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Biophysical modeling of brain activity has a long and illustrious
history (Ermentrout, 1998; Deco et al., 2008; Coombes, 2010) and
has recently profited from technological advances that furnish
neuroimaging data at an unprecedented spatiotemporal reso-
lution (Guillory and Bujarski, 2014; Sporns, 2014). Neuronal
modeling is a very active area of research, with applications rang-
ing from the characterization of neurobiological and cognitive
processes, (Jirsa, 2004b,a; Bojak and Liley, 2005; Phillips and
Robinson, 2009; Rolls and Treves, 2011) to constructing artificial
brains in silico and building brain-machine interface and neuro-
prosthetic devices, e.g., Einevoll et al., 2013; Whalen et al., 2013.
Biophysical modeling has always benefited from interdisciplinary
interactions between different and seemingly distant fields; rang-
ing from mathematics and engineering to linguistics and psychol-
ogy. This Research Topic aims to promote such interactions by
promoting papers that contribute to a deeper understanding of
neural activity as measured by fMRI or electrophysiology.

In general, mean field models of neural activity can be divided
into two classes: neural mass and neural field models. The main
difference between these classes is that field models prescribe how
a quantity characterizing neural activity (such as average depolar-
ization of a neural population) evolves over both space and time
as opposed to mass models, which characterize activity over time
only; by assuming that all neurons in a population are located
at (approximately) the same point. This Research Topic focusses
on both classes of models and considers several aspects and
their relative merits that: span from synapses to the whole brain;
comparisons of their predictions with EEG and MEG spectra of
spontaneous brain activity; evoked responses, seizures, and fitting
data—to infer brain states and map physiological parameters.

EXTENSIONS OF MEAN FIELD MODELS AND MODELING OF
ANAESTHETIC ACTION
Some of the contributions consider extensions of neural mass and
field models and their relation with other classes of models, with
a particular focus on modeling the action of anesthetics:

Liley and Walsh (2013) hypothesize that fast-slow dynamics, as
exhibited in individual neuron bursting, dynamically underpins
electroencephalographic bursting. They are able to modify a

well-known mean field model of the electroencephalogram by
adding slow variables. This can be seen as a metaphor for anes-
thetic action, and allows them to produce a wide variety of
burst-like activities. Bojak et al. (2013) look at quantitative modu-
lations of EEG activity resulting from manipulating the anesthet-
ics ketamine and propofol. They are able to determine parameter
ranges that produce observed modulations in alpha peak fre-
quency, and predict antagonistic drug interactions. The action of
anesthetics, in the context of mean field models, is also discussed
by Hutt (2013). The author considers a linear neural population
model and presents an analytic derivation of the power spec-
trum that depends on propofol concentration. He then explains
the anesthetic-induced power increase in neural activity as a
result of an oscillatory instability and derives conditions under
which the power peak shifts to higher frequencies, as observed
experimentally in EEG.

The roles of neural mass, conductance based, and neural field
models in dynamic causal modeling (DCM) are reviewed and
explored by Moran et al. (2013). These authors show that such
models can reproduce the characteristics of spectra and evoked
responses observed empirically, with conductance based models
having a richer repertoire of dynamics than neural mass models.
Neural field models are able to capture lateral interactions and
allow detailed analysis of structure-function relationships in the
cortex.

Modolo et al. (2013) discuss neural masses designed to study
the interaction between power-line magnetic fields and brain
activity. They demonstrate that EEG alpha power could be modu-
lated by weak membrane depolarization induced by the exposure
to power-line magnetic fields and explore the role of input noise
on EEG power modulation. A different use of neural fields is pre-
sented in Wright and Bourke (2013). These authors propose that
both synchronous firing of neurons—and their competition for
limited metabolic resources during neural development—lead to
ultra-small-world neural networks. These networks then exhibit
Möbius strip-like topologies that putatively reflect structure in
striatal visual cortex.

The contribution of Pinotsis et al. (2013) introduces a
conductance-based neural field model combining biologically
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realistic synaptic dynamics with neural field equations. These
authors demonstrate that both the evoked responses and induced
responses show qualitative differences depending on the chosen
model, either neural mass or neural field.

EXPLAINING ACTIVITY OBSERVED IN NEUROLOGICAL
DISORDERS AND COGNITIVE TASKS
Other articles in this Research Topic relate to the use of field
models to explain aberrant neural activity and dynamics recorded
during cognitive tasks: Kerr et al. (2013) integrate field and net-
work models in a multiscale model. This allows the authors to
reveal alterations in cortical information flow between normal
subjects and Parkinsonian patients, quantified by a decrease in
Spectral Granger Causality between cortical layers in the beta
frequency.

Frequency-dependent effects in deep brain stimulation in
epileptic patients are studied using computational modeling and
intracerebral EEG data in Mina et al. (2013). This paper describes
the biophysics of direct stimulation of the thalamic compartment
of an established thalamocortical model at the cellular level. It also
demonstrates that low-frequency and high-frequency stimulation
are beneficial for suppressing epileptic seizures, but that interme-
diate frequencies favor thalamic oscillations and entrain epileptic
dynamics, rather than suppressing them.

Bhattacharya’s paper (Bhattacharya, 2013) also focuses on
explaining brain oscillations in sickness and health. The author
replaces the “alpha function” approximation for synaptic trans-
mission by a kinetic framework of neurotransmitter and receptor
dynamics. The results are compared with experimental studies
and shown to be consistent; they also lead to an order of mag-
nitude improvement in simulation times compared to the alpha
function approach commonly adopted in neural mass models.

In Srinivasan et al. (2013) the authors study an important
phenomenon observed in EEG data, called phase-amplitude cou-
pling, and show how it can be modeled using classical Wilson
and Cowan equations. This is not only a mathematical exercise;
it allows for a description of important top-down influences on
local networks as a result of behavioral (e.g., attentional) or phar-
macological manipulations—and fits well with results from the
animal and human literature.

In another paper, Robinson et al. (2012) explore the functional
neuroimaging measurements required to characterize neocorti-
cal activity. In particular, they show that some state changes can
occur independently of changes in average amplitude, power, or
metabolic indexes. They then introduce a new measure of com-
plexity that can uncover the corresponding dynamical structure
inherent in cortical activity, which would otherwise be difficult or
impossible to detect.

Finally, beim Graben and Rodrigues (2012) reduce a simpli-
fied 3-compartment neuron model into a leaky integrate-and-fire
(LIF) model describing spiking dynamics and derive an obser-
vation model for dendritic dipole currents in extracellular space
that contributes to the local field potential (LFP) of a neural
population. They introduce a new way to predict LFPs in net-
work simulations involving only single-compartment neurons
and compare their method with the results of an earlier approach
(Mazzoni et al., 2008).

THEORY OF MEAN FIELD MODELS
In addition to papers focussing on applications, this Research
Topic includes theoretical papers studying the mathematical
aspects of mean field theory: Bressloff and Wilkerson (2012) study
rigorous aspects of field models using an off-centered connec-
tivity kernel that can serve as a model for direction selectivity.
They prove the existence and stability of stimulus-induced activ-
ity pulses assuming a Heaviside firing rate function and including
spatiotemporal noise. These authors conclude that freely moving
pulses are more sensitive to multiplicative noise than stimulus-
locked pulses.

In Gray and Robinson (2013), the authors address an impor-
tant issue in the literature on neural networks; that is, what are the
effects of time delays and dendritic time constants on the stability
constraints of the network dynamics. They approach this ques-
tion from the perspective of their prior work, in particular the
Robinson, Rennie Wright model (RRW). Within this framework,
they introduce a constant time delay and then systematically ana-
lyze the stability of a network state as a function of time delays
and other parameters.

Roy and Jirsa (2013) show how a novel neurocomputational
unit model qualitatively captures the complex dynamics exhib-
ited by a full network of parabolic bursting neurons. The reduced
representation is mathematically tractable and allows the authors
to derive appropriate boundary conditions for various dynamical
regimes. This approach sheds light on the role of slow oscillations
for determining the global behavior of brain networks. Finally,
Augustin et al. (2013) examine how the dynamics of adaptation
currents contribute to spike rate oscillations in recurrent neural
networks. They find frequency-dependent effects that can have
roles in generation of specific frequencies and selective signal
propagation.

The above anthology of papers provides illustrative examples
of recent advances in biophysical modeling. This line of work
speaks to the hope that such models may help explain neural
dynamics that underpin disorders like epilepsy or Parkinson’s
disease as well as normal functions like attention or working
memory; an endeavor we hope the articles in this volume will
progress.
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