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Prior experimental studies have hypothesized the existence of a “muscle synergy”
based control scheme for producing limb movements and locomotion in vertebrates.
Such synergies have been suggested to consist of fixed muscle grouping schemes with
the co-activation of all muscles in a synergy resulting in limb movement. Quantitative
representations of these groupings (termed muscle weightings) and their control
signals (termed synergy controls) have traditionally been derived by the factorization of
experimentally measured EMG. This study presents a novel approach for deducing these
weightings and controls from inverse dynamic joint moments that are computed from an
alternative set of experimental measurements—movement kinematics and kinetics. This
technique was applied to joint moments for healthy human walking at 0.7 and 1.7 m/s,
and two sets of “simulated” synergies were computed based on two different criteria
(1) synergies were required to minimize errors between experimental and simulated joint
moments in a musculoskeletal model (pure-synergy solution) (2) along with minimizing
joint moment errors, synergies also minimized muscle activation levels (optimal-synergy
solution). On comparing the two solutions, it was observed that the introduction of
optimality requirements (optimal-synergy) to a control strategy solely aimed at reproducing
the joint moments (pure-synergy) did not necessitate major changes in the muscle
grouping within synergies or the temporal profiles of synergy control signals. Synergies
from both the simulated solutions exhibited many similarities to EMG derived synergies
from a previously published study, thus implying that the analysis of the two different
types of experimental data reveals similar, underlying synergy structures.

Keywords: muscle synergies, musculoskeletal modeling, healthy gait, joint moments, direct collocation,
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INTRODUCTION
The human musculoskeletal system is characterized by muscle
redundancy, where the muscles outnumber the degrees of free-
dom which they control thus resulting in infinite solutions to
the load sharing problem (Modenese et al., 2013). While con-
straints on individual muscle forces due to fatigue (Singh et al.,
2010), force-length relationships (John et al., 2013), and inter-
muscular force coupling during multi-joint movements (Zajac
and Gordon, 1989) may represent some of the multiple factors
that highlight the need for redundant musculature, it nevertheless
complicates the search for a general control principle underly-
ing the muscle recruitment patterns observed for various tasks.
The muscle synergy hypothesis describes one such potential con-
trol architecture governing limb movements in vertebrates, and
is supported by results from several detailed experimental stud-
ies on animals (Giszter et al., 1993; Jacobs and Macpherson, 1996;
Tresch et al., 1999; d’Avella et al., 2003; Ting and Macpherson,
2005). According to this hypothesis, muscle excitation signals are
not individually regulated, but muscles are organized at the spinal
level into groups known as synergies, with muscles in the same

synergy being simultaneously activated. In this study, a synergy
is defined by a time-varying control signal and a set of muscle-
specific scalar constants known as the muscle weightings (Ting
and Macpherson, 2005)—collectively termed the “synergy struc-
ture.” The excitation signal reaching a muscle is formed by scaling
each synergy’s control signal by the muscle’s weighting value
in that synergy, followed by algebraic summation of the scaled
signals from all synergies (Ting and Macpherson, 2005)—a pro-
cess referred to as “synergy combination” (Figure 1). This study
hypothesizes a previously investigated, potential controller layout
(Ting and Macpherson, 2005; Clark et al., 2010; Chvatal and Ting,
2013) where muscle weightings are stored at the spinal cord level
as invariant patterns, while the time-varying synergy controls are
modulated according to the desired movement, to then undergo
synergy combination and produce a range of limb movements.
Since changes to a synergy’s muscle weightings would not alter
the temporal profile of the synergy’s contributions toward muscle
excitations, weightings are considered to embody “spatial” syn-
ergy characteristics while the control signals are associated with
the “temporal” characteristics.
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FIGURE 1 | Synergy combination principle for synchronous synergies

where (A) the invariant grouping of muscles within the synergy is

quantitatively represented by a set of scalar muscle weightings and

the co-activation of muscles belonging to a synergy depends on a

time-varying control signal. (B) To obtain the excitation profile for
muscle 2, each synergy’s control signal (continuous lines) is scaled by
the weighting for muscle 2 in that synergy (solid bars) obtaining the

scaled synergy controls (dashed lines) (C) followed by algebraic
summation of the scaled signals (dashed lines) to obtain the muscle
excitation (black line). In essence, this is a linear combination process
defined by u = ∑

W.h where u is a vector of muscle excitations
(0 ≤ u ≤ 1), W is a vector of muscle weightings and h is the scalar,
instantaneous value of the synergy’s control signal. The summation is
taken over all synergies.

Experimental studies have traditionally used methods such
as non-negative matrix factorization (NNMF) (Lee and Seung,
1999), factor analysis (Ivanenko et al., 2006), and independent
component analysis (Tresch et al., 2006) to factorize experimen-
tal electromyographic signals (EMGs) (taken to be representative
of muscle excitations) and obtain quantitative representations for
muscle weightings and synergy controls. A perceived advantage
of having a synergy based controller is the ability to vary only one
of either spatial (muscle weightings) or temporal (synergy con-
trols) aspects of the synergy structure to produce a wide range
of movements (d’Avella and Bizzi, 2005) and hence factorization
is usually applied to EMG recorded for a family of function-
ally similar movements—e.g., jumping, swimming, and kicking
in frogs (d’Avella and Bizzi, 2005). The computed synergies are
required to explain variations in EMG observed across different
movements in the family (inter-task variation) and between rep-
etitions of the same movement (intra-task variation). However,
a good level of expertise at EMG measurement is needed to
achieve accurate electrode placement (Mesin et al., 2009), ensure
the avoidance of cross-talk between adjacent muscles (De Luca,
1997; Disselhorst-Klug et al., 2009) and utilize indwelling EMG
electrodes to record the activity in deeper muscles (Perotto et al.,
2011). The qualitative nature of EMG also limits the nature of the
inferences that can be drawn from EMG derived synergies, which
are further constrained by the practical limitations of obtaining
EMG from all the muscles involved in a movement (De Rugy
et al., 2013; Steele et al., 2013). This has warranted a search for
alternative techniques to deduce the structure of muscle synergies.

As inter and intra-task variations in kinematics (e.g.,
joint angles, end-effector coordinates) and kinetics (e.g., joint
moments, end-effector forces) of a movement task must also
be consistent with an underlying synergy based controller,
prior studies have utilized musculoskeletal simulations to com-
pute muscle synergies that are consistent with such variations
(Moghadam et al., 2011; Kutch and Valero-Cuevas, 2012; McKay

and Ting, 2012; Steele et al., 2013; De Groote et al., 2014).
Such studies commonly compute synergies that can gener-
ate a family of forces in a static kinematic configuration or
analyze dynamic movement tasks on a frame by frame basis
using static analysis techniques (a “quasi-static” approximation).
Such approaches have computed synergies from isometric joint
moments (Moghadam et al., 2011) and isometric end-effector
forces (Kutch and Valero-Cuevas, 2012; Borzelli et al., 2013;
Steele et al., 2013), by first estimating muscle activations which
reproduced the target kinetics in a musculoskeletal model fol-
lowed by factorization of the simulated activations to obtain
muscle synergies. When muscle redundancy implies the exis-
tence of multiple, equally feasible solutions for the activation
patterns, an effort minimization criteria is commonly used to
identify a unique solution, such as in the study by De Groote
et al. (2014). This study used static optimization (Crowninshield
and Brand, 1981) to compute muscle activations for walking
(quasi-static approximation), followed by NNMF of activations
to compute the muscle synergy structure. While these meth-
ods succeed in identifying synergy groupings for all muscles
in the model that are involved in a task, they cannot dis-
sociate the concepts of synergies and optimality during the
computation process. Static methods would also be unsuitable
for dynamic movement tasks where synergy structure could be
influenced by the non-linear, history-dependent musculotendon
behavior which is normally modeled by differential equations.
Experimental evidence has also suggested that muscle syner-
gies may be modulated by afferent sensory feedback (Cheung
et al., 2005). Afferent feedback from structures such as muscle
spindles and Golgi tendon organs are usually modeled as differ-
ential equations in time (Mileusnic and Loeb, 2006; Mileusnic
et al., 2006; Kistemaker et al., 2013), and the effects of sensory
feedback on synergy structure cannot be identified from a sim-
ulation technique that is incapable of accounting for dynamic
effects.
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While studies have previously used EMG derived muscle syn-
ergies to inform dynamic simulations of movement (Neptune
et al., 2009; McGowan et al., 2010; Allen and Neptune, 2012;
Sartori et al., 2013; Walter et al., 2014), the deduction of muscle
synergies from the kinematics and kinetics of dynamic movement
tasks remains largely undeveloped. A recent study by Ruckert
and d’Avella (2013) computed synergies for walking and reach-
ing tasks in a dynamic model by defining a family of movements
using sets of basic kinematic goals—e.g., varying stride lengths,
reaching target locations—and applying a reinforcement learn-
ing algorithm. However, during impaired movement the task
goals might be unknown and even highly subject-specific, thus
complicating the reproduction of a specific subject’s experimen-
tal movement characteristics in the model. Therefore, this study
began with the hypothesis that experimentally recorded kinemat-
ics and kinetics could be used to infer muscle synergy structure for
a family of movements and formulated a methodology—termed
“synergy constrained torque decomposition”—for achieving the
same. The method incorporated dynamic models of the neu-
romuscular system, deduced muscle synergies of quantitative
value (see Discussion) and was capable of assigning synergies
to all muscles within the system—in this study, a musculoskele-
tal model of the lower limb—thus extending the capabilities of
current synergy computation techniques.

Variations in both experimental kinematics as well as kinet-
ics are reflected in joint moments computed using the inverse
dynamics methodology. In this study, a subject’s “biomechani-
cal output” was hence taken to be adequately quantified by their
joint moments, and synergy constrained torque decomposition
sought to decompose joint moments for a family of movements
into muscle synergies. This study focused on the computation of
muscle synergies controlling healthy human gait and a family of
movements was defined as gait at slow and fast walking speeds.
The feasibility of two criteria which the computed synergies were
required to satisfy was tested: (1) minimize errors between exper-
imental and simulated joint moments in the model (termed
the pure-synergy solution), (2) in addition to joint moment
errors, also minimize muscle effort (optimal-synergy solution).
The pure-synergy solution represented a control strategy aimed
at tracking experimental joint moment profiles as accurately as
possible. A comparison of pure-synergy and optimal-synergy
solutions was expected to yield insights into how the structure
of a fixed number of synergies could be altered to reduce muscle
effort, without substantially changing the biomechanical output.
Muscle activation and contraction dynamics were included in
the torque decomposition problem forming an optimal control
problem (OCP) that was solved using direct collocation (Kaplan
and Heegaard, 2001). Finally, the similarity of the synergies com-
puted on the basis of the two criteria to EMG derived synergies
(reported by Clark et al., 2010) was quantitatively assessed. This
comparison was intended to provide insight on whether syner-
gies derived from different types of experimental data exhibited
similarities in structure.

METHODS
MOVEMENT DATA
A single male subject (24 years, height 174 cm, weight 72 kg)
walked on an instrumented treadmill (Bertec, Columbus, OH) at

slow, intermediate and fast speeds of 0.7, 1.3, and 1.7 m/s, respec-
tively. 3D marker-based motion capture (Motion Analysis, Santa
Rosa, CA) recorded the subject’s kinematics at 60 Hz while a force
plate embedded in the treadmill synchronously measured tri-axial
ground reaction forces and moments at 2100 Hz. Informed con-
sent was obtained from the subject and the protocol was certified
by the Internal Review Board of the University of Delaware where
the motion capture data was collected. Muscle synergies were
deduced from the kinematics and kinetics of three consecutive,
arbitrarily chosen gait cycles at the slow and fast walking speeds.
Data from three similarly chosen gait cycles at the intermediate
speed was used to validate the “biomechanical relevance”—the
ability to reproduce experimental joint moments—of the com-
puted synergies (described in Section “Simulations”). A gait cycle
was defined as the time interval between two consecutive heel
strikes of the right foot.

MUSCULOSKELETAL MODEL
A modified version of the 3D “gait2354” musculoskeletal model
(Delp et al., 1990; Anderson and Pandy, 1999) distributed with
the OpenSim (Delp et al., 2007) software package (available for
download at https://simtk.org/home/opensim) was used in this
study (Figure 2). This whole body model possessed 23 mechan-
ical DOFs and 54 muscles, of which 24 muscles spanning the
right leg were retained (see Table 1) to enable comparisons
with EMG derived synergies reported for a single leg (Clark
et al., 2010). Toe and subtalar DOFs were locked on both legs

FIGURE 2 | Anterior (left) and posterior (right) views of the

musculoskeletal model used in this study. The model is described in
detail in the Section on Methods.
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Table 1 | Names and abbreviations of all muscles on the right leg of

the musculoskeletal model.

Muscle Abbreviation

Gluteus medius (Element 1) GMd1

Gluteus medius (Element 2) GMd2

Gluteus medius (Element 3) GMd3

Long head of the biceps femoris LH

Short head of the biceps femoris SH

Sartorius SR

Adductor magnus AM

Tensor fascia latae TF

Pectineus PC

Gracilis GR

Gluteus maximus (Element 1) GMx1

Gluteus maximus (Element 2) GMx2

Gluteus maximus (Element 3) GMx3

Iliacus IL

Psoas major PM

Quadriceps femoris QF

Gemelli GE

Piriformis PI

Rectus femoris RF

Vastus intermedius VI

Medial gastrocnemius MG

Soleus SO

Tibialis posterior TP

Tibialis anterior TA

leaving 19 DOFs. Torso and left leg DOFs were retained in
the model to account for their coupling effects on the right
leg joint moments and were actuated by torques that were
directly applied to the DOF. Based on the recommendations of
Arnold et al. (2013), the tendon strain at which its force equaled
the muscle’s maximum isometric force (the parameter labeled
“FmaxTendonStrain” in the OpenSim model) was set to 4% for
all muscles except the plantarflexors which were set to 10% to
account for their higher tendon compliances observed from ultra-
sound measurements (Farris and Sawicki, 2012). Experimental
marker data was used in OpenSim to scale the model to match
the subject’s dimensions followed by inverse kinematics (Lu and
O’Connor, 1999) to obtain joint angle kinematics for walking.
The details of OpenSim’s scaling and inverse kinematics tools
are described in the study by Delp et al. (2007). Muscle-tendon
lengths and moment arms of all muscles over the three cho-
sen gait cycles at each speed were computed for later use dur-
ing synergy constrained torque decomposition and subsequent
validation. OpenSim’s inverse dynamics tool was then used to
compute experimental joint moments from joint kinematics and
experimental ground reaction force data.

SYNERGY CONSTRAINED TORQUE DECOMPOSITION: JOINT
MOMENTS TO MUSCLE SYNERGIES
In the hypothesized synergy based controller, muscle weightings
are expected to be invariant across walking speeds while the
time-varying synergy control patterns may vary. In the torque

decomposition problem, muscle excitations from synergy com-
bination of those weightings and controls were expected to
produce experimental joint moments (over all gait cycles at slow
and fast speeds) in the musculoskeletal model, when used as
inputs to models of muscle activation and contraction dynamics.
The principle of reproducing joint moments using muscle
dynamic models alone was similar to the hybrid forward-inverse
model proposed by Buchanan et al. (2005) since joint moments,
muscle-tendon lengths and moment arms were pre-computed,
thus excluding the computationally expensive skeletal dynamics
(equations of motion) from the problem definition. For both
slow and fast walking speeds, torque decomposition was per-
formed over the three selected gait cycles of experimental data.
Joint moments at 5 DOFs in the right leg (flexion/extension,
adduction/abduction, and internal/external rotation at the hip,
extension/flexion at the knee and dorsiflexion/plantarflexion at
the ankle) were decomposed into muscle synergies controlling
the 24 right leg muscles. The following OCP defined the torque
decomposition problem.

minimize
Wik,hsk

J =
2∑

s = 1

∫ T3
s

0

NJ∑
j = 1

[Mj (t) − M∗
j (t)]2.dt

k = 1, 2 . . . Nsyn (1A)

Subject to

Mj (t) =
m∑

i = 1

R∗
ij (t) . Fi (t) j = 1, 2 . . . NJ (1B)

Fi (t) = f1
(

li, LMT∗
i (t)

)
i = 1, 2 . . . m

s = 1, 2
(1C)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dli
dt

= f2
(

ai, li, LMT∗
i (t)

)
,

dai

dt
= f3 (ui, ai) (1D)

0 < ai < 1

li > l0i . sin αi

uis (t) =
Nsyn∑
k = 1

Wik . hsk (t) i = 1, 2 . . . m

0 < uis < 1 (1E)

Table 2 provides a detailed description of the terms in Equation
(1). However, to summarize, Equation (1A) is the cost func-
tion for minimizing the squared errors between experimental
and simulated joint moments. Equation (1B) describes the map-
ping from individual muscle forces to joint moments at each
DOF, while Equations (1C,D) collectively represent the muscle’s
dynamic behavior. The function f1 represents the computation
of muscle force from fiber length while functions f2 and f3 in
Equation (1D) represent muscle contraction (force-length and
force velocity relationships) and activation dynamics, respec-
tively. The functions f1 and f2 were based on the equations from
Thelen (2003) while f3 used the equations described by He et al.
(1991). Since ai, li, and ui were functions of time and their val-
ues differed between walking speeds, Equations (1B–D) had to
be independently enforced for each of the s walking speeds as
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Table 2 | Description of terms in Equations (1A–E).

Equation (1) Description of terms

(A) s – Slow (s = 1) and fast (s = 2) walking speeds
T 3

s – Duration of 3 gait cycles at the sth walking speed
Mj – Simulated joint moment at j th DOF
M*

j – Experimental joint moment at j th DOF
NJ – Total number of DOFs (NJ = 5)
t – Time
Wik – Muscle weighting of the i th muscle in the kth synergy
hsk – Synergy control for the kth synergy at the sth walking

speed
Nsyn – Total number of synergies

(B) R*
ij – Experimental moment arm of the i th muscle about j th

DOF
Fi – Force in the i th muscle
m – Total number of muscles (m = 24)

(C) f1 – Function computing muscle force from fiber length and
muscle-tendon length

li – Fiber length of the i th muscle
LMT*

i – Experimental muscle-tendon lengths of the i th

muscle

(D) f2 – Muscle contraction dynamics
f3 – Muscle activation dynamics
ai – Activation level in the i th muscle
ui – Excitation reaching the i th muscle
l0i ,αi – Optimal fiber length and pennation angle at optimal

fiber length, of the i th muscle

(E) uis – Excitation in the i th muscle during the sth trial
(For a description of other terms, see Equation 1A)

implied by the large bracket (the s index has been left out from
these equations in the interest of readability). Finally, Equation
(1E) is a linear synergy combination model, denoting the rela-
tionship between muscle excitations and synergy weightings and
controls. Values of Wik and hsk formed the ultimate solution to
the OCP.

The solution to this highly non-linear OCP was pursued
using the numerical method of direct collocation (Kaplan
and Heegaard, 2001; Ackermann and Van Den Bogert, 2010;
Kistemaker et al., 2013). Direct collocation computes the val-
ues of the model’s state variables (ai and li), control inputs (hsk)
and invariant control parameters (Wik) at Ps discrete equispaced
points of time (known as collocation points) instead of comput-
ing them as continuous functions of time as with an analytical
approach. This discretization process permits the OCP to be
transformed into a non-linear optimization problem which was
then solved using the gradient based SNOPT algorithm (Gill
et al., 2002). Having 120 and 90 collocation points (points were
roughly 0.027 s apart at both slow and fast walking speeds) cumu-
latively over the three gait cycles of the slow and fast walking trials
respectively was sufficient to yield a solution that could be repro-
duced by a forward dynamic simulation of the system’s governing
Equations (1B–E). This was important to ensure that the OCP
solution adhered to system dynamics despite approximations

arising from temporal discretization during the solution process.
During direct collocation, the lower bounds on ai and ui were set
to a nominally low value of 0.01 (Thelen and Anderson, 2006)
instead of 0 in order to avoid singularities in the muscle model.
The initial guess for direct collocation was obtained by using arbi-
trary values for Wik, hsk which were in turn computed by the
NNMF of arbitrary muscle excitation patterns (constant values
or sine function pulses). The procedure for deriving the arbi-
trary initial guesses is detailed in the Appendix. The excitation
patterns and initial muscle state values were used to integrate
the muscle dynamic equations over all gait cycles of interest at
both speeds. The values of Wik along with temporally discretized
values of hsk and the integrated muscle states at each colloca-
tion point constituted the initial guess for direct collocation.
Torque decomposition was implemented in MATLAB (2013a,
Mathworks, Natick MA).

SIMULATIONS
Two variants of the synergy constrained torque decomposition
problem were solved:

(1) Pure-synergy solution: The original OCP (Equations 1A–E)
was solved to compute muscle weightings (Wik) and synergy
controls (hsk). As four to five EMG derived lower limb syn-
ergies have been observed for locomotion tasks (Ivanenko
et al., 2004; Cappellini et al., 2006; Clark et al., 2010), five
pure-synergy solutions were computed by varying the num-
ber of synergies (Nsyn) between three and seven. For each
value of Nsyn, synergy constrained torque decomposition
was repeated with 15 different initial guesses and the solu-
tion yielding the minimum value of NRMSE was selected
(see Appendix). The goodness of joint moment reproduc-
tion in the model was quantified by a normalized root mean
squared value of the joint moment errors (referred to as
NRMSE) shown in Equation (2) which was based on Sartori
et al. (2013). The maximum and minimum values of joint
moment in the denominator were taken cumulatively over
all speeds, collocation points and DOFs.

NRMSE = 1

NJ .
∑2

s = 1 Ps

(2)

√√√√√ 1

(maxM∗
jn − minM∗

jn)2

2∑
s = 1

Ps∑
n = 1

NJ∑
j = 1

(
Mjn − M∗

jn

)2

To determine a conservative, minimum value of Nsyn needed
to accurately simulate walking joint moments in the model
(1) the corresponding joint moment errors had to be low but
(2) not too low to permit the existence of biomechanically
redundant synergies which only made very small improve-
ments to the joint moment errors. These two requirements
were respectively quantified by upper and lower limits on
the NRMSE value which had to necessarily be satisfied by
the pure-synergy solution corresponding to the minimum
Nsyn value. The upper limit defined the NRMSE below which
joint moment reproduction could be considered low, and
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was determined by setting
(

Mjn − M∗
jn

)
in Equation (2)

to 5% of the difference between maximum and minimum
joint moments at the respective DOFs and walking speeds.
The lower limit on the NRMSE was computed by setting(

Mjn − M∗
jn

)
in Equation (2) to a very small value of 1 Nm

at all DOFs, speeds and collocation points. Since the NRMSE
was expected to decrease with increasing values of Nsyn, the
highest value of Nsyn for which NRMSE lay within the upper
and lower limits was chosen to be the minimum number of
synergies needed.

Since the hypothesized synergy structure required
invariance of muscle weightings across walking speeds,
the biomechanical relevance of the minimum Nsyn value
and corresponding synergy structure was further tested. In
this procedure, muscle weighting values Wik deduced from
synergy constrained torque decomposition of slow and fast
walking data were considered constants in Equation (1E)
while the cost function in Equation (1A) was modified to
minimize joint moment errors over three gait cycles at the
intermediate walking speed (1.3 m/s). The OCP could thus
only vary control signal patterns hsk to minimize the joint
moment errors.

(2) Optimal-synergy solution: The cost function of the origi-
nal OCP was appended with an additional term aimed at
minimizing the sum of muscle activation squares over all
time instants (Ackermann and Van Den Bogert, 2010). The
temporally discretized version of the cost function for direct
collocation is presented in Equation (3) where Mjn and ajn

denote joint moments (jth DOF) and muscle activations (jth

muscle) at the nth collocation point. The number of synergies
Nsyn was set to the minimum value identified earlier from the
pure-synergy solutions.

The scalar weighting constant K in Equation (3) was
determined by iteratively repeating the optimal-synergy sim-
ulation with increasing values of K ranging from 0 (pure-
synergy solution) to 500 in steps of 100. With increasing
values of K, the activation cost (coefficient of K in Equation
3) of the corresponding optimal-synergy solution would be
expected to decrease due to greater penalization of that term
within the cost function. Thus, beyond a certain threshold
K-value, the reduction in activation cost may be insignifi-
cant and also unnecessarily prioritizing the minimization of
activation cost over joint moment errors. To quantify the
minimum desired reduction in activation cost between the
solutions for K and K + 100 (�K:K+100), Equation (4) com-
puted the magnitude of reduction when activations at each
collocation point in the K solution (aK

jn) were hypothetically
lowered by a very small value (0.01, the lower bound on mus-
cle activation). If the actual change in activation cost between
K and K + 100 was lower than �K:K+100, the improvement
was considered insignificant and the solution corresponding
to K was chosen to be final.

J =
2∑

s = 1

Ps∑
n = 1

⎛
⎝ NJ∑

j = 1

[Mjn − M∗
jn]2 + K .

m∑
j=1

ajn2

⎞
⎠ (3)

�K:K+100 =
2∑

s = 1

Ps∑
n = 1

m∑
j = 1

((
aK

jn

)2

−
(

max
(

0.01, aK
jn − 0.01

))2
)

(4)

The following analyses were then performed:

a) A synergy-specific similarity index (SI) was defined as the
dot-product of the normalized muscle weightings (uni-
tary value of this index means identical muscle grouping
in synergies). Muscle weightings from the pure-synergy
and optimal-synergy solutions were compared using this
index. A mean similarity index was computed by aver-
aging these indices over all synergies. Similarity indices
greater than 0.8 were considered to be indicative of a
high degree of similarity between synergies, while values
between 0.5 and 0.8 and lesser than 0.5 were consid-
ered moderate and low, respectively. Control signals from
every synergy, at each of the slow and fast speeds were
individually compared by computing their Pearson’s cor-
relation coefficient (ρ). An overall comparison of synergy
controls from the two solutions was achieved through a
“mean correlation coefficient” for which control signals
from each synergy and walking speed (interpolated at 30
equally spaced time-points over a gait cycle) into a single
vector and the Pearson’s correlation coefficient between
vectors corresponding to either solution was computed.
Muscle activations derived from the two solutions were
also visually studied. High, moderate, and low correla-
tions were classified on the same ranges prescribed for the
similarity index.

b) Muscle weightings and synergy controls from the pure-
synergy and optimal-synergy solutions were then com-
pared to those obtained from NNMF of experimental
EMG and reported in a study by Clark et al. (2010).
Correspondent synergies were first identified by using
the previously defined similarity index following which
synergy controls were compared by computing both indi-
vidual and mean correlation coefficients. Comparisons
of muscle weightings were restricted to those muscles
for which EMG was recorded in the study. Synergy con-
trols from Clark et al. for speeds of 0.6 and 1.6 m/s were
compared to those at 0.7 and 1.7 m/s in our study.

RESULTS
Five pure-synergy (for Nsyn = 3, 4, 5, 6, 7) torque decomposi-
tion simulations were successfully completed. The upper and
lower limits on the NRMSE values were 2.38 and 0.51%, respec-
tively. From a plot of Nsyn vs. NRMSE (Figure 3), it was seen
that only Nsyn = 4 exhibited a NRMSE value (1.43%) that
lay within the upper and lower limits. Hence Nsyn = 4 was
deemed to be the minimum number of synergies needed to
reproduce the biomechanics of the walking task. Figure 4 com-
pares simulated and experimental joint moments from both
synergy constrained torque decomposition (NRMSE = 1.43%)
and the intermediate speed validation test (NRMSE = 2.13%)

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 153 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gopalakrishnan et al. Deducing muscle synergies from joint moments

FIGURE 3 | Variations in NRMSE errors between experimental and

simulated joint moments with changing values of Nsyn. The black
dotted line represents the upper limit on the NRMSE of 2.38% below
which the joint moment errors were considered low, while the black
dashed line represents the lower limit of 0.51% below which the risk of a
biomechanically redundant synergy set was considered to be high.

for the case when Nsyn = 4. Close similarities between the two
sets of moments were observed at all DOFs in Figure 4 with
the exception of the hip internal/external rotation where devi-
ations were most notable at the slow walking speed. Joint
moments obtained by forward integration of muscle dynamics
with excitations generated from the simulated synergy structure
showed good agreement with the joint moments from direct
collocation (NRMSE = 1.78%) thus validating the dynamic
consistency of the pure-synergy solution with four muscle
synergies.

Based on the results for the pure-synergy solution, four syn-
ergies were also computed in the optimal-synergy solution. By
repeating the simulation for K ranging from 0 to 500 (Figure 5)
and using the �K:K+100 metric defined in Equation (4), the
value of K was chosen to be 200 and the goodness of joint
moment reproduction at this weighting value (NRMSE = 2.01%)
was also verified. Muscle activation levels predicted by this solu-
tion were visibly lower than pure-synergy activations for most
muscles in the model (Figure 6). Figure 7 compares muscle
weightings from the four synergies computed by the pure-synergy
and optimal-synergy solutions (after finding corresponding syn-
ergies on the basis of the similarity indices). Synergy-specific
similarity indices for weightings in all four synergies in the two
solutions (Table 3) were high (> 0.8) suggesting largely simi-
lar muscle groupings in synergies computed by the two solu-
tions. Figures 8A,B respectively compare synergy controls and
weightings from three datasets—optimal-synergy solution, pure-
synergy solution, and EMG derived synergies from the study

by Clark et al. (2010) which also concluded that four synergies
were sufficient for reconstructing experimental EMG patterns
for healthy walking at different speeds. Based on values of the
calculated similarity indices (Table 3), correspondent synergies
were identified and muscle weightings from the optimal-synergy
solution were found to be better matched with the experimen-
tal ones (mean similarity index SIos−EMG = 0.82 ± 0.09, reported
as: mean ± SD) as compared to the pure-synergy weightings
(mean SIps−EMG = 0.76 ± 0.14). Thus, muscle groupings in the
simulated and EMG derived synergies could be considered to be
similar.

Correlation coefficients were calculated between individual
synergy controls from the three datasets and are reported in
Table 3. Pure-synergy and optimal-synergy simulations could
be considered to yield controls with similar temporal charac-
teristics since they exhibited a high mean correlation (mean
ρps−os = 0.86, p < 0.01). Synergy controls from the optimal-
synergy solution correlated better with the EMG derived syn-
ergy controls (mean ρos−EMG = 0.60, p < 0.01) as compared
to the pure-synergy solution (mean ρps−EMG = 0.53, p < 0.01).
Overall, both optimal-synergy and pure-synergy control signals
exhibited moderate mean correlations. At an individual level, the
first and fourth synergies showed higher correlations between the
simulated and experimental synergy controls while the second
synergy showed the least.

DISCUSSION
The similarities between experimental and simulated joint
moments at slow and fast walking speeds (Figure 4) proved the
ability of synergy constrained torque decomposition to identify
potential muscle synergy groupings that reproduced experimen-
tal joint moments in a musculoskeletal model. The forward
dynamics test verified that the synergy structures computed by
direct collocation were consistent with muscle dynamics. Using
the NRMSE criterion, four muscle synergies were deemed to
be the minimum number of biomechanically relevant synergies
needed, which was also supported by the close reconstruction
of joint moments for walking at the intermediate speed using
four synergies (Figure 4). These joint moments had not been
considered during the synergy computation process. The ability
of invariant muscle weightings and speed-specific synergy con-
trols to reproduce joint moments in both “training” (slow and
fast speeds) and “testing” (intermediate speed) data which exhib-
ited variations in the gait cycle time-periods and joint moment
profiles highlights the potential of such a controller layout for
actuating healthy walking movements. The deviations in hip
internal/external rotation joint moment errors (Figure 4) could
be attributed to the lack of well-directed muscle action about
that DOF in the presence of synergy groupings since the gait2354
musculoskeletal model used in this study was a simplified ver-
sion of the “gait2392” model (containing 92 muscles and also
distributed with OpenSim), with a number of muscles removed
for computational efficiency. Even though synergy constrained
torque decomposition could reproduce the biomechanical out-
puts defined in this study (joint moments), users of this technique
need to verify the accuracy of reproduction when a different
output is of interest (e.g., joint powers).
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FIGURE 4 | Representative results of synergy constrained torque

decomposition (slow and fast speeds) and the reconstruction of joint

moments at the intermediate speed by the pure-synergy solution with

Nsyn = 4. The figure presents a comparison of experimental (red line) and
simulated (blue line) joint moments over all three gait cycles (separated by
the black vertical dashed lines in each plot). The five DOFs of the right

leg—hip flexion/extension (Hip1), hip adduction/abduction (Hip2), hip
internal/external rotation (Hip3), knee extension/flexion (Knee), and ankle
dorsiflexion/plantarflexion (Ankle). With each DOF characterized by
bi-directional angular movements (written here as motion1/motion2), it must
be noted that positive joint moments were in the direction of motion1 while
negative moments were in the direction of motion2.

The NRMSE criterion used to choose an appropriate num-
ber of synergies gave us four synergies which was consistent with
the observations of Clark et al. (2010). This similarity was worth
noting because EMG from only eight muscles were recorded in
that study, as opposed to the 24 muscles in the musculoskeletal
model used in this one. A study by Steele et al. (2013) observed
that while the structure of muscle weightings computed by EMG
factorization depends on which muscles EMG is recorded from,
the dependency can be reduced if EMG from dominant mus-
cles (high maximum isometric forces) are always included. The
eight muscles in the study by Clark et al. (2010) were also dom-
inant muscles in the musculoskeletal model used in this study,
which might explain why simulated and EMG derived synergies
were similar despite the different number of muscles in the two
studies.

Some other studies have reported five EMG derived synergies
(Ivanenko et al., 2004; Cappellini et al., 2006) for locomotion
tasks which would have been considered redundant on the basis
of the NRMSE criterion used in this study. It is possible that the
minimum number of synergies might increase when decompos-
ing joint moments from more diverse walking conditions (e.g.,
more speeds, various floor inclinations, etc.). With a small fam-
ily of movements, methods such as torque decomposition and
NNMF would only identify a single merged synergy whose muscle
weightings would be an algebraic sum of the two individual sets of
weightings. To test for the presence of these potentially “merged”

synergies, an increase in the size of that family of movements
would thus be necessary.

If joint moments from each DOF were collectively repre-
sented in a five dimensional vector, the vector space spanned
by the instantaneous joint moments during a family of move-
ments tasks might be of a lower dimension (≤ 5), which is termed
the “dimensionality” of the joint moments. A recent study by
Russo et al. (2014) investigated relationships between the dimen-
sionality of joint moments and muscle activity (the number of
EMG derived muscle synergies) during reaching tasks. Muscle
dimensionality had to theoretically be at least one higher than
the joint moment dimensionality since muscles only produce
forces in tension (i.e., non-negative excitations). However, they
observed the number of synergies to usually be higher than this
minimum, which was potentially necessitated by the non-linear,
history-dependent muscle behavior and additional performance
requirements such as minimization of muscle effort. Following
the procedures of Russo et al. (2014), a principal component
analysis applied to joint moments for slow and fast walking in
this study, revealed the need for three principal components to
account for at least 90% of the variance in the data.

This implied the need for a minimum of four muscle syner-
gies, which concurred with the pure-synergy simulation despite
the latter considering non-linear muscle behavior. It is there-
fore possible that the modeled non-linearities did not sig-
nificantly constrain muscle force production during walking,
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FIGURE 5 | Trends in activation cost (blue circular markers, left y-axis)

and NRMSE (red square markers, right y-axis) of optimal-synergy

solutions computed with values of K ranging from 0 to 500. The
horizontal red dotted line represents the upper limit on NRMSE values
while the blue dotted vertical line highlights K = 200 which satisfied the
criterion prescribed by �K :K+100.

although this would require further investigation with multi-
ple subjects in order to be generalizable. The optimal-synergy
solution demonstrated that the same dimensionality of four
synergies could also reduce muscular effort in comparison to
the pure-synergy solution (Figure 6), although a higher num-
ber of optimal-synergies could possibly have reduced muscle
effort even further. This is worth further investigation since the
results will reveal whether optimality needs necessarily influence
the minimum number of muscle synergies for human walk-
ing. Since four synergies only possessed the minimum dimen-
sionality required, it was possible that this reduced the size of
feasible muscle grouping schemes for reproducing experimental
joint moments in the model. This could potentially explain the
similar muscle groupings in pure-synergy and optimal-synergy
solutions.

Direct comparison of muscle weightings and synergy con-
trol magnitudes from the two simulated solutions could be
inappropriate, since weightings and controls can theoretically
vary between zero and infinity while only excitations result-
ing from their linear combination (Equation 1E) are required
to lie between 0 and 1. While different simulations may com-
pute synergies which satisfy that constraint, the weightings and
controls themselves may have very different magnitudes. Such
direct comparisons of magnitude must therefore be reserved for
muscle excitations or activations. However, values of similarity
indices comparing muscle weightings suggested that the same
muscles were weighted heavily within corresponding synergies—
implying identical “muscle groupings” within synergies in the
optimal-synergy and pure-synergy solutions. Based on the com-
puted correlation coefficients, the temporal variations in synergy
controls from the pure and optimal-synergy solutions were also
similar.

FIGURE 6 | Comparisons of multiple muscle activation patterns at the

slow and fast walking speeds, as computed by the pure-synergy (blue

line) and optimal-synergy (red line) solutions. The numbers to the right
of each plot indicate the peak muscle activation level for that muscle.

Despite control signals having similar timing characteris-
tics, similar muscle groupings, and reproducing the same joint
moment patterns, muscle activations were lower in the optimal-
synergy solution (Figure 6). The pure-synergy and optimal-
synergy solutions differed only with regards to the additional goal
of minimizing muscle activations in the latter. Thus, introducing
the notion of a muscle grouping scheme and fixing the number
of groups in that scheme to the minimum necessary for healthy
human gait, seemed to automatically direct the system toward one
muscle grouping scheme and a concomitant set of control sig-
nal temporal profiles for each group irrespective of the optimality
requirement. Given the anatomy of the human lower limb and
the mechanical requirements for gait, synergies could be a useful
strategy for achieving optimized control of walking by reducing
the dimensionality of the problem. How closely the activations
from an optimal-synergy solution resemble those from a purely
optimal solution (in the absence of any synergy constraints) still
remains to be investigated.

The similarities between simulated and EMG derived synergies
(Figure 8)—especially muscle weightings and also between mul-
tiple pairs of synergy controls (Table 3)—despite being derived
from different experimental measurements is another finding
from this study. Closer agreement between optimal-synergy and
experimentally derived synergies (with regards to both weightings
and controls) was similar to the observations of Borzelli et al.
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FIGURE 7 | Comparison of muscle weightings for the 4 synergies

computed by the optimal-synergy and pure-synergy solutions. For
the sake of visual representation, weightings in every synergy (both

solutions) were scaled such that the highest weighting value was 1.
Synergy controls computed by the two solutions are compared in
Figure 8A.

Table 3 | Quantitative comparisons of synergies from three datasets - pure-synergy solution (ps), optimal-synergy solution (os), and EMG

derived synergies (EMG) from Clark et al. (2010).

Synergy Similarity indices for weightings Correlation coefficients for controls

0.7 m/s 1.7 m/s

SIps−os SIps−EMG SIos−EMG ρps−os ρps−EMG ρos−EMG ρps−os ρps−EMG ρos−EMG

1 0.97 0.70 0.76 0.99 0.97 0.97 0.97 0.80 0.81

2 0.97 0.63 0.75 0.38 (0.02) 0.11 (0.53) 0.57 0.93 −0.01 (0.94) 0.02 (0.91)

3 0.91 0.96 0.94 0.70 0.01 (0.94) 0.53 0.86 0.42 (0.02) 0.66

4 0.87 0.74 0.83 0.98 0.83 0.87 0.99 0.56 0.59

To compare synergies from any two of these three datasets, similarity indices (SI) for muscle weightings and Pearson correlation coefficients (ρ) for synergy controls

were computed. When the p-value associated with the correlation was greater than 0.01 (null hypothesis of no correlation), it is reported in parentheses. Other

p-values lower than 0.01 indicate high probabilities of the existence of a correlation and have not been explicitly reported in the table. The two datasets which the

synergies being compared belonged to are denoted by subscripts; for example SIps−EMG is the synergy-specific similarity index for weightings from the pure-synergy

solution and the EMG synergies. Moderate correlations and similarities (0.8 > ρ, SI ≥ 0.5) are highlighted in orange while good ones (1 > ρ, SI ≥ 0.8) are in blue.

Low correlations and similarities (ρ, SI <0.5) have been left uncolored.

(2013) who noted that minimizing the magnitudes of synergy
controls as opposed to individual muscle activations better agreed
with experimental muscle activations from isometric hand-force
generation. The rationale behind computing synergies from EMG
is that the presence of a synergy based controller must manifest as
a structured variation in the control signals reaching individual
muscles for a family of movements. On similar lines, the synergy
constrained torque decomposition approach hypothesized that
the presence of muscle synergies would be reflected in variations
of movement kinematics and kinetics. The similarities between
experimental and simulated synergies suggest that both variations
in EMG and movement biomechanics point toward the presence
of similar underlying synergy based control structures for healthy
human walking. The comparison of simulated walking synergies
with EMG derived ones from Clark et al. (2010) however came
with an implicit assumption that EMG derived synergies showed
similarities in structure across subjects from a healthy population.

Such inter-subject similarities have been observed by earlier stud-
ies (Ivanenko et al., 2004, 2005; De Groote et al., 2014), and even
if the differences in simulated synergy structures with respect
to Clark et al. (2010) potentially lay within the envelope of the
limited inter-subject variability, it would not be easy to ascertain.

While the controller layout hypothesized by this study involves
invariant muscle weightings and task-specific synergy controls
collectively actuating a family of movements, other controller
layouts have been proposed in prior literature. These alterna-
tive layouts include temporal invariance (Ivanenko et al., 2004;
Cappellini et al., 2006) where synergy controls are invariant and
muscle weightings are movement-specific, and spatio-temporal
invariance (d’Avella et al., 2006) where a synergy consists of
invariant, muscle-specific, fixed duration signals whose onset
times and scaling factors are modulated to produce different
movements. All three proposed layouts however concur on the
assumption of a linear synergy combination law. For human
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FIGURE 8 | A comparison of the 4 muscle synergies computed for the

pure-synergy and optimal-synergy solutions and those reported by

Clark et al. (2010). The synergy controls from Clark et al. (2010) reported
under the “slow” speed were extracted for walking at 0.6 m/s while the
“fast” speed controls were from walking at 1.6 m/s. (A) Synergy controls
(B) Muscle weightings. In panel (B), “LH” stands for lateral hamstring
muscle included in Clark et al. which was compared against the LH

muscle from the musculoskeletal model in this study. Similarly GMed
represents the gluteus medius muscle from Clark et al. and the Gmd1
muscle from the model. For the sake of visual representation in panel (A),
all the synergy controls shown were normalized such that the peak
magnitude was 1. Similarly, in panel (B) weightings in every synergy
shown (both simulated solutions and EMG derived) were scaled such that
the highest weighting value was 1.

walking in particular, factor analysis of EMG has revealed the
potential of a temporal invariance (after the time-scale has been
normalized to gait cycle duration) model for actuating fami-
lies of walking movements (Lacquaniti et al., 2012) such as at
various speeds (Ivanenko et al., 2004), and forward/backward
gait (Ivanenko et al., 2008). While the results of the undertaken
study suggest that a spatially invariant synergy structure is capa-
ble of actuating gait over different speeds, the OCP in Equation
(1) can be modified in a future investigation to have invariant
control signals and movement-specific weightings, thus testing
the biomechanical feasibility of the temporal invariance scheme
for gait.

Synergy constrained torque decomposition permits the use of
experimental motion capture data as an alternative to EMG, for
deducing the structure of muscle synergies. Additionally, syn-
ergies deduced from joint moments are quantitatively related
to the model’s biomechanical output which permits further
analyses such as sensitivity studies. The ability to assign syn-
ergy groupings to all muscles in the model, unambiguously
defines a system-level synergy control strategy whose biome-
chanical relevance could be tested. Despite such advantages,
synergy constrained torque decomposition is still susceptible to

errors due to noisy marker data caused by skin motion, the
uncertainties of inverse dynamics (Challis and Kerwin, 1996)—
approximated limb lengths, inertial parameters, and errors in
force/center of pressure measurement (Camargo-Junior et al.,
2013)—approximations of the geometry and dynamic models
used to represent muscles and the limitations of determining
those dynamic model parameters on a subject-specific basis.
Computational times for synergy constrained torque decompo-
sition depended on factors such as the initial guess and the
weighting constant value for the optimal-synergy solution and
ranged between 10 and 20 min. This was relatively much slower
compared to NNMF of EMG which converges in the order of a
few seconds. Thus, if similarities between EMG derived and joint
moment based synergies could be generalized to other subjects
and activities, the former method could serve as a rapid synergy
assessment tool, while the latter could be reserved for detailed
investigations.

Multiple prior studies have used dynamic musculoskele-
tal simulations to study synergy based control of movements
(Berniker et al., 2009; Kargo et al., 2010; Ruckert and d’Avella,
2013). With regards to gait, Neptune et al. (2009) studied the
contributions of four EMG derived synergies toward sub-tasks
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FIGURE 9 | The mean synergy weightings and standard deviations

computed over results from all 15 iterations of the pure-synergy

solution with Nsyn = 4 (see Appendix).

such as forward propulsion and weight acceptance during health,
sagittal plane walking. This was then extended to study how syn-
ergies adapt to changes in body-weight (McGowan et al., 2010)
and investigations of synergy contributions to sub-tasks dur-
ing 3D walking (Allen and Neptune, 2012). Sartori et al. (2013)
demonstrated how EMG derived synergies could reconstruct joint
moments for a variety of locomotive tasks. This study motivates
an alternative application of musculoskeletal models in the direct
computation of muscle synergies capable of producing the desired
biomechanical output.

In comparison to prior simulation methods which deduced
muscle synergies in either static kinematic configurations or
through quasi-static approximations of dynamic tasks, the
methodology in this study accounted for the non-linear, history-
dependent muscle dynamics which could influence synergy struc-
ture. The addition of dynamic, afferent feedback models in
the OCP will permit future studies to investigate the voluntary
and feedback based components of muscle synergy structure.
For instance, such an approach could be used to address the
question outlined by Kutch and Valero-Cuevas (2012) regard-
ing the possibilities of feedback-induced muscle excitation signals
being mistaken for muscle synergies of neural origin, in the
context of dynamic movement tasks. In comparison to previ-
ous approaches computing muscle synergies through NNMF of
optimal activations (Steele et al., 2013; De Groote et al., 2014),
this study proposed a method where synergies could be investi-
gated independent of any optimality assumptions (pure-synergy
solution) which could be optionally included (optimal-synergy
solution). With the NNMF approach, there is also a risk that
small errors in muscle activations reconstructed from the syn-
ergies might correspond to large errors in the biomechanical
output (in this study, joint moments) of a feed-forward model
driven by the reconstructed activations, due to non-linear model
behaviors. This study averts this possibility by directly incorpo-
rating the muscle synergy hypothesis in the dynamic simulation
process.

A limitation of this investigation is the application of the
method to results from only one subject. While this small dataset

served the purpose of demonstrating the formulation and poten-
tial applications of synergy constrained torque decomposition,
the similarities of the computed synergies to EMG derived
ones and the relationships between optimal-synergy and pure-
synergy solutions deserves further investigation using more sub-
jects and a larger family of movements. Nevertheless, muscle
synergies deduced from six gait cycles of variable joint moment
data still demonstrated biomechanical relevance by reproducing
joint moments from three unseen gait cycles at an intermediate
speed. This study also used a simplified musculoskeletal model
for reducing the simulation’s computation time, which could
have potentially led to the deviations observed in the hip inter-
nal/external rotation moment. Since direct collocation was solved
by a gradient based optimization algorithm, there was the risk
that the solution only locally minimized the cost function. While
such a risk is characteristic of any method using gradient based
optimization (including NNMF), it was verified that different,
arbitrary initial guesses yielded similar muscle grouping schemes
(see Appendix). Given the range of possibilities for the arbitrary
initial guesses, untested initial guesses yielding a different synergy
structure could still potentially exist.

In summary, this study presents a novel technique for
decomposing joint moments into underlying muscle synergies.
Similarities in the simulated and EMG derived synergy struc-
tures from Clark et al. (2010) suggested that analyzing both
types of experimental data reveals similar underlying control
structures. Muscle synergies from the pure-synergy and optimal-
synergy solutions exhibited similar muscle groupings and tem-
poral control signal features. Future investigations using the
torque decomposition approach could investigate whether more
detailed models of the musculoskeletal system with finer muscle
discretization affect the results we have observed by represent-
ing muscle mechanical functions more accurately. Computing
synergies from joint moments for a more diverse family of loco-
motion movements would also aid in determining the exact
range of the family of movements which a given synergy set can
actuate.
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APPENDIX
HOW THE INITIAL GUESS INFLUENCES MUSCLE GROUPINGS OF THE
PURE-SYNERGY SOLUTION
The initial guess for the pure-synergy solution was obtained by
first assigning arbitrary muscle excitation patterns to the 24 mus-
cles, over the duration of the three gait cycles at slow and fast
walking speeds. These arbitrary excitations consisted of either (a)
constant excitation levels over the entire time duration or (b) con-
stant excitations interspersed with sinusoidal pulses. The number
of muscles receiving both categories of excitation patterns and
the selection of muscles belonging to each category were based
on randomly generated integers (“randi” function in MATLAB).
The magnitude of the constant excitation levels and the amplitude
and timing of the sinusoidal pulses were also randomly assigned
(“rand” function in MATLAB). Non-negative matrix factoriza-
tion (NNMF) was used to decompose these arbitrary excitations
into muscle weightings and synergy controls. The pure-synergy
solution was repeated using 15 different initial guesses with Nsyn

set to a value of 4 synergies. For each such solution, muscle
weightings from the four synergies were treated as vectors that
were normalized to have a magnitude of 1. This justified the
computation of the mean and standard deviation of the muscle
weightings from the 15 solutions, which is presented in Figure 9.

For each synergy, the similarity index (described in Section
“Simulations”) was used to quantify the similarity between the
mean muscle weighting vector, and the vector from each of
the 15 solutions. The mean similarity index (average of the 15
indices) was greater than 0.95 for each of the four synergies.
Since these similarity indices were greater than 0.8 (interpretation

of similarity index values is discussed in Section “Simulations”),
they were considered to indicate highly similar muscle groupings
in the muscle synergies from the 15 pure synergy solutions. The
solutions resulted in NRMSE values in the range of 1.43–1.58%
and the solution with the lowest NRMSE was taken to be the final
pure-synergy solution.

Muscle synergies in this study were computed using a gradient-
based numerical optimization scheme. In such a scheme there
is theoretically always a solution which results in a lower cost
function value compared to the current solution even if only
infinitesimal improvements are made, and the optimization ter-
minates when certain tolerances have been met. It is possible that
a certain muscle grouping scheme was more successful at numer-
ically minimizing the joint moment errors to suit the required
tolerances (which were invariant between repetitions of the pure-
synergy simulation), resulting in multiple solutions arriving upon
the same muscle grouping scheme. As mentioned in the dis-
cussion, 4 synergies were the minimum required to explain the
dimensionality of the walking joint moments used in this study. It
is likely that this further restricted the set of feasible pure-synergy
muscle groupings. Nevertheless, as with all gradient-based opti-
mization approaches (including NNMF), there was a risk that
only a local minima was attained during all 15 pure-synergy solu-
tions and a different scheme for initializing the direct collocation
scheme might yield a solution with a significantly different group-
ing scheme. The need for an invariant set of muscle weightings to
reproduce joint moments from two walking speeds which exhib-
ited differences in magnitude and temporal profiles, might have
also constrained the number of feasible muscle grouping schemes.
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