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If a picture is worth a thousand words, as an English idiom goes, what should those
words—or, rather, descriptors—capture? What format of image representation would be
sufficiently rich if we were to reconstruct the essence of images from their descriptors?
In this paper, we set out to develop a conceptual framework that would be: (i) biologically
plausible in order to provide a better mechanistic understanding of our visual system;
(ii) sufficiently robust to apply in practice on realistic images; and (iii) able to tap into
underlying structure of our visual world. We bring forward three key ideas. First, we argue
that surface-based representations are constructed based on feature inference from the
input in the intermediate processing layers of the visual system. Such representations
are computed in a largely pre-semantic (prior to categorization) and pre-attentive manner
using multiple cues (orientation, color, polarity, variation in orientation, and so on), and
explicitly retain configural relations between features. The constructed surfaces may be
partially overlapping to compensate for occlusions and are ordered in depth (figure-ground
organization). Second, we propose that such intermediate representations could be
formed by a hierarchical computation of similarity between features in local image patches
and pooling of highly-similar units, and reestimated via recurrent loops according to the
task demands. Finally, we suggest to use datasets composed of realistically rendered
artificial objects and surfaces in order to better understand a model’s behavior and its
limitations.
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VISION AS AN IMAGE UNDERSTANDING SYSTEM
The visual system of primates processes visual inputs incredibly
rapidly. Within 100 ms observers are capable of reliably report-
ing and remembering contents of natural scenes (e.g., Potter,
1976; Thorpe et al., 1996; Li et al., 2002; Quiroga et al., 2008).
Such fast processing puts tight constraints on models of vision as
most computations should be done roughly within the first feed-
forward wave of information. Efforts to understand how this is
possible have led to the so-called standard view of the primate
visual system where objects are rapidly extracted from images by
a hierarchy of linear and non-linear processing stages, where sim-
ple and specific features are combined in a non-linear fashion,
resulting in increasingly more complex and more transformation-
tolerant features (Fukushima, 1980; Marr, 1982; Ullman and
Basri, 1991; Riesenhuber and Poggio, 1999; DiCarlo and Cox,
2007; DiCarlo et al., 2012; see Kreiman, 2013, for a review).

In particular, in primate visual cortex the earliest stages of
visual processing are thought to act as simple local feature detec-
tors. For example, retinal ganglion and lateral geniculate nucleus
cells preferentially respond to blobs with center-surround organi-
zation (Kuffler, 1953; Hubel and Wiesel, 1961), while neurons in
primary visual area V1 respond to oriented edges and bars (Hubel
and Wiesel, 1962; see Carandini et al., 2005, for a review). These
detectors act locally (within their receptive field) and thus are very

sensitive to changes in position or size. In contrast, neurons in
the final stages of visual processing in the inferior temporal cor-
tex respond to complex stimuli, including whole objects (Tanaka,
1996; Kourtzi and Kanwisher, 2001; Op de Beeck et al., 2001;
Huth et al., 2012), faces (Desimone et al., 1984; Kanwisher et al.,
1997; Tsao et al., 2006), scenes (Epstein and Kanwisher, 1998;
Kornblith et al., 2013), bodies (Downing et al., 2001; Peelen and
Downing, 2005) and other categories. At this stage, neurons have
large receptive fields and thus are tolerant to changes in position,
size, orientation, lighting, and clutter (DiCarlo and Cox, 2007).
While the exact details of the properties of neurons at the low and
high visual areas remain an area of active research, in our view
the most puzzling question is the following: What computations
are performed at the intermediate steps of information process-
ing in order to bridge simple local early representations to highly
multidimensional representations of objects and scenes?

In primates, inspired by Hubel and Wiesel’s (1965) proposal of
the hierarchical processing in the visual cortex, a number of stud-
ies focused on demonstrating sensitivity to the increasing com-
plexity of features along the visual hierarchy. For example, in V2
angle or curvature detectors have been reported (Dobbins et al.,
1987; Ito and Komatsu, 2004). In V4, neurons are sensitive to even
more complex curved fragments and three-dimensional parts of
surfaces (Pasupathy and Connor, 1999, 2001, 2002; Yamane et al.,

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 158 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00158/abstract
http://community.frontiersin.org/people/u/96811
http://community.frontiersin.org/people/u/26853
http://community.frontiersin.org/people/u/2032
mailto:jonas.kubilius@ppw.kuleuven.be
mailto:jonas.kubilius@ppw.kuleuven.be
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kubilius et al. Computations in mid-level vision

2008). Thus, the idea is that intermediate layers are responsible
for gradually combining simpler features into more complex ones
(Riesenhuber and Poggio, 1999; Rodríguez-Sánchez and Tsotsos,
2012).

However, building a system that could robustly utilize such
a connection scheme on natural images is difficult. On the one
hand, combining simpler features into more complex ones is
complicated due to the presence of clutter. Robust mechanisms
are necessary to combine the “correct” features and leave out the
noise. Similarly, in order to detect complex features, enormous
dictionaries must be built since the number of possible feature
combinations is huge, so this process is highly resource-intensive
(but see Fidler et al., 2009, for an inspiring approach to the issue).
On the other hand, focusing solely on edges and their combi-
nations into shapes misses a number of other useful cues in the
images—such as differences in color, texture, motion and so on—
and thus may lack the necessary power both to process object
shapes and to be useful for other tasks that the visual system is
performing (e.g., interaction with objects in a scene, navigation,
or recovering spatial layout; Regan, 2000).

Thus, in computer vision, partially due to the described limi-
tations of the standard view of primate visual system and partially
due to the development of robust algorithms for dealing with
large numbers of features, the actually implemented models of
vision have bypassed thinking about intermediate representa-
tions altogether in their implementations. Instead, such models
rely solely on the established features of V1 (namely, oriented
edge detection) and directly apply sophisticated machine learn-
ing techniques (such as support vector machines) to detect what
object categories are likely to occur in the given image. Somewhat
surprisingly, this idea works very well for a number of com-
plex tasks. For example, in the famous algorithm by Viola and
Jones (2001), faces are detected using several simplistic feature
detectors, reminiscent of the odd and even filters of V1. In Oliva
and Torralba’s GIST framework (2001, 2006; Torralba and Oliva,
2003), scene categorization is achieved by computing global his-
togram statistics of oriented filter outputs. Flat architectures of
SIFT (Lowe, 2004) or HoG (Dalal and Triggs, 2005) that largely
rely on oriented feature detection have seen a wide adoption
for a variety of visual tasks in computer vision, and, in com-
bination with multi-scale processing (Bosch et al., 2007), for a
long time these models that have no hierarchies have been the
state-of-the-art approach.

However, eventually hierarchical models that contain inter-
mediate representations ultimately proved superior in many
complex visual tasks. While such deep networks have been pro-
posed several decades ago, (Fukushima, 1980; LeCun et al., 1989;
Schmidhuber, 1992), only recently upon development of more
robust procedures for learning from large pools of data (Hinton
and Salakhutdinov, 2006; Boureau et al., 2010) such networks
managed to achieve state-of-the-art object identification perfor-
mance on demanding datasets that contain millions of exemplars,
such as the Large Scale Visual Recognition Challenge (Deng et al.,
2009; Krizhevsky et al., 2012; Sermanet et al., 2013; Szegedy
et al., 2014), or that demand fine-grain discrimination as in the
case of face recognition (Lu and Tang, 2014; Taigman et al.,
2014). Moreover, these networks have been reported to perform

extremely well on a number of visual tasks (Razavian et al., 2014).
While many challenges remain (Russakovsky et al., 2013), the fact
that base-level object categorization and localization have been
very successful and in some cases even approaching or supersed-
ing human-level performance (Serre et al., 2007; Lu and Tang,
2014; Taigman et al., 2014) is greatly encouraging. Importantly,
representations learned by such deep networks have been shown
to match well the representations in the primate V4 and IT
(Yamins et al., 2014), demonstrating the relevance of these models
to understanding biological vision.

Naturally, the success of these object recognition models begs
the question whether we now understand how the visual system
processes images. It is tempting to conclude that weakly organized
collections of features are sufficient for object and scene catego-
rization, and, by extension, scene understanding. However, it is
important to realize that, engineering advances aside, each layer in
these architectures is based on the same principles characterized
in the early visual processing of the primate brain. Is there really
nothing more going on in the intermediate stages of processing?

In the following section, we consider what the computational
goal of mid-level vision might be (cf. Marr, 1982). Based on these
insights, in Section “Intermediate Computations” we propose
basic computational mechanisms that we hypothesize to be suf-
ficient to account for processes occurring at intermediate stages.
Finally, we discuss what model evaluation procedures could help
in guiding the implementation of such a system.

WHAT DO MID-LEVEL VISUAL AREAS DO?
FEATURE INTERPOLATION
Typically, a model of vision is operationalized as a feature extrac-
tion system. Features that are present in the input image need
to be detected, so that a veridical (or at least useful) representa-
tion of the world (or objects in it) can be reconstructed. However,
visual inputs are necessarily impoverished (e.g., due to collapsing
of the third dimension as the image is projected on the retina),
incomplete (e.g., due to some objects partially occluding others),
ambiguous (e.g., due to shadows), and noisy. As a consequence,
the problem of vision is not only feature detection but also feature
inference (Purves et al., 2014).

A number of studies have shown that mid-level vision is
heavily involved in feature inference. Consider, for example, the
seminal series of studies by von der Heydt et al. (1984), von der
Heydt and Peterhans (1989), who compared neural responses to
the typical luminance-defined stimuli and the neural responses to
the same stimuli defined by cues other than luminance. In one of
their conditions, a stimulus was composed of two regions con-
taining line segments but with one region shifted with respect
to the other, forming an offset-defined discontinuity in the tex-
ture, which we refer to as a second-order edge (Figure 1A).
Importantly, a simple edge-detecting V1 model would not be able
to find such edges, so if some neurons in the visual cortex were
responding to such stimuli, it would mean that a higher-order
computation is at work that somehow is capable of integrating
information across the two regions in the image.

Consistent with the known properties of early visual areas,
the researchers observed a robust response to the luminance-
defined edges. However, in addition they also demonstrated that
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FIGURE 1 | Feature interpolation. (A) A second-order boundary
stimulus as used by von der Heydt et al. (1984). (B) A stimulus with
an illusory contour is perceived in the white gap between the two
parts of the white rectangle, as used by von der Heydt et al. (1984).

The arrow indicates that the white rectangle was moving. (C) A
stimulus where a shape is defined entirely by second-order cues (that
is, a difference in orientation), used in many figure-ground
segmentation studies (e.g., Lamme, 1995).

some neurons in V2 responded to the second-order edges, and, in
fact, often with the same orientation preference as to luminance-
defined edges. Moreover, Lamme et al. (1999) reported that V1
neurons were also responding to this boundary roughly 60 ms
after stimulus onset and suggested iso-orientation suppression
as a mechanism behind such fast second-order edge detections.
These findings have since been replicated in V2 and V4 (Ramsden
et al., 2001; Song and Baker, 2007; El-Shamayleh and Movshon,
2011; Pan et al., 2012) and also reported for discontinuities in ori-
entation (Larsson et al., 2006; Allen et al., 2009; Schmid et al.,
2014), motion (Marcar et al., 2000), and contrast (Mareschal
and Baker, 1998; Song and Baker, 2007; Li et al., 2014). Taken
together, these findings demonstrate that even in the absence of
luminance-defined borders in the inputs, mid-level areas infer
potential borders from differences in other cues. Importantly, this
operation is different from the typical feature detection and com-
bination scheme because in this case a feature is computed that is
not present in the input (that is, a second-order border).

An even more extreme example of such feature inference has
been demonstrated by another condition in von der Heydt and
colleagues’ experiments where they used a stimulus inspired by
the Kanizsa triangle (Kanizsa, 1955). The stimulus was defined
as a white bar moving over two black bars, separated by a white
gap (Figure 1B)—thus, although physically there were no edges
connecting the two halves of the white bar, subjectively observers
would nonetheless report seeing the complete white bar, effec-
tively interpolating its borders or surface across the white gap. We
refer to such borders as illusory contours. Surprisingly, for this
condition, von der Heydt et al. (1984) also reported neurons in
V2 responding to these illusory contours, and, in fact, nearly as
vigorously as to the luminance-defined ones.

If these examples appear only as curious cases of feature infer-
ence in artificial setups, imagine a typical cluttered image where
multiple objects are partially occluded. Just like in the two pre-
vious cases, the visual system appears to interpolate occluded
parts of objects at the early stages of visual information pro-
cessing (a process known as amodal completion; van Lier et al.,
1994; Ban et al., 2013). For example, Figure 2A is interpreted
as a gray blobby shape partially occluded by the black blobby
shape, both on a dotted background, as in Figure 2C. In fact,
we cannot help but perceive the gray shape inferred behind the
black occluder and our phenomenology is most certainly not

captured by segmentation into separate non-overlapping regions
as in Figure 2B.

Similarly, the background appears to continue behind the two
shapes even though there is no physical connection between the
left and the right portion of it, demonstrating that filling-in is
not confined to objects but applies in a more generic manner
to any occluded region in the input. Moreover, at least phe-
nomenologically, this filling-in appears to involve not only surface
interpolation but also the spread of feature statistics. In our
example, observers would report that the occluded part of the
background is likely to continue the pattern of polka dots (van
Lier, 1999).

Moreover, just like in the other two cases (second-order bor-
ders and illusory contours), the amodal interpolation has been
reported to be established relatively fast, already in 75–200 ms
(Sekuler and Palmer, 1992; Ringach and Shapley, 1996; Murray
et al., 2001; Rauschenberger et al., 2006), and has also been
observed in the early modulation of the occluded parts of shapes
in monkey V4 (Bushnell et al., 2011; Kosai et al., 2014).

Taken together, we see that the visual system actively performs
feature inference and it is an early process that may be initiated
already with the first wave of information. It is important to note
that in all of these cases, the inference does not necessarily pro-
duce a complete feature or a shape. Rather, it may reflect a rough
estimate of statistical properties of the shape (cf. “fuzzy comple-
tions,” van Lier, 1999) or the probability of possible completions
where the missing part of the shape may occur (D’Antona et al.,
2013).

RELATIONAL INFORMATION AND SURFACE CONSTRUCTION
But what is the purpose of feature extraction or interpolation?
In many object recognition models, for example, the extracted
features are used directly to perform categorization. Notice that
such an output lacks the explicit assignment of the features to
one object or another, that is, object shapes are not explicitly
represented. Such model behavior is strikingly at odds with our
phenomenology dominated by explicit object shapes or surfaces.
This idea has been nicely illustrated by Lamme (1995) who inves-
tigated neural responses to a shape entirely defined by a second-
order boundary. His stimulus consisted of a field of oriented noisy
elements embedded in a background of an opposite orientation
(Figure 1C). In order to perceive this shape, the visual system
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FIGURE 2 | Seeing is not the same as perceiving. Observers report
perceiving the configuration in (A) to be composed of full shapes as depicted
in (C) rather than as in (B) which reflects the physical inputs where shapes
are fragmented and two portions of background are separate. In (C), the gray
shape has been interpolated behind the black shape (depicted in green),
indicating that mapping of a two-dimensional surface in a three-dimensional
space is already necessary to represent depth relations. Furthermore, the

background is also a single surface rather than two separate regions and also
with its statistical properties (polka dot pattern) filled in. Some observers will
also see the black shape interpolated behind the gray one (depicted in red),
but this percept is much less consistent among observers than the
completion of the gray shape behind the black one, indicating that surface
inference might not be precise and rather indicate probabilities of possible
contour and surface properties.

must be able to (i) infer second-order borders and (ii) com-
bine them into the shape as a whole. Lamme (1995) showed that
neurons in monkey V1 with receptive fields inside that shape
reliably respond more than those outside, that is, the visual
system explicitly represents where the figure is. Moreover, the
observed enhancement was not instantaneous but rather devel-
oped in three stages (as described in Lamme et al., 1999). Early on,
only responses to local features were observed. Within a 100 ms,
responses to the second-order boundary emerged. Finally, neu-
rons in V1 corresponding to the figural region of the display
started responding more than the background. This effect was
later shown to be the effect of feedback from higher visual areas
such as V4, where such figure-ground assignments are thought to
emerge (Poort et al., 2012). Taken together, this example demon-
strates that the visual system gradually extracts not only the
contour of a shape but also its inside, resulting in a full surface
reconstruction.

More broadly, it has been argued that surface-based repre-
sentations form a critical link between early- and high-level
computations (Nakayama et al., 1995; see also Pylyshyn, 2001).
Moreover, the presence of a surface strongly influences even the
earliest computations of the visual information processing such as
the iso-orientation suppression (Joo and Murray, 2014). Finally,
surface-based representations can also be beneficial for object
identification tasks because surfaces are topologically stable struc-
tures and thus largely invariant to affine transformations (Chen,
1982, 2005). For example, a hole in a surface remains present
despite drastic changes in its position, orientation or rotation in
depth, or to the changes in surface structure (Chen, 1982; Todd
et al., 2014).

In general, we argue that encoding spatial relations—whether
between features, or deciding which features belong to the same
object or surface, or ordering the surfaces in space—provides a
tremendous wealth of information (Biederman, 1987; Barenholtz
and Tarr, 2007; Oliva and Torralba, 2007): Knowing that a car
is on the road or above the road makes a big difference, but
using only features without relations between them might fail
to capture these differences (Choi et al., 2012). One influen-
cial account of the power of spatial relations has been provided
by Biederman (1987), who noticed that certain spatial relations

between features, known as non-accidental properties, remain
largely invariant to affine transformations in space. For example,
short parallel lines nearly always remain parallel despite changes
in viewpoint. He proposed that these relations might be used
to encode different object categories, and later Hummel and
Biederman (1992) developed a model illustrating how such a
system might work. While the exact purpose of such structural
representations in recognition has been heavily debated since
(Barenholtz and Tarr, 2007), consistent with this idea a number of
studies demonstrated that observers are very sensitive to changes
in these invariant features of a shape (Wagemans et al., 1997, 2000;
Vogels et al., 2001; Kayaert et al., 2005a,b; Lescroart et al., 2010;
Amir et al., 2012).

Similarly, Feldman (1997, 2003) and van Lier et al. (1994)
argued that configural regularities of the inputs are used to orga-
nize features into objects, and human visual system has been
shown to be sensitive to such configural relations (Kubilius et al.,
2014). Moreover, Blum (1973) proposed that the configuration of
shapes is encoded in the visual system by representing their skele-
tal, or medial axis, structure, and Hung et al. (2012) showed that
neurons in monkey IT indeed respond both to the contour of a
shape and its medial axis structure. Taken together, these studies
highlight the fact that the visual system utilizes configural rela-
tions between features and surfaces in the higher visual areas,
and therefore an explicit encoding of these relations should be
supported by mid-level computations.

REPRESENTATIONS FOR MULTIPLE TASKS, NOT ONLY OBJECT
RECOGNITION
We argued that mid-level vision was involved in feature detec-
tion and surface construction, such that in the end the shape of
an object could be reliably extracted from the image. However,
the long quest for superior object identification algorithms has
somehow overshadowed the fact that visual cortex can achieve
more than just object identification. Vision is our means to under-
standing the world, whereas a mere object-based representation
provides only a tiny fraction of information needed for successful
behavior in the world. This point is particularly pertinent in lower
species such as rodents for whom navigation is a more imme-
diate task than object identification (Cox, 2014). In fact, much
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of our visual input is not composed of well-defined objects and
thus trying to parse them into objects makes little sense. A richer
description is thus needed if we were to capture the essence of
information about the world (Gibson, 1979).

To stress the point of the inadequacy of object-based repre-
sentations, let us consider a series of images in Figure 3. In some
cases, like Figure 3A, where the object (“a car”) is clearly sepa-
rate (self-contained) from the rest (the road), object identification
and localization provides the most important information about
the scene (“there is a car”). But consider a row of buildings, for
example (Figure 3B). While one still clearly describes each house
as a distinct object, they are impossible to detach from other
items (other houses and the ground). A more extreme example
is depicted in Figure 3C, where even though a mountain is stick-
ing out from the ground surface, it is no longer very clear where
the mountain ends and the ground begins. Is the visual system
really concerned about finding objects in such images then? In
fact, as we go further away from close-up views into panoramic
scenes, identifying objects does not appear to be the default mode
any longer. In Figure 3D, we know that the image is composed of
individual trees, grass and other stuff but we no longer can count
them. Rather, a percept of various textures and layouts appears to
dominate. Thus, talking about individual objects is largely irrele-
vant in these scenarios and instead describing texture properties
and characteristics that allow navigation through the terrain, or a
global level semantic labeling of “a forest” or “a lawn” often seems
to be the more immediate task for vision (Oliva and Torralba,
2001; Torralba and Oliva, 2003).

Therefore, we point out that surfaces that mid-level areas con-
struct are not only meant to represent the outline of objects in
images but also (or primarily) to summarize the properties of
textures and surfaces in the environment.

REPRESENTATIONS PRIOR TO IDENTIFICATION
Finally, we point out that intermediate representations do not
have to rely on being able to identify the contents, consistent with
the idea that they are computed early on. We do not need to know
what we are looking at to be able to describe its three-dimensional
shape, texture, and spatial relations to other items in an image.
For example, notice that in Figure 2 surface interpolation occurs
despite us never having seen these particular shapes before and
having no categorical label for them, indicating that this phe-
nomenon could be performed by mid-level computations prior

to categorization. This observation also holds for a more realistic
image depicted in Figure 4, where we can easily agree that five
objects situated in different depth planes are depicted. We can
describe their shape and imagine acting upon them despite partial
occlusions present in the image. This is clearly a more advanced
representation of the image contents than a mere V1 filter output,
yet not so advanced as to require any categorization, recognition
or identification (naming) of the objects in it.

The idea of intermediate representations being established
without recognition of contents is well-known in psychology
(Witkin and Tenenbaum, 1983; Nakayama et al., 1995). To pro-
vide an illustrative example, the famous visual agnosia patient DF
cannot report the identity or even orientation of most objects, yet
her ability to act on these objects remains intact, a finding that has
led Goodale and Milner (1992) to propose the vision-for-action
and vision-for-perception division in the visual information pro-
cessing in the brain. It thus appears that our visual system is adept
in processing inputs even lacking knowledge about what they are,
pointing to the idea that scene segmentation into objects might be
more basic or more immediately performed than recognition. We
do not claim that recognition is irrelevant for segmentation, as it
has been shown that recognition can bias figure-ground assign-
ment (Peterson, 1994), but our point is that it can largely be
done successfully without any knowledge about the identity of
objects.

CONCLUSION
Taken together, we claim that the goal of mid-level areas is
the construction of surface-based representations that segment
the input images into objects, background surfaces, and so on,
together with their textural properties, because such format of
representations is sufficiently rich for the variety of high-level
tasks, including three-dimensional reconstruction of the scene,
navigation in it, interaction with objects or restricting attention to
them. The idea of the primacy of the surface-based representation
is also supported by empirical studies showing that some form of
figure-ground organization would be established already shortly
after feedforward inputs reach higher visual areas and is con-
sistent with the observation that segmentation does not require
knowledge of the identity of the objects involved. Importantly,
given the computational complexity, this organization is proba-
bly not computed globally but rather is restricted to parts of visual
inputs that fall at fixation or where an observer is attending.

FIGURE 3 | The hierarchy of objecthood. Objects are not the most
important piece of information in every image. While (A) has a well-defined
object, it is already less clear in (B) what should count as one: The row of
houses? Or each house separately? Or each of the windows? In (C), there
are three mountains but where each of them begins and ends is neither clear

nor very important, and in (D) layout rather than object identity dominates
perception, although one can see trees, trunks, etc. (Image credits from left
to right: bengt-re, 2009, Snowdog, 2005, Reza, 2009, �64, 2012. All images
are available under the Creative Commons Attribution License or are in the
public domain.).
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FIGURE 4 | Recognition is not crucial for scene or object understanding. In this artificially generated scene we see five novel objects, we can describe
their three-dimensional shape despite partial occlusions, and navigate around them without having to know the identity of those objects.

It is also important to understand that the segmentation we
describe here is not the same as what is commonly meant by this
term. Many algorithms of segmentation only divide the image
into a mosaic of non-overlapping regions without any informa-
tion about the depth, that is, which region is in front of another
one (see also Section “Current Approaches”). However, whenever
something is occluded, that is a cue for depth ordering. Therefore,
we consider a process that not only divides the image into sepa-
rate regions but also infers figure-ground relations between these
regions. Since this process often involves the inference of occluded
parts, we refer to such interpolated regions as a surfaces.

Finally, such depth ordering is necessarily an oversimplifica-
tion. For example, observe in Figure 2C that we do not perceive
the whole of the black shape in front of the gray one. In fact, at
least for some observers, part of the black shape (shown in red
in Figure 2C) appears to be behind the gray shape, suggesting a
three-dimensional form of the two shapes (Tse, 1999). This exam-
ple demonstrates that the resulting representations cannot be
captured by splitting an image into several depth planes, and thus
require more flexibility. Such representation presumably would
be followed by a full rectification of a three-dimensional volume
at the later stages of visual information processing.

INTERMEDIATE COMPUTATIONS
We proposed that intermediate processing stages produce surface-
based representations from two-dimensional static images. What
computations could produce such representations?

CURRENT APPROACHES
In computer vision, many early image segmentation approaches
considered segmentation as a global optimization problem of
finding the best boundaries, grouped regions, or both. For
example, Mumford and Shah (1989) proposed a functional that
estimates the difference between the original image and its

segmentation with constraints for smoothness and discontinu-
ity at region boundaries (see also Lee et al., 1992). Finding
the best segmentation amounts to finding the global mini-
mum of this functional. Similarly, in a boundary-based contour
extraction model, Elder and Zucker (1996) considered find-
ing the shortest-path cycles in the graph containing boundary
elements.

However, solving for a global optimum deemed to be a compli-
cated task, often leading to unsatisfactory results. In 2000, Shi and
Malik proposed a reconceptualization of the image segmentation
problem as a graph cut problem. When features in an image are
represented in a graph, finding the best segmentation amounts to
finding groups of features in this graph that are maximally similar
within a group and maximally dissimilar from other groups. Shi
and Malik (2000) showed that their normalized cuts algorithm
could provide a good optimization of this criterion and, based on
this approach, they later developed one of the best-known image
segmentation models (Arbeláez et al., 2011; see also Felzenszwalb
and Huttenlocher, 2004 and Sharon et al., 2006, for much faster
implementations of this idea).

Partitioning a graph in a fixed way, however, cannot capture
the inherently hierarchical structure of images (a part can be
part of another part; see the windows of houses in Figure 3B),
nor can it adapt to the task demands. Therefore, in recent years
much effort in image segmentation research has been devoted to
the development of methods for the probabilistic generation of
region proposals (Arbeláez et al., 2014) that could then be refined
using a higher-level task such as categorization (Leibe et al., 2008;
Girshick et al., 2014; Hariharan et al., 2014) or would be flexibly
reconfigured based on Gestalt principles (Ion et al., 2013).

How could such partitioning of an image graph into high-
similarity clusters be implemented in a biologically-plausible
architecture? Based on behavioral and neural evidence, Nothdurft
(1994) hypothesized that image segmentation involves (i)
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suppression of responses in homogenous feature fields, and (ii)
local pooling of features for boundary detection. Unlike the
global optimization approaches considered above, this idea is
based on completely local computations that are attractive due
to their low complexity and biological plausibility. The imple-
mentation of this idea can be found in models by Grossberg
(1994) and Thielscher and Neumann (2003), where texture seg-
mentation is performed by enhancing edges that group together
by the good continuation cue (using the “bipole cell” idea), and
suppressing other locations in the image. Repeated over several
iterations, this computation leads to the formation of the out-
line of the shape. This idea accounts well for Nothdurft’s (1994)
observations, and also provides an integrated framework of using
both texture and boundary information to perform segmenta-
tion. Moreover, Thielscher and Neumann (2005) also demon-
strated that this approach produces differences in convex and
concave boundary appearance, in line with Nothdurft’s (1994)
observations.

Segmentation into distinct regions is only the first step though.
As discussed in the previous section, this is not sufficient because
an explicit surface construction and figure-ground relation com-
putation need to occur as well. Some approaches (Roelfsema
et al., 2002) attempted to explain figure-ground segmentation
simply as an effect of increasing receptive field sizes (thus,
decreasing spatial resolution) in higher visual areas. The model
operates by initially detecting boundaries in the inputs and then
pooling them together in higher visual areas as a result of increas-
ing receptive-field sizes. Eventually, the whole shape is represented
by a unit with a sufficiently large receptive field. Then, the figure-
ground assignment can be propagated down via feedback to the
early visual areas, as observed in the experiments by Lamme
(1995).

However, it is unlikely that such scheme would work in more
complex displays with more overlapping shapes and more vari-
ation in texture. Moreover, smaller shapes always produce higher
responses in higher-level areas because their boundaries are closer
together. Since these responses represent the figure-ground signal,
smaller shapes are always bound to be on top of larger shapes that
produce a weaker figure-ground signal. One possibility to resolve
some of these issues is to use corners as indicators of the figural
side. Since figures tend to be convex, the inside of a corner reli-
ably indicates the boundary of a figure. Based on this observation,
Jehee et al. (2007) proposed an extended version of the model by
Roelfsema et al. (2002) that could produce more reliable border
assignments.

The idea of using convexity can be applied more generally
across the entire shape outline and not only at its corners. To illus-
trate how that could work, consider the two shapes in Figure 5A.
The two edges shown in red can either be the boundary of the
gray surface or the boundary of the white one, as indicated by the
green arrows pointing to both directions. Of course, in this case
it is clear that these edges must belong to the gray surface because
the white one is just the background. But how would a model
know? If we assume that objects tend to be convex, edges that
are in agreement (the green arrows that are pointing toward each
other) might belong to the same surface (Figure 5B). This simple
computation in the local neighborhood followed by pooling into

curved segments (Figures 5C,D) results in a largely correct border
ownership. If it is further computed globally over a few iterations,
local inconsistencies (e.g., a concavity of the lighter gray object)
can be resolved (Figure 5E; see Figure 5B in Craft et al., 2007, for
a working example), resulting in the proper assignment of edges
to one of the two objects (Figure 5F), which is the desired initial
image division into surfaces.

Importantly, because of border-ownership, we also learn
which parts of objects are occluded. If a certain surface is partially
bounded by a boundary that it does not own, it is a sign of an
occlusion. For example, in Figure 5F, the yellow object is partially
occluding the blue one, and border-ownership assignment indi-
cates that edges along the yellow object belong to it. That leaves
the blue object lacking a closed contour, meaning that part of it
is occluded. An interpolation of surface results in a more percep-
tually compelling segmentation into whole shapes (van Lier et al.,
1994), and consequently provides an ordering of surfaces in depth
(Figure 5G).

The existence of such border-ownership cells has been
reported in the visual area V2 (Zhou et al., 2000; see Zucker,
2014, for a good overview) and a number of models based on
this idea have been proposed since (Zhaoping, 2005; Craft et al.,
2007; Layton et al., 2012). Kogo et al. (2010) extended this frame-
work by also using L- and T-junctions to determine not only
figure-ground assignment for luminance-defined figures but also
to produce the correct output in the case of illusory contours
(Kanizsa’s figures). Importantly, unlike earlier proposals (e.g.,
Grossberg, 1994), their approach is capable of yielding the correct
representations of comparable yet non-illusory displays without
ad hoc deletion of interpolated contours (see Figure 1B in Kogo
et al., 2010).

Similarly, extending their work on bipole cells, Thielscher and
Neumann (2008) showed that T-junctions could be used to infer
figure-ground relations for multiple figures (not just figure and
ground) in their architecture, and more recently, Tschechne and
Neumann (2014) extended their earlier work to a full model
of figure-ground segmentation. Initially, bipole cells, curvature
and corner detectors are used to produce the consistent out-
line of a shape. Then, contextual cues are used to compute
border-ownership.

Taken together, current biologically-inspired approaches to
image segmentation largely concentrate on discovering bound-
aries in an input image and resolving figure-ground assign-
ment by computing border-ownership of the boundaries in an
image. However, unlike purely computer vision algorithms, these
approaches are typically not tested with realistic inputs, thus
their applicability and robustness on the wide variety of natu-
ral images remains unclear. Moreover, some models are better
at segmentation but do not perform feature interpolation and
figure-ground relation computations, and vice versa, while oth-
ers focus on using second-order features but are not robust for
segmentation using multiple cues, and so on. In other words,
each of them only implements several aspects of processes in
mid-level vision but the proposed mechanisms are not mutually
compatible to build a unified architecture. Could there be sev-
eral basic mechanisms that could account for the majority of the
available data?
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FIGURE 5 | An illustration of border-ownership assignment. (A) Initially,
each edge in the image (red arrows) can belong to one of two sides (green
arrows): either the gray surface or the white surface. The goal of border
ownership computation is to figure out which side is the figural side. In this
case, the edges should belong to the gray surface. (B) Using the convexity
assumption (objects tend to be convex), we can easily determine border
ownership in the local neighborhood. Edges that “agree” (green arrows are
“looking” at each other) are preferred. (C) Pooling these edges together
results in a curved segment with the correct border-ownership assignment.

(D) After this computation is carried out in the local neighborhood, border
ownership is largely but not fully correct. We can improve it by using the
same convexity assumption over larger areas (e.g., over the entire image). (E)

Global border-ownership computation results in a correct assignment of all
segments. (F) With pooling, two separate surfaces emerge. Note that the
blue one is missing a boundary at the intersection with the yellow object.
This implies that the blue object is partially occluded by the yellow one. (G)

Using this information, a correct local depth ordering is established and the
missing piece of the blue object is interpolated.

OUR APPROACH
In a nutshell, we are interested in understanding conceptually
what computations could suffice to account for the following
biologically-plausible image processing strategy:

1. Region property and boundary extraction.
2. Clustering of boundary and region features into separate sur-

faces (segmentation).
3. Surface interpolation and depth ordering (figure-ground orga-

nization).
4. Representation refinement via recurrent loops.

Moreover, we want these computations to be sufficiently robust
such that they would apply across various features in the images
and could therefore be used in the typical computer vision setups
such as deep networks.

To implement steps 1 and 2, we propose two basic mechanisms
for intermediate computations, generalizing the vast majority

of approaches discussed in Section “Current Approaches”
(Figure 6):

• similarity statistics that compute correlations between local
patches of the input, and

• pooling that combines together highly similar (well-correlated)
patches.

These two computations are implemented hierarchically, pro-
cessing over increasingly larger patches of the input image and
resulting in a coarse mid-level representation of surfaces and
their properties upon the first roughly feedforward processing
wave. As a result of feature inference at multiple layers, the
constructed surfaces are partially overlapping, providing infor-
mation for depth ordering at the highest stages of this architecture
(step 3). The resulting representations will be very coarse and
probably inconsistent, so an iterative refinement of these repre-
sentations by reapplying similarity and pooling operations over

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 158 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kubilius et al. Computations in mid-level vision

FIGURE 6 | Computation of intermediate representations in the visual

hierarchy. In each layer, various features are extracted first at each
location, forming a feature vector. Next, correlations are computed in the
local neighborhood between each pair of a weighted feature pair, leading
to similarity statistics (red arrows). (The optimal weights need to be
learned by training the model.) Finally, these patches are pooled together
into clusters that contain similar statistics. These new clusters are used in
the next layers for the same similarity and pooling over increasingly larger
neighborhoods. Note how the resulting intermediate representations are

interpolated behind occlusions and are ordered in depth (e.g., the tree is in
front of the forest). These representations can now be used for higher-
level tasks such as categorization, attention to specific objects or
interaction with them, or for navigation. They are also rather coarse initially
(e.g., trees on the right are incorrectly lumped together), and can further
be refined iteratively via feedback loops (if attention is directed to that
region). Moreover, notice that not all steps must necessarily be carried out
as certain shortcut routes (e.g., the gist computation) using simpler
statistics can occur.

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 158 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kubilius et al. Computations in mid-level vision

smaller parts of an input image is important as well (step 4;
see also Wagemans et al., 2012b). We briefly discuss the role
of feedback in Section “The Dynamic Nature of Intermediate
Representations.”

SIMILARITY ESTIMATION AND POOLING
Let us start by considering the output of a typical low-level com-
putation such as edge detection, as illustrated in Figure 5A. The
red arrows in this figure show the locations and orientations of
salient edges in the image. While this is a useful description of
potential boundary positions in the image, this information does
not suffice to understand the organization of the image contents.
In particular, it does not indicate which edges are likely to define
the same surface, as shown in Figure 5B. At this stage the system
only knows about separate salient edge positions, and further pro-
cessing is needed to group both boundary and textural elements
into coherent surfaces.

Finding which edges might group together can be achieved
with a simple similarity measure, such as a correlation between
two locations in an image. If the similarity is high, the two edges
might belong to the same smooth contour (since edges at nearby
locations of a smooth curve have similar orientation) or the
same surface composed of similarly oriented elements (e.g., the
wood texture in Figure 4). In contrast, a low similarity indicates a
potential discontinuity in an image, or a second-order edge, just
like the one between the ground and the object in Figure 1C.

Of course, similarity computation need not be restricted to
oriented edges only and can be applied across other proper-
ties (e.g., spatial frequency, phase bands, color) and even across
summary statistics within a local patch (e.g., mean and variance
of orientation). Notice that by incorporating multiple cues, this
single computation of similarity among the adjacent locations
provides a natural approach to dealing with both boundary and
textural cues in images. In particular, wherever there is suffi-
cient dissimilarity, textural properties are actively used to generate
boundary elements that are further used to construct full surface
boundaries.

Freeman et al. (2013) provided evidence that such similar-
ity measures are indeed computed early in the visual system.
They constructed synthetic textures with specific higher-order
statistical dependencies, such as marginal statistics, local cross-
position, orientation, scale and adjacent-phase correlations, and
demonstrated that such neurons in primate V2 (but not V1)
were particularly sensitive to these built-in statistics, suggest-
ing that V2 computes similarity between features. When used
in textures, such summary statistics apparently are sufficient for
the synthetic generation of similar-looking textures (Portilla and
Simoncelli, 2000). When used on natural images, these statistics
appear compatible with percept in peripheral vision (Freeman
and Simoncelli, 2011; Freeman et al., 2013) and can also account
for certain effects in crowding (Balas et al., 2009) and visual search
(Rosenholtz et al., 2012).

Similarity statistics alone are not sufficient, however. While
they are clearly useful in providing rich descriptions of the inputs,
the number of parameters in the system increases dramatically
since these statistics are computed pairwise between many small
patches. Maintaining all these parameters does not appear to

match our phenomenology where integrated shapes or regions
dominate over local fragmented interpretations. Moreover, natu-
ral scenes contain substantial redundancy and the visual system
appears to take advantage of it via efficient coding strategies
(Attneave, 1954; Barlow, 1961; Simoncelli and Olshausen, 2001;
Olshausen and Field, 2004; DiCarlo and Cox, 2007). For instance,
Vinje and Gallant (2000) demonstrated that V1 neurons use a
sparse encoding scheme that matches the sparse structure of nat-
ural scenes. Other researchers have demonstrated that sparsity
constraint leads to the development of simple and complex cells
in computational models (Olshausen and Field, 1996; Hyvärinen
and Hoyer, 2000, 2001).

It thus appears that a higher-order statistic, one that would
summarize similarity statistics, is necessary. We call this com-
putation pooling to reflect the idea that separate units are now
pooled together according to the strength of the previously
computed pairwise correlations. Computationally, such pooling
operation is very simple, for example, a single-link agglomera-
tive clustering of patches that correlate above a certain threshold
(Coates et al., 2012) or mean-shift (Paris and Durand, 2007;
Rosenholtz et al., 2009). The threshold can be flexible (i.e., a free
parameter in the model) reflecting individual differences between
participants.

While either similarity or pooling have been utilized in various
formats separately by many models, exploring the power of their
combination is rare. Geisler and Super (2000) showed that a sim-
ilar similarity and pooling scheme could account for a number
of typical perceptual grouping displays. One successful demon-
stration of this combination on real images was reported by Yu
et al. (2014) who found that a super-pixel segmentation followed
by mean-shift clustering accounted surprisingly well for visual
clutter perception. In a notable example that such scheme can be
both powerful and efficient even for practical applications (due to
parallelization), Coates et al. (2012), using K-means and agglom-
erative clustering, achieved robust unsupervised learning of face
features using tens of millions of natural images.

HIERARCHICAL SIMILARITY ESTIMATION AND POOLING
While it would be possible to perform similarity and pooling
globally across the whole image, such strategy would be very inef-
ficient and probably not very accurate. Instead, we propose that
these computations are performed hierarchically, such that first
similarity and pooling are done locally, then over somewhat larger
neighborhood using the newly inferred features, and finally glob-
ally using few but rather complex features that result from these
computations at earlier stages.

The initial computation of a similarity and pooling would
yield longer straight or curved segments (Figure 7A, right). A
low correlation, on the other hand, would indicate the presence
of second-order edges that are formed between adjacent surfaces
with differently oriented elements. For example, in Figure 7B,
left, there is no clear edge separating the object from the ground
since their overall luminance is quite similar, and thus segmen-
tation could not be done with a simple V1-like edge detection
model. The desired segmentation becomes trivial when the dif-
ference in orientation content is observed. The dominant ori-
entation of the object is different from that of the ground and
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FIGURE 7 | Examples of feature inference. (A) Pooling similarly-oriented
features (red) result in the inference of curved fragments (yellow). (B) In
contrast, a dissimilarity between oriented features (red) result in the
inference of second-order edges (yellow) between textures.

can therefore be used to determine a boundary between the
two textures, which is indicated by the low similarity measure
(Figure 7B, right).

Of course, detecting second-order edges in this fashion can
also yield spurious results. Boundary element orientation can
change significantly at inflection points (i.e., junctions) leading
to low similarity measures, and yet these do not imply the pres-
ence of a second-order edge. One solution to the problem could
be to use only sharp edges for defining boundaries, and other-
wise assume that edges define textures (the insides of a surface).
Consistent with this idea, Vilankar et al. (2014) reported that
edges defining an occlusion tend to have steeper changes in con-
trast than non-occlusion edges (reflectance difference, surface
change, cast shadows) and that a maximum likelihood classi-
fier could predict the type of edge with 83% accuracy in their
database. Another possibility is that junctions are not detected
during the initial processing and only computed later when the
global estimate of the shape is already available from the higher-
level areas. Consistent with this idea, McDermott (2004) reported
that participants were unable to report T-junctions using local
natural image information (small patches of image) only (but
see Hansen and Neumann, 2004; Weidenbacher and Neumann,
2009).

However, in general, the visual system is not so much inter-
ested in the features as such but in the surfaces they define. Other
cues than boundaries can therefore be important in the local
computations of which features should be combined into a sin-
gle surface. As discussed above, convexity is an important cue
for border-ownership assignment. Measuring consistency in edge
polarity (where the brighter side is) can also provide informa-
tion if they are likely to belong together (Kogo and Froyen, 2014).

In fact, Geisler and Perry (2009) observed that edges with an
inconsistent polarity are less likely to belong to the same contour.
Recently, it has been reported that even low-level cues, such as the
sharpness of an edge or local anisotropies in spectral power can
be informative about figure-ground organization (Ramenahalli
et al., 2014; Vilankar et al., 2014).

So, at each location where a boundary element has been
found or inferred, we can list all these cues as a long vector
and then compute the similarity between these vectors in the
local neighborhood. Sufficiently similar locations are then pooled
together, resulting in new, more complex features at a higher layer
of this hierarchy. Now again, the similarity of these new features
over larger scales can be computed, and similar features pooled
together into even more complex features, such as parts of bound-
ary (Brincat and Connor, 2006) or surface patches (Yamane et al.,
2008) with a complex geometry. Finally, these features are pooled
again over the entire image, producing the initial segmentation of
an image into proto-surfaces.

NEURAL REPRESENTATION OF POOLED UNITS
By definition, a pooling operation combines outputs of several
units and treats them as belonging to the same group (same
contour, shape, or surface). Several alternatives have been pro-
posed how such groups could be represented in the visual system.
Perhaps the most straightforward way to implement this repre-
sentation is by having dedicated grouping cells. Such idea has
been used in a computational model of border-ownership assign-
ment by Craft et al. (2007). They implemented neurons with
donut-shaped receptive fields that can pool together units lying
on that donut. However, such grouping cells have yet to be found
in the visual system. It is possible however that cells with large
curved receptive fields that exist in V4 might suffice to perform
the border-ownership computation (as the authors themselves
suggest on p. 4320 of their paper).

Another simple strategy is an increase of the mean neural
response of units belonging to the same group (Roelfsema et al.,
2004). However, this strategy also implies that only a single
group can be maintained at a time. If another group needs to
be processed, such as when shifting attention from one object
to another, the integration computation would have to be per-
formed again. While it may appear somewhat limiting, it should
also be noted that in many tasks, such as multiple object tracking,
observers show a rather poor ability to maintain representations
of multiple groups at the same time.

A very different idea has been proposed by von der Malsburg
(1981). He hypothesized that representations are held together by
synchrony in neuronal firing. Such idea, if true, would in theory
allow for multiple stable representations to co-exist in the visual
system. While such synchrony has been observed in the visual cor-
tex (Singer and Gray, 1995), its functional role is heavily debated,
questioning whether it indeed plays a causal role in representing
groups (Roskies, 1999; Roelfsema et al., 2004).

Finally, a similar idea has been put forward by Wehr and
Laurent (1996). They provided evidence that locust’s olfactory
neurons fire in a certain unique temporal patterns to various
combinations of scents. For example, while an overall response
to an apple and to a mint and an apple scents might appear
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comparable, at a finer temporal scale differences emerge in the
number and timing of these higher frequency peaks (three peaks
for the apple scent but only two for mint and apple). In other
words, each stimulus receives a unique code of neural firing which
can serve as a tag for belonging to a certain group. Importantly,
just like binary code in computers, this code can accommodate a
large number of stimuli without running into the combinatorial
explosion.

THE DYNAMIC NATURE OF INTERMEDIATE REPRESENTATIONS
The visual processing need not stop with the feedforward for-
mation of the intermediate representations. Probably the best we
can expect at this first pass of processing is a very coarse rep-
resentation capturing the most salient aspects of the input. For
example, the initial representations may lack global consistency:
it is likely that not all parts of an object will be bound into a single
entity, and there can also be errors of the bounding of parts. For
instance, the legs, body, and arms of a human body might be sep-
arate initially if there is not enough similarity between them. As a
result, these parts may also have conflicting figure-ground assign-
ments, such that the body is computed to be behind a chair but
the legs are in front. If necessary for the task, a reconfiguration
of these components could be formed iteratively until a global
minimum is found, resulting in a stable percept of the configu-
ration. For instance, the border-ownership model by Zhaoping
(2005) resolves the direction of border-ownership by iteratively
computing which side is more likely to be the figural side. The
iterations are necessary because, for example, borders in concave
parts of a shape might initially have the wrong border-ownership
(toward the convex side) but over several iterations the assign-
ment is gradually reversed since other parts of the global shape
influence the decision that the concavity should be part of the
whole shape. There are also cases where several interpretations
are similarly plausible (e.g., the Necker cube or the vase-face fig-
ure; see Wagemans et al., 2012a), and thus iterative computations
will lead to continuous switches between these interpretations.

In many cases, the refinement of representations will also be
necessary. In particular, the initial representation formed in mid-
level areas might only capture the gist of the input. Details will
be necessarily lost due to agglomerative pooling operations. In
order to extract finer details, representations in earlier layers can
be reaccessed via feedback loops (indicated by backward arrows
in Figure 6), as conceptualized by the Reverse Hierarchy Theory
(Hochstein and Ahissar, 2002). Such feedback connections are
abundant in the primate visual cortex and have been implicated
to be important for various purposes (Felleman and Van Essen,
1991; Angelucci et al., 2002; Roelfsema et al., 2010; Arall et al.,
2012). For example, intermediate representations could be used as
saliency maps to direct attention to a particular part of an image
or a particular feature (Walther and Koch, 2006; Russell et al.,
2014). Then irrelevant inputs would be inhibited while the rele-
vant ones would receive an enhanced weight (Mihalas et al., 2011;
Arall et al., 2012; Wyatte et al., 2012), and the whole similarity and
pooling computation would be repeated again. Such approach
could be particularly important for resolving complicated parts
of images that require high spatial resolution (Bullier, 2001),
serial (or incremental) grouping of image features (Roelfsema,

2006), and could play a major role in learning features from input
statistics (Roelfsema et al., 2010).

Iterative computations also provide the necessary flexibility for
dealing with the inherently hierarchical composition of scenes.
Consider, for example, Figure 3B, where all buildings could be
represented by a single surface, or could be further divided into
separate surfaces for each building, or even further for each win-
dow or any other detail in the image. Task demands, the mental
state of an observer, and other factors can have a strong influ-
ence to the percept at any given moment. Utilizing the recurrent
connections, the dynamics of the percept could be modeled in
our framework by updating the pooling threshold (Sharon et al.,
2006; Ion et al., 2013).

Of course, the proposed system need not be strictly hierarchi-
cal. For certain computations, it makes sense to have fast bypass
routes (indicated by the dashed arrow at the top of Figure 6)
whenever construction of intermediate representations is too slow
or unnecessary, as could be the case for face detection where Viola
and Jones’ (2001) approach proves sufficient, or for a rapid scene
categorization using the gist computation (Torralba and Oliva,
2003). Moreover, including such bypass routes naturally provides
the visual system with the flexibility to both build detailed repre-
sentations gradually and also to produce global impressions of the
input statistics rapidly (Bar, 2004). The gist of the scene can pro-
vide informative priors (category, context, memory associations,
and so on) that could guide processing and segmentation at inter-
mediate layers (Peterson, 1994; Rao and Ballard, 1999; Oliva and
Torralba, 2007).

Finally, we want to stress that although recurrent process-
ing can improve surface representations and help in task per-
formance, figure-ground segmentation does not require it. For
example, Supèr and Lamme (2007) observed that removing
most of feedback connections from higher visual areas to V1
reduced but did not abolish figure-ground perception. In fact,
Qiu et al. (2007) reported that border-ownership signals emerge
pre-attentively, and a purely feedforward model of figure-ground
segmentation has been proposed by Supèr et al. (2010), consistent
with a limited role of feedback in figure-ground assignment pro-
cess (also see Arall et al., 2012, and Kogo and van Ee, 2014, for a
discussion).

EVALUATING PERFORMANCE
The proposed architecture is meant to simulate the representa-
tions residing in mid-level vision. Given that this is not the final
stage of the visual processing, evaluating the model’s performance
is not trivial. Often, models of vision are evaluated using stan-
dard object identification or scene segmentation datasets such as
the ImageNet (Deng et al., 2009) or the Berkeley Segmentation
Dataset (BSDS500; Arbeláez et al., 2011), where the goal for a
model is to produce labels or segmentations as close as possible to
the correct answers defined in that dataset. So, one simple solu-
tion for testing our architecture could be to extend it to perform
one of these tasks. In this section, however, we discuss how blindly
applying standard benchmarks can be misleading and highlight
the need for good, carefully constructed tests and datasets that
would help to detect shortcomings in the model and guide its
development (Pinto et al., 2008).
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FIGURE 8 | Several potential problems with image datasets. (A) Lack
of ground truth (photo credits: Sheila in Moonducks, 2010, and Camera
Eye Photography, 2013). (B) Misleading influence of semantic knowledge
(image from the dataset described in Arbeláez et al., 2011). (C) What

counts as correct? (photo credit: bengt-re, 2009). (D) Black box models
(photo credit: Berbezier, 2008; inspired by Landecker et al., 2013). (E)

Contextual influence. All photos are available under the Creative
Commons Attribution License.

First of all, there is always the question of the “ground truth.”
For example, which of the two segmentations in Figure 8A, left,
is the ground truth? Both seem reasonable to a human observer
and, in fact, they have been annotated by hand, making them,
by definition, not objective. For example, smaller objects might
be missing, subordinate categories might remain not annotated,
and there may even be a disagreement among raters as to what
constitutes an object and what is only a part of an object. While
it is possible to step away from human raters altogether by
obtaining ground-truth data using motion and depth informa-
tion (Scharstein and Szeliski, 2002), only obtaining more precise
measurements is not solving the major issue. In particular, the

differences in ratings are largely driven not by imprecise anno-
tation of boundaries but rather reflect individual differences
in how people perceive images and what task they think they
need to do. In other words, there is no ground truth to nat-
ural images because, as we have repeatedly pointed out in this
paper, perception (and thus the definition of objects) is observer-
and task-dependent. Another pertinent example to illustrate this
point are images that contain occlusions (Figure 8A, right): What
sense does it make to ask about the ground truth if it could be
anything behind this occlusion, and we will never be able to tell
from the incomplete data in the image? It only makes sense to ask
what it looks like to a particular observer, so by forcing models
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to match the “ground truth,” we may in fact be pushing them to
solve the wrong problem.

Similarly, raters are subject to their semantic knowledge. A
human figure in a yellow skirt (Figure 8B) might be annotated
as a human figure rather a body and a skirt separately. But for
a model lacking extensive semantic knowledge (or statistical co-
occurrences of higher-level entities), there is no reason why that
yellow blob that happens to be a skirt could not be an occluder,
unrelated to the human (like a flying broomstick). Regardless of
whether or not the model combines the two into a single object,
it does not mean that the model performed an incorrect initial
segmentation. Thus, one needs to be very careful when defining
what a correct segmentation is for a given model. A ground truth
for one model might not be a ground truth for another.

Perhaps due to the lack of the ground truth, object local-
ization is usually treated as accurate if at least 50% of the box
containing the object overlaps with the box proposed by the
model (Russakovsky et al., 2013). While finding the bounding
box can often provide a good first guess of an object’s location,
as discussed in Section “Feature Interpolation,” it is clear that
this measure is far from the explicit human knowledge of the
precise boundary and location of an object (Figure 8C). As a
result, a model that is performing well according to this bench-
mark might be doing so in a completely different way than we
expect or want. For example, an interesting study by Landecker
et al. (2013) attempted to track down which parts of an image
end up being most important for classification in hierarchical
networks. Curiously, they found that sometimes object classifi-
cation decision was based on completely irrelevant information,
such as a background whose statistics happened to match certain
object characteristics (Figure 8D). Szegedy et al. (2013) provided
another striking example where they showed that in a standard
deep learning setup for every image it was possible to construct
another perceptually indistinguishable image that would never-
theless be categorized incorrectly by the same network. Similarly,
analyzing top-performing models in the Image Net Large Scale
Visual Recognition Challenge 2012, Russakovsky et al. (2013)
observed that while such models tend to provide rather accu-
rate locations of detected objects, their performance deteriorates
significantly with more objects or clutter. If object shapes were
explicitly represented, clutter would play a much smaller role in
localization errors. Finally, Torralba and Efros (2011) showed that
models trained on one dataset often perform poorly on another
dataset for the same categories of objects. What these models are
learning then remains rather questionable. (However, note that
there are also examples of models that are capable of generalizing
across datasets; see Razavian et al., 2014.)

Finally, a model’s output is extremely context dependent. For
example, imagine that you are presented with a screen with one
stimulus at a top and three below, as in Figure 8E, left. You are
asked to indicate which item at the bottom matches best the one
at the top. Most people would probably choose “Q.” But now
imagine the stimuli were slightly changed (Figure 8E, right). Most
people would now go for “X.” But how would a model know
that? It should somehow take it into account that the colors of
“O” and “X” match while “T” and “Q” have some other colors
and it should also know that color is more important to the

visual system than shape. In other words, it needs a lot of basic
knowledge, or basic reasoning skills, that are arguably even harder
to build in the system than vision itself.

To avoid some of the listed problems, we suggest using artifi-
cially generated scenes, such as the one in Figure 4. They can be
rendered to contain many difficult features that are abundant in
natural images, including shadows, occlusions, clutter, and realis-
tic textures. However, unlike natural images, such scenes do have
a well-defined ground truth because they are rendered from three
dimensional models. Moreover, since they lack known objects, a
good model should be completely capable of dividing an image
into surfaces all on its own with little or no mistakes. If the model
fails, it is a clear indication that intermediate representations are
not being constructed properly yet.

Another possibility to evaluate model’s performance is to use
the extracted statistics to synthesize new images. This approach
was taken by Portilla and Simoncelli (2000) who convincingly
showed that their texture synthesis model was accurate by pre-
senting an original texture and synthetically generated ones using
the computed statistics. Arguably, such approach would be much
trickier to implement for a synthesis of objects (Portilla and
Simoncelli’s procedure fails to produce coherent objects) but
then the model’s performance would be more directly observ-
able and would point to issues where the algorithm needs an
improvement.

LIMITATIONS AND CONCLUSION
In this paper, we provided a synthesis of the classical works in psy-
chology and recent advances in visual neuroscience and computer
vision into a single unified framework of mid-level computations.
We hypothesized that two basic mechanisms, namely, similarity
estimation and pooling, implemented hierarchically and reiter-
ated via recurrent processing, appear to be sufficient to account
for the computational goals of mid-level vision and the available
empirical data.

Admittedly, many details in the proposed framework remain
speculative at this point. While we provided the sketch of each
processing stage (including the initial feature extraction, junction
and curvature computation, region growing, border-ownership
assignment, and figure-ground organization), it remains to be
seen to what extent these computations are robust in natural
image processing. Similarly, while the framework can flexibly
operate in various feature spaces, we do not propose which fea-
tures in particular should be included and how different cues
could be combined. Learning the weights of these cues is crucial
if we want the proposed framework to apply for real images. One
possibility is that the proposed computations can be implemented
in the standard deep learning networks (by replacing non-
linearity and normalization steps with similarity estimation, and
also performing feature inference instead of a simple filtering).

Another possibility, given that, unlike deep networks, the pro-
posed architecture does not require semantic knowledge to be
trained, observing certain feature co-occurrences (see Geisler,
2008, for a review) would be a simpler way to learn and adjust
these weights. Even more powerful cues would be available from
dynamic or stereo-defined inputs, given their tremendous role in
bootstrapping the visual system (Ostrovsky et al., 2006, 2009)
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Furthermore, we restricted the scope of our discussions to the
construction of the initial figure-ground organization briefly after
stimulus onset. This choice has been motivated by our interest
to advance the idea that image segmentation and figure-ground
organization might be rapid, nearly feedforward computations.
However, recurrent processing loops are undoubtedly necessary
to improve the constructed surfaces and meet task demands. We
considered several alternatives for such computations in Section
“Evaluating Performance,” but the details of such top-down
refinement remain to be worked out.

More than anything, this paper is our manifesto on the
importance of intermediate computations. We are calling for a
reconsideration of the role of mid-level vision and propose that
implementing several basic mechanisms might provide an signif-
icant step forward in understanding the functioning of primate
visual system.
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