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Interneuron classification is an important and long-debated topic in neuroscience. A recent
study provided a data set of digitally reconstructed interneurons classified by 42
leading neuroscientists according to a pragmatic classification scheme composed of
five categorical variables, namely, of the interneuron type and four features of axonal
morphology. From this data set we now learned a model which can classify interneurons,
on the basis of their axonal morphometric parameters, into these five descriptive variables
simultaneously. Because of differences in opinion among the neuroscientists, especially
regarding neuronal type, for many interneurons we lacked a unique, agreed-upon
classification, which we could use to guide model learning. Instead, we guided model
learning with a probability distribution over the neuronal type and the axonal features,
obtained, for each interneuron, from the neuroscientists’ classification choices. We
conveniently encoded such probability distributions with Bayesian networks, calling them
label Bayesian networks (LBNs), and developed a method to predict them. This method
predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons
most similar to the one being classified. We used 18 axonal morphometric parameters as
predictor variables, 13 of which we introduce in this paper as quantitative counterparts to
the categorical axonal features. We were able to accurately predict interneuronal LBNs.
Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted
LBNs, our method outperformed related work on interneuron classification. Our results
indicate that our method is adequate for multi-dimensional classification of interneurons
with probabilistic labels. Moreover, the introduced morphometric parameters are good
predictors of interneuron type and the four features of axonal morphology and thus may
serve as objective counterparts to the subjective, categorical axonal features.

Keywords: probabilistic labels, consensus, distance-weighted k nearest neighbors, multiple annotators, neuronal

morphology

1. INTRODUCTION
There are two main neuron subpopulations in the cerebral cor-
tex: excitatory glutamatergic neurons, constituting approximately
80% of all cortical neurons, and inhibitory GABAergic interneu-
rons, representing the remaining 20%. Although less numerous,
GABAergic interneurons (for simplicity, interneurons), play mul-
tiple critical cortical functions and are highly heterogeneous with
regards to their morphological, electrophysiological, and molec-
ular properties (Ascoli et al., 2007). Neuroscientists consider that
these differences indicate that various types of interneurons actu-
ally exist and that the differences among them are functionally rel-
evant. Although many different classification schemes have been
proposed so far (e.g., Fairén et al., 1992; Kawaguchi, 1993; Cauli
et al., 1997; Somogyi et al., 1998; Gupta et al., 2000; Maccaferri
and Lacaille, 2003), there is no universally accepted catalog of
interneuron types (DeFelipe et al., 2013), making it hard to share

and organize data and the knowledge derived from them. Ascoli
et al. (2007) have identified a large set of morphological, elec-
trophysiological, and molecular properties which can be used to
distinguish among interneuron types. However, gathering such
comprehensive data has considerable practical burdens (DeFelipe
et al., 2013), making it hard to follow such a classification in
practice.

Therefore, DeFelipe et al. (2013) proposed an alternative, prag-
matic classification scheme, based on patterns of axonal arboriza-
tion. The scheme classifies interneurons according to their type
and four other features of axonal morphology. It contemplates
ten types, most of them well established in literature, such as
Martinotti and chandelier, and provides rather precise defini-
tions of their axonal and dendritic morphology. The remaining
axonal features are categorical properties such as axon’s columnar
and laminar reach (i.e., whether it is intra- or trans-columnar;
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intra- or trans-laminar)1. To assess the viability of this classifica-
tion scheme, that is, whether it is useful for cataloging interneu-
rons, DeFelipe et al. (2013) convened 42 leading neuroscientists to
classify 320 interneurons. While the experts easily distinguished
some of the neuronal types and the four remaining features, they
found some types to be somewhat confusing.

Nonetheless, the data they gathered provides a basis for
building an objective, automatized classifier, which would map
quantitative neuronal properties to interneuron types and the
categories of axonal features. Automatic classification of neurons
has been mainly done in an unsupervised fashion (Jain, 2010),
seeking to discover groups on the basis of quantitative proper-
ties alone (Cauli et al., 2000; Tsiola et al., 2003; Karagiannis et al.,
2009; McGarry et al., 2010). However, the availability of expert-
provided input on interneuron type membership and their axonal
features allows us to learn a model in a supervised fashion (Duda
et al., 2000), as done by, e.g., Marin et al. (2002) and Druckmann
et al. (2013). When such supervision information is available,
supervised learning can yield more accurate models than unsu-
pervised learning (Guerra et al., 2011). In addition, a model
obtained in this way can be used to replace experts, as it can, given
an interneuron, automatically predict its properties (the type and
axonal features).

Using the neuroscientists’ classification choices as input for
supervised classification is challenging due to the ambiguity in
type membership and axonal features of the interneurons. While
this ambiguity varied across our data, some interneurons were
especially ambiguous: e.g., one was assigned to six different types,
with at most 14 (out of 42) experts agreeing on one of these types.
Previous efforts to predict the neuronal type and axonal fea-
tures (DeFelipe et al., 2013; Mihaljević et al., 2014a,b) considered
such majority choices as ground truth, i.e., as the true type and
axonal features, and therefore, for each interneuron, disregarded
the opinions of the disagreeing neuroscientists (with the majority
for that interneuron). While Mihaljević et al. (2014b) only pre-
dicted the neuronal type, DeFelipe et al. (2013) and Mihaljević
et al. (2014a) built an independent model for each axonal feature,
although these features are complementary.

In this paper, we predict interneuron type and axonal fea-
tures simultaneously, while accounting for class label ambiguity
in a principled way. Namely, for each interneuron, we encode
the neuroscientists’ input with a joint probability distribution
over the five class variables2 . That is, we consider that each

1Following DeFelipe et al. (2013), we will often refer to the type and the
four axonal features simply as axonal features (i.e., interneuron type is also
encompassed by this term).
2From this point on, we adopt some machine learning terminology. Namely,
in machine learning, each (discrete) predicted variable—in our case, these are
the five axonal features— is called a class variable; this term, therefore, applies
to each of the five axonal features, even though only the neuronal type is a class
in the usual meaning of this term in neuroscience. Class labels are the assign-
ments to the class variables associated with the data points (interneurons);
e.g., an interneuron might be labeled as intralaminar. We will sometimes refer
to expert neuroscientists as annotators because they annotated (labeled) the
data with class labels. Predictor variables are the independent variables in a
model, e.g., we use morphometric properties of an interneuron as predic-
tor variables to predict interneuron type and other axonal features (the latter

interneuron has a certain probability of belonging to each possible
combination of the five axonal features. Assuming that all experts
were equally good at classifying interneurons, these probabilities
are given by the relative frequencies of such combinations in the
expert-provided input. This way, we take the opinions of all anno-
tator neuroscientists into account. Such probability distributions
can be compactly encoded with Bayesian networks (Pearl, 1988;
Koller and Friedman, 2009), given sufficient conditional indepen-
dencies among the variables. We will therefore represent these
joint probability distributions over class variables with Bayesian
networks and call them label Bayesian networks (LBNs). As a first
step in the present study, we will obtain LBNs from the experts’
input; subsequently, we will train and evaluate our model using
LBNs as input.

To the best of our knowledge, this is the first paper tackling
multi-dimensional classification (i.e., with multiple class vari-
ables; Van Der Gaag and De Waal, 2006; Bielza et al., 2011)
with probabilistic labels. Multi-dimensional classification is hard
because of dependencies among class variables: ignoring them, by
building a separate model for each variable, is suboptimal, while
modeling them can result in data scarcity if there are more than
a few class variables. Instead of identifying global dependencies
among class variables, we predict the LBN of an interneuron by
looking at the interneurons most similar to it (i.e., its neighbors
in the space of predictor variables), following the lazy-learning
k-nearest neighbors method (k-nn) (Fix and Hodges, 1989).
Having found the neighbors of an interneuron, we predict its
LBN by forming a consensus Bayesian network (e.g., Matzkevich
and Abramson, 1992) among the neighbors’ LBNs. In order to
give more weight in the consensus distribution to the LBNs of
the closer neighbors, we adapt the Bayesian network consensus
method developed by Lopez-Cruz et al. (2014).

Note that our method takes LBNs, rather than the expert-
provided labels, as input, thus abstracting away the annotators. In
a similar real-world scenario, this might be useful for hiding the
annotators’ labels from the data analyst, for reasons such as confi-
dentiality protection. Furthermore, an LBN could be obtained in
multiple ways: by learning from data, eliciting from an expert, or
combining expert knowledge and learning from data.

In order to predict the neuronal type and axonal features, we
introduce 13 morphometric parameters of the axon to be used as
predictor variables. We defined these parameters seeking to cap-
ture the concepts represented by the four axonal features (other
than neuronal type) and implemented software that computes
them from digital reconstructions of neuronal morphology. In
addition, we used five other axonal morphometric parameters,
computed with NeuroExplorer (Glaser and Glaser, 1990), which
were already used as predictors of neuronal type by DeFelipe et al.
(2013) and Mihaljević et al. (2014b). In total, we used 18 axonal
morphometric parameters as predictor variables.

We found that our method accurately predicted the proba-
bility distributions encoded by the LBNs. Also, for comparison

are the class variables). We will not use the term “features” as a synonym
of “predictor variables,” as commonly done in machine learning, in order to
avoid confusion with the term “axonal features.” We will use the terms “axonal
features” and “class variables” interchangeably.
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with previous work on interneuron classification, we assessed
the prediction of the majority class labels, and found that we
outperformed (DeFelipe et al., 2013) in per-class majority label
accuracy.

The rest of this paper is structured as follows. Section 2
describes the data set, the interneuron nomenclature due to
DeFelipe et al. (2013), the morphometric parameters, includ-
ing the ones we introduce in this paper, and the extraction of
LBNs from expert-provided labels; it also describes the proposed
method—the distance-weighted consensus of k nearest Bayesian
networks—, the related methods, the metrics for assessing our
method’s predictive performance, and, finally, specifies the exper-
imental setting. We provide our results in Section 3, discuss them
in Section 4, and conclude in Section 5.

2. MATERIALS AND METHODS
2.1. NEURONAL RECONSTRUCTIONS
We used neuronal reconstructions and expert neuroscientists’ ter-
minological choices that were gathered by DeFelipe et al. (2013).
Of the 320 interneurons classified in that study, 241 were digi-
tally reconstructed cells (retrieved by DeFelipe et al., 2013 from
NeuroMorpho.Org, Ascoli et al., 2007), coming from different
areas and layers of the cerebral cortex of the mouse, rat, and
monkey. Forty of the reconstructions had one or multiple inter-
rupted (i.e., with non-continuous tracing) axonal processes; when
deemed feasible (36 cells), we unified the axonal processes using
Neurolucida (MicroBrightField, Inc., Williston, VT, USA). We
omitted the remaining four cells from our study, reducing our
data sample to 237 cells.

2.2. AXONAL FEATURE-BASED NOMENCLATURE
DeFelipe et al. (2013) asked 42 expert neuroscientists to classify
the above-described interneurons according to the interneuron
nomenclature they proposed. The nomenclature consists of six
categorical features of axonal arborization. The features’ cate-
gories are the following:

• Axonal feature 1 (C1): intralaminar and transla-
minar

• Axonal feature 2 (C2): intracolumnar and trans-
columnar

• Axonal feature 3 (C3): centered and displaced
• Axonal feature 4 (C4): ascending, descending, both,

and no
• Axonal feature 5 (C5): arcade (AR), Cajal-Retzius

(CR), chandelier (CH), common basket (CB), common
type (CT), horse-tail (HT), large basket (LB),
Martinotti (MA), neurogliaform (NG), and other
(OT)

• Axonal feature 6 (C6): characterized and unchar-
acterized

Cells whose axon is predominantly in soma’s cortical layer
are intarlaminar in C1; the rest are translaminar.
Similarly, regarding C2, interneurons with the axon predomi-
nantly in soma’s cortical column are intracolumnar; the rest
are transcolumnar. A cell whose dendritic arbor is mainly

FIGURE 1 | Examples of interneurons of different types and axonal

features. (A) Is an intralaminar, intracolumnar, centered, and
no cell, according to 37 (out of 42) experts. Most of its axon (shown
in blue) is at less than 200 µm from the soma (shown in red; the grid
lines are separated by 100 µm) and thus appears to be mainly located
in soma’s cortical layer; it is within soma’s cortical column (the gray
vertical shadows depict a 300 µm-wide cortical column); and it seems
to be centered around the dendritic arbor (also shown in red). It is NG

according to 18 experts, CB according to 17 experts, CT according to 3
experts, and OT and AR according to one expert each. (B) Is a
translaminar, transcolumnar, displaced, and ascending cell
according to 39 experts. Its axon reaches around 800 µm above soma
(i.e., it seems to extend to another layer); a significant portion of its
axon is outside of soma’s cortical column; its dendrites are not in the
center of the axonal arborization; and its axon is predominantly above
the soma. According to 34 experts, this is a MA cell.

located in the center of the axonal arborization is centered
(C3); otherwise it is displaced. C4 further distinguishes
between translaminar (C1) and displaced (C3) cells:
cells with an axon mainly ascending toward the cortical surface
are ascending, cells with an axon mainly descending toward
the white matter are descending, whereas those with both
ascending and descending arbors are termed both. To those
cells that were not translaminar (C1) and displaced (C3)
we assigned no in C4 (this category was not contemplated in
the original nomenclature). Class C5 is the interneuron type.
A cell is uncharacterized in C6 if it is not suitable for
characterization according to features C1–C5, due to, e.g., insuffi-
cient reconstruction; otherwise, a cell is characterized. An
expert who considered that a neuron was uncharacterized did
not categorize it according to features C1–C5. Figure 1 shows
two interneurons characterized according to axonal features
C1–C5.

2.3. PREDICTOR VARIABLES
We used 18 parameters of axonal morphology as predic-
tor variables. Five of these parameters were computed with
NeuroExplorer and were already used to predict interneuron
types by DeFelipe et al. (2013) and Mihaljević et al. (2014b).
In addition, we introduce 13 parameters of axonal morphology,
seeking to the capture the concepts represented by axonal features
C1–C4. We computed these parameters from 3D interneuron
reconstructions files in Neurolucida’s ASCII (∗.asc) format.
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The five parameters we computed with NeuroExplorer are:

• X1: 2D convex hull perimeter (in Z projection).
• X2: Axon length.
• X3: Axon length at less than 150 µm from the soma.
• X4: Axon length at more than 150 and less than 300 µm from

the soma.
• X5: Axon length at more than 300 µm from the soma.

Parameters X3–X5 are meant to measure axonal arborization with
respect to the cortical column. Namely, parameter X3 approxi-
mates arborization length within a (300 µm wide) cortical col-
umn (at less than 150 µm from the soma); X4 approximates the
length outside but not far from the column (more than 150 and
less than 300 µm from the soma); and X5 approximates axonal
length far from the column (more than 300 µm from the soma).
X1 and X2 were used by DeFelipe et al. (2013) while Mihaljević
et al. (2014a) used X3–X5 as predictor variables.

We introduce the following axonal morphometric parameters:

• X6: Axon length within soma’s layer.
• X7: Axon length outside soma’s layer.
• X8: Proportion of axon length contained within soma’s layer,

X6
X6+X7

.
• X9: Axon length within soma’s cortical column.
• X10: Axon length outside soma’s cortical column.
• X11: Proportion of axon length within soma’s cortical column,

X9
X9+X10

.
• X12: Distance, in dimensions X and Y , from axon’s centroid to

the soma.
• X13: Distance from the centroid of the above-the-soma part of

the axon to the soma.
• X14: Distance from the centroid of the below-the-soma part of

the axon to the soma.
• X15: Proportion of distances X13 and X14, X13

X13+X14
.

• X16: Axon length above the soma.
• X17: Axon length below the soma.
• X18: Proportion of axon length above soma, X16

X16+X17
.

We computed these parameters following assumptions made by
DeFelipe et al. (2013), namely: (a) cortical layer thickness is
(roughly) determined by species and cortical area (see following
paragraphs for details); and (b) the cortical column is a cylin-
der whose axis passes through the soma and has a diameter of
300 µm. We measured the distance to soma as the distance to
soma’s centroid. We computed a centroid of a set of points (e.g.,
of all the points comprising the reconstructed axon) by averaging
those points.

When computing parameters X6 and X7 we looked up the
approximate layer thickness according to the neuron’s species and
cortical area. DeFelipe et al. (2013) defined an approximate layer
thickness for every species/area/layer combination present in their
data, and provided it as additional information for experts who
classified the interneurons. This information can be accessed at
http://cajalbbp.cesvima.upm.es/gardenerclassification/. DeFelipe
et al. (2013) specified the approximate thickness in the form
of an interval—e.g., stating that layer II/III of the mouse’s

visual cortex is 200–300 µm thick—; we used the interval’s
midpoint (250 µm for the previous example) as an estimate
of layer thickness. Also, we assumed that a soma is equidis-
tant from the top and bottom confines of the layer (i.e., a
250 µm thick layer reaches 125 µm above and 125 µm below the
soma).

For 16 mouse interneurons, seven of them from the
somatosensory and nine from the visual cortex, the cortical
layer was not provided. In order to compute variables X6 and
X7 for these cells, we assumed them to belong to a hypothet-
ical “average layer” for which we assumed a 197 µm thickness
in the visual cortex and a 237 µm thickness in the somatosen-
sory cortex. Although only an approximation, we consider this a
more informed approximation to the “true” values of these vari-
ables than one that could be performed by a distance-computing
rule (see Subsections 2.6 and 2.8) if we had left these values
unspecified.

2.4. DATA SELECTION AND SUMMARY
Axonal feature C6 is not a “proper” morphological feature but
more of a “filter feature” which indicates whether the remain-
ing axonal features can be reliably identified given a reconstructed
interneuron. We therefore omitted C6 from consideration in this
paper. Consequently, we removed from our data set 11 interneu-
rons considered as uncharacterized by a majority (i.e., at
least 21) of neuroscientists, considering that these interneurons
cannot be reliably classified according to C1–C5, thereby reducing
our data sample to 226 interneurons.

Thus, we have N = 226 interneurons, each of them quantified
by a vector X of m = 18 real-valued predictor variables (i.e., x ∈
R

18). We also have d = 5 discrete class (i.e., target) variables C =
(C1, . . . , C5), with c ∈ �C1 × . . . × �C5 . Each interneuron, x(j),
is associated with a Nj × 5 (Nj ≤ 42) matrix C(j) in which each
row is an observation of C due to one annotator neuroscientist,
i.e., C(j)

i,a is the label for class variable Ci assigned to interneuron

x(j) by expert neuroscientist a3.
Nonetheless, instead of the provided multi-annotator label

matrices C, we require each interneuron to be associated with
an LBN in order to apply our method. We obtained LBNs using
standard procedures for LBNs from data, and then learned and
evaluated our model using these LBNs as input, omitting C from
further consideration (see the next subsection).

2.5. FROM MULTI-ANNOTATOR LABELS TO LABEL BAYESIAN
NETWORKS

Prior to applying our method, we learned LBNs from multi-
annotator class label matrices C.

An LBN is a Bayesian network over the class variables C. A
Bayesian network (Pearl, 1988; Koller and Friedman, 2009) B is
a pair B = (G,�) where G, the structure of the network, is a
directed acyclic graph whose vertices correspond to the class vari-
ables C and its arcs encode the conditional independencies in
the joint distribution over C, while � are the parameters of the

3Only neuroscientists who considered that x(j) was characterized
(axonal feature C6) labeled x(j) according to C1–C5. Therefore, Nj may be less
than 42 and varies across interneurons.

Frontiers in Computational Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 150 | 4

http://cajalbbp.cesvima.upm.es/gardenerclassification/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
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conditional probability distributions that the joint distribution is
factorized into.

Learning a Bayesian network B from data consists in two steps:
learning network structure, G (i.e., the conditional independen-
cies it encodes), and, having obtained the structure, learning
its parameters (Neapolitan, 2004; Koller and Friedman, 2009).
While the second step is generally straightforward, many methods
exist for performing the first step. We applied a method belong-
ing to the well-known family of search+score structure learning
methods (see Subsection 2.8).

We wanted the learned LBNs to be similar to the actual empir-
ical probabilities observed in the class label matrices, C. In other
words, we wanted the probability distribution factorized by an
LBN, pB(j) , to be similar to the empirical distribution, pε(j) —the
relative frequency of each possible state of C in C(j). We used this
similarity as criterion for selecting the network learning method

(see Subsection 2.8) and measured it with Jensen-Shannon diver-
gence (see Subsection 2.9.1).

Finally, having learned the LBNs, our final data set was
D = {(x(j),B(j))}N

j = 1. Figure 2 depicts the LBNs for interneu-
rons shown in Figure 1, along with the predicted LBNs for those
interneurons.

2.6. MULTI-DIMENSIONAL CLASSIFICATION WITH LABEL BAYESIAN
NETWORKS

Recall that we have m predictor variables X, with x ∈ R
m, that

describe the domain under study, and d discrete class (or target)
variables C, with c ∈ �C1 × . . . × �Cd , that we wish to predict
on the basis of observations of X. We observe a data set, D =
{(x(j),B(j))}N

j = 1, where B is a label Bayesian network encoding
a joint probability distribution over the multi-dimensional class
variable C.

FIGURE 2 | Examples of true (A,B) and predicted (C,D) label Bayesian

networks (LBNs) for neurons shown in Figure 1. The leftmost networks
(A,C) correspond to interneuron (A) in Figure 1 whereas the right-hand ones
(B,D) correspond to neuron (B) in Figure 1. The Bayesian networks are
depicted with their nodes (shown as rectangles), arcs, and each node’s

marginal probability distribution. The predicted distributions are similar to the
true ones for many nodes—e.g., 93 vs. 98% for IC (node C2) for interneuron
(A). Some marginal probabilities do differ, such as that of the NG type for
neuron (A)—14% predicted vs. 45% true; a lot of its probability mass was
assigned to the more numerous CT type.
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FIGURE 3 | A schematic representation of multi-dimensional

classification with label Bayesian networks (LBNs). The figure depicts the
assessment of our method’s predictive performance. First (step 1; upper left),
an instance x(u) with LBN B(u) is retrieved from the test set. Then (step 2;
lower part), we identify k (k = 3 in this example) nearest neighbors of x(u)

and record their distances to x(u); the blue, green, and orange Bayesian
networks (lower right) depict the LBNs of the three nearest neighbors of x(u).

Then (step 3; upper right), we obtain the predicted LBN, B∗(u), by forming a
consensus Bayesian network from the LBNs of the three nearest neighbors.
Here, a thicker arrow suggests more weight of that neighbor’s LBN in the
consensus: the orange arrow is thicker than the blue and green arrows
(orange is the closest neighbor of x(u), see lower left). Finally (step four;
upper middle), we compare true and predicted probability distributions, pB(u)

and pB∗(u) , with Jensen-Shannon divergence.

We predict the LBN of an unseen instance x(u) by forming
a consensus Bayesian network among the LBNs of its k nearest
neighbors (1 ≤ k < N) in the space of predictor variables. We
form the consensus by adapting the method developed by Lopez-
Cruz et al. (2014) to weigh the effect of each neighbor’s LBN in
proportion to that neighbor’s relative closeness to x(u). Figure 3
summarizes our approach.

k nearest neighbors (k-nn; Fix and Hodges, 1989) is an
instance-based (i.e., model-less) classifier, popular in uni-
dimensional classification (Duda et al., 2000). It classifies a data
instance x(u) by identifying its k nearest neighbors in the predictor
space, according to some distance measure—a common choice
is the Euclidean distance— and choosing the majority from the
neighbors’ labels.

2.6.1. Distance-weighted consensus of Bayesian networks
Combining multiple Bayesian networks into a consensus Bayesian
network is a recurring topic of interest. The standard methods
for combining the parameters of a joint distribution, disregarding
its underlying graphical structure (i.e., the conditional indepen-
dencies), can yield undesirable results: for example, combining
distributions with identical structures may render a consensus
distribution with a different structure (Pennock and Wellman,

1999). It is therefore common to first combine network structures
(e.g., Matzkevich and Abramson, 1992; Pennock and Wellman,
1999; Del Sagrado and Moral, 2003; Peña, 2011) and combine
the parameters afterwards (e.g., Pennock and Wellman, 1999;
Etminani et al., 2013). The cited structure-combining methods
produce distributions which only contain independencies that
are common to all networks, rendering them too complex (i.e.,
having too many parameters) to be useful in practice.

An alternative is to draw samples from the different Bayesian
networks and learn the consensus network from the generated
data, using standard methods for learning Bayesian networks
from data (Neapolitan, 2004; Koller and Friedman, 2009), as
proposed by Lopez-Cruz et al. (2014). Lopez-Cruz et al. (2014)
weighted the influence of each Bayesian network on the con-
sensus by sampling from it a number of instances proportional
to its weight. We can readily adapt this method to weigh the
effect of neighbors’ label Bayesian networks in proportion to the
their closeness to the instance being classified, x(u), by defining
an appropriate weighting function. Before defining the weighting
function, let us state the setting more formally.

We want to generate a database Du by sampling from k
Bayesian networks {B(j)}k

j = 1 associated to k instances at distances

d1, . . . , dk from the unseen instance x(u); from this database, Du,
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we will learn the consensus Bayesian network, B∗(u). We want
the number of samples in Du that are drawn from B(j) to be
proportional to the how close x(j) is to x(u). We measure close-
ness as relative to the remaining k − 1 neighboring instances.
Thus, if M is the desired size of Du and w = (w1, . . . , wk) the
weights assigned to the k Bayesian networks (with

∑k
j = 1 wj = 1

and w ≥ 0), the number of samples from B(j), Mj, is then wj × M.
We compute the weights as

wj = (
∑k

i = 1 di) − dj

(k − 1)(
∑k

i = 1 di)
.

2.7. RELATED METHODS
2.7.1. Multiple annotators
A setting similar to ours, where many annotators provide class
labels, occurs when learning from a crowd of annotators (Snow
et al., 2008; Sorokin and Forsyth, 2008; Raykar et al., 2010;
Welinder et al., 2010; Raykar and Yu, 2012). Yet, the crowd may
include annotators of different skills and therefore learning a
classifier involves estimating the ground truth label from the pos-
sibly noisy ones. Methods such as those due to Dawid and Skene
(1979); Whitehill et al. (2009); Raykar et al. (2010); Welinder et al.
(2010); Raykar and Yu (2012) aim to detect the less reliable anno-
tators and decrease their influence on the ground truth estimate.
In our case, however, all annotators are domain experts; fur-
thermore, there is currently no better approximation to ground
truth than the opinions of this group of leading experts, as there
is no unequivocal or objective way of determining it4. We thus
consider that every expert’s opinion is equally valid and that
interneuron type membership and axonal features are uncertain
whenever the experts do not completely agree. This allows us to
represent interneuron type membership and axonal features of an
interneuron with a joint probability distribution over these five
class variables.

2.7.2. Probabilistic labels
Probabilistic labels have already been used in machine learn-
ing (Ambroise et al., 2001; Grandvallet, 2002; Thiel et al., 2007;
Schwenker and Trentin, 2014). Some methods consider these to
be imprecise versions of a crisp (i.e., non-probabilistic) ground
truth label, which they then try to estimate, while others (Thiel
et al., 2007; Schwenker and Trentin, 2014), more in line with our
setting, assume that probabilistic labels represent intrinsic ambi-
guity in class membership and consider them as ground truth.
Methods such as k-nn (El Gayar et al., 2006) and support vec-
tor machines (Thiel et al., 2007; Scherer et al., 2013) have been
adapted to deal with probabilistic labels, while regression-based
methods, such as multi-layer perceptrons, can handle them with-
out being adapted (Schwenker and Trentin, 2014). Yet, all of these
methods are aimed at predicting a single class variable.

4Possibly, the ground truth might be better approximated by consulting more
leading neuroscientists. Our group, nonetheless, includes many of the lead-
ing experts involved in the interneuron nomenclature effort (Ascoli et al.,
2007).

2.7.3. Multi-dimensional classification
Multi-dimensional classification is more general than the related
multi-label classification, which has already been considered in
neuroscience (Turner et al., 2013). It is hard because the num-
ber of possible assignments to the class variables is exponential in
their number. Predicting each class variable with an independent
model is suboptimal because the variables are, generally, corre-
lated. Modeling many of these dependencies, on the other hand,
can lead to data scarcity. Multi-dimensional Bayesian network
classifiers (Bielza et al., 2011; Borchani et al., 2013) can balance
model complexity and the modeling of dependencies. However,
they require crisp class labels in order to be trained and thus
cannot be directly applied to our setting.

2.7.4. k-nearest neighbors
k nearest neighbors is a popular instance-based (i.e., model-
less) classifier. Among other extensions, the original k-nn clas-
sifier has been adapted to weight the effect of a neighbor’s class
label in proportion to how close that neighbor is to the data
instance being classified (e.g., Dudani, 1976; MacLeod et al., 1987;
Denoeux, 1995; Yazdani et al., 2009). It has also been adapted
to deal with non-crisp labels (Jóźwik, 1983; Keller et al., 1985;
Denoeux, 1995); these non-crisp labels, however, are not prob-
abilistic but possibilistic (encoded with Dempster-Shafer theory)
and fuzzy. Besides the handling of non-crisp labels, methods due
to Denoeux (1995) and Keller et al. (1985) are similar to ours in
that they weigh the neighbors’ effect on prediction according to
their closeness to the data instance being classified. On the other
hand, they differ from our method in neither using probabilistic
labels nor tackling the prediction of multiple class variables.

2.8. EXPERIMENTAL SETTING
We identified the nearest interneurons by measuring Euclidean
distance. Thus, for a pair of interneurons xj and xo, the distance
djo is given by

djo =
(

m∑
i = 1

(
x

(j)
i − x(o)

i

)2
) 1

2

.

Prior to computing distances, we standardized all predictor vari-
ables X1, . . . , Xm (i.e., for each Xi, we subtracted its mean and
divided by standard deviation).

We drew samples from the neighboring networks using prob-
abilistic logic sampling (Henrion, 1986). We sought to draw
enough samples from each distribution so to represent it cor-
rectly. We therefore set M, the total number of samples drawn
from the k nearest neighbors’ distributions (see Section 2.6.1),
as k ∗ 500 ∗ c, where c was the maximal number of free param-
eters among the k networks whose consensus is being sought. The
number of free parameters of a Bayesian network is the number
of parameters that suffice to fully specify the network’s probability
distribution (recall that a network consists of a structure, G, and
parameters �; see subsection 2.5).

Once we had generated the data set of sample points, we
applied a Bayesian network learning algorithm to obtain the
consensus probability distribution.
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2.8.1. Learning Bayesian networks from data
There were two instances in which we learned Bayesian networks
from data: when learning LBNs from expert-provided class label
matrices (see Subsection 2.5) and when learning the consensus
network from sampled data points (Subsection 2.6.1). We consid-
ered three options for the learning procedure and chose the one
that we considered most adequate for learning LBNs, according
to the criterion described in Subsection 2.5. We then applied this
chosen procedure in both instances of network learning.

The Bayesian network learning procedure we used follows the
well-known search+score approach. Such a procedure consists
of (a) a search procedure for traversing the space of possible
network structures and (b) a scoring function. We searched the
structure space with the tabu metaheuristic (Glover, 1989, 1990),
a local search procedure which employs adaptive memory to
improve efficiency and escape local minima, and considered three
networks scores: Bayesian Information Criterion (BIC; Schwarz,
1978), K2 (Cooper and Herskovits, 1992) and Bayesian Dirichlet
equivalence (BDe; Heckerman et al., 1995). We compared the
LBNs produced by the different scores according to how well they
approximated the empirical distributions, pε , (see Subsection 2.5)
and their complexity (i.e., number of free parameters).

We estimated parameters by maximum likelihood estimation.

2.8.2. Software and assessment
We implemented the computation of the 13 here introduced
axonal morphometric parameters from scratch. We performed
Bayesian network learning and sampling with the bnlearn
(Scutari, 2010; Nagarajan et al., 2013) package for the R statistical
software environment (R Core Team, 2014).

In traditional uni-dimensional classification, it is common to
perform stratified cross-validation, that is, to have similar class
proportions in train and test sets. However, such stratification
is problematic in the multi-dimensional setting, due to the high
number of combinations of class variables. Therefore, instead
of stratified cross-validation, we evaluated our model with 20
repetitions of plain (unstratified) 10-fold cross-validation.

2.9. ASSESSING RESULTS
We were primarily interested in predicting LBNs. We assessed this
prediction with Jensen-Shannon divergence, a metric which we
describe below.

However, for comparison with related work on interneuron
classification, we also assessed how well our method predicted
crisp (i.e., non-probabilistic) labels. Such an evaluation is nega-
tively biased against our method since we take label ambiguity
into account to learn the model while it is evaluated as though a
true crisp label existed (i.e., as if there was no ambiguity). Below
we describe how we obtained crisp labels and present accuracy
metrics for multi-dimensional classification.

2.9.1. Comparing probability distributions
We measured the dissimilarity between two probability distribu-
tions, say pB(u) and pB∗(u) , with Jensen-Shannon divergence,

dJS(pB(u) , pB∗(u) ) = 1

2
(dKL(pB(u) , pr) + dKL(pB∗(u) , pr)),

where pr = 1
2 (pB(u) + pB∗(u) ) and dKL(pB(u) , pB∗(u) ) is the

Kullback-Leibler divergence (Kullback and Leibler, 1951)
between pB(u) and pB∗(u) ,

dKL(pB(u) , pB∗(u) ) =
∑

c ∈ �c

pB(u) (c) log

(
pB(u) (c)

pB∗(u) (c)

)
.

Unlike Kullback-Leibler divergence, Jensen-Shannon divergence
is symmetric, it does not require absolute continuity (i.e., that
pB∗(u) (c) = 0 �⇒ pB(u) (c) = 0), its square root is a metric, and
it is bounded: 0 ≤ dJS ≤ 1.

2.9.2. Obtaining crisp labels
In order to assess the prediction of crisp labels, we needed to
obtain a “true” crisp class label vector for each interneuron x(j).
We assumed that such “true” labels were given by the choice of
the majority of the experts. There were two alternative majority
choices: (a) the most commonly selected class label vector, i.e.,
the most common row in a class labels matrix C; and (b) the
concatenation of per-class majority labels, i.e., the vector formed
by the most common choice for C1, the most common choice
for C2, and so on, until C5. We refer to the former as the joint
truth and to the latter as marginal truth; the latter was used in
related works on interneuron classification (DeFelipe et al., 2013;
Mihaljević et al., 2014a,b) since they predicted the axonal features
C1–C5 independently. We compared our predicted crisp labels to
both “truths.”

We also needed to extract crisp predictions from a pre-
dicted LBNs. The two straightforward methods are analogous
to the above-described ones: (a) choosing the most probable
explanation (MPE), i.e., the most likely joint assignment to C
according to LBN B∗); and (b) concatenating the marginally
most likely assignments to each of the class variables. For sim-
plicity, we only used the MPE as the predicted crisp class
labels vector.

2.9.3. Multi-dimensional classification accuracy metrics
We assessed crisp labels prediction with accuracy metrics for
multi-dimensional classification (Bielza et al., 2011):

• The mean accuracy over d (d = 5 in our case) class variables:

Acc = 1

d

d∑
l = 1

1

N

N∑
u = 1

δ
(

c∗(u)
l , c(u)

l

)
,

where c∗(u)
l is the predicted value of Cl for u-th instance, c(u)

l is
the corresponding true value, and δ(a, b) = 1 when a = b and
0 otherwise.

• The global accuracy over d class variables:

Acc = 1

N

N∑
u = 1

δ
(

c∗(u), c(u)
)

·

Note that global accuracy is demanding as it only rewards full
matches between the predicted vector and the true one. We
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also measured uni-dimensional marginal accuracy per each class
variable,

Accl = 1

N

N∑
u = 1

δ(c∗(u)
l , c(u)

l ).

When computing global and mean accuracy, we used the “joint
truth” crisp labels. When computing per-class-variable marginal
accuracy, we used the “marginal truth” crisp labels vector.

3. RESULTS
3.1. FROM MULTI-ANNOTATOR LABELS TO LABEL BAYESIAN

NETWORKS
We first studied whether any network score was particularly ade-
quate for transforming multi-expert labels into LBNs. Different
scores yielded networks of different degrees of complexity but
were all good at approximating of the empirical probability distri-
bution over the expert-provided labels, pε (see Table 1). We used
the score that yielded the best approximation, BDe, in the remain-
der of this paper. Namely, we used it to (a) transform multi-expert
labels into LBNs; and (b) learn a consensus networks from the
generated samples.

3.2. PREDICTING LABEL BAYESIAN NETWORKS
We considered four different values of k (the number of nearest
neighbors)—namely, 3, 5, 7, and 9—, and obtained best results
with k ∈ {5, 7}. As Table 2 shows, we predicted the label Bayesian
networks relatively accurately, with a Jensen-Shannon divergence
of 0.29 for k ∈ {5, 7}.

Table 1 | Transforming multi-expert labels into label Bayesian

networks using different network scores.

BIC K2 BDe

JS divergence 00.10 ± 0.05 00.07 ± 0.04 00.06 ± 00.04

Free parameters 18.22 ± 1.83 31.08 ± 20.58 60.34 ± 31.14

Upper row: average Jensen-Shannon (JS) divergence between the empirical

probability distribution over the labels, pε , and the one encoded by the learned

Bayesian network labels, pB ; lower row: average number of free parameters per

learned network. Averaged across entire data set.

Table 2 | Predicting label Bayesian networks and crisp labels.

JS Global acc. (%) Mean acc. (%)

k = 3 0.30 ± 0.00 41.29 ± 1.57 79.10 ± 0.74

k = 5 0.29 ± 0.00 43.84 ± 1.48 79.52 ± 0.79

k = 7 0.29 ± 0.00 43.99 ± 1.26 79.88 ± 0.34

k = 9 0.30 ± 0.00 39.46 ± 1.67 78.58 ± 0.52

The leftmost column shows Jensen-Shannon (JS) divergence between pre-

dicted label Bayesian networks, pB∗ , and label Bayesian networks pB learned

from C. Rightmost columns show global and mean accuracy for predicting joint

truth crisp labels vector, i.e., the class label vector most often selected by the

experts. Obtained with 20 runs of 10-fold cross-validation.

Figure 2 depicts the true and predicted LBNs for two interneu-
rons, one having barely ambiguous axonal features and another
having an ambiguous type; as the figure suggests, the LBN of
the former interneuron was accurately predicted, while in that of
the latter, the type (C5) marginal probability was predicted only
moderately well.

3.3. PREDICTING CRISP LABELS
We predicted the joint truth (the class label vectors selected by a
majority of experts; see Section 2.9.2) relatively accurately—with
a mean accuracy of 80% and global accuracy of 44% for k ∈ {5, 7}
(see Table 2). The latter result means that 44% of the MPEs of the
predicted LBNs (B∗) were equivalent to the joint truth vectors.

We also assessed the marginal accuracy for each axonal feature
C1–C5. Here we compared the B∗ MPE with the marginal truth,
class variable by class variable. We predicted features C1–C4 with
over 80% accuracy—up to 88% in case of C1— and feature C5

with 64% accuracy with k = 7 (see Table 3). Albeit it may seem
low, the latter result is better than chance. Namely, DeFelipe et al.
(2013) showed that even 40.25% accuracy for C5—obtained by a
classifier they used— was better than chance. It should also be
recalled that the ten neuronal types were often hard to distin-
guish for expert neuroscientists (DeFelipe et al., 2013). Regarding
the prediction of the individual types, accurately predicted ones
included the MA and HT types, which were easy to identify for the
experts, and the numerous but less clear to the experts types such
as CB and LB. The least clear out of the numerous types, CT, was
predicted with relatively low accuracy (see Table 4).

4. DISCUSSION
Previous studies on interneuron classification (DeFelipe et al.,
2013; Mihaljević et al., 2014a,b) used majority crisp labels, esti-
mated for each axonal feature independently, to train and evaluate
their models. Mihaljević et al. (2014a) only considered C5 whereas
DeFelipe et al. (2013) and Mihaljević et al. (2014a) predicted
axonal features C1–C5 with an independent model for each of
them. There were non-methodological differences among these
two studies and the present work and therefore any comparison
of results ought to be performed with some caution. DeFelipe
et al. (2013), for example, used 15 cells more than we did (see
Section 2.4), had several of variables’ values corrupted by imper-
fections in the reconstructions of 36 cells—which we corrected—,
and used only three values for C4—ascending,descending,
and both. Furthermore, they used different morphometric pre-
dictor parameters (over 2000 of them), and applied a possibly

Table 3 | Accuracy (in %) for each of the five axonal features C1–C5.

C1 C2 C3 C4 C5

k = 3 86.15 ± 1.12 83.17 ± 0.98 86.50 ± 0.88 83.11 ± 0.90 62.69 ± 1.24

k = 5 86.49 ± 0.98 83.25 ± 0.79 86.05 ± 0.79 84.18 ± 0.65 63.78 ± 1.11

k = 7 88.07 ± 1.01 83.12 ± 0.72 85.29 ± 0.55 84.06 ± 0.74 64.33 ± 1.52

k = 9 87.16 ± 1.03 83.06 ± 0.78 85.39 ± 0.78 83.88 ± 0.71 63.79 ± 1.59

Here we compared the marginal true labels to the most probable explanation of

the predicted label Bayesian networks. Obtained with 20 runs of 10-fold cross-

validation.
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Table 4 | Confusion matrix for predicting C5 with k = 7.

CB CH CT HT LB MA NG Per-type

sensitivity

CB 41 0 10 0 6 3 0 0.68
CH 2 0 1 0 0 0 0 0.00
CT 10 0 25 4 8 11 0 0.43
HT 0 0 3 10 1 0 0 0.71
LB 9 0 3 0 25 3 1 0.61
MA 0 0 2 0 4 36 0 0.86
NG 8 0 0 0 0 0 0 0.00

Here we compared the marginal true label for C5 (rows) to the C5 value of most

probable explanation of the predicted label Bayesian network (columns). The

rightmost column shows per-type sensitivity. Types AR, and CR and OT are omit-

ted since no cell’s crisp label was of one of these types. Obtained from a single

run of 10-fold cross-validation.

Table 5 | Our best predictive accuracy (in %) vs. best accuracy from

DeFelipe et al. (2013), for each of the axonal features C1–C5.

C1 C2 C3 C4 C5

Present study 88.07 83.25 86.50 84.18 64.33

DeFelipe et al., 2013 85.48 81.33 73.86 60.17 62.24

Our results were obtained with 20 runs of 10-fold cross-validation; those of

DeFelipe et al. (2013) were obtained with leave-one-out cross-validation.

more optimistic accuracy estimation technique—leave-one-out
estimation. Mihaljević et al. (2014a) considered multiple subsets
of the data, formed according to the degree of class label ambi-
guity of the included cells, and obtained best results with least
ambiguous cells (e.g., with 46 cells for C5). Their best results were
thus obtained with a small subset of the 226 cells that we used.
When using most of the cells, their results were similar to those of
DeFelipe et al. (2013).

Differences aside, in Table 5 we compare the accuracies from
the present study with those from DeFelipe et al. (2013). We
outperformed DeFelipe et al. (2013) in predictive accuracy for
every axonal feature, even though we used a single model to pre-
dict all features simultaneously. We especially outperformed their
approach in predicting C3 and, even more, in predicting C4. The
latter was likely affected by the use of the additional category no
(see subsection 2.2).

Despite the non-methodological differences with the study by
DeFelipe et al. (2013), the better accuracies that we achieved
might suggest some or all of the following: (a) the introduced
morphometric parameters are useful for predicting interneuron
type and axonal features; (b) we adequately assigned the value no
for cells to which the other values of C4 did not apply; and (c) our
method is adequate for classifying interneurons.

The above results, along with the relatively high global accu-
racy achieved, 44%, suggest that axonal features C1–C5 are
interrelated and that it is useful to attempt predicting them
simultaneously.

Finally, several other efforts regarding classification of neu-
rons in general have been performed taking into account

other morphological and/or molecular and/or electrophysiologi-
cal properties (e.g., Bota and Swanson, 2007; Ascoli et al., 2009;
Brown and Hestrin, 2009; Battaglia et al., 2013; Sümbül et al.,
2014). These studies indicate that in spite of a large diver-
sity of neuronal types, certain clear correlations exist between
the axonal features and dendritic morphologies, and between
these anatomical characteristics and some molecular and electri-
cal attributes. Nevertheless, the classification of neurons is still
under intense study from different angles, including anatomi-
cal, physiological, and molecular criteria, and using a variety of
mathematical approaches, such as hierarchical clustering (Cauli
et al., 2000; Wang et al., 2002; Tsiola et al., 2003; Benavides-
Piccione et al., 2006; Dumitriu et al., 2007; Helmstaedter et al.,
2009a,b), k-means (e.g., Karagiannis et al., 2009, affinity propa-
gation (Santana et al., 2013), linear discriminant analysis (Marin
et al., 2002; Druckmann et al., 2013), Bayesian network classi-
fiers (Mihaljević et al., 2014a), and semi-supervised model-based
clustering (Mihaljević et al., 2014b).

4.1. COMPUTING AXONAL MORPHOMETRIC PARAMETERS
In order to compute some of the newly introduced axonal mor-
phometric parameters—namely, those relative to laminar and
cortical distribution—, we followed a series of assumptions orig-
inating from DeFelipe et al. (2013). These assumptions (simplifi-
cations) should be kept in mind when interpreting our results.
First, we assumed arbitrary columnar and laminar demarca-
tions. Namely, we considered the diameter of the hypotheti-
cal cortical column to be 300 µm (Malach, 1994; Mountcastle,
1998), whereas laminar thickness was estimated for each neu-
ron from its original paper, when such a paper was available,
and from relevant literature otherwise. Finally, we assumed that
a soma is always located in the center of its layer and cortical
column.

5. CONCLUSION
We built a model that can automatically classify an interneu-
ron, on the basis of a set of its axonal morphometric parameters,
according to five properties which constitute the pragmatic clas-
sification scheme proposed by DeFelipe et al. (2013), namely,
the interneuron type and four other categorical axonal features.
We guided model construction with a Bayesian network-encoded
probability distribution indicating the type and axonal features
of each interneuron. We obtained these probability distributions
from classification choices provided by a group of leading neu-
roscientists. We then developed an instance-based supervised
classifier which could learn from such multi-dimensional prob-
abilistic input, predicting the output by forming a consensus
among a set of Bayesian networks.

We accurately predicted the probabilistic labels over the
interneuron type and the four remaining axonal features.
Furthermore, we outperformed previous work when predicting
crisp (i.e., non-probabilistic) labels. Importantly, and unlike pre-
vious work, we predicted the five axonal features simultaneously
(i.e., with a single model), which is useful since these features are
complementary. Our results suggest that interneuron type and the
and four remaining axonal features are related and that it is useful
to predict them jointly.
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We introduced 13 axonal morphometric parameters which we
defined as quantitative counterparts of the four categorical axonal
features. Our results suggest that these parameters are useful for
predicting the type and the four axonal features. Thus, they might
be considered as objective replacements, or surrogates, of the
subjective categorical axonal features.

This paper demonstrates a useful application of Bayesian net-
works in neuroscience, whose potential has been largely unex-
ploited in this field (one exception is functional connectivity
analysis from neuroimaging data; see Bielza and Larrañaga, 2014).

It would be interesting to relax the assumption that all neuro-
scientists who classified our data are equally accurate at classifying
all types of interneurons, since some may be more familiar with
certain interneuron types than with others, and account for
expert competence in our model, similarly to methods for learn-
ing from a crowd of annotators such as Raykar et al. (2010) and
Welinder et al. (2010).

We also intend to consider new methods for forming a consen-
sus among Bayesian networks.

5.1. DATA SHARING
The data set and the software reproducing our study are available
online, at http://cig.fi.upm.es/bojan/gardener/.
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Bojan Mihaljević, Concha Bielza, and Pedro Larrañaga designed
the method and the empirical study. Ruth Benavides-Piccione
corrected the faulty interneuron reconstructions. Ruth
Benavides-Piccione and Bojan Mihaljević defined the here
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