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To study the effects of stochastic ion channel fluctuations on neural dynamics, several
numerical implementation methods have been proposed. Gillespie’s method for Markov
Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in
the regime of a high number of channels. Many recent works aim to speed simulation
time using the Langevin-based Diffusion Approximation (DA). Under this common
theoretical approach, each implementation differs in how it handles various numerical
difficulties—such as bounding of state variables to [0,1]. Here we review and test a set
of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al.,
2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler,
2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that
assess numerical accuracy and computational efficiency on three different models: (1)
the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and
(3) a multi-compartmental model inspired in granular cells. We conclude that for a low
number of channels (usually below 1000 per simulated compartment) one should use
MC—which is the fastest and most accurate method. For a high number of channels, we
recommend using the method by Orio and Soudry (2012), possibly combined with the
method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy.
Consequently, MC modeling may be the best method for detailed multicompartment
neuron models—in which a model neuron with many thousands of channels is segmented
into many compartments with a few hundred channels.
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INTRODUCTION
Understanding the effect of stochastic phenomena on the behav-
ior of the nervous system requires stochastic simulation algo-
rithms that effectively and accurately capture the dynamics of the
underlying modeled phenomena. Among the sources for vari-
ability, the stochastic opening and closing of ion channels has
caught the attention of several works over the past years. The best
description of stochastic gating of ion channels is attained with
the use of continuous time, discrete states Markov Chain (MC)
processes (Neher and Stevens, 1977; Colquhoun and Hawkes,
1981), however this approach can be very slow in simulations with
a large number of channels.

As an alternative to the explicit MC simulation, the Diffusion
Approximation (DA) calculates the trajectory of a population of
independent MCs using a Stochastic Differential Equation (SDE),
sometimes called the Chemical Langevin Equation (Gillespie,
2000, 2007). Its application to the simulation of stochastic ion
channels was suggested almost 20 years ago (Fox and Lu, 1994;
Fox, 1997), but in the beginning there were some errors in the
application of the scheme. This led to the belief that the approx-
imation was not good enough (Mino et al., 2002; Bruce, 2007,
2009). Later, revised implementations of the algorithms were

published showing that indeed the DA can reproduce the statisti-
cal properties of a population of discrete ion channel fluctuating
between open and closed states (Goldwyn et al., 2011; Goldwyn
and Shea-Brown, 2011). Other works (Dangerfield et al., 2012;
Orio and Soudry, 2012) also offered a simplified description of
the algorithm, making it easy to apply to any given kinetic scheme.

What the SDE system approach does is to approximate the tra-
jectory in time of the fraction of channels at every state. For the
simulation to remain physically meaningful, none of the fractions
can be negative or greater than 1. We call this the “bound-
ary constraint.” This constraint would occasionally break in the
numerical simulation of the SDE, if we use its naively discretized
form (the Euler–Maruyama method). This is because stochas-
tic fluctuations can make the variables leave the [0,1] interval.
The problem amplifies when the number of channels is low and
stochastic fluctuations increase.

If the boundary constraint is not maintained, this can generate
additional technical problems in the simulation. Specifically, the
calculation of the stochastic terms involves the square root of a
term involving the fraction variables, which may yield complex
values when the variables are negative. Such complex values must
be avoided. Therefore, we get another constraint, which we call
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the “Real-valued Square Root” (RSR) constraint. This constraint
is automatically fulfilled if the boundary constraint is maintained.

Finally, the sum of the fractions over all states must be equal
to 1 at all times. We call this the “normalization constraint.”
Although this constraint is supposed to be guaranteed by the
continuous-time equations (see below), machine rounding errors
of the discretized equations can gradually break it. Additionally,
any method that deals with the boundary constraint must also
take normalization into account. For example, a naive trunca-
tion of any variable that leaves the [0,1] interval would break the
normalization constraint.

To address these issues, a number of improvements have been
proposed to the DA schemes.

Orio and Soudry (2012) proposed to allow the variables to
freely change, ignoring the boundary constraint. In order to take
care of the normalization constraint one of the variables was
replaced with one minus the sum of the others. Additionally, an
absolute value operation was added in the stochastic terms to
maintain the RSR constraint. Previously, Goldwyn et al. (2011)
also allowed the variables to freely change, but instead used a
steady state approximation on the voltage to maintain the RSR
constraint. However, such an approximation can be rather inac-
curate (Dangerfield et al., 2012; Orio and Soudry, 2012; Huang
et al., 2013a), even when the number of channels is relatively high.

Two methods aim to maintain the boundary constraint.
Dangerfield et al. (2012) proposed that if variables break either
the boundary or normalization constraint, they are “reflected”
back into the valid region, in which all the constraints are
kept. This is done using projection into a simplex (Chen and
Ye, 2011). Huang et al. (2013a) proposed a different method.
When the boundary constraint is broken, the variables should
first be truncated. This breaks normalization, so the variables
are then renormalized. Finally, in the next time step, the vari-
ables are incremented with the remainders from the truncation
in the previous steps. As the boundary constraint is almost con-
stantly broken, normalization is continuously corrected in both
Dangerfield et al. (2012) and Huang et al. (2013a).

Other methods have been proposed with a different goal in
mind. Schmandt and Galán (2012) aimed to reduce computa-
tional complexity and speeding up the simulation. They proposed
to neglect stochastic noise terms in all state transitions, except
those connecting the open state (or states), an approximation they
call “Stochastic shielding.” Güler (2013) introduced a stochastic
HH model with colored noise in the conductance terms as well
as in the current terms in order to capture the non-trivial cross-
correlation between the transmembrane voltage fluctuation and
the component of open channel fluctuation attributed to multi-
ple number of gates in individual ion channels. Another recently
published method (Linaro et al., 2011), also used colored noise in
the current terms (but not in the conductance terms). However,
Linaro’s method will not be examined here, because it involves
a steady-state approximation in the stochastic terms (similarly to
Goldwyn et al., 2011), which was shown to introduce inaccuracies
(Orio and Soudry, 2012).

Despite the improvement in accuracy or computational effi-
ciency that the new methods represent for the simulation of
stochastic ion channel activity, we were concerned about the

comparisons performed between them and the real benefit of
implementing the numerical algorithms.

First, there is the computational cost issue. The initial
motivation for developing DA methods was to make stochastic
simulations faster than MC modeling. Therefore, if the extra com-
putation needed to normalize and bound the variables makes
it slower than MC then the purpose is defeated. Moreover, we
already noticed that when the number of channels is low (when
DA becomes more inaccurate) or with very small integration
times, MC modeling can run faster than DA (see Figure 7 in Orio
and Soudry, 2012). This, added to the fact that bounding and
normalization of the DA requires more coding (and eventually,
debugging), can render DA less attractive.

Second, we noted that the standard test employed to prove
the accuracy of numerical methods for stochastic ion channels is
the original Hodgkin and Huxley (HH) model. This was the only
model used for testing in most previous papers, including a recent
review (Rowat and Greenwood, 2014). This model, as standard
and general as it is, reproduces the kinetics of ion channels of the
squid axon at 6.3◦C, thus differing greatly from mammalian nerve
excitable membranes. This difference can be very significant, as
we noted (Orio and Soudry, 2012). There we found that the use
of a steady-state approximation in the stochastic terms usually
does not introduce severe inaccuracies in the context of the orig-
inal HH model. However, deviations were detected in common
current clamp-based simulations when the steady-state approx-
imation is used in a model inspired in mammalian (therefore
faster) ion channels. It is noteworthy that the difference between
mammalian inspired and the squid axon model relies only in the
parameters that describe the transition rate constants (and thus
the time scale of the model), while the equations and the model
framework are identical.

Thus, we see a necessity for testing the DA with and without
the recently proposed corrections in a wider spectrum of sim-
ulation scenarios and taking into account other variables than
simulation accuracy, namely:

• To test the algorithms in models with faster kinetics than
Hodgkin and Huxley (time scales of mammalian neurons) and
models with geometry, where the number of ion channels in
different compartments may differ.

• To quantify the real advantage of DA, and specifically its
accuracy vs. its computational cost in comparison to MC.

In an attempt to test the real usability of the algorithms in
the context of more complex neuronal models, we implemented
them in one of the choice tools for biophysically-inspired model-
ing, the Neuron simulation environment (Hines and Carnevale,
2001; Carnevale and Hines, 2006). We conducted both single-
compartment and multi-compartment simulations using MC
or DA algorithms and compared their performance as well as
the ability of different DA implementations to reproduce the
variability introduced by MC modeling.

In our results all DA algorithms deviate to some degree from
the MC modeling when the number of channels falls below 1000,
regardless of the attempts to deal with normalization and bound-
ing of the variables. However, we see that in this condition MC
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modeling runs, in most of the scenarios, faster than DA imple-
mentations. Therefore, one of the most common motivations
to use DA, which is to achieve faster computation times, is not
accomplished when the number of channels is low. However,
when the number of channels is high, DA algorithms can accu-
rately reproduce MC, with improved speed. Specifically, in this
regime, no inaccuracy was detected in both Orio and Soudry
(2012) and Huang et al. (2013a); Schmandt and Galán (2012)
was slightly inaccurate; Güler (2013) was somewhat inaccurate;
and Dangerfield et al. (2012) was the least accurate. In terms of
computational speed, the ranking is as follows (see Figure 8): (1)
Stochastic Shielding (Schmandt and Galán, 2012) (2) Colored
Noise (Güler, 2013) (3) Unbound DA (Orio and Soudry, 2012)
(4) Reflected DA (Dangerfield et al., 2012) (5) Truncated and
Restored DA (Huang et al., 2013a).

MATERIALS AND METHODS
SIMULATIONS: MODELS EMPLOYED AND TESTS PERFORMED
Original Hodgkin and Huxley model
The original Hodgkin and Huxley (HH) model (Hodgkin and
Huxley, 1952) was simulated with the equation:

Cm
dV(t)

dt
= −gNa(t) (V(t) − ENa) − gK (t) (V(t) − EK)

− gl (V(t) − El) + Istim(t) (1)

With the exception of Güler’s colored noise algorithm, sodium
and potassium channels were treated as 8- and 5-state MCs,
respectively. The corresponding kinetic schemes are:

m0h0
3αm�
βm

m1h0
2αm�
2βm

m2h0
αm�

3βm

m3h0

βh �� αh βh �� αh βh �� αh βh �� αh

m0h0
3αm�
βm

m1h0
2αm�
2βm

m2h0
αm�

3βm

m3h0

(scheme1)

n0
4αn�
βn

n1
3αn�
2βn

n2
2αn�
3βn

n3
αn�

4βn

n4 (scheme2)

Sodium and potassium conductances at time t (gNa(t) and gK (t))
were calculated as the fraction of channels in the conducting states
m3h1 and n4 multiplied by the maximum conductances gNa and
gK , respectively. The kinetic rates α and β are given (in ms−1) by:

αm(V) = 0.1 (V + 40)

1 − exp
(−V + 40

10

) ; βm (V) = 4exp

(
−V + 65

18

)

αh(V) = 0.07exp

(
−V + 65

20

)
;βh(V) = 1

1 + exp
(−V + 35

10

)

αn(V) = 0.01 (V + 55)

1 − exp
(
− (V + 55)

10

) ; βn(V) = 0.125exp

(
−V + 65

80

)
,

where the terms were corrected to adjust the resting poten-
tial to −65 mV. Correspondingly, the rest of parameters
are: Cm = 1μF/cm2, gNa = 120mS/cm2, gK = 36mS/cm2, gl =
0.1mS/cm2, ENa = 50mV, EK = −77 mV, El = −54.3 mV.

With this model, the following tests were conducted:

(a) A 500-s simulation in the absence of any input. When the
number of sodium channels is in the order of 20,000 (and
lower), spontaneous firing starts to occur. We recorded the
spike events and calculated the mean firing rate and the
distribution of inter-spike intervals (ISIs).

(b) 15-s current clamp with 2-ms stimulus. The stimulus cur-
rent was applied with 1 ms delay. Afterwards, 12 additional
ms were simulated and the occurrence and timing of an
action potential was recorded. The current amplitude varied
from 0 to 15 μA/cm2 and 10,000 simulations were performed
for each amplitude. Then, the firing efficiency, mean action
potential time and variance of action potential time were
calculated.

(c) Voltage clamp with action potential trace. A noisy volt-
age trajectory of 100 ms (including an action potential)
was produced by simulating the HH model with the UA
algorithm. Then, this trajectory was used as input to a
stochastic model and the number of open channels in
time was recorded. 2000 simulations were run and the
mean and variance of open channels at each time was cal-
culated. Additionally, the same procedure was performed
with a deterministic HH model, thus allowing to obtain
the expectation of open sodium and potassium channels,
E[NaO](t) and E[KO](t). The expected variance was also cal-
culated as var [NaO] (t) = E [NaO](t) (1 − E[NaO](t)) /NNa

and var[KO](t) = E[KO](t) (1 − E[KO](t)) /NK . The results
of the stochastic simulations were then compared to this exact
solution.

Schmidt-Hieber and Bischofberger model—single compartment
The Schmidt-Hieber and Bischofberger (SB) model was proposed
after the characterization of sodium channels both at the soma
and at the axon initial segment of granule cells of the hippocam-
pus (Schmidt-Hieber and Bischofberger, 2010). Sodium channels
are described by the following kinetic scheme:

m0h0
α1�
β1

m1h0
α2�
β2

m2h0
α3�
β3

m3h0

βh �� αh βh �� αh βh �� αh βh �� αh

m0h0
α1�
β1

m1h0
α2�
β2

m2h0
α3�
β3

m3h0

(scheme3)

where the kinetic rates are given by

αi(V) = αi,0exp (αi,1V)

βi(V) = βi,0exp (−β i,1V)

αh(V) = αh,0

1 + αh,1exp (αh,2V)

βh(V) = βh,0

1 + βh,1exp (βh,2V)

Parameters αi,j and βi,j are given in Table 1 for both axonal and
somatic channels. In single-compartment simulations, somatic
parameters were employed.
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Table 1 | Activation parameters for somatic and axonal sodium channels in the Schmidt-Hieber and Bischofberger model.

Parameter Somatic channels Axonal channels Parameter Somatic channels Axonal channels

α1,0(ms−1) 45.850 62.648 β1,0(ms−1) 0.0144 0.00194

α1,1(mV−1) 0.00239 0.0116 β1,1(mV−1) 0.0885 0.1377

α2,0(ms−1) 19.808 34.783 β2,0(ms−1) 0.5650 0.0957

α2,1(mV−1) 0.02218 0.0299 β2,1(mV−1) 0.06108 0.0928

α3,0(ms−1) 71.812 76.698 β3,0(ms−1) 0.7531 1.2488

α3,1(mV−1) 0.0659 0.0537 β3,1(mV−1) 0.0365 0.0311

αh,0(ms−1) 0.5757 6.882 βh,0(ms−1) 2.8301 3.573

αh,1 162.84) 4654.0 βh,1 0.289 01933

αh,2(mV−1) 0.0268 0.0296 βh,2(mV−1) 0.0696 0.07496

Potassium channels in SB model are simulated by the same
kinetic scheme as HH model (scheme 2) with the following
voltage dependent transition rates:

αn(V) = sc × 0.01
V + 55

1 − exp
(−V+55

10

)

βn(V) = sc × 0.125exp

(
−V + 65

80

)

where sc is a scale parameter that adjusts the kinetic constants
according to the compartments in which the channels are being
simulated. For single compartment simulations, equation (1)
was used with the following parameters: Cm = 1μF/cm2, gNa =
20 mS/cm2, gK = 4 mS/cm2 , gl = 0.1 mS/cm2, ENa = 75 mV,
EK = −95mV, El = −70 mV. With this model, the number of
channels was controlled by the membrane area, given a unitary
conductance of 20 pS/cm2. We tested areas ranging from 15.7 to
628 μm2, resulting in 157 to 6283 sodium channels and 31 to 1257
potassium channels.

With this model, the following tests were conducted at differ-
ent values of membrane area:

(a) 20-s Iclamp with 1-ms stimulus: the stimulus current was
applied with 1 ms delay. Afterwards, an additional 18 ms were
simulated and the occurrence and timing of an action poten-
tial was recorded. The current amplitude varied from 0 to
8 μA/cm2 and 10,000 simulations were performed for each
amplitude. Then, the firing efficiency, mean action potential
time and variance of action potential time were calculated.

(b) Voltage clamp with action potential trace: the same proce-
dure described for the HH model.

Schmidt-Hieber and Bischofberger model—idealized
multicompartment model
An idealized model similar to the one described in Schmidt-
Hieber and Bischofberger (2010, see Figure 5A) was simulated
using stochastic algorithms for the ion channels. The parame-
ters for ion channel densities and kinetic constants were used
as described in the article with minor modifications, such as the
absence of an axonal bleb and a longer axon for some simulations.

SIMULATION ALGORITHMS
The methods described and tested here are designed to simulate
a number of independent and identical Markov Chains (MCs)
with a discrete number of states, keeping track of the number of
channels in any state at any given time. For the description of the
algorithms, we denote S as the total number of states in a MC,
i ∈ {1, . . . , S} are the individual states, and Ni is the number of
MCs in state i.

Markov chain simulations (MC)
Markov chains were simulated using the Stochastic Simulation
Algorithm (SSA) (Gillespie, 1976) with some modifications.
Briefly, the method consists in:

At time t, calculate the effective transition rate λ(t) as

λ(t) =
S∑
i

Ni(t)ζi(t)

where ζi(t) is the sum of transition rates for transitions escaping
from state i.

Calculate the time for the next transition tn as

tn = tp − log ξ1

λ(t)

where tp is the time of the previous transition (0 at the begin-
ning of the simulation) and ξ1 is a random number uniformly
distributed within [0,1], drawn after the previous transition.

If tn > t, continue integrating the time and the membrane
voltage equation.

If tn < t, perform a transition:
Calculate the probability of all j transitions:

Pj(t) = Ni(t)αj(t)∑
j Ni(t)αj(t)

where i is the state originating transition j and αj its rate.
Build a cumulative sum of all transition probabilities. Draw a

random number ξ2 uniformly distributed in [0,1] and find the
first term in the cumulative probability that is greater than ξ2.

Execute the transition indicated by the term found in the pre-
vious step, and draw a new random number ξ1 to be used for the
time of the next transition.
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Unbounded diffusion approximation (UA) (Orio and Soudry, 2012)
The DA algorithm was implemented with SDEs described pre-
viously (Orio and Soudry, 2012; see also Mélykúti et al., 2010).
In matrix form, the equations for the sodium and potassium
channels are, respectively:

dXNa

dt
= ANaXNa + 1√

NNa
SNa(XNa)ξ(t)Na

dXK

dt
= AK XK + 1√

NK
SK (XK )ξ(t)K (2)

where XNa = [
m0h0 m1h0 m2h0 m3h0 m0h1 m1h1 m2h1 m3h1

]T

and XK = [
n0 n1 n2 n3 n4

]T
are column vectors with the frac-

tion of channels at any given state, and ξ(t)Na and ξ(t)K are
column vectors of independent normally distributed random
variables (mean 0, variance 1) with length 10 and 4, respec-
tively. NNa and NK are the number of sodium and potassium
channels, respectively. The rate matrices ANa and AK and square
root matrices SNa(XNa) and SK (XK ) can be directly found
from the state diagram of the corresponding ion channel type.
This is explained in detail around equations 1 and 13 and the
Supplemental Material in Orio and Soudry (2012). For example,
in the case of Potassium channels we have

AK =

⎡
⎢⎢⎢⎢⎢⎣

−4αn βn 0 0 0
4αn −3αn − βn 2βn 0 0

0 3αn −2αn − 2βn 3βn 0
0 0 2αn −αn − 3βn 4βn

0 0 0 αn −4βn

⎤
⎥⎥⎥⎥⎥⎦

and

SK (XK) =

⎡
⎢⎢⎢⎢⎢⎣

√
4αnn0 + βnn1 0

−√
4αnn0 + βnn1

√
3αnn1 + 2βnn2

0 −√
3αnn1 + 2βnn2

0 0
0 0

0 0
0 0√

2αnn2 + 3βnn3 0
−√

2αnn2 + 3βnn3
√

αnn3 + 4βnn4

0 −√
αnn3 + 4βnn4

⎤
⎥⎥⎥⎥⎥⎦

.

Note that in the case of the Schmidt-Hieber and Bischofberger
model, the only difference from the HH model is that the rate
constants for the sodium channel equations are different.

To take care of normalization, variables m1h0 . . . m3h1 and
n1 . . . n4 were advanced by an Euler-Maruyama scheme and the
remaining two were calculated as m0h0 = 1 − m1h0 − m2h0 −
m3h0 − m0h1 − m1h1 − m2h1 − m3h1 and n0 = 1 − n1 − n2 −
n3 − n4. As we do not control the bounding of the variables
between 0 and 1, in order to ensure real-valued square roots we
calculated the stochastic terms S(X) (and only those terms) taking

the absolute value of the variables. Thus, we refer to this algorithm
as UA – Unbounded with Absolute values in stochastic terms.

Reflected SDEs (Ref) (Dangerfield et al., 2012)
This method aims to normalize the variables m1h0 . . . m3h1 and
n1 . . . n4 and to keep them bounded in the interval [0, 1] using
the reflected stochastic equation approach, described in section V
of Dangerfield et al. (2012). We have used this method together
with the DA equation system (Equations 2).

Truncated and restored DA (TR) (Huang et al., 2013a)
We used the DA equations (Equations 2) with an additional
residual term. This residual term was introduced to ensure the
boundary and normalization constraints, as explained in section
II.F in Huang et al. (2013a).

Stochastic shielding approximation (SSmc) (Schmandt and Galan,
2012)
In this method, transitions not connecting to the conducting
states are approximated to be deterministic and solved as ODEs.
Transitions connecting conducting with non-conducting states
are solved as Markov Chains with the already mentioned algo-
rithm. As there is a mixture of continuous (ODEs) and discrete
(MC) treatment of variables, violations of the constraints occur.
In our implementation, and inspired by the code by Schmandt
and Galan, variables going off the [0,N] boundary are manu-
ally corrected and normalization was performed as in the UA
algorithm.

Stochastic shielding approximation with DA (SSda)
We modified the Schmandt and Galán (2012) approach by calcu-
lating the stochastic transitions with a DA approach (Equations 2)
rather than using MCs. Therefore, SSda similarly uses the same
DA equations, but the stochastic terms related to transitions not
connecting to the conducting states were neglected.

For example, for potassium channels, we now used

SK (XK ) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0

√
αnn3 + 4βnn4

0 0 0 −√
αnn3 + 4βnn4

⎤
⎥⎥⎥⎥⎥⎦

,

Thus, we needed only 2 Brownian terms for sodium channels
and 1 for potassium channels. Boundary and normalization
constraints were again treated as in the UA algorithm, that is:
there was no bounding of the variables; the absolute value of
the variables was used in the square roots of the stochastic
terms; and normalization was applied by calculating m0h0 =
1 − m1h0 − m2h0 − m3h0 − m0h1 − m1h1 − m2h1 − m3h1 and
n0 = 1 − n1 − n2 − n3 − n4.

HH with colored noise terms (CN) (Güler, 2013)
We simulated the Güler’s Brownian harmonic oscillator using the
system of stochastic differential equations 6.1, 6.2 in Güler (2013),
using the constant parameters given in Table 2 in Güler (2013).
Note that these equations are very different from the standard DA
equations.
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To take care of the normalization constraint at each time step,
if any of the variables m, h or n, left the [0,1] interval, then
the stochastic term η was redrawn until the variable fulfilled the
boundary constraint.

SOFTWARE
All the models and simulations algorithms presented here were
implemented and run in the Neuron simulation environment
(Hines and Carnevale, 2001; Carnevale and Hines, 2006). The
different algorithms were written inside the MOD files for each
channel. With the exception of TR, all algorithms run fine regard-
less of the numeric integrator specified (cnexp or euler). They also
produce the same results in Python using the Euler-Maruyama
integration method (tested in some selected cases). The TR algo-
rithm required the specification of the Euler integrator within the
MOD file to produce the results presented here, otherwise a much
lower firing rate was obtained. Simulation control and the record-
ing of variables were specified with Python scripts (Hines et al.,
2009). Sample codes and .mod files can be found in ModelDB
http://senselab.med.yale.edu/ModelDB/ Accession 167772 .

Data analysis and plotting was performed using the Python
libraries numpy, scipy, and matplotlib.

RESULTS
To test the accuracy of the methods we performed a series
of simulations, comparing the variability of the results to that
obtained with explicit MCs solved by the exact Gillespie algo-
rithm (Gillespie, 1976, 2007). We employed the original Hodgkin
and Huxley model (Hodgkin and Huxley, 1952), in order to
reproduce previously published comparisons of the algorithms.
In addition we performed some tests with a faster model, based
on sodium channels from granular cells in the hippocampus
(Schmidt-Hieber and Bischofberger, 2010). Finally, we simulated
a model neuron with multiple compartments (Schmidt-Hieber
and Bischofberger, 2010) and measured the variability in the
generation and conduction of action potentials.

SIMULATIONS WITH THE ORIGINAL HODGKIN AND HUXLEY MODEL
Firing variability—15 ms simulation with stimulus
A widely used test to compare stochastic simulation algorithms
(Mino et al., 2002; Bruce, 2007; Orio and Soudry, 2012 and oth-
ers) consists of a short simulation (15 ms) in which a 2-ms current
stimulus is given after a 1-ms delay (Figure 1A). Depending on
the amplitude of the stimulus the probability of eliciting an action
potential increases, and this relationship depends on the number
of channels. Figure 1B shows the probability of firing an action
potential in 10,000 trials at different stimulus amplitudes, for the
algorithms tested with NNa = 5000. Figure 1C plots the variance
of action potential timing, a measure of jitter. The Reflection
method produces a higher firing probability at all stimulus ampli-
tudes. This entails a lower variability in action potential timing.
Additionally, Güler’s CN method produces a higher variability
than MC and other methods. This result is repeated with higher
number of channels, however at a lower number of channels the
spontaneous firing of action potentials makes the comparison
unreliable. To compare the behavior of the models with NNa ≤
1600, we modified the protocol so the stimulus is sustained during

the simulation (Figure 1D, inset) and explored negative values of
current amplitude. As can be seen in Figures 1D,E, the behavior
of all the DA algorithms (as well as of SSmc) deviates from MC
considerably for NNa = 50 and to a minor degree for NNa = 500.
Again, the Reflection method produces a higher firing probability
than the other methods.

Spontaneous firing rate
The original HH model with stochastic ion channel produces
spontaneous firing activity that increases as the number of chan-
nels is decreased. With each simulation algorithm and with
sodium channel number (NNa) ranging from 50 to 50,000, we
simulated 500 s and recorded the occurrence of action potentials.
Figure 1F shows the mean frequency of spikes that were detected
in the simulations. With NNa ≥ 1600, almost all the methods
reproduce the behavior of MC modeling. The sole exception is
the Reflection method, that showed a higher firing probability at
NNa = 1600 and below. To discard some incompatibility of the
Neuron simulation environment with the reflection procedure,
we repeated this simulation using an Euler-Maruyama integra-
tion procedure written in Python and obtained the same result.
Huang’s truncated and restored DA method seems to be the one
that more closely follows MC modeling at extremely low num-
ber of channels, only slightly underestimating the firing rate. At
NNa = 160, the Unbound DA and Stochastic Shielding methods
overestimate the firing rate, dropping abruptly when NNa = 50.
This latter behavior is actually due to numeric overflows that
made the simulations run without producing action potentials.
This was corrected using a smaller time step (Figure 1F, seg-
mented lines). Thus, the Unbound DA (note that SSda is also
unbound) becomes numerically unstable when the number of
channels is too low.

Voltage clamp—noisy voltage trace with action potential
A third test, to check how the different DA methods can reproduce
the variability of channel openings obtained with MC model-
ing, consists on recording the response of the model channels
to a fixed voltage trajectory obtained from a stochastic simula-
tion. The voltage trace is shown in Figure 2A and it contains
an action potential as well as a noisy background (zoomed in
Figure 2B). With each model and condition, 2000 independent
simulations were run and the time evolution of open channels
was recorded. At each point in time, the mean and variance of
the open channels was calculated. In addition to the compari-
son with the behavior of MC simulation, we compared to the
expected mean of open channels which is calculated by applying
the same voltage clamp simulation to deterministic HH channels.
Moreover, we can compute the expected variance as explained in
Methods.

The results are shown in Figure 2. During the subthresh-
old regime, Reflection method overestimates the mean of open
channels, both for sodium and potassium (Figures 2C,D, left).
Huang’s TR algorithm also overestimates the mean of open
sodium channels (Figure 2C, left) to a minor extent. However,
during the action potential any difference between the DA meth-
ods and the MC modeling or the exact solution appears to
be negligible (Figures 2C,D, right). Regarding the variance of
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FIGURE 1 | Stochastic simulations of the HH model in current clamp

configuration. (A) 10 sample voltage traces obtained with the DA
simulation, showing the stimulus at the top. Amp = 4.5 μA/cm2. (B)

Firing efficiency, expressed as the fraction of simulations in which an
action potential was elicited, out of 10,000 sweeps. Simulations
performed with NNa = 5000, NK = 1500. The inset represents the type of
stimulus. (C) Variance of the firing time at different amplitudes of the
pulse, for the same simulations shown in (B). (D,E) Firing efficiencies
obtained with a constant pulse (inset) of the indicated amplitudes with
NNa = 50, NK = 15 (D) and NNa = 500, NK = 150 (E). (F) Mean number

of spikes per seconds obtained in 500 s simulations (dt = 0.5 μs) without
stimulus at different number of sodium channels NNa. NK = 0.3 ∗ NNa.
Segmented lines represent data obtained with dt = 0.1 μs (UA) and
dt = 0.02 μs (SSda) The algorithms are indicated as follow: MC, Markov
chains (Gillespie’s algorithm); UA, unbounded DA with absolute values in
the stochastic terms (Orio and Soudry, 2012); TR, truncated and restored
DA (Huang et al., 2013a); Ref, reflected DA (Dangerfield et al., 2012);
SSmc, stochastic shielding approximation (Schmandt and Galán, 2012);
SSda, stochastic shielding with DA approximation; CN, colored noise
(Güler, 2013).

the open channels (Figures 2E,F), the main deviation seems
to occur with Güler’s CN algorithm, which overestimates the
variance of both open sodium and open potassium channels,
during the subthreshold regime (left) and the action poten-
tial (right). Schmandt’s stochastic shielding approximation (both
SSmc and SSda) underestimates the variance of open channels
during the action potential, when the voltage changes more
rapidly. The results shown here are for NNa = 500, NK = 160;
with higher number of channels (NNa = 5000, NK = 1600) we
naturally observed less fluctuations but the results maintained:
Reflected DA overestimates the mean of open channels in sub-
threshold regime; Colored Noise overestimates the variance of
open channels in subthreshold regime; and Stochastic Shielding
underestimates the variance of open channels during the action
potential (not shown).

SCHMIDT-HIEBER AND BISCHOFBERGER MODEL—SINGLE
COMPARTMENT
We decided to use a model with faster sodium channels, resem-
bling mammalian ion channels, to test the accuracy of the DA

methods when the transitions between states occur at faster rates.
We chose a recently published model that focuses on the fast
opening of sodium channel in the axon initial segment of granule
cells from the hippocampus (Schmidt-Hieber and Bischofberger,
2010). We will refer to this model as the “SB” model. We noted
that the SB model does not show spontaneous firing when simu-
lated stochastically. Therefore, the 500-ms simulation test was not
performed.

Firing variability—20 ms with 1 ms stimulus
We performed the test in which 20-ms were simulated with a 1-ms
current stimulus (similar to Figure 1A). For each stimulus ampli-
tude, 2000 simulations were run and the Firing Efficiency, mean
firing time, and firing time variance were calculated. Figure 3
shows that the results are similar to that obtained with HH. At
high number of channels, most methods perform reasonably sim-
ilar to MC with a higher excitability of the Reflection method
(Figures 3A,B). However, when the number of channels is low
all DA methods fail to approximate the results of MC, showing a
much higher probability of firing at all amplitudes of the stimulus
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FIGURE 2 | Simulations of the stochastic HH model under voltage

clamp. (A) Voltage trace applied to simulated channels in a 100-ms
simulation, repeated 2000 times. Blue and green rectangles represent
the 5-ms intervals that are expanded in the left and right columns of
the figure, respectively. (B) Detail of the voltage traces corresponding
to the time windows analyzed in (C–F). Note the different vertical

scales. (C) Mean of open sodium channels during the subthreshold
(left) and action potential (right) regimes, for the simulation algorithms
tested. (D) Mean of open potassium channels. (E) Variance of open
sodium channels. (F) Variance of open potassium channels. NNa = 500,
NK = 160. Very similar results were obtained with NNa = 5000,
NK = 1600 (see text).
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FIGURE 3 | Responses of the Schmidt-Hieber and Bischofberger (SB)

single compartment model to a 1-ms stimulus pulse. (A,B) Firing efficiency
(A) and Variance of the firing time (B) for the stochastic model with a membrane

area of 314.2 μm2 and the number of channels indicated. 2000 sweeps were
simulated and the Firing Efficiency is the fraction of sweeps in which an action
potential was elicited. (C,D) Same as (A,B) with a membrane area of 31.4 μm2.

(Figure 3C). Also, the Reflection method shows a lower firing
time variability (Figure 3D).

Voltage clamp
We applied the voltage clamp test with the same voltage trace
as the HH model to the SB model stochastic channels. Similar
to what we observed for HH model, the Reflection method
overestimates the mean of open channels (both sodium and
potassium) during the subthreshold regime. Huang’s truncated
and restored method also overestimates it to a minor degree.
During the action potential, the greatest deviation occurs with
the stochastic shielding approximation, which underestimates the
variance for both channels. With a higher number of channels,
we observed similar results, with the exception of Huang’s TR
method performing better in the mean of open channels (not
shown).

SCHMIDT-HIEBER AND BISCHOFBERGER
MODEL—MULTI-COMPARTMENT SIMULATIONS
To test the applicability of DA methods in more complex simula-
tions of physiological relevance, we set up a multi-compartmental
model of a neuron. We chose the idealized neuron described
in Schmidt-Hieber and Bischofberger (2010) and shown in
Figure 4A. Moreover, we kept the particular inhomogeneous
sodium channel density for the axon that causes the action poten-
tials to be initiated in the axon initial segment (AIS), about 10 μm
from the soma (Figure 4B, bottom). The neuronal sections were
spatially discretized according to their spatial constant λ, with a
further increase in the number of segments in the AIS area. In
total, the number of segments simulated were 895 with a 1500 μm
axon and 2239 when the axon was extended to 7500 μm. The
distributions of segment areas is shown in Figure 4C. Together
with the different ion channel densities and a unit conductance
of 20 pS, the resulting distributions of number of channels per
segment are shown in Figures 4D,E. It is noteworthy that the
number of channels to be simulated in any given segment is
rarely higher than 500 for sodium channels and never higher than
120 for potassium channels. In the model with the long axon,
this adds up to 171189 sodium channels and 50670 potassium
channels.

The model neuron with different stochastic channels was sub-
ject to a current clamp stimulus applied to the soma. The stimulus
consisted in a 2 s noisy stimulus (Figure 5A) which in a deter-
ministic simulation elicited 8 action potentials (represented by
stars in the Figure). 400 independent simulations were performed
with the same stimulus and Figures 5B,C show the raster plots
(100 simulations) of spikes detected at the soma and at the tip
of the axon, respectively. Figure 5D depicts a normalized firing
probability calculated for the spikes at the tip of the axon. Both
raster and firing probability plots show that the simulations with
the Reflection method displayed a greater excitability, as sev-
eral action potentials were only elicited with this algorithm and
were not seen with the other DA methods or were seen with a
much lower probability (i.e., around t = 1300 ms, t = 1700 ms
and near the end of the trace). On the other hand, Stochastic
Shielding with MC produced a lower excitability, firing near half
of the action potentials per sweep than the other methods. The
mean of spikes per sweep (Figure 6A) was significantly different
to MC for all the algorithms, not only the Reflection and SSmc
methods. With the Reflection method, however, the deviations
from the other methods go beyond a higher excitability. Some
spikes fired with high probability with all DA methods except
for Reflection (see for instance around 800 ms), and some spikes
had a slightly different timing with Reflection (700, 1500 ms).
Therefore, the Reflection method in this test actually introduced
a bias, producing spikes with different timings than the other DA
method. The variability of the number of spikes elicited per trial
varied with some DA algorithms compared to MC (Figure 6B)
but only in the case of UA and SSmc a significant difference was
observed.

We took the raster plots and searched for spikes that were
repeated in at least 50% of the sweeps with the same timing ±
5 ms. These were called “common spikes” and for most algo-
rithms 10–11 common spikes were found (Figure 6C), with the
exception of Reflection and SSmc methods. Then, we measured
how variable the timing of these spikes was at two axon locations,
one near the initiation site and the other at the tip (Figure 6D).
Although the TR method reproduced more closely the variabil-
ity obtained with MCs, none of the observed differences was
significant.
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FIGURE 4 | Geometry and compartment statistics of the

multicompartment model. (A) Schematic representation of the neuron
simulated. The image is not to scale, and longer sections have been
shortened for illustration purposes (specially the axon). Total soma length is
20 μm and its widest diameter is 10 μm. Dendrite tips are 300 μm from the
soma and the total axon length is 1500 μm (895 segments) or 7500 μm (2239

segments). (B) Diameter of sections and density of sodium and potassium
conductance as a function of the distance from the beginning of the axon
(negative distances correspond to the soma and dendrites). (C–E)

Distribution histograms for the membrane areas (C), the number of sodium
channels (D) and the number of potassium channels (E) along the segments
(compartments) in which the model is discretized.

As a measure of variability with functional consequences, we
examined how the duration of the action potential (duration
measured at the detection threshold level of 0 mV) evolved as it
propagates along the axon. The relevance of this measure is that
the duration of action potentials at the release zone of a synapse
will impact the amount of neurotransmitter released. Figure 7A
plots the duration of all the action potentials recorded in a MC
simulation at several sites of the axon, plotted against the duration
at a site near the initiation. As a first observation, in the refer-
ence site there is a wide distribution of action potential durations,
which gets narrower as the measurement site moves along the
axon. Also, action potentials are shorter in the distal axon than in
the initiation site and the Reflection method produces the shorter
action potentials of all the methods (Figure 7B).

Besides getting shorter, action potential duration at the distal
axon is completely uncorrelated to the duration at the initia-
tion site (Figure 7A, right). We looked at how the correlation of
action potential duration decays along the axon with the different
stochastic simulation algorithms. Results are shown in Figure 7C.
It is apparent that Reflection method produces a faster decay
in the correlation, while the Unbound DA produces a longer
propagation of correlation. To test for similarity, we fitted an
exponential decay to the data points, obtaining a space constant
λ. An extra sum of squares F test was performed to test the null
hypothesis that the data points of each set could be fitted with the

same λ as the MC data, showing that Unbound DA, Reflection
and SSda methods produced a behavior significantly different to
that obtained with MC (Figure 7C, inset). When the test was
repeated with a fit to a double exponential decay, the same result
was obtained.

COMPUTATION TIME
To account for the usefulness of the simulation algorithms, we
found important to compare the computational cost of each of
them. Figures 8A,B show the time required to simulate 500 ms
of the HH model with an integration time step (dt) of 5 and
0.5 μs, respectively, for each algorithm used. As we reported pre-
viously (Orio and Soudry, 2012), DA methods are highly sensitive
to dt but mostly insensitive to the number of channels. On the
other hand, MC simulations are sensitive to both, but its sensitiv-
ity to the number of channels approaches a linear relationship as
the number of channel increases. Importantly, as both dt and/or
number of channel decrease, MC outperforms all of the DA meth-
ods, giving the best simulation times precisely in the condition
where the DA methods showed to be more problematic.

In the case of the multi-compartment simulation, MC is faster
than all DA methods except for Schmandt’s stochastic shielding
approximation (Figure 8C). This result is not surprising, given
that the number of channels per simulated compartment was
almost always below 1000 (Figures 6C,D).
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FIGURE 5 | Stimulation of the multi-compartmental model with a

noisy current injection. (A) Noisy current employed to stimulate the
model. The trace was obtained as an Örnstein-Uhlenbeck process with
τ = 5 ms. The mean of the depicted trace is 0.05 nA and the standard
deviation is 0.03 nA. Stars denote the times at which action potentials
are elicited in a deterministic simulation.(B) Raster plots of action
potentials detected at the soma during 100 of the simulations performed

with each algorithm (from a total of 400). The color of the dots
represents the algorithms according to the legend in (D). (C) Raster plots
of action potentials detected at the tip of the axon. (D) Smoothed
normalized firing probability obtained from the 400 simulations. The
rasters were discretized in bins of 2 ms, adding 0.0025 for each action
potential detected in a bin. The resulting vectors were then smoothed by
convolving with a Blackmann filter function of length 20.

DISCUSSION
In this work we numerically tested five Diffusion Approximation
algorithms proposed to reproduce the behavior of a number of
simultaneous Markov Chains, in the context of stochastic ion
channel modeling. Most of these algorithms (Dangerfield et al.,
2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Huang
et al., 2013a) are based on a Langevin Equation proposed for
stochastic modeling of the Hodgkin and Huxley model (Fox and
Lu, 1994; Fox, 1997). However, they deal in different ways with
numerical issues that appear in the simulation of stochastic tra-
jectories: the requirement that the variables be bounded in [0,1]
(“boundary constraint”) and the requirement that at any given
time the sum of variables must be equal to 1 (“normalization con-
straint”). The boundary constraint breaks more frequently when
the number of channels being simulated is low or when the inte-
gration time step increases, because the stochastic terms scale with√

dt/N. Therefore, special attention should be put to the per-
formance of these simulation algorithms—and their capacity of
reproducing MC behavior—with a low number of channels.

Our tests were primarily aimed with a practical question in
mind: what method should be used to study the contribution
of channel stochasticity to neural excitability in any given spe-
cific context? To answer this question, the simple test of the

numerical accuracy is not enough. Modeling algorithms should
also be examined for applicability and simplicity of implementa-
tion in different contexts and for the computational efficiency for
the intended model to be solved.

ACCURACY
Regarding accuracy, in brief we found that all DA algorithms
fail in the reproduction of MC behavior when the number of
channels is low (generally speaking, below 1000), with no clear
“winner.” For example, the TR procedure improved the results
in some current clamp simulations (Figures 1D–F), but intro-
duced higher deviations than the UA in others (Figure 3). The
Reflection method in our simulations performed the worse, intro-
ducing a higher firing probability in current clamp simulations.
Most likely, this is related to the higher mean of open sodium
channels observed in voltage clamp (Figure 2C).

When the number of channels is 5000 or higher, the TR, UA
and SS methods perform well in reproducing MC behavior in
current clamp tests. This means that in the high number of chan-
nels regime, bounding the variables to [0,1] is not essential, as
the UA and SSda implementations (both unbounded) give the
same results than TR. Inaccuracies were observed (Figure 1) in
the Reflection method, and, to a lesser extent, the CN method.
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FIGURE 6 | Firing statistics and variability in the multi-compartment

model. (A) Mean of spikes per sweep detected at the axon tip in each of the
stochastic simulation algorithms. Data was compared to MC using a t-test.
(B) Variance of the spikes per trial in each stochastic simulation. Data was
compared to MC using a Bartlett’s test for equal variance. (C) Number of

common spikes found in each simulation. A common spike is a spike present
in more than 50% of the trials with the same timing, considering a window
of ±5 ms. (D) For all the common spikes detected, the variance in their
timing was calculated near the initiation site (blue bars) and at the axon tip
(green bars). In (A–B), ∗∗∗p < 0.001, ∗∗p < 0.01.

FIGURE 7 | Variability and correlations in the duration of action

potentials. (A) Duration of all action potentials (measured at 0 mV) at
different positions of the axon, plotted against the duration at a site
near the initiation site. This reference location is designated as “0 μm.”
Data presented correspond to simulation with MC. r is the Pearson
correlation coefficient and p is the associated p-value when testing for
a correlation different to 0. (B) Evolution of action potential duration
along the axon, for the different simulation algorithms. Data is mean ±

SD. (C) Correlation of action potential duration at different points in the
axon, with the duration at the reference “0 μm” location. Lines
represent the fit to a single exponential decay. Inset: length constants
λ obtained in the fit of the different data sets. Error bars represent the
SD of the parameter estimation. The fits were compared to MC using
an extra sum of squares F test, to test the hypothesis that each data
set and the MC set could be fit with the same parameter λ.
∗∗∗p < 0.001, ∗p < 0.05.

Additionally, both methods showed inaccuracy in the voltage
clamp tests. Also on these tests, the SS methods showed some
inaccuracy in the variance of open channels during the action
potential, but the results in current clamp simulations suggest that
this may not be relevant for the neural excitability.

The results with the multicompartment model deserve spe-
cial attention, because some results were different to what was
observed in a single compartment. Although the SSmc method
introduced only minor inaccuracies in the single compartment
test, this method severely altered the excitability of the multicom-
partment model. We could not identify the reason for this effect,
and tested several alternatives of bounding and normalization

which did not improve the results. Nevertheless, the overall effect
is a reduced excitability, which is consistent with the deviation
observed in single compartment (Figure 1D). We confirmed that
this effect does not arise from our implementation of the algo-
rithm, by repeating the single compartment test with the Matlab
code published by Schmandt and Galán (ModelDB acc. 144468)
and obtaining similar results (not shown). So, although it is an
attractive method for increasing simulation speed in multicom-
partmental models, its use is not recommended until further
testing is performed. The Reflection method altered the excitabil-
ity of the neuron but the results were in agreement with the single
compartment results. Curiously, the use of Stochastic Shielding in
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FIGURE 8 | Computational cost of the simulation algorithms. (A,B) Real
time needed to perform a 500-s current clamp simulation of the HH model
with each algorithm and different numbers of channels, using an integration
time step (dt) of 5 μs (A) or 0.5 μs (B). (C) Real time needed to perform a 2-s

simulation of the full multi-compartment model, with an axon of length
1500 μm (blue) or 7500 μm (green). All simulations (single- and
multi-compartment) were run in a 2.5 GHz AMD Opteron 6378 processor.
Only one core was used for each simulation.

a DA framework (SSda) improves the behavior of the simulations,
bringing it closer to the behavior of MCs, like the TR does.

APPLICABILITY AND SIMPLICITY
In terms of applicability, a first observation is that the colored
noise approach (Güler, 2013) can be used only if the ion chan-
nel is composed of independent subunits. This is sometimes
true (e.g., the original HH model), but not always (e.g., the SB
model). For example, channels with non-identical voltage sensors
(Vandenberg and Bezanilla, 1991; Horn et al., 2000), coopera-
tivity in the movement of voltage sensors (Bezanilla et al., 1994;
Schoppa and Sigworth, 1998) or complex allosteric gating mech-
anisms (Horrigan and Aldrich, 2002) do not have independent
subunits. Therefore, they cannot be modeled with the colored
noise approach. Besides, Güler’s equations have a number of con-
stant parameters (γK , γNa, ω2

K , ω2
Na, TK , TNa) that were estimated

empirically to obtain an adequate level of channel noise (Güler,
2013). It is not clear how these parameters can be derived for
other ion channels, even if they are composed of identical and
independent gating subunits.

The other DA-based algorithms can be applied to any given
kinetic scheme but first require to obtain the corresponding
system of SDEs. Until recently, it seemed quite complicated to
implement, since the original descriptions involved the calcula-
tion of a matrix root square (Fox and Lu, 1994; Goldwyn et al.,
2011). However, alternative derivations of the Langevin equation
(Mélykúti et al., 2010; Orio and Soudry, 2012) yield an explicit
form that does not use complex matrix operations. This method
can be derived for any given kinetic scheme using simple and
intuitive rules without using matrix notation (see Supplemental
Material in Orio and Soudry, 2012). Importantly, any kinetic
scheme can be translated to an SDE system and the equations can
be written explicitly. This makes it simpler to employ low-level
or limited languages such as C or Neuron’s NMODL, which are
compiled prior to execution code and therefore run faster.

The DA algorithms differ in the treatment of boundary and
normalization constraints. In this regard, the Unbound DA (UA)
is the simplest, not taking care of the boundaries issue and doing

a simple normalization by making one variable to depend on
the others (alternative normalization procedures can be imple-
mented, for instance dividing all the variable values by their sum).
Finally, to avoid non-real square roots in the stochastic terms,
a simple absolute value operation is performed. The Stochastic
Shielding approximation, when used with DA equations (SSda),
can simplify the code even further because it uses less stochastic
terms. Huang’s truncation and restoration is also rather simple to
follow and implement. However, it requires several lines of code
and a series of nested if and for blocks when written in simple
languages. As a side note, we found that the restoration proce-
dure requires the specification of the Euler integration method
within Neuron’s NMODL files. Failing to do so, using instead the
default Crank-Nicholson integrator, results in severely distorted
results such as a much lower firing rate. Dangerfield’s reflection
method takes similarly amount of lines of code as TR but it was
more complicated to follow and implement.

COMPUTATIONAL EFFICIENCY
Our comparison of simulation time shows that DA-based meth-
ods are not the best choice for all the situations. It has already
been noted that when the number of channels is low, MC mod-
eling runs faster than DA (Orio and Soudry, 2012). The limit
(number of channels) at which this happens is variable, depend-
ing not only on the time step used for numerical integration (as
shown in Figure 8A vs. Figure 8B) but also on the kinetics of the
channels being simulated, as this determines the number of tran-
sitions occurring in MCs (see below). Interestingly, the Stochastic
Shielding in the context of MC (SSmc) behaves like the DA meth-
ods: it is faster than MC only with large numbers of channels and
its performance depends mainly on the integration time step. This
results from the increase in the number of (non-stochastic) ODEs
that have to be solved at each integration step, regardless of the
actual transitions that occur.

At first glance, it seems that a similar comparison carried out in
another work (see Figure 8 in Huang et al., 2013b) produced very
different results. In Huang et al. the MC method is faster than DA
only if there are less than 20 ion channels. In contrast, we found
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that MC is more efficient if there are less than ∼500 channels
(dt = 5μs) or ∼5000 channels (dt = 0.5 μs). The main reason for
this large difference is that in the MC simulations of Huang et al.
the state dynamics of each gating particle were updated individ-
ually. This method is highly inefficient and should be avoided in
stochastic simulations of neurons. In contrast, we used the stan-
dard efficient MC method by Gillespie (1976), which tracks only
the total number of channels in each state.

Interestingly, in another work (Rowat and Greenwood, 2014)
it was found that Güler’s CN method is much faster than
Unbound DA. However, we have found that it is only a little
faster (Figures 8A,B). The difference might be attributed to the
language (Neuron vs. Python), or some other difference in the
implementation.

Within all DA methods, Stochastic Shielding is the fastest in
all circumstances. Next comes the colored noise approach (as
noted, not applicable to all kinetic schemes) closely followed by
Unbounded DA and Reflection. Recall that Stochastic Shielding
(SSda) produces a minor loss in accuracy when used with a large
number of channels, being in almost all cases indistinguishable
from MC modeling. Finally, in our simulations the less effi-
cient (slowest) algorithm was the Truncated and Restored DA
(Huang’s).

The numerical stability issue also deserves to be considered.
Although we did not perform a systematical assessment of numer-
ical stability in our simulations, we noted that simulations with
the UA and SSda algorithms produced unreliable results with
NNa = 50, even at the lowest dt of 0.5 μs. As the other algorithms
did not show this problem, it is most likely due to the lack of vari-
able bounding. We did not pursue in finding a fix for these fails
as the low channel number is a condition where MC modeling
becomes the fastest and most accurate method.

THEORETICAL ESTIMATES OF ACCURACY AND SPEED
For a given model, when is it better to use DA instead of MC?
Specifically, we would like to know in advance when a DA
approach will be accurate, and also faster than MC. A definite
answer usually requires some preliminary simulations. However,
as we explain next, a rough estimate could be obtained based
on the following numbers: the simulation timestep, the num-
ber of channels to be simulated, and their typical constant
rates.

Suppose we have N ion channels (of some particular type),
with X of these ion channels in some state A, and α being a kinetic
rate from state A to another B. In each simulation timestep dt, let
	 be the number of channels switching from state A to state B.
As different channels are independent, 	 is distributed according
to a binomial distriubtion with n = X, and p = αdt. Therefore,
the average number of channels switching from A to B in that
timestep is np = Xαdt.

These quantities can be used to estimate the expected accu-
racy of DA. As explained in Orio and Soudry (2012), the key idea
in DA is to use the central limit theorem and approximate the
distribution of 	 to be Gaussian. This approximation becomes
accurate when np = Xαdt 
 1. This also means that Nαdt 
 1
since X < N. For example, in the HH model the slowest kinetic
rates (in the relevant voltage range), are about α ∼ 0.1ms−1. Then

if dt = 5μs DA should be expected to be accurate only when N >

2000, which is comparable to what we found in our simulations.
Using the same quantities we can also estimate the relative

speed of the MC and DA algorithms. Simulation time is roughly
proportional to the number of times the simulation variables (the
fraction of channels in each) are being updated at each dt timestep
(in which the voltage is updated). On the one hand, the MC
algorithm performs updates each time a single channel switches
between states. The number of these updates in each timestep,
for each type of switch, is proportional to 	. Recall that the
mean of 	 is equal to np = Xαdt. Therefore, in total, about Nαdt
updates are performed on each timestep (where α is the appropri-
ate average over all the kinetic rates). On the other hand, the DA
algorithms perform a single update at each timestep. Therefore,
DA should become more efficient than MC only when Nαdt > 1.
For example, in the HH model most state transitions occur near
rest voltage in the (fast) m kinetics, and so we get approximately
α ∼ 2ms−1. This condition yields results comparable to what we
found in our simulations (Figure 8): if dt = 5μs then N > 100,
and if dt = 0.5 μs then N > 1000.

CONCLUSIONS
Suppose dt is the simulation timestep, N is the number of ion
channels, and α is the “typical” transition rate of the channel. Our
results suggest that, as a rule of a thumb,

• If Nαdt < 1, then MC simulation should be used—since it is
both the fastest and most accurate method. Note that this is
usually relevant to neuron models with less than 500 channels
in a compartment—which is the common case in large multi-
compartmental neuron models.

• If Nαdt > 1, DA should be used. In this case, one should use
the method by Orio and Soudry (2012) which allows the simu-
lated variables to remain unbounded (with an absolute value
used to keep the stochastic terms real-valued). Additionally,
the stochastic shield method by Schmandt and Galán (2012)
method can be used with the DA equations to further speed up
simulation, while remaining reasonably accurate.
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