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The dynamic interaction of limb segments during movements that involve multiple joints
creates torques in one joint due to motion about another. Evidence shows that such
interaction torques are taken into account during the planning or control of movement in
humans. Two alternative hypotheses could explain the compensation of these dynamic
torques. One involves the use of internal models to centrally compute predicted
interaction torques and their explicit compensation through anticipatory adjustment of
descending motor commands. The alternative, based on the equilibrium-point hypothesis,
claims that descending signals can be simple and related to the desired movement
kinematics only, while spinal feedback mechanisms are responsible for the appropriate
creation and coordination of dynamic muscle forces. Partial supporting evidence exists in
each case. However, until now no model has explicitly shown, in the case of the second
hypothesis, whether peripheral feedback is really sufficient on its own for coordinating
the motion of several joints while at the same time accommodating intersegmental
interaction torques. Here we propose a minimal computational model to examine this
question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural
circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal
system to transform simple descending control signals into muscle activation patterns
that accommodate interaction forces depending on their direction and magnitude. This is
achieved without the aid of any central predictive signal. Even though the model makes
various simplifications and abstractions compared to the complexities involved in the
control of human arm movements, the finding lends plausibility to the hypothesis that
some multijoint movements can in principle be controlled even in the absence of internal
models of intersegmental dynamics or learned compensatory motor signals.

Keywords: motor control, interaction torques, intersegmental dynamics, spinal circuits, internal model, intralimb
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1. INTRODUCTION
Human multijoint reaching movements are characterized by
invariants such as straight hand paths and bell-shaped velocity
profiles (Morasso, 1981; Soechting and Lacquaniti, 1981; Atkeson
and Hollerbach, 1985). These invariants hold independently of
the amplitude, speed and direction of movement, and there-
fore independently also of the resulting variation in interaction
torques that arise in one joint due to motion about another.
The absence of a signature of these time-varying torques in
observed kinematics indicates that intersegmental dynamics are
compensated for in the planning or execution of arm movements
(Hollerbach and Flash, 1982).

Evidence suggests that this compensation is not achieved by
executing movements with high stiffness (Gomi and Kawato,
1996; Gribble et al., 1998), which would allow muscle forces
to dominate over the passively emerging loads. Rather, mus-
cle activity varies with the direction of interaction torques,
such that muscle forces acting at one joint (e.g., the shoulder)

are dependent on the direction of motion about another joint
(elbow), even when the former joint performs the same motion
or remains stationary (Cooke and Virji-Babul, 1995; Latash et al.,
1995; Gribble and Ostry, 1999; Galloway and Koshland, 2002;
Debicki and Gribble, 2005).

Two possibilities could explain the origin of this intralimb
coordination strategy. In computational approaches to motor
control the brain is assumed to calculate the time-course of forces
necessary to perform desired movements using internal models of
the body (Kawato, 1999). This implies the prediction of interac-
tion torques and their explicit compensation through anticipatory
adjustment of descending motor commands. The speed and accu-
racy of skilled ballistic movements (such as throwing), during
which feedback may be too slow to mediate compensatory sig-
nals, suggests the need for such a predictive strategy. Empirical
evidence in its support is provided, for example, by experi-
ments showing a correlation between corticospinal excitability
and upcoming interaction torques (Gritsenko et al., 2011), or
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by patients with hemiparesis whose deficits in reaching move-
ments are consistent with a failure to account for intersegmental
dynamics (Beer et al., 2000).

An alternative strategy, based on peripheral feedback, is
offered by proponents of the equilibrium-point (EP) hypothesis
(Feldman, 1966; Feldman and Levin, 1995; Gribble et al., 1998),
which suggests that movements are controlled by simple kine-
matic shifts in the equilibrium position of the limb, while the
required forces result from muscle dynamics and spinal circuitry.
The hypothesis predicts that descending motor commands need
not take into account upcoming interaction torques during multi-
joint movements. This would imply that intersegmental dynamics
need to be accommodated implicitly through either the neural
coupling of muscles acting on adjacent joints (via intersegmen-
tal spinal circuitry), or through the mechanical properties of the
musculoskeletal system itself. Viscoelastic properties of muscles
have been shown to counteract interaction forces in some cases
(Hirashima et al., 2003). However, since both viscoelastic forces
as well as active muscle forces depend on the level of muscle acti-
vation, and can therefore not be controlled independently, they
are a poor choice for the precise counteraction of intersegmental
loads. Indeed, subjects perform skilled movements despite these
viscoelastic properties, rather than because of them (Hirashima
et al., 2007; Debicki et al., 2011). If the EP hypothesis is to
maintain the idea of simple descending motor commands that
are “ignorant” of intersegmental dynamics, then motion about
different joints needs to be coordinated appropriately through
intersegmental neural coupling of spinal circuits. The question we
investigate here is whether such a peripheral coordination strategy
is possible.

Several observations indicate that feedback compensation of
limb dynamics is plausible at least in principle. Firstly, interac-
tion forces arising at one joint are strongly related to the muscle
forces applied to another (Gribble and Ostry, 1999; Galloway and
Koshland, 2002), and such muscle forces are encoded reliably in
the population response of Golgi tendon organs (Mileusnic and
Loeb, 2009). Secondly, Ib afferent activity carrying these force-
related proprioceptive signals results in widespread modulation
of motoneurons innervating muscles acting at adjacent joints
(Jankowska et al., 1981). The sensitivity of Ib inhibitory interneu-
rons can be adjusted through input from Ia afferents that carry
muscle length and velocity feedback, which allows for precise
force regulation throughout a wide range of movements (McCrea,
1992). Though McCrea points out that a hypothesis has yet to
emerge that explains this widespread distribution of Ib modula-
tion throughout the limb, it is clear that it would be well suited
to play a role in coordinating the simultaneous motion of sev-
eral joints. Thirdly, functionally deafferented patients have been
shown to make systematic movement errors indicative of a failure
to counteract interaction forces, demonstrating a functional role
for proprioception in the compensation of internal loads (Ghez
and Sainburg, 1995; Sainburg et al., 1995). In this experiment the
question remains of whether proprioceptive feedback acts in long
loops through the CNS, or locally through spinal reflexes. But
motion-dependent feedback across spinal segments has also been
shown to modulate ongoing limb dynamics in the cat (Smith and
Zernicke, 1987; Koshland and Smith, 1989).

Since evidence exists for both predictive and feedback com-
pensation of interaction torques, several authors have suggested
that both mechanisms could contribute to the compensation
either simultaneously or at different times throughout a move-
ment (Sainburg et al., 1999; Gritsenko et al., 2011). One can also
hypothesize that the relative contribution of centrally planned
compensation is greater in fast and highly skilled movements,
while spinal compensation might be significant in everyday
movements such as reaching; or that the spinal contribution is
greater early on in development, while being gradually replaced
with more precise central corrections acquired by adaptive pro-
cesses in the CNS. But regardless of the question of when or to
what extent it may contribute to a class of movements, the ability
and effectiveness of peripheral feedback compensation of interac-
tion torques has yet to be demonstrated. There are, for example,
no convincing models of how an EP-approach would work for
the peripheral accommodation of interaction torques without
recourse to centrally planned compensation.

Our objective in this paper is to fill in a gap in the modeling
literature and demonstrate that an EP-based approach can indeed
show accommodation of interaction torques. We introduce a
model of planar arm movements based on the EP hypothe-
sis, but extended to include spinal reflex dynamics. We show
that it is possible to reproduce empirically observed kinematic
invariants across a range of directions and magnitudes of interac-
tion torques. Moreover, the model achieves this by transforming
simple descending motor commands, derived only from desired
movement kinematics, into muscle activation patterns that vary
appropriately with upcoming internal loads, independently of
their magnitude or other specifics (direction, speed, amplitude)
of the movement. Analysis of the model suggests that for some
classes of movements the brain may control the motion of limbs
as if intersegmental dynamics were absent, while lower level
dynamics achieve the necessary coordination locally. For such
movements, the brain would not need to rely on internal models
of intersegmental dynamics, nor would need to learn a different
set of compensatory motor signals for each possible movement.

The biomechanical model employed in this simulation study
is deliberately simple. This is because we do not aim primar-
ily at elucidating how exactly, i.e., in quantitative detail, humans
compensate for interaction torques. Rather, the aim is to show
for the first time that in principle such compensation can be
implemented solely on the level of body dynamics and peripheral
feedback. We note that intersegmental dynamics, and the problem
of accounting for it, not only occurs in human arm movements.
It has to be dealt with in movements performed by any (natural
or artificial) multijoint system, independent of how it is actuated
(whether, for examples, by muscles or motors), as long as move-
ments are executed in a compliant manner. We therefore model a
system that structurally is similar enough to certain human arm
movements to allow for qualitative comparisons, while abstract-
ing away features that are of little relevance for the question of
whether feedback through local spinal circuits is sufficient on
its own for the compensation of interaction torques. Specifically,
we omit from the model the tendons that connect muscles to
the skeleton (which in the case of the upper arm are sufficiently
short and inelastic to justify this simplification, see Section 2.2
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for further details); and chose to also omit biarticular muscles.
The latter choice implies that the results obtained from the model,
such as certain muscle activation patterns, cannot necessarily be
compared directly with those observed in humans (although we
will in fact identify certain similarities). It is certainly the case
that biarticular muscles, exactly because they span neighboring
joints, may have a special role to play in intersegmental dynam-
ics. However, their omission here allows us to disentangle their
potential contribution to interaction torque compensation from
contributions due to peripheral feedback mechanisms. In fact, we
show here that even without such muscles, feedback between local
spinal circuits alone is sufficient for such compensation. In this
sense, the level of abstraction chosen in our simulations is anal-
ogous to other models that are concerned more generally with
(1) the problem of interaction torques, such as Hollerbach and
Flash (1982), in which the problem is investigated purely on the
level of joint actuation, without any reference to the role of mus-
cles; (2) the function of spinal circuitry in movement control, for
example Raphael et al. (2010), who investigate a spinal model of
comparable complexity for the control of a single wrist joint actu-
ated by four symmetric muscles; or (3) the inference of unknown
neural mechanisms or physiological properties underlying move-
ment control, as for example Izquierdo and Beer (2013), in which
properties of the neural circuit underlying C. elegans klinotaxis
are investigated using a minimal neuroanatomical model and a
methodology similar to the one employed in the experiments
reported here.

While demonstrating the feasibility of spinal compensation of
interaction torques in an EP-control framework for one class of
movements, we do not claim that this is the mode employed for all
types of movements, nor that it is the main role of spinal circuitry.
If, when, or to what extent spinal dynamics contribute to the com-
pensation of intersegmental loads is an empirical question that we
do not address in the work presented here. The result should also
not be counted as an argument against internal models, but rather
in favor of the complex and often unintuitive control that can be
achieved from the bottom-up.

2. MATERIALS AND METHODS
In the following sections we describe in detail the biomechani-
cal model of planar arm movements employed in this study; its
control via spinal reflex-like neural networks based on known
physiology; the integration of spinal dynamics, proprioceptive
feedback, and descending commands at α-MNs according to
the equilibrium-point hypothesis; and the optimization proce-
dure used to identify model parameters that enable kinematically
realistic multijoint movements subject to varying patterns of
interaction torques.

2.1. ARM MODEL
The biomechanical simulation implements the simplest model
that allows for the investigation of interaction torques and their
compensation, namely a planar arm consisting of two rigid seg-
ments connected by hinge joints (see Figures 1, 3). We will use
labels such as “shoulder” and “elbow” for the joints (as well as
“flexor” and “extensor” for muscles) in analogy to human phys-
iology, even though aspects of the simplified model may vary in

details from their human counterparts. To model the dynamics of
the planar arm we use here the formulation by Hollerbach and
Flash (1982), which derives joint torques from the arm’s kine-
matics, Newton-Euler equations and d’Alembert’s principle. The
resulting equations of motion explicitly factor in the contribution
of external, inertial, coriolis and centripetal forces:

η2 = θ̈1

(
I2 + m2l2l1

2
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4

)
+ θ̈2
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4

)
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2
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4
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2
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)

− m2l2l1
2

θ̇2
2 sin θ2 − m2l2l1θ̇2θ̇1 sin θ2 (1)

Here η are torques applied to the joints externally (e.g., by mus-
cles), θ the joint angles, I the rigid body inertias, m their masses,
and l their lengths. Subscripts indicate the segment for param-
eters describing properties of the rigid bodies (1 = upper arm,
2 = lower arm). In the case of torques, angles and their deriva-
tives, subscripts indicate the joint (1 = shoulder, 2 = elbow). We
let m1 = 2.25 kg, m2 = 1.3 kg, l1 = 0.33 m and l2 = 0.32 m,
and inertias Ii = (mil2i )/12 (Karniel and Inbar, 1997). For our
analysis of the relative contribution of muscle and interaction
torques to the net torques observed in a particular movement, we
consider interaction torques to consist of the sum of those terms
in the above equations that depend on movement in another
joint; e.g., terms depending on θ̇1 or θ̈1 in the equation for η2.

2.2. MUSCLE MODEL
Each of the two joints is actuated by an antagonistic muscle
pair (Figure 1). The lumped muscles are described by a Hill-
type model that captures the essential non-linear relationships
between muscle length, contraction velocity, and force generation
(Zajac, 1989). It consists of three components: an active contrac-
tile element in parallel with both a passive elastic spring and a
viscous damper. The first component describes a muscle’s isomet-
ric force generating capability F̂a as a function of its length and is
modeled using the quadratic function

F̂a(l̂m) = 1 −
(

l̂m − 1

0.5

)2

(2)

where lm is muscle length and variables decorated with the “hat”

symbol ( ˆ ) are normalized: l̂m = lm/lm0 , F̂ = F/Fmax and lm0 the
length at which active muscle force reaches its isometric maxi-
mum Fmax. The passive elastic element is described by a quadratic
dependence of force F̂p on muscle extension beyond a given

threshold l̂mp (Kistemaker et al., 2007):
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FIGURE 1 | Model of two-joint planar arm actuated by antagonistic

muscles under control of spinal interneurons. Shown are two spinal
circuits, one for each pair of antagonistic muscles. Connections are drawn
between interneurons regulating muscles acting on the same joint, as well as
those coupling adjacent joints (only one direction is shown for simplicity; the
structure of Ib connections between segments is symmetric in the model). Ia
pathways are shown in red, Ib pathways in orange, and Renshaw cells in
gray. Flexor related circuitry is drawn as solid and extensor as dashed lines.
Excitatory synapses are displayed as triangles and inhibitory synapses as
disks. Those that during optimization can be of either type are drawn as

squares. Three types of signals descend from higher centers (blue). These
are: the stretch reflex threshold λd (implying appropriate coordination of α

and γ fusimotor drives, see section on threshold control); a coactivation
signal λco to the α-MNs, and a GO-signal distributed to all spinal neurons
(each receiving this signal via its own weighted connection, not shown here).
The topology of the circuits is symmetric, but synaptic strengths can be
assigned asymmetrically. The topology is also identical for the two joints,
though for clarity some connections of the shoulder joint are omitted in the
figure. Muscles wrap around joint capsules of radius r1,2 and insert into arm
segments of lengths l1,2.

F̂p(l̂m) =
{

kp(l̂m − l̂mp )2 if l̂m > l̂mp ,

0 if l̂m ≤ l̂mp
(3)

where kp is scaled such that F̂p = 0.5Fmax at the muscle length

where F̂a drops to 0 (Kistemaker et al., 2007) and l̂mp = 1 (Zajac,
1989). Both components are shown in Figure 2A.

Hill’s equation of muscle contraction dynamics is given in a
form that describes normalized muscle force F̂v = Fv/Fmax as
a hyperbolic function of normalized (lengthening) velocity v̂ =
v/vmax. In the case of contraction (v < 0):

F̂v(v̂) = 1 + v̂

1 − v̂/ksh
(4)

with ksh regulating the curvature of the function (McMahon,
1984). For lengthening muscle (v > 0) an analog but inverted

hyperbola is often used, which is parameterized by kmax, kle, and
km, which describe respectively the asymptotic value limv→∞ F̂v,
the curvature, and the slope at v = 0 as a multiple of the cor-
responding slope in the case of contraction (Kistemaker et al.,
2006). Such a hyperbola is given by

F̂v(v̂) = kl − kmaxv̂

kl − v̂
, kl = kle(1 − kmax)

km(1 + kle)
(5)

The resulting function for concentric as well as eccentric contrac-
tion is shown in Figure 2B.

The total force F produced by a muscle depends on F̂a, F̂p, and

F̂v in a multiplicative way (see Figure 2C):

F = aFmaxF̂a(l̂m)F̂v(v̂) + FmaxF̂p(l̂m) (6)
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A

C

B

FIGURE 2 | Normalized muscle force F̂ as a function of length l̂m and

velocity v̂ . (A) The net force-length relationship (black solid line) is formed
additively by a passive elasticity resisting lengthening of the muscle
(dashed gray line), and a hyperbolic function with maximum at resting
length describing the active generation of force (gray solid line). Most
muscles of the human upper arm are constrained to the ascending leg of
the curve, as indicated by the shaded region. (B) The force-velocity
relationship describes how force production drops with increasing
shortening velocity and increases when actively lengthening. (C)

Multiplicative combination of muscle length and velocity relationships for
maximum activation level a = 1. Thick red lines highlight the force-length
curve at rest (v̂ = 0), and the force-velocity curve when the muscle is at its
optimal length (l̂m = 1).

where a describes muscle activation dynamics and is imple-
mented as a filter on neural excitation α, interpreted as firing rate
in the range [0, 1], with different activation and deactivation rates
βac and βde respectively:

ȧ =
{

(α − a)/βac if α ≥ a,

(α − a)/βde if α < a
(7)

Muscle length lm is calculated from arm kinematics based on a
geometric model of muscle paths wrapping around joint capsules
as proposed by Houk et al. (2002). Given a muscle’s points of ori-
gin and insertion (po,i), the path depends only on the radii r1,2

of the spherical joint capsules it may wrap. The same model also
determines each muscle’s changing moment arm ma, from which
we ultimately compute the torque ηm = maF that is applied by a
muscle at a joint.

Finally, summing the two individual muscle torques acting on
the same joint we arrive at the total external torques ηi (i ∈ {1, 2}).
These are substituted in Equation 1, which allows us to rearrange
for joint accelerations θ̈i and to integrate the dynamical equation
using the Euler method (step size of 0.001).

Tendons were omitted from the model. The inclusion of
tendons is important in some contexts, such as studies of the
physiological mechanism underlying the disambiguation of mus-
culotendon length (see e.g., Kistemaker et al., 2012), which we
here take for granted. But the majority of muscles in the human
upper arm feature short tendons, with ratios of tendon slack
length to muscle fiber length on the order of 1–2 (Zajac, 1989;
Garner and Pandy, 2003; Kistemaker et al., 2007), as opposed
to long elastic tendons with ratios on the order of 10. Such ten-
dons can store only small amounts of elastic energy and therefore
have little effect on overall movement dynamics (Zajac, 1989;
Gribble et al., 1998; Murray et al., 2000). At sub-maximal levels of
muscle activation, as used here, their effect on static musculoten-
don properties (e.g., the force-length curve) is small too (Zajac,
1989). On that basis, and since current evidence does not sug-
gest a special role for tendons in the creation or compensation of
interaction torques, we consider the omission of (or assumption
of an inelastic) tendon to be admissible for the purpose of our
investigation.

All muscle parameters, such as maximum isometric forces or
muscle excursion, were limited to ranges found in the human
upper limb (Zajac, 1989; Lemay and Crago, 1996; Garner and
Pandy, 2003), and are summarized in Table 1.

2.3. SPINAL MODEL
We include in our neural model of spinal circuitry only the most
well-known afferents, interneurons and connections. The archi-
tecture in its basic form is similar to previous models (Bullock
and Grossberg, 1991; Lan et al., 2005; McCrea and Rybak, 2008;
Raphael et al., 2010) and can be described as an antagonisti-
cally organized pattern generator (also see Pierrot-Deseilligny and
Burke, 2005, for an overview of the connectivity). In particular,
we include in our model the following interneurons and their
connections (see Figure 1).

The Ia pathway includes monosynaptic excitation of the
(homonymous) alpha motor neuron pool (α-MN) through mus-
cle spindles, i.e., the myotatic (stretch) reflex; reciprocal inhi-
bition of the antagonist α-MN via Ia interneurons (IaIn); and
reciprocal inhibition between IaIns. IaIn further receive descend-
ing connections, which in this model carry signals related to the
desired contraction of the corresponding muscle.

On the Ib pathway, inhibitory interneurons (IbIn) mediate
autogenic inhibition of the homonymous α-MN via afferents
from Golgi tendon organs, and also reciprocally inhibit each
other. Optional in our model are the Ib reciprocal excitation
of antagonist α-MN (interneurons omitted for simplicity), and
Ia projections to IbIn (Jankowska, 1992). In addition, Ib affer-
ents project to spinal circuits regulating adjacent joints and form
connections there with IbIn and α-MN.

Modeled feedback from Ib afferents is based on the observa-
tion that the ensemble activity of Golgi tendon organs provides
an estimate of the total force acting on a muscle over a large
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Table 1 | Summary of optimizable model parameters and their

ranges, as well as fixed muscle parameters.

Parameter Range Description

MUSCLE

po,i [0.06, 0.26] m Dist. of insertions from joint

Fmax [100, 2000] N Maximum isometric force

l0 [0.01, 1.5] lmax Optimum length

vmax [8, 12] l0/s Max. contraction velocity

r1,2 [0.01, 0.05] m Joint capsule radii

NEURAL

τ [0.01, 1] s Time constant

θ [−10, 10] Bias

w [−10, 10] Connection weights

k [0.1, 10] Slope of transfer function

THRESHOLD CONTROL

kp [0, 6] Position feedback gain

kv [0, 0.5] Velocity feedback gain

kd [0, 1] Damping gain

pv,d [0.25, 2] Viscosity exponents

λco [0, 0.3] Open-loop cocontraction

FIXED PARAMETERS

ksh, kle 0.25 Hill-function curvature

kmax 1.5 Max. eccentric force

km 2 Hill slope multiplier at v = 0

βac 0.04 s Muscle activation time scale

βde 0.07 s Muscle deactivation time scale

See Materials and Methods for further detail.

range of force production (Crago et al., 1982; Mileusnic and Loeb,
2009). Therefore, modeled Ib afferents here signal the (normal-
ized) muscle force F̂. The model also includes recurrent inhibition
of homonymous α-MN via Renshaw cells, which reciprocally
inhibit each other.

All interneurons in this circuit are modeled as leaky integra-
tors with logistic transfer function, a model commonly used to
describe the average neural firing rate as a function of stimulus
(e.g., Dayan and Abbott, 2001, pp. 33, 57):

τ ẏi = −yi +
n∑

j = 1

wjiσ (yj + θj) (8)

where yi is the activation of neuron i, τ its time constant, wji the
strength of the connection from neuron j to i, θ a bias term, and
σ (x) = 1/(1 + e−kx) the logistic activation function with k spec-
ifying its steepness. All parameters describing this equation are
subject to optimization.

2.4. THRESHOLD CONTROL
The threshold control formulation of the EP theory, the λ-model,
assumes that descending motor signals are integrated at the
α-MN membrane with afferent feedback from muscles, such that
changes in central commands shift the threshold at which mus-
cles become active (Feldman and Levin, 1995). When a muscle is
stretched, the resulting afferent influence will lead to an increase
in membrane potential until the muscle reaches a length at which

the threshold is exceeded and the motor neuron starts firing. The
resulting activation produces muscle shortening and thus tends
to move it closer to the threshold length, thereby establishing an
equilibrium in spatial coordinates (muscle lengths).

Models of this kind are consistent with empirically observed
levels of damping, stiffness, and feedback delays (St-Onge et al.,
1997; Gribble et al., 1998; Kistemaker et al., 2006; Pilon and
Feldman, 2006), and have successfully been employed to address
problems such as motor redundancy (Balasubramaniam and
Feldman, 2004), sense of effort (Feldman and Latash, 1982),
the relation between kinematics, dynamics and EMG patterns in
reaching movements (Feldman et al., 1990; Gribble et al., 1998),
load adaptation (Gribble and Ostry, 2000) and anticipatory
grip-force modulation (Pilon et al., 2007).

Few studies have addressed the problem of interaction torques
in the context of the EP theory. In Flash and Gurevich (1997)
the authors propose an EP model that addresses adaptation to
loads (such as those arising internally), which requires for each
new load the tuning of limb stiffness and the modification of the
time-course of the EP shift based on knowledge of the load’s force
and joint stiffness. Gribble and Ostry (2000) have shown that a
simple learning mechanism can make use of only the positional
error resulting from unexpected loads to learn for each move-
ment corrections of otherwise simple motor commands. Also,
Flanagan et al. (1993) have used an EP model to investigate the
nature of control signals underlying two-joint arm movements,
but did not systematically vary the direction of movements in a
way that would have allowed them to study the effect of inter-
action torques. Our model differs from these in that it aims to
identify a single neuromuscular system accommodating interac-
tion torques independently of their magnitude and direction, i.e.,
without a different set of compensatory motor signals for each
possible movement.

We assume that muscle spindles (together with the complex
of static and dynamic γ -MN) can provide information about
both muscle length and velocity via type Ia and II afferents. This
feedback is used in the model to measure deviations from mus-
cle threshold length λ and acts so as to minimize it (directly via
the stretch reflex and indirectly via input to the interneurons).
Similar to other models of threshold control (Feldman et al., 1990;
Kistemaker et al., 2006), a muscle’s α-MN pool activity at time t
integrates central commands and afferent feedback according to
the following equation:

αt =
[

kp(lt − δ − λt) + kv(l̇t − δ − λ̇t)
pv + kdl̇

pd
t − δ + N

]1

0
(9)

λ = λd − λco (10)

Here l is muscle length, λ the commanded muscle threshold
length, δ a feedback delay, kp,v,d gain parameters controlling the
effect of position error, velocity error and damping respectively,
the function [x]1

0 clamps its argument to the interval [0, 1], and
N summarizes the influences of all spinal interneurons with con-
nections to α-MNs. The reference velocity component has been
proposed by McIntyre and Bizzi (1993) to account for fast move-
ments executed with low stiffness, and the exponents pv,d allow
for modeling of non-linear viscosity effects (Gielen et al., 1984).
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Both these extensions of the original λ-model are optional, and
we will show that they are unnecessary when spinal circuitry is
taken into account, but that at least one is needed if the contri-
bution of these circuits is omitted. The duration of the feedback
delay is 0.025 s, based on the short-latency EMG response to
unloading of human arm muscles (Houk and Rymer, 1981).

For multiple muscle systems, such as the antagonistic setup
used here, threshold control proposes that the descending sig-
nal λ consists of two additive components, one of which shifts
the position of the combined equilibrium of the system, while the
other specifies a range of muscle coactivation around the equilib-
rium point (Feldman and Levin, 1995). These two components
are denoted as λd and λco in the above equation. In principle,
independence of the coactivation component from the positional
component can be achieved through coordinative processes in
spinal circuits (Feldman, 1993), or centrally using information
about muscle and skeletal morphology (e.g., in the form of a
learned mapping). For simplicity, we here let the optimization
procedure select the coactivation level λco.

For reasons of stability in the reciprocally organized spinal cir-
cuits, which in some configurations can be prone to undesired
reverberations, all interneurons receive a movement-unspecific,
descending, GO signal (Bullock et al., 1998; Raphael et al.,
2010), which has the potential to gate the contribution of spinal
interneurons to α-MN activity. The GO signal is set to 1 at the
beginning of movement and gradually drops to 0 at the end:

GO(t0) = 1

GO(t + �t) =
{

GO(t) if t ≤ T

0.95GO(t) if t > T
(11)

where t0 is the beginning and T the desired duration of the move-
ment. Because of this time course, the GO signal cannot modulate
neural dynamics during the execution of the movement, but can
only alter interneuronal contributions after the movement termi-
nates (and thus potentially prevent undesired oscillations when
the limb is supposed to be at rest again).

2.5. SIMULATED MOVEMENTS AND CONTROL SIGNALS
We consider two types of arm movements (Figure 3): “whip-
ping” movements, where elbow and shoulder joints move in
the same direction, and “reaching” movements, where the two
joints move in opposite directions. Interaction torques broadly
oppose the movement in the case of whipping and assist it in
the case of reaching, at least in the initial phase (Gribble and
Ostry, 1999; Galloway and Koshland, 2002). We try to identify
spinal circuits that can produce smooth hand trajectories in both
of these conditions. We therefore simulate four distinct move-
ments. For each of two starting poses SA and SB, specified in
shoulder (θ1) and elbow (θ2) joint angle coordinates—SA : {θ1 =
60◦, θ2 = 90◦} and SB : {θ1 = 80◦, θ2 = 110◦}—we hold desired
elbow kinematics constant (a 30◦ flexion) while changing the
direction of shoulder movement (20◦ flexion or extension). This
results in different directions of interaction torques arising at
the elbow. A similar regime has been used in experiments with
human participants (Gribble and Ostry, 1999). The duration of

FIGURE 3 | Initial (gray) and target poses (black) for reaching (RA,B )

and whipping movements (WA,B ). Purple arrows indicate the desired
hand path. In blue are shown the origins for shoulder (θ1) and elbow (θ2)
joint angles. Red arrows indicate the direction of muscle torque required to
initiate the desired motion about one joint, and orange arrows the direction
of interaction torques due to motion about the other. Generally, muscle
torques applied at one joint result in interaction torques of the opposite
direction at the adjacent joint. This leads to interaction torques assisting the
motion in the case of reaching movements, and resisting it during whipping
movements. Note that all movements involve joint rotations of the same
amplitude (±20◦ for the shoulder and −30◦ for the elbow), only their
direction changes.

the desired movements is 0.3 s, which implies moderate aver-
age rotational velocities of 100◦/s and 66.67◦/s for the elbow and
shoulder joint respectively. Note that as a result of the non-linear
nature of arm kinematics, the four movements all differ in the
distance traveled by the hand. These are WA = 0.32, RA = 0.11,
WB = 0.28, and RB = 0.13 m, where W and R denote whipping
and reaching movements with subscripts A and B indicating the
starting position.

The following scheme is used to derive central command sig-
nals λd for the four movements from their corresponding initial
and target postures. Based on the assumption that hand trajec-
tories are controlled in extrinsic space (Morasso, 1981; Flash and
Hogan, 1985), the two postures, given in joint coordinates, are
translated into hand positions (the tip of the forearm segment in
the model) using forward kinematics. From initial and final hand
positions we then derive a commanded trajectory, sometimes
called the “virtual equilibrium trajectory,” which corresponds to
the true equilibrium of the system only in the absence of load
perturbations. Based on the finding in similar models that the
equilibrium-point trajectory might lead the actual movement,
i.e., reach the final position before the end of the movement (see
e.g., Ghafouri and Feldman 2001), we allow the commanded tra-
jectory to be shorter. Its duration as a fraction of the desired
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movement is an optimized parameter. To avoid discontinuities
in the control signals, which could induce undesired oscillations,
the commanded trajectory changes smoothly between the ini-
tial and final hand position. Finally, using inverse kinematics, at
each time step the commanded hand position is transformed into
commanded muscle threshold lengths λd. In other words, each
muscle’s λd for a given commanded hand position is the length of
that muscle at the corresponding position. The open-loop com-
ponent λco gradually increases from 0 to its selected level, remains
constant throughout the movement, and then gradually relaxes
back to 0 (Feldman and Levin, 1995). Example time series of the
two control signals are shown in Figure 4B.

In summary, the continuous time-varying control signals are
fully determined by three parameters, namely the initial and final
hand position as well as a coactivation level, and it is assumed
that both the virtual equilibrium position of the hand as well as
the open-loop component change smoothly. An inverse kinematic
mapping is used to translate hand positions into muscle threshold
lengths.

2.6. OPTIMIZATION
We use a genetic algorithm (GA) to search for parameters of
the spinal circuits and muscles such that the combined system
produces in all movement conditions smooth hand motion as
described by a minimum jerk trajectory. This is done in two
separate stages.

2.6.1. Muscle parameters
First, a set of minimally valid muscle parameters is identified that
subsequently remains fixed (22 parameters in total, see Table 1).
We employ only two criteria in the search for these muscle param-
eters. Firstly, the parameters have to fall within physiologically
plausible ranges (also provided in Table 1). Secondly, the resulting
musculoskeletal system, when driven with static and sub-maximal
activations, has to exhibit stable equilibria at least over the joint
range employed in subsequent simulations. This is a property too
of biomechanically more realistic simulations and most probably
also humans (Kistemaker et al., 2007). The overall complexity of
the musculoskeletal model is kept at a level sufficient not to dis-
solve the problem of interaction torques in the first place, and is
not meant to be a high-fidelity reproduction of the human upper
arm complex. For this reason the set of lumped muscles was deter-
mined using the minimal criteria mentioned above, rather than
an average over empirical measures, which would be inappropri-
ate to map to the setup used here. Note that the search criteria
for muscle parameters do not include the minimization of inter-
action torques or any other related objective. In fact, no online
control is used at this stage at all, and spinal networks are com-
pletely ignored. This ensures that the identification of the muscle
setup is completely independent of the subsequent problem of
optimizing spinal feedback control.

2.6.2. Spinal network parameters
Parameters related to neural circuits and control signals (133 in
total, see Table 1) are optimized with the goal of producing (1)
smooth hand motion, (2) low levels of co-activation and (3)
insignificant muscle forces before and after movement. To this

B

A

FIGURE 4 | Kinematics of model reaching and whipping movements.

(A) Hand paths in extrinsic space. Gray disks indicate target positions for
reaching (RA,B) and whipping movements (WA,B). Black points indicate
initial positions. Trajectories are approximately straight with small hooks at
the target positions. Inset at the bottom right are normalized tangential
velocity profiles scaled by maximum velocity and shifted such that peaks
coincide. The profiles are approximately bell-shaped with some overshoot.
(B) Trajectories in joint space (first row). In black are shown actual and in
gray desired joint trajectories. Also plotted as dashed lines are the
commanded joint trajectories, i.e., the virtual equilibrium joint angles
corresponding to the central commands λd . Second row: muscle
trajectories for both agonist and antagonist of the shoulder. Muscle
excursion is here measured as a proportion of maximum contraction, i.e., a
value of 1 corresponds to a muscle being maximally contracted (at its
shortest) and a value of 0 to it being minimally contracted (at its longest).
Shown are the commanded muscle threshold λd (black, dashed), actual
muscle contraction (black) and the open-loop component λco (gray, dashed).

end we define an objective function that consists of the three
components fD, fC , and fF , which capture each of the previous
criteria respectively. The overall performance of the system for
a single movement trial, and given a particular set of parame-
ters, is then measured by simply multiplying the three individual
components, which we describe next in detail.

As a criterion for smooth hand movements that reproduce
empirically observed kinematic invariants we first define an ideal
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minimum-jerk trajectory (Flash and Hogan, 1985), �r(t), between
the hand’s initial and final position. The performance criterion fD
then depends on the mean squared error D between actual hand
position �p and reference �r along the trajectory, at the relative time
lag that minimizes the error between the two time series:

D = min
−0.1 < d < 0.1

T∑
t = 0

‖�pt − �rt−d‖2 (12)

fD = 1 −
√

D

T/dt
(13)

where t is time (in discrete steps of dt = 0.001 s) and T the move-
ment duration. The latter includes periods without motion before
and after the actual movement (0.1 s and 0.3 s respectively). D
is the movement error for the best matching time lag d, and
the final performance measure fD scales the error such that its
maximum is 1.

Though the periods of stationarity implicitly tend to suppress
oscillations at the beginning and end of a movement, we found
it necessary to further constrain solutions to reduce force pro-
duction before and after the desired movement. To this end,
we introduce a performance measure fF which decreases in pro-
portion to average muscle forces 〈F̂〉 greater than 4% of their
isometric maximum:

〈F̂〉i,t = 1

2
〈F̂i(t0 + t) + F̂i(T − t)〉i,t (14)

fF =
{

0.04/〈F̂〉i,t, if 〈F̂〉i,t > 0.04

1, if 〈F̂〉i,t ≤ 0.04
(15)

where the notation 〈xi〉i,t refers to the average of variable x mea-
sured over all components i of the variable and over the duration
of time given by t. Here, the component 〈F̂〉i,t measures the nor-
malized muscle force averaged over the first and last 0.1 s of a trial
(0 ≤ t ≤ 0.1 s) and over all muscles i = 1, . . . , 4 (t0 is the begin-
ning of a trial and T its end). For average muscle forces 〈F̂〉 greater
than 0.04 (4% of maximum isometric force), the corresponding
component fF quickly decreases toward 0, and its maximum is 1
if average muscle forces remain below this threshold.

A final performance constraint fC aims to rule out solutions
that exhibit high levels of joint stiffness, which would allow mus-
cle forces to dominate over the effect of interaction torques. It
measure for each joint j a measure Cj which punishes muscle
activation patterns in which coactivation is greater than a given
threshold:

Cj = 1 − max

(
0, max

0 ≤ t ≤ T

(
min (α

jf
t , α

je
t )
)

− 0.2

)
(16)

fC =
∏

Cj (17)

Here, Cj becomes increasingly smaller than 1 when the coacti-
vation of muscles acting at joint j, measured by the minimum
of flexor and extensor α-MN activations αje,f , becomes greater
than 20% of the maximum at any point throughout the trial. The

final performance component fC is then calculated by multiplying
the measures Cj obtained for different joints j to ensure that the
constraint is observed by all joints.

Finally, the performance for trial i is given by f i = fD · fF ·
fC , and the overall performance across all trials by the prod-
uct f = ∏N

i f i, with N being the number of trials (movements).
Individual and composite performance measures are constructed
such that their maximum is 1 in the case of optimal performance
and 0 in the worst case. Using the product prevents optimization
of a subset of movements at the expense of others.

All parameters are optimized by maximizing performance f
using a version of the microbial genetic algorithm (Harvey, 2011),
with mutation implemented as a random offset vector in the unit
hypersphere (vector length chosen from a Gaussian distribution,
and direction from a uniform distribution).

The set of model parameters optimized in this stage consists
of synaptic strengths, neural biases and time constants, feedback
gains, as well as the duration of the commanded equilibrium shift
and the cocontraction signals λco (Table 1). Only the cocontrac-
tion components are optimized on a per-movement basis, i.e., a
different set of λco is identified for each target position.

Note that the optimization procedure is not meant to be a
model of the developmental phase establishing the appropriate
connectivity of spinal networks in humans (though potential
adaptive processes underlying it are mentioned in the discussion).
In particular, we do not claim that the CNS uses a minimum jerk
criterion to learn how to perform reaching movements, rather
than minimizing, say, energy expenditure or variance in the pres-
ence of noise. The sole purpose of the optimization is to identify
whether there exists at all a spinal circuit, given the constraints
of realistic network topology and the right kind of proprioceptive
stimuli, that allows for the feedback compensation of interaction
torques.

3. RESULTS
In this section we report on the best neuromuscular system iden-
tified in 21 independent runs of the optimization procedure (a
list of all fixed and optimized parameters is provided in a sup-
plementary file accompanying this text). This model achieves
98.97% of maximum performance. Both additional performance
constraints (coactivation less than 20% and average muscle force
less than 4% before and after movement) are completely satis-
fied, hence the performance level is due solely to trajectory error.
Table 2 summarizes movement errors and kinematic indices for
the four movements.

The mean Euclidean distance (MED) between actual and
reference trajectory is on average 3.1 mm for whipping move-
ments (which cover an average movement distance of 30 cm),
and 1.6 mm for reaching movements (average movement distance
of 12 cm). For comparison, when the model is optimized with-
out contribution from spinal interneurons and movements are
under sole control of the threshold model as described in equa-
tion (9), the MED for WA is 25 mm and the average across all four
movements 11.8 mm (see below section on the role of IbIn for a
more detailed comparison). The results show that the optimiza-
tion procedure successfully identifies spinal circuits that produce
minimum jerk-like hand trajectories.
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Table 2 | Summary of movement kinematics for reaching and

whipping movements produced by optimized spinal circuit.

MED v t
max v e

max v s
max

[mm] [m/s] [deg/s] [deg/s]

WA 3.5 1.92 277 187

RA 1.9 0.73 194 122

WB 2.7 1.85 251 184

RB 1.4 0.82 185 125

MED is the mean Euclidean distance between actual and desired hand paths;

vt
max the maximum tangential hand velocity; and ve,s

max elbow and shoulder

maximum rotational velocities.

Table 3 | Summary of muscle setup after optimization with static

control signals for achieving stable equilibria at all positions required

in subsequent feedback control.

Muscle Origin Insertion l m[m] Optimal Max Fmax vmax

[m] [m] Min (l0) [N] [l0/s]

Elbow flexor 0.239 0.078 0.168 0.31 0.336 138 11.6

Elbow extensor 0.239 0.078 0.336 0.447 0.468 138 11.6

Shoulder flexor 0.254 0.06 0.198 0.359 0.334 1523 11.2

Shoulder extensor 0.254 0.06 0.334 0.477 0.455 1523 11.2

Origin and insertion points are measured as distances from the joint axis.

3.1. MORPHOLOGY
A summary of the lumped muscle setup is shown in Table 3. Note
that although muscles were constrained to be symmetric, excur-
sion varies between flexors and extensors in the model (because
the range of motion is asymmetric). Also, like mono-articular
human elbow muscles, extensors have a constant moment arm,
while for flexors the moment arm is changing with joint angle. A
salient feature of the optimized morphology, specifically muscle
insertions and optimal lengths l0, is the fact that the excursion of
all muscles is confined mostly to the ascending leg of the force-
length curve, i.e., muscle lengths over the whole joint range are
mostly smaller than their respective optimum length (where force
production peaks). This can also be observed for the majority
of human upper arm muscles (Murray et al., 2000; Garner and
Pandy, 2003). Though it is not clear whether this is the rea-
son, it increases the probability that the isometric moment-angle
relationship of a joint (given by the sum of the isometric moment-
angle curves of all muscles acting at the joint) exhibits a single
stable equilibrium only (see e.g., Kistemaker et al., 2007).

The maximum isometric force Fmax for elbow muscles was
constrained to be smaller than that of the shoulder muscles,
since the latter need to support and transport a larger mass than
the former. Also, in the literature the strongest shoulder mus-
cles (such as the deltoid) are consistently reported to be stronger
than elbow muscles (Nijhof and Kouwenhoven, 2000; Garner and
Pandy, 2003; Holzbaur et al., 2005). The strength difference in
our optimized model is rather big. For the purpose of our inves-
tigation, however, this would pose a problem only if optimized
muscles were unrealistically strong, and if neural control would

exploit this strength to overpower the interaction torques at the
elbow joint. But this is not the case. As we demonstrate below,
the combination of muscle strength and activation levels leads
to a realistic range of dynamic torques throughout the move-
ment. For example, interaction torques can reach the same level
as muscle torques, and maximum shoulder torques (on the order
of 10 Nm), are a multiple of maximum elbow torques (about
2 Nm), similar to measures from human subjects (e.g., Galloway
and Koshland, 2002).

Finally, maximum contraction velocities (vmax approx.
11.4 l0/s) fall within a physiologically plausible range. Zajac
(1989), for example, assumes an average of about 10 l0/s;
Ranatunga (1984) measured values between 7 and 13 l0/s; for the
empirically based model used in Kistemaker et al. (2007) vmax is
not specified numerically, but visual inspection indicates values
about or greater than 10.

The described morphology is only one of a wide range
discovered by the search procedure. Others were found with
similar performance but great variation in selected parame-
ter values, indicating that the task underspecifies the required
musculoskeletal properties.

3.2. MOVEMENT KINEMATICS
To assess whether the optimized model reproduces empirically
observed kinematic invariants (Morasso, 1981; Soechting and
Lacquaniti, 1981; Atkeson and Hollerbach, 1985; Flash, 1987;
Flanagan et al., 1993), in Figure 4 we show movements performed
by the best optimized spinal circuit. Trajectories are approx-
imately straight with slight curvature, feature small hooks at
the target positions, and exhibit the characteristic bell-shaped
velocity profile. This is true for all four movements, i.e., inde-
pendent of the direction of interaction torques or starting
posture.

In panel B, we plot example joint trajectories for move-
ments WA and RA. Consistent with earlier findings (Ghafouri
and Feldman, 2001), we observe that the commanded trajectory
(dashed) is significantly shorter than the movement period. The
optimized duration covers 44.6% of the actual movement. Also
note that the commanded (and desired) trajectories of individ-
ual joints are offset slightly in time, a result of their derivation
through inverse kinematics from a hand path planned in extrinsic
space.

3.3. MOVEMENT DYNAMICS
The demonstrated kinematic invariants alone are not sufficient
to imply active compensation, or accommodation, of interac-
tion torques by the spinal cord. Although we know that cen-
tral commands in our model carry no anticipative corrective
components—the threshold shift is always of the same mono-
tonic form—we need to show that the spinal cord can transform
these identical control signals into muscle activation patterns
that differ qualitatively with the direction of interaction torques
(Cooke and Virji-Babul, 1995; Latash et al., 1995; Gribble and
Ostry, 1999; Galloway and Koshland, 2002; Debicki and Gribble,
2005). Figure 5 shows torque patterns produced by our model
for movements starting from initial posture SA (corresponding
to kinematics shown in Figure 4B).
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FIGURE 5 | Torque patterns for model whipping and reaching

movements (WA and RA). Elbow and shoulder torques are separated into
muscle (black line), interaction (dashed) and net torques (filled).

Firstly, we observe that the interaction torque experienced in
one joint (dashed) strongly correlates with the total torque (filled)
in the other. Secondly, comparing whipping and reaching move-
ments, we find that elbow torques vary with the direction of
shoulder motion even though elbow kinematics are held constant.
In whipping movements interaction torques due to shoulder
movement initially oppose the movement of the elbow. This effect
is significant, as peak interaction torque in the elbow is slightly
greater than the muscle torque. Interestingly, in this case the two
torque components almost cancel out, which leads to a delay in
the onset of elbow motion of exactly the duration necessary to
follow the desired hand trajectory. Whipping movement WB (not
shown) differs in this respect, in that the interaction torque here
is slightly smaller than muscle torque, resulting in no such onset
delay (again, as the desired hand movement requires). The shoul-
der, in contrast, is subject to only minimal interaction torques,
and its movement is consequently dominated by muscle torques.
This was also found to be the case for the second starting posture.

During reaching movements, in comparison, our model shows
that interaction torques at the elbow initially assist the motion.
They are equal in sign to the muscle torques and on the same
order of magnitude. Though this effect is stronger in the elbow,
interaction torques also assist shoulder motion, but in this case
are significantly smaller than muscle torques. We thus find that
both types of movement are characterized by a shoulder-centered
pattern, in which initial shoulder motion is generally domi-
nated by muscle torques, while elbow motion is produced with
significant contribution from interaction torques.

The pattern of opposing and assisting effects of interaction
torques also determines the overall muscle effort required. In the
opposing case, elbow muscle torques need to be larger than in the
assisting case to compensate for interaction torques, even though
the kinematics of the motion is essentially the same (a 30◦ flex-
ion) in both cases. This is particularly salient in elbow torques
during reaching. Here the muscles do not contribute at all to the
braking forces that terminate the movement, i.e., we observe no

forces resulting from antagonist activity. The braking pulse in this
case is exclusively due to interaction torques created by shoulder
motion.

In short, the movement kinetics in our model confirm that the
spinal circuitry successfully transforms simple descending con-
trol signals into muscle force patterns that qualitatively differ
with the direction of interaction torques in such a manner as to
accommodate them.

3.4. NEURAL DYNAMICS
In Figure 6 we plot the activity of α-MNs and the individual mus-
cle torques they provoke (taking into account muscle activation
dynamics and changing moment arms) for the same movements
as shown in Figures 4, 5 (WA and RA). Neural activity exhibits the
characteristic bi- or tri-phasic burst patterns observed empirically
(Ghez and Gordon, 1987), i.e., we can generally identify an accel-
erating agonist burst followed by a decelerating antagonist burst,
and sometimes a third agonist burst arresting the motion.

Not surprisingly, given the torque patterns described above,
elbow muscle activity varies with the direction of motion in
the shoulder, despite virtually identical elbow kinematics. Muscle
activity is generally greater when both joints move in the same
direction, i.e., when interaction torques oppose the movement
(whipping). For example, integrating over the corresponding area
under the curve, we find that motor neuron activity associated
with the first elbow extensor burst (which is the agonist in these
movements) is approximately 0.033 for the whipping movement,
but three times smaller (0.011) for the reaching movement. The
same is true for the antagonist (here the elbow flexor). In the
former case the area of its burst is 0.024, and when interaction
torques assist the motion it vanishes completely.

In contrast with some empirical data, we observe in our model
no systematic time lag between onsets of activity in agonists acting
on different joints; in particular, we find no temporal organi-
zation from proximal to distal joints (Karst and Hasan, 1991;
Gribble and Ostry, 1999). Even though such a lag seems to be
present in movement RA (in Figure 6 compare first α-MN bursts
of elbow and shoulder in the reaching condition), this was not the
case for all reaching movements.

For reasons of space we do not present a full analysis of the
neural dynamics exhibited by the optimized spinal circuitry. We
suggest, however, an explanation for the suppression of the elbow
antagonist burst during reaching movements. In the optimized
spinal circuit, the antagonist burst (and its suppression) can be
traced back to two opposing influences on its α-MN pool. First,
spindle feedback excites the α-MN in proportion to deviations
from desired position and velocity. But secondly, spindle activ-
ity also drives IaIn activity, and via connections from IaIn to
homonymous IbIn (Jankowska, 1992) also the latter interneu-
rons, which inhibit α-MN activity. A second inhibiting influence
in the optimized network originates in IbIn intersegmental con-
nections from muscles acting on the other joint. The size and
shape of the antagonist burst therefore is the result of a balance
between spindle feedback and IbIn activity, which in turn is mod-
ulated by Ia interneurons. In whipping movements, presumably
because interaction torques initially oppose the movement, posi-
tion and velocity errors initially grow relatively large, resulting
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FIGURE 6 | α-MN activity (on the output scale of [0, 1]) and

corresponding muscle torques for movements WA and RA. Solid traces
correspond to the flexor and dashed lines to the extensor muscle in each
joint. Filled gray areas indicate net muscle torques (i.e., the sum of flexor
and extensor). In whipping movements, where interaction torques oppose
the motion, muscle activity is generally larger than in reaching movements,
even though in both cases absolute joint excursions are the same. During
reaching movements muscle activity is smaller. Note in particular the
absence of a braking pulse in the elbow. Elbow deceleration in this case is
almost exclusively due to interactions torques produced by the shoulder.

in spindle feedback sufficient to overcome the aforementioned
inhibiting factors. In reaching movements, on the other hand,
interaction torques partially “do the work,” which leads to smaller
deviations from the desired state, and hence spindle feedback that
is more easily suppressed by the same inhibiting factors.

3.5. GENERALIZATION
The model presented above has been optimized for movements
of a certain amplitude and speed (in joint space) and in two
separate regions of the arm’s workspace. Here we briefly address
whether it generalizes to other types of movement that it has
not been optimized for. We start by testing the model’s per-
formance as we shift the two starting postures in joint space
by values ranging from −25◦ to +10◦ (elbow and shoulder
angles are shifted by the same amount), while keeping dura-
tion and amplitude fixed at the original values. As Figure 7A

A B

C D

FIGURE 7 | Model generalization ability. Performance of the optimized
controller as the two starting postures are offset by a given number of
degrees in joint space (A); as movements vary in duration (B) or amplitude
(C); and as duration and amplitude are changed in proportion such as to
maintain average velocity (D). Measures on horizontal axes are relative to
values used for optimization, which are indicated by vertical lines.
Performance drops the more movements differ from the optimized
kinematics. In red we plot performance when cocontraction signals are
adapted separately for each desired movement.

demonstrates, the optimized controller shows specificity for
the area of the workspace encountered during optimization.
Performance decreases in both directions from the original
postures.

Similarly, performance drops quickly as we change the dura-
tion of the movements to be shorter or longer than the original
(panel B), or as the amplitudes are increased or decreased relative
to those used during optimization (panel C). If we scale ampli-
tude and duration equally, such that the average velocity remains
constant, the drop in performance is less dramatic, but the overall
picture is the same (panel D).

In the above tests, none of the system’s control signals were
re-adjusted for the varying movement kinematics. It cannot rea-
sonably be expected, however, that the resulting movements
should be well executed if, for example, the amount of cocontrac-
tion (the component λco) is not tuned to the speed demands of
the desired movement. It has been shown in human subjects, for
example, that movement velocity correlates with muscle cocon-
traction (Gribble et al., 1998). Also, the balance of open-loop
antagonist muscle activity specifies the equilibrium of the sys-
tem in statics, implying that a wrong selection of this balance
(given a specific target) could lead to spinal circuits and muscu-
lotendon system driving toward incompatible equilibria. At least
these components of the feed-forward command therefore have
to be chosen selectively for each particular movement. To test
whether this is indeed sufficient to achieve reasonable perfor-
mance, we first re-optimized all parameters of the original model
after adding two new movements to the performance evaluation:
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the first is identical to WA, except that its duration is 0.4 s instead
of 0.3 s; the second one is also similar to WA, but here both
the duration and amplitude are 20% larger, such that the aver-
age velocity remains the same. The purpose of these additional
evaluations is to avoid optimization of controllers that are overly
specialized on the speed and amplitude demands of the four orig-
inal movements. In a next step we then choose a few movements
that the original system performs badly on and re-optimize only
the cocontraction signals.

In Figure 7D we compare performance over a range of move-
ment amplitudes (but constant average velocity) when the cocon-
traction signals are re-optimized (red) with those not adapted for
each specific movement (black). In the former case performance
remains almost constant, dropping no more than approximately
2% (from 98.9 to 97%). The performance of the non-adapted sys-
tem, in contrast, drops to only 54%. We also tested a few of the
other conditions presented in Figure 7. For example, the perfor-
mance when desired joint rotations are reduced by 10% (while
keeping the original duration fixed, thus leading to reduced aver-
age velocity), is 98.3%, compared to only 8% in the non-adapted
system (see panel C). Equally, if the desired duration of the move-
ment is increased by 20% while keeping the amplitude the same,
performance of the adapted system is 98.7%, compared to only
67% for the non-adapted system. Performance is improved fur-
ther if in addition to cocontraction signals we also tune spindle
sensitivities to the desired movement, i.e., when we adapt the
properties of the gamma pathways such that the strength of posi-
tion and velocity feedback depends on the desired amplitude or
velocity of the movement (data not shown).

To test the model’s capacity for producing movements not only
of different amplitudes and durations, but also in different direc-
tions, in Figure 8 we show the performance of the spinal circuit
when optimized for an increasing number of movement direc-
tions. All movements here have a duration of 0.3 s and follow
desired center-out hand paths 10 cm in length. Generally, hand
paths are essentially straight (panel A, MED averaged over four
movements: 1.8 mm). When the number of directions increases
(panels B and C), some paths remain almost perfectly so, while
others begin to show slight curvature (average MED for six move-
ments: 2.3 mm; for eight movements: 4.2 mm). Almost all paths

A B C

FIGURE 8 | Hand paths generated by a single spinal circuit when

optimized for an increasing number of movement directions. All
movements have an amplitude of 10 cm, a duration of 0.3 s and proceed
from the center (black dot) to targets spaced equally along a circle. Hand
paths for most movements are approximately straight, except for those in
the directions of 90◦ and 270◦ (dashed), which reflect a limitation of the
biomechanical model.

resemble the variation of curvatures observed in human reach-
ing movements, except for two movements in panel C (toward
targets located in the directions of 90◦ and 270◦). Their large
curvature and inaccurate termination reflect biomechanical con-
straints due to our muscle model, as these movements could not
be optimized successfully even in isolation (average MED without
these movements: 1.8 mm). This is indicative of the limitations of
our simplified musculoskeletal system.

We also note that all of the optimizations described in this
section were performed without the velocity error term in the
threshold model, and without the power transformation of the
viscosity term. Further tests, which we do no present here in
detail, show that a control model without spinal interneurons
depends on the presence of at least one of these terms to approach
the performance of the spinal circuit.

In summary, when control parameters are tuned to the kine-
matics of the desired movement (e.g., cocontraction is matched to
desired velocity), smooth movements can be performed accom-
modating interaction torques. This is the case for movements
of different amplitude and velocity, in different areas of the
workspace, and in different directions.

3.6. THE ROLE OF IBIN ACTIVITY
As mentioned in the introduction, there is reason to speculate
that intersegmental force feedback may provide a mechanism by
which the nervous system compensates for interaction torques
during multijoint movements. One can in fact conceive of three
different roles: force-related feedback could modulate descending
commands by acting in long loops through the CNS; coordinate
muscles acting on different joints through intersegmental neural
connections; or act indirectly through the mechanical coupling of
joints and the sensed effect of internal loads in a manner akin to
non-neural coordination mechanisms in the stick insect (Schmitz
and Stein, 2000; Cruse et al., 2007).

We investigate here the latter two options by performing
simulated ablation experiments in which we re-optimize the sys-
tem’s parameters after removal of different parts of the spinal
circuit. Figure 9 shows hand trajectories for the worst of the
four movements in each ablation condition, which happens to
be WA in all cases. Optimizing the system without intraseg-
mental Ib connections reduces the system’s performance to a
relatively small degree (compare panel A and B). The curvature
of the trajectory becomes more pronounced and the movement
is arrested less effectively. Movement error, measured by MED,
increases from approximately 3.5 to 6.6 mm (and from 2.37 to
3.14 mm when averaged over all four movements). When Ib
interneurons are completely removed from the network (panel
C), curvature and endpoint oscillations become even more salient
(MED = 12.9 mm; average MED = 6.24 mm). In addition, the
time course of the trajectory deviates significantly from the ref-
erence. It initially leads the desired movement, but then fails to
reach the required velocity and falls behind toward the end. For
comparison we show in panel D the result when all interneu-
rons are removed from the network, leaving only the threshold
model, i.e., α-MNs and direct proprioceptive feedback. Although
the trajectory in space shows no more curvature than seen
in the other conditions, its time profile deviates much more
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A B

C D

FIGURE 9 | Contribution of IbIn to movement kinematics. Black lines
indicate actual and red lines the desired hand position. Thin gray lines
connect positions at equal points in time. Smaller insets show the
corresponding velocity profile (black) and the desired velocity (thick gray).
Deviations from straight line (minimum jerk) trajectories are indicated by
mean Euclidean distance (MED). (A) Hand trajectory of unsevered spinal
network for movement WA; (B) re-optimized system after removal of Ib
connections between circuits regulating different joints; (C) re-optimized
system without Ib interneurons; (D) system without interneurons.

strongly from the reference, which is most salient in the velocity
profile.

3.7. MODEL SENSITIVITY
To assess the sensitivity of the model we evaluate its performance
over a range of deviations from the solution optimized for the
four original movements (WA,B and RA,B). The optimization pro-
cedure encodes all parameters in a vector with component values
in the range [0, 1]. For a given level of deviation μ we add ran-
dom perturbations chosen uniformly from the range [−μ, μ] to
all components, i.e., we select a random vector from within a
hypercube of size μ centered on the optimized parameter vec-
tor. For every level of deviation we sample 100 such vectors
and measure their mean performance. The result is shown in
Figure 10.

It can be seen that performance drops gradually as the amount
of deviation increases, indicating that the procedure has not
found a “needle in a haystack.” The relative smoothness of the
error surface suggests that other optimization methods, for exam-
ple those based on trial-and-error or gradient descent, should also
be able to find good solutions. Gradient-based learning using tra-
jectory errors has in fact been demonstrated in a similar model
of movement control using spinal-like neural networks (Raphael
et al., 2010; Tsianos et al., 2011). On the other hand, perfor-
mance starts decreasing immediately. The absence of a plateau
around the optimal set of parameters suggests that there is not
a great variety of different models leading to the same per-
formance. However, since we are only probing (an increasing)
neighborhood of one optimal solution, we cannot rule out that
other solutions with similar performance exist in other regions of
parameter space (in which case local optima might in fact hinder
the performance of gradient-based algorithms).

FIGURE 10 | Mean performance of 100 parameter vectors randomly

sampled from a hypercube of size μ centered on the optimized

solution. Performance gradually drops as random solutions are located
further away, on average, from the optimized one.

4. DISCUSSION
The dominating view in motor control today suggests that the
CNS controls the body using intricate internal models of its
kinematics and dynamics in order to predict and directly con-
trol the muscle forces required to perform a desired movement.
An alternative view, expressed in the equilibrium point hypothe-
sis, proposes that the combined dynamics of spinal circuitry and
musculoskeletal system provide a level of abstraction in the con-
trol hierarchy that allows the CNS to plan and control movements
without requiring a representation of complex bodily dynamics.
In this paper we provide evidence that this is plausible. Instead of
anticipating upcoming interaction torques and adjusting central
control signals accordingly, our model suggests that the CNS may
in some cases—such as the type of reaching movements consid-
ered here—be ignorant of musculoskeletal dynamics and offload
the coordination of muscle forces required for a particular, kine-
matically defined, movement goal to circuitry at the spinal level.
We do not rule out that prediction or implicit anticipatory mech-
anisms might be involved in other cases, such as faster or more
complex movements.

Several studies (e.g., Almeida et al., 1995; Gottlieb et al., 1996;
Gribble and Ostry, 1999) have found that during human limb
movements EMG activity in muscles acting on one joint corre-
lates with interaction torques arising from motion in another, and
is often timed such that it precedes the onset of movement. These
findings have been taken to imply that central motor commands
are adjusted predictively to compensate for interaction torques.
But it need not be true that any such adjustment takes place on
the level of central control signals, nor that any form of predic-
tion is involved. Firstly, it is clear that EMG activity has to vary
systematically with upcoming interaction torques. If it were not to
we would not observe hand paths that are approximately straight.
Also, some muscle activity has to precede the movement, as it is
necessary to initiate it. Furthermore, since we do not yet have suf-
ficient knowledge about the precise nature of descending control
signals, which only after integration with afferent and interneu-
ronal signals results in observed EMG activity, it is impossible
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to conclusively deduce from current empirical data whether cen-
tral commands are already adjusted for interaction torques, or
whether they are transformed at a lower level to this effect. The
model presented here demonstrates that accommodation of inter-
segmental loads on the spinal level is possible. Also, the fact that
the temporal order of muscle activity—including prior to move-
ment onset—seems to be relatively fixed and organized such that
agonists in proximal joints precede distal ones, may reflect a more
general organization of the control hierarchy, rather than specific
and detailed predictions of upcoming dynamics.

The muscle and reflex model developed here involves signifi-
cant simplifications when compared with the problem of control-
ling multijoint arm movements in the human body. For example,
it does not take into account the effect of biarticular muscles,
tendons or gravity. Spinal interneurons are modeled as sim-
ple leaky integrators, and fusimotor drives are represented only
implicitly through the λ-model. Also, the Hill-type muscle model
is employed here in its simplest form, ignoring, for example,
the effect of calcium sensitivity on the force-length character-
istic (Kistemaker et al., 2007), or the dependence of maximum
shortening velocity on activation level (Chow and Darling, 1999).
While the inclusion of tendons may be important, for example,
when studying the physiological mechanism underlying the esti-
mation of joint position (Kistemaker et al., 2012), we have argued
in Section 2.2 that its effect on upper arm dynamics is limited.
And if biarticular muscles are particularly well suited for internal
load compensation (Gritsenko et al., 2011), then their inclusion
in a model such as the one presented here should be expected to
make the problem of feedback compensation easier. We also note
that the problem of interaction torques in multi-segment limbs is
in principal independent of how the joints are actuated, as long
as the mechanism of actuation is not infinitely stiff (the problem
hence also arises, for example, in any type of compliantly actu-
ated robots). We therefore believe that none of the simplifications
introduced in the model interfere with the basic goal of this study,
which is to demonstrate that a single spinal-like neural network
can transform simple descending control signals into muscle acti-
vation patterns that differ qualitatively with the direction and
magnitude of interaction torques in a manner that is appropri-
ate for the generation of smooth and straight hand trajectories.
Moreover, the model achieves this with muscle and interaction
torque patterns comparable to those observed empirically, and
without the need for inverse dynamics calculations, prediction of
upcoming loads, or having to learn adjustments to control sig-
nals for each individual movement. Nevertheless, we believe that
further work aimed at testing the proposed mechanism in more
realistic models is required to show how and whether the control
scheme illustrated here is in fact employed in the case of human
reaching movements and to generate detailed predictions that can
be tested empirically and that go beyond the demonstration of a
functional role for proprioception in intersegmental coordination
(Ghez and Sainburg, 1995; Sainburg et al., 1995).

Despite the simplifications just mentioned, the model presents
a significant complexity. This is mostly due to the need to rep-
resent spinal circuits explicitly in order to do justice to the
hypothesis being investigated. Though the modeled circuits are
still far simpler than real spinal circuits, we do not claim to

have found the simplest or most efficient model able of interac-
tion torque compensation, which was not our objective. In any
case, the work presented here also demonstrates that the chosen
methodology is indeed practical for asking questions about the
potential functionality of spinal circuits, despite their complexity.

In addition to demonstrating the feasibility of feedback com-
pensation for interaction torques in general, our model repro-
duces several features of reaching movements performed by
humans. As demonstrated in Section 3.2, the hand trajecto-
ries generated are approximately straight and exhibit bell-shaped
velocity profiles (Morasso, 1981; Flash, 1987; Flanagan et al.,
1993). This is not surprising, since the movements were opti-
mized to match minimium jerk profiles (Flash and Hogan, 1985).
Exceptions from this mathematical ideal, such as uni- or bimodal
curvature and hooks at the endpoints, are also in correspondence
with empirical data (Flash and Hogan, 1985).

Regarding muscle and interaction torque patterns, Gribble and
Ostry (1999) report that muscle torque applied at the elbow varies
with the direction of shoulder motion across movements in which
elbow kinematics are held constant (and, conversely, shoulder
muscle activity varies with the direction of elbow motion when
shoulder kinematics are constant). These dependencies are found
even when active movement in only one joint is required (but
the other is free to move) or when one of the joints is fixed
(Debicki and Gribble, 2005). The direction of this covariation
depends on whether the two joints move in the same or opposite
direction. When shoulder and elbow move in the same direction,
interaction torques arise in each joint that initially oppose that
joint’s intended motion and muscle torques in each joint increase
with the emerging interaction torque. In contrast, when the joints
move in opposite directions, interaction torques initially assist the
desired movement, and muscle torques decrease proportionally.
As we have shown in Section 3.3, our model behaves in the same
way. Simulated elbow torques vary with shoulder kinematics, and
overall effort depends on whether interaction torques are assistive
or opposing. As reported in Section 3.4, this effect can be strong
enough to completely suppress the normal antagonist burst in
the elbow. In this case it is the interaction torque at the elbow
alone that arrests the motion. Similar effects can be observed in
human subjects, where in some cases assisting interaction torques
reach levels such that an initial counteracting antagonist burst is
required, instead of the more usual movement-initiating agonist
activity (Cooke and Virji-Babul, 1995). Our model also exhibits
a shoulder-centered pattern, where elbow dynamics are the result
of approximately equal muscle and interaction torque contribu-
tions, while in the shoulder muscle torques are generally greater
than the passively arising loads (at least initially). This is con-
sistent with some empirical data (e.g., Galloway and Koshland
2002), although it has not been reported by Gribble and Ostry
(1999).

With regard to the timing of muscle activity, we find no sys-
tematic temporal organization of agonist onsets from proximal to
distal joints (Karst and Hasan, 1991; Gribble and Ostry, 1999).
Investigation of a larger range of movements would be necessary
to identify whether the model does or could exhibit such a strat-
egy. We do, however, observe instances of onset delays in joint
rotations (Karst and Hasan, 1991; Virji-Babul and Cooke, 1995),
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which result from the interaction of muscle forces and internal
loads, and from the planning of movements in extrinsic space.

The optimized spinal circuits produce desired hand trajecto-
ries over a range of different amplitudes, speeds and directions
(Section 3.5), with the exception of movements along a single
direction, which was shown to be a limitation of the biome-
chanical model rather than its control. Further work would be
required to determine whether the addition of biarticular mus-
cles, for example, would broaden the operating range of the
system, or whether the optimization procedure simply failed to
identify a more capable biomechanical setup given the model’s
constraints. For the model to achieve good performance in all
movement conditions, we have shown that some control param-
eters (such as coactivation level, or muscle spindle sensitivity)
need to be selected on the basis of the desired movement speed
and amplitude. But crucially, no details about the dynamics of
the movement need to be known. The control signals are always
simple—a monotonic shift in muscle reflex threshold and a con-
stant level of coactivation throughout the movement—and do not
depend on anticipated interaction torques or other aspects of the
system’s dynamics. The results suggest some further questions,
however. For example, what are the minimal changes in control
signals that allow for the control of movement speed or ampli-
tude? Can the dynamics of the spinal circuits be adjusted using
non-specific central control signals according to a simple scaling
rule? Or does the CNS have to learn an explicit mapping between
desired kinematics and control parameters?

We have speculated in the introduction that it might be inter-
segmental force feedback carried by Ib afferents that provides the
mechanism by which the nervous system compensates for interac-
tion torques. Such signals reliably encode muscle force (Mileusnic
and Loeb, 2009), can be adjusted in sensitivity through interac-
tion with Ia afferents (McCrea, 1992), and result in widespread
modulation of motor neurons innervating muscles acting at adja-
cent joints (Jankowska et al., 1981). Moreover, functionally deaf-
ferented patients in some cases make systematic movement errors
indicative of a failure to counteract interaction forces, which
demonstrates a functional role for proprioception in the com-
pensation of internal loads (Ghez and Sainburg, 1995; Sainburg
et al., 1995). And motion-dependent feedback across spinal seg-
ments has been shown to modulate ongoing limb dynamics in
the cat (Smith and Zernicke, 1987; Koshland and Smith, 1989).
Our model only allows us to confirm that force feedback can
indeed play a role in the compensation of internal loads, though
we have not identified precisely what that role is. It is clear from
our results that without the contribution of Ib afferents the per-
formance of the model is greatly diminished. But both intra- as
well as intersegmental effects of Ib afferents seem to contribute
to the appropriate modulation of spinal neurodynamics. Further
work is required to separate and study these two effects in more
detail.

Our model does not address the question of how spinal cir-
cuitry might come to be organized in the manner presented
here. The evolutionary optimization procedure does not serve as
a model of how the appropriate connectivity could be learned.
Nevertheless, it is known that neural circuits are subject to
activity-dependent plasticity both in the developing as well as the
mature spinal cord (Changeux and Danchin, 1976; Nelson et al.,

1990; Lo and Poo, 1991; Wolpaw and Carp, 1993; Schouenborg,
2003; Wolpaw, 2010; Tahayori and Koceja, 2012). Moreover, the
reciprocal structure typical of spinal circuits can arise through
self-organization enabled by simple Hebbian-like learning rules
in initially undifferentiated networks undergoing spontaneous
activity (van Heijst et al., 1998; Petersson et al., 2003; Marques
et al., 2013). Together with models demonstrating the feasibil-
ity of trial-and-error learning (Raphael et al., 2010) this evidence
suggests that acquisition of appropriately tuned neural circuits in
the spinal cord is possible.

Further work is needed to investigate the exact role of the
different feedback modalities (position, velocity, and force) and
interneurons in the accommodation of interaction torques in
model spinal circuits. Given that the organization of the human
spinal cord in reality is significantly more complicated than
modeled here, and our substantial yet incomplete knowledge
regarding its structure and functionality, an interesting avenue to
explore would be to study the complete ensemble of spinal models
that fill in unknown data and conform with behavioral and neu-
rophysiological data. Such a methodology has been applied, for
example, to study the mechanism underlying klinotaxis in C. ele-
gans and to propose experiments that can distinguish between dif-
ferent hypotheses regarding its neural implementation (Izquierdo
and Beer, 2013).

In conclusion, the work presented here demonstrates the feasi-
bility of equilibrium point control for multijoint reaching move-
ments subject to varying intersegmental loads. The model shows
that internal models and predictive compensation of such loads
are not required for the range of movements studied here. But it
does not allow us to refute the possibility that such mechanisms
are indeed used by the CNS for this or other purposes. The model
also indicates that EP style control of reaching movements is
dependent on a mapping of desired movement kinematics to con-
trol parameters and on the appropriate self-organization of spinal
circuitry. We do not propose that it is the sole, or even most cen-
tral, function of spinal circuitry to implement equilibrium point
control, or to coordinate different muscles for interaction torque
accommodation. Indeed, while other models not incorporating
spinal interneurons might also be able to accommodate interac-
tion torques to some extent, reflex circuitry in the spinal cord in
conjunction with central modulation may allow for greater flex-
ibility in the execution of a given class of movements (such as
adaptation to varying energy, speed and accuracy trade-offs), and
may underlie the ability to perform different classes of mechan-
ical action (such as control of position, force or stiffness) as and
when needed.
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