning curves the error is 0.89 ± 10.68. (B),
Standard deviation of error over all augmented tuning curves vs. dimension of
the Isomap. The error declines sharply with increasing dimension.

Figure 11 compares the distribution of the network’s Isomap
approximation errors with the distribution of pairwise distances
between shape examples in our database. The errors were much
smaller than typical distances between examples.

We also experimented with a wide variety of larger networks,
including convolutional networks, using the cuda-convnet pack-
age (Krizhevsky et al., 2012). These networks did not substantially
outperform the multilayer perceptron of Figures 10, 11 (lowest
mean Euclidean error 0.066 as opposed to 0.081 in Figure 11).
We also trained some convolutional networks with only the depth
map as input, and with a 3 × 3 kernel in the first convolutional
layer. Interestingly, some of the resulting kernels resembled the
kernels that we created manually to approximate the first and
second derivatives.

4. DISCUSSION
This study examined the neural code for three-dimensional shape
in visual-dominant AIP neurons. AIP is critical for hand pre-
shaping in grasping, and these neurons encode properties that are
relevant to grasping including object shape, size, and orientation.

Our motivation for testing superquadric parameters as a
model of AIP tuning was that superquadrics have been used in
robotics, in a role that we take to be similar to the role of AIP
in the primate brain. Specifically, they have been used as com-
pact approximate representations of point clouds on which to
base grasp planning. Such a representation is useful because it
allows generalization from training examples to unseen examples,
e.g., by interpolating between known solutions for known sets of
parameters. An alternative approach in robotics is to cluster point
clouds into discrete shape categories (Detry et al., 2013). We see
the Isomap as an intermediate approach with some of the advan-
tages of both superquadric fitting and clustering. The Isomap
is data-driven and adapts to the statistics of the environment
(like clustering), but its parameters make up a low-dimensional
and continuous space (like those of superquadrics). Furthermore,
unlike the superquadric representation, the Isomap representa-
tion does not have large discontinuities between very similar
shapes.

We found that cosine tuning on a 32-dimensional Isomap
accounted well for the tuning curves of object-selective AIP neu-
rons. We also found that, in contrast with superquadric parame-
ters, the Isomap parameters could be approximated fairly well by
various neural networks with CIP-like input.

4.1. AUGMENTED TUNING CURVES
Available AIP data includes the responses of individual neu-
rons to only a few different shapes, in fact fewer shapes than
there are parameters in even the simplest superquadric model.
To more vigorously test the different shape parameterizations
as a basis for plausible neural tuning, and to incorporate addi-
tional aggregate information on shape tuning (e.g., the fact that
most visual-dominant AIP neurons are orientation selective), we
created “augmented” tuning curves that included both data and
extrapolations of the data. It is likely that some of these aug-
mented tuning curves were unrealistic. While the general trends
in our AIP fitting results are informative (e.g., that Isomap fits
improve and outperform superquadrics as dimensions increase),
the details depend on our augmentation assumptions. For exam-
ple, we found that the Isomap error declined more rapidly when
we excluded orientation-selective/shape-invariant tuning curves
from the analysis. This limitation does not affect interpretation of
our other main result, i.e., that superquadrics were poorly approx-
imated by feedforward neural networks while Isomaps were well
approximated.

Future modeling would be facilitated by tuning curves with
greater numbers of data points. For example, the dataset in Lehky
et al. (2011) includes responses of 674 inferotemporal neurons to
a common set of 806 images. A relatively extensive AIP dataset
was recently collected (Schaffelhofer and Scherberger, 2014), but
no tuning curves from this dataset have yet been published.

4.2. COSINE TUNING
We were primarily interested in cosine-tuning models for sev-
eral reasons, not least because cosine tuning is widespread in
the brain (see many examples in Zhang and Sejnowski, 1999).
Linear-nonlinear receptive field models of the early visual system
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FIGURE 10 | Regression plot comparison between neural network

approximations of superquadrics parameters and Isomap parameters.

(A) superquadric epsilon parameter, (B) Isomap dimension 1 parameter, (C)

superquadric scale parameter, (D) Isomap dimension 4 parameter, (E)

superquadric rotation angle parameter and (F) Isomap dimension 7
parameter.

are another kind of cosine tuning, with multiple tuning variables
on a 2D grid. Furthermore, a practical advantage of cosine tun-
ing models is that they require only n + 1 tuning parameters for
n stimulus variables (in contrast a full n-dimensional Gaussian
tuning curve has n + n2 parameters). This is important because

published tuning curves in CIP and AIP consist of relatively
few points, so models with large numbers of parameters may be
underconstrained. Cosine tuning is also physiologically realistic
in that it can arise from linear synaptic integration. For example,
if a matrix W of synaptic weights has n large singular values, then
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FIGURE 11 | Histogram of Euclidian distances in Isomap space vs. the

root sum square error.

the post-synaptic neurons are tuned to a n-dimensional space
(if W = U�VT then the preferred directions are in the first n
columns of U). Cosine tuning curves are also optimal for lin-
ear decoding (Salinas and Abbott, 1994). There are also many
neurons that do not appear to be cosine tuned, for example
speed-tuned neurons in the middle temporal area (Nover et al.,
2005). However, where applicable, cosine tuning models provide
rich insight into neural activity. We therefore attempted to fit
such models to the data where possible. Many AIP tuning curves
over similar stimuli with different curvatures vary smoothly and
monotonically (Srivastava et al., 2009), consistent with cosine
tuning.

Cosine tuning to modest numbers of Isomap parameters (rel-
ative to the 256-element depth maps on which they were based)
accounted for the AIP data and for our augmented AIP tuning
curves.

In contrast, we concluded that the CIP neurons we mod-
eled were not cosine tuned to the stimulus variables with which
they have been examined. CIP has been proposed to encode first
and second derivatives of depth (Orban et al., 2006). Various
neurons in CIP respond to disparity gradient (Shikata et al.,
1996; Sakata et al., 1998), texture gradient (Tsutsui et al., 2001),
and/or perspective cues for oriented surfaces (Tsutsui et al.,
2001). (Accordingly, visual-dominant AIP neurons also respond
to monocular visual cues as well as disparity cues, and respond
most strongly when disparity and other depth cues are congruent
(Romero et al., 2013). Sakata et al. (1998) describe various neu-
rons in CIP as axis-orientation-selective and surface-orientation-
selective. The former were sensitive to the orientation of a long
cylinder, consistent with two-dimensional tuning for horizontal
and vertical curvature. The latter were selective for the orientation
of a flat plate, consistent with two-dimensional tuning for depth
gradient. Furthermore, Sakata et al. (1998) also recorded a neu-
ron that preferred a cylinder of certain diameter which was tilted
back and to the right, but did not respond strongly to a square
column of similar dimensions. This suggests selectivity for both
first and second derivatives within the same neuron. Katsuyama
et al. (2010) recorded CIP responses to curved surfaces that varied
in terms of their second derivatives. Tuning to the first and sec-
ond derivatives of depth is physiologically plausible in that these

quantities are linear functions of the depth field, which is available
from V3A. We therefore attempted to fit models that were cosine
tuned over these variables, but we obtained poor fits.

While CIP neurons are certainly responsive to these vari-
ables (and more complex non-linear models of tuning to these
variables fit the data closely) it is possible that there are other
related variables that provide a more elegant account of these neu-
rons’ responses. Notably, some CIP neurons prefer intermediate
cylinder diameters (Sakata et al., 1998), whereas cosine tuning
for curvature would be constrained to monotonic changes with
respect to curvature. Also, some of the neurons in Rosenberg et al.
(2013) are clearly non-cosine-tuned for depth slope.

Some CIP tuning curves (see e.g., Figure 6) seem to be fairly
similar to rectified cosine functions (Salinas and Abbott, 1994)
with a negative offset, except that their baseline rates are not
zero. In general, spike sorting limitations, which cannot be com-
pletely avoided in extracellular recordings (Harris et al., 2000),
are a potential source of uncertainty in tuning curves. However,
if misclassification rates had been substantial then multi-peaked
tuning curves might have been expected, and none were reported
in these studies.

4.3. RELATIONSHIP TO SHAPE REPRESENTATION IN IT
Area IT has been shown to represent medial axes and surfaces of
objects (Yamane et al., 2008; Hung et al., 2012). AIP has signif-
icant connections with IT areas including the lower bank of the
superior temporal sulcus (STS), specifically areas TEa and TEm
(Borra et al., 2008). These areas partially correspond to func-
tional area TEs, which encodes curvature of depth (Janssen et al.,
2000) similarly to CIP. However, AIP responds to depth differ-
ences much earlier than TEs (Srivastava et al., 2009). It is possible
that a shape representation in IT, with some similarities to that in
CIP, provides longer latency reinforcement and/or correction of
shape representation in AIP.

4.4. FUTURE WORK
A key direction for future work is to test how well the Isomap
shape representation works for robotic grasp planning. This
would provide important information about the functional plau-
sibility of this representation. For example, if Isomap-based shape
parameters cannot be used to shape a hand for effective grasp-
ing, this will strongly suggest that there are critical differences
between AIP tuning parameters and Isomap parameters. On the
other hand, if the Isomap representation performs well, it may
suggest a new biologically-inspired approach for robotic grasping.

An apparent advantage of the Isomap approach is that it is
data-driven and makes no prior assumptions about shapes. It
would be informative to build Isomaps for less idealized shapes
that monkeys might grasp in nature.

Other non-linear dimension-reduction methods (e.g., Yan
et al., 2007) could also be compared with the Isomap in terms
of fitting AIP data and providing an effective basis for grasp plan-
ning. We would expect differences relative to Isomap tuning to be
subtle relative to available AIP data, but perhaps distinct advan-
tages would appear in a grasp control system. One interesting
possibility would be to emphasize features that are related to
reward or performance (Bar-Gad et al., 2003).
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Another important direction for future work is to extend
the model to include motor-dominant AIP neurons and to F5
neurons as in e.g., Theys et al. (2012, 2013) and Raos et al. (2006).

Finally, our models produced constant spike rates in response
to static inputs. A more sophisticated future model would account
for response timing and dynamics (Sakaguchi et al., 2010). The
Neural Engineering Framework (Eliasmith and Anderson, 2003)
provides a principled approach to modeling dynamics in systems
of spiking neurons.
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