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We consider neurons with large dendritic trees that are weakly excitable in the sense
that back propagating action potentials are severly attenuated as they travel from the
small, strongly excitable, spike initiation zone. In previous work we have shown that the
computational size of weakly excitable cell models may be reduced by two or more orders
of magnitude, and that the size of strongly excitable models may be reduced by at least
one order of magnitude, without sacrificing the spatio–temporal nature of its inputs (in the
sense we reproduce the cell’s precise mapping of inputs to outputs). We combine the
best of these two strategies via a predictor-corrector decomposition scheme and achieve
a drastically reduced highly accurate model of a caricature of the neuron responsible for
collision detection in the locust.
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1. INTRODUCTION
Since Hodgkin and Huxley the neuroscience community has
built mathematical models of cells, junctions and circuits as
means to both synthesize existing knowledge and to drive fur-
ther experiments. The complexity of both individual neurons
and the networks in which they function has posed serious chal-
lenges to those in search of minimal models. The goal of neuronal
model reduction is to arrive at a compact description of the
cell’s “function” and an efficient means of computing its response
to physiological stimuli. This is typically accomplished by dis-
covering a smaller equivalent dynamical system and discerning
from this a smaller equivalent electrical circuit. See Brunel et al.
(2014), Jadi et al. (2014) and Hedrick and Cox (2014) for recent
surveys.

We continue our focus, on reduced single cell models that
preserve the spatio-temporal structure of their inputs, by pro-
viding a detailed synthesis of the active reduction strategy of
Kellems et al. (2010) with the quasi-active reduction strategy
of Hedrick and Cox (2013). The synthesis is achieved via an
elegant method of Rempe and Chopp (2006) for decoupling
portions of complex cells and is applied to a caricature of the
Lobula Giant Movement Detector (LGMD), the neuron, Peron
et al. (2009), responsible for collision detection in the locust.
The LGMD has a large, non-spiking dendritic tree that inte-
grates visual input in a retinotopic fashion and funnels this
signal to a well defined Spike Initiation Zone (SIZ). Although
the structural morphology of the LGMD, and its inputs, has
been carefully mapped it is not yet understood what distribu-
tion of active and passive conductances permits the cell to discern
threatening from, seemingly similar, innocuous visual stimuli. It
is hoped that a reduced model will constrain the large param-
eter space and accelerate the search through this space, and
that it will lead to a compact description of the complex task
of collision detection as implemented by the full LGMD. For
a thorough investigation of the notion of weak excitability in

the context of hippocampal pryamidal cells see Golding et al.
(2001).

We build and test a detailed (879 compartments) model of the
LGMD in §2.1, decouple its branches in §2.2, reduce its active
branch in §2.3 and then its quasi-active branches in §2.4. We
recouple these two small (3 dimensional) systems in §2.5 and in
§3 demonstrate that the drastically reduced system retains the full
integrative qualities of the original 879-dimensional model while
running 20 times faster.

2. MATERIALS AND METHODS
The caricature of the LGMD neuron raised by Peron et al. (2009)
is the rake depicted in Figure 1A. We have numbered its 22
branches and marked its SIZ, in black, near the center of the han-
dle (branch 21) and the joint, in red, where the deck (branch
22) meets the handle. We have chosen a compartment (spatial
step) size of dxj = 10 μm and so arrive at a base system with 879
compartments. These are illustrated in Figure 1A and their spa-
tial dimensions are best seen in Figure 1B. We distribute standard
sodium, potassium and chloride channels throughout the rake in
such a fashion that the tines, branches 1 through 20, weakly inte-
grate synaptic input, funnel it to the deck which then delivers it
via the joint to a strongly excitable handle.

After specifying the full model we decompose it via a
predictor-corrector scheme and then apply distinct reduction
strategies to the strong and weak parts. Throughout we have used
a time step of dt = 0.005 ms.

2.1. THE FULL MODEL
With regard to the rake depicted in Figure 1A, we suppose that
the radius of the jth branch is aj = aj(x), where x denotes distance
along the branch, and that its associated transmembrane poten-
tial is vj = vj(x, t). If the branch contains sodium, potassium and
chloride ion channels and is subject to direct current stimulation
then Kirchhoff ’s current law reads
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Cm∂tvj = 1

2ajRa
∂x(a2

j ∂xvj) + Istim,j/(2πaj)

− gNa,jm
3
j hj(vj − ENa) − gK,jn

4
j (vj − EK )

− gCl,j(vj − ECl)

∂tmj = (m∞(vj) − mj)/τm(vj), (1)

where similar gating equations hold for hj and nj. In addi-
tion, we solve Equation 1 subject to sealed ends, current bal-
ance at branch points and initial conditions vj(x, 0) = vj(x) and
wj(x, 0) = w∞(vj(x)) where vj(x) is the associated rest potential,
obtained by solving

(a2
j (x)v′

j(x))′ = 2ajRa

{
gNa,j (x)m3∞(vj(x))h∞(vj(x))(vj(x) − ENa)

+ gK,j(x)n4∞(vj(x))(vj(x) − EK )

+ gCl,j(x)(vj(x) − ECl)

}
, (2)

again subject to sealed ends and current balance at branch points.
We concentrate throughout on a single set of parameters. The
choice

Cm = 1.5 μF/cm2, Ra = 0.05 k� cm, aj = 5 μm

ENa = 56, EK = −77, ECl = −68 mV

gNa,j = 2 gK,j = 3.6, gCl,j = 0.9 mS/cm2 (3)

will render the tines, branches 1–20, and the deck, branch 22,
weakly excitable, while setting

gNa,21(x) =
{

216 mS/cm2, 200 ≤ x < 260 μm

12 mS/cm2, otherwise.

and gCl,21 = 0.3 mS/cm2 (4)

will make the handle, branch 21, strongly excitable. We have illus-
trated the resulting rest potential, v, in Figure 1B. We see that the
non-uniformity in Equation 4 leads to a depolarized handle and a
non-uniform rest potential throughout the remainder of the rake.

We will solve this full system, Equation 1, for two classes of
inputs. For the first class, deemed coherent, we simulataneously
inject 4 nano-Amperes of current at the midpoint of each tine for
nine tenths of a millisecond. In symbols

Istim,j(x, t) = 0.004δ(x − 200)χ[0.1,1](t), 1 ≤ j ≤ 20, (5)

where χ[a,b](t) equals one if a ≤ t ≤ b and equals zero otherwise.
For the second class, deemed random, we inject 4 nano-Amperes
of current at a random location, and at a random time, on each
tine for nine tenths of a millisecond. In symbols

Istim,j(x, t) = 0.004δ(x − xj)χ[tj,tj + 0.9](t), 1 ≤ j ≤ 20, (6)

where the mean of xj is 200 μm and the mean of tj is 5 ms.
In response to coherent stimulus, Equation 5, we see in

Figure 1C steady and significant (20 mV) depolarization at the
joint (red trace) that is sufficient to drive the handle to spike (blue

FIGURE 1 | A strong-weak neuron. (A) The layout of the rake with its 22
numbered branches, divided into compartments of length dxj = 10 μm. (B)

The rest potential, v , obtained by solving Equation 2 subject to the
parameters specified in Equations 3 and 4. (C) The response of the full

model, Equation 1, at the SIZ (left end of black region in A) and joint (red
square in A) to the coherent synaptic input of Equation 5. (D) The response
of the full model, Equation 1, at the SIZ (left end of black region in A) and joint
(red square in A) to the random synaptic input of Equation 6.
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trace at SIZ). This spike travels down the handle and leads to the
second, smaller, depolarization at the joint. The random stimulus,
Equation 6, delivers the same amount of current to the rake but
spread over space and time. The response at the joint, red trace in
Figure 1D, indicate ≈3 mV depolarizations to individual current
steps. These are not coherent enough to accumulate in a fashion
sufficient to drive the handle to spike. Instead the response at the
SIZ, blue trace in Figure 1D, is a filtered attenuated version of the
joint trace.

2.2. BRANCH DECOMPOSITION
Rempe and Chopp (2006) introduced a rational scheme for
decomposing large cells into smaller (typically single branch)
regions. They were motivated by the fact that as an action
potential travels through a cell, branches on either side of the
action potential are relatively quiet and so need not be simu-
lated/computed. As such they devised branch-wise activity mea-
sures, in both Rempe and Chopp (2006) and Rempe et al. (2008),
that allowed them to build a spatially adaptive numerical scheme
that focused resources solely on active branches. One significant
advantage of their decomposition is that it permits simultane-
ous/parallel updating of the active branches. This feature has been
successfully exploited by Kozloski and Wagner (2011). Our use
of Rempe and Chopp (2006) is however, quite different. For we
use their scheme to partition the cell into strong and weak zones
that may then be reduced by strategies specific to the dynamics
consistent with such zones.

Rempe and Chopp (2006) decompose the cell by giving spe-
cial attention to those compartments, deemed nodes, at which
branches meet. We have illustrated this decomposition on our
rake in Figure 2. This spatial decomposition is only useful when
coupled with a scheme for properly updating the components in
time. Rempe and Chopp (2006) sketch a method that

(1) uses the present branch and node potentials to predict the
future node potentials,

(2) updates the branch potentials based on the predicted node
potentials,

(3) corrects the node potentials based on the updated branch
potentials.

As the success of our method hinges on this predictor-corrector
scheme we present it here in some detail.

We distinguish between branches 1 through 21, which are adja-
cent to a single node, and branch 22, which is adjacent to many.
Given the branch, vj(k, t), and node, wj(t), potentials and gating
variables at time t we advance the gating variables via the explicit
in v implicit in m step

mj(k, t + dt) = mj(k, t)τm(vj(k, t)) + m∞(vj(k, t))dt

dt + τm(vj(k, t))
,

1 ≤ k ≤ 39

mj(40, t + dt) = mj(40, t)τm(wj(t)) + m∞(wj(t))dt

dt + τm(wj(t))
,

1 ≤ j ≤ 21,

(7)

FIGURE 2 | Branch compartment and node labeling to facilitate

decoupling via a predictor-corrector scheme. The nodes are colored blue
and their potentials are w1 through w21. They occur at the ends of 21
respective branches. The potential in compartment k of branch j is denoted
vj (k).

and collect these into

�j(k, t + dt) = gNa,j(k)m3
j (k, t + dt)hj(k, t + dt)

+gK,j(k)n4
j (k, t + dt) + gCl,j(k)

γj(k, t + dt) = gNa,j(k)m3
j (k, t + dt)hj(k, t + dt)ENa

+gK,j(k)n4
j (k, t + dt)EK + gCl,j(k)ECl.

We next use these to take a backward Euler step of the associated
voltage equation, Equation 1,

Gj(k − )vj(k − 1, t + dt) − (Gj(k − ) + Gj(k + ))

vj(k, t + dt) + Gj(k + )vj(k + 1, t + dt) =
μ(vj(k, t + dt) − vj(k, t)) + �j(k, t + dt)vj(k, t + dt)

− γj(k, t + dt) + Istim,j(k, t + dt)/Aj(k)

where

Gj(k ± ) = aj(k)

Radx2
j

a2
j (k ± 1)

a2
j (k) + a2

j (k ± 1)
, μ = Cm/dt

and Aj(k) = 2πaj(k)dxj.

While at the ends, Gj(1 − ) = 0 and

Gj(40 − ) ≡ G∗
j− = aj(40)

Radx2
j

a2
j (39)

a2
j (40) + a2

j (39)

Gj(40 + ) ≡ G∗
j+ = aj(40)

2Radxj

dx2
22

2a2
j (40)dxj + dx2

22a22(pj)

where pj =
{

2j − 1, 1 ≤ j ≤ 20

20, j = 21.
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With these we may now make sense of the node equation

G∗
j−vj(39, t + dt)−(G∗

j− + G∗
j+)

wj(t + dt) + G∗
j+v22(pj, t + dt) =

μ(wj(t + dt) − wj(t)) + �j(40, t + dt)

wj(t + dt) − γj(40, t + dt) (8)

Following Rempe and Chopp (2006) we decouple the node and
branch equations in time by making a crude prediction of the
nodal potentials by replacing the backward Euler step Equation 8
with the forward Euler step

G∗
j−vj(39, t)−(G∗

j− + G∗
j+)wj(t) + G∗

j+v22(pj, t) =
μ(w∗

j (t)−wj(t)) + �j(40, t + dt)w∗
j (t) − γj(40, t + dt) (9)

where w∗
j (t) denotes our crude prediction of wj(t + dt). We note

that Equation 9 may be solved explicitly for

w∗
j (t) =

μwj(t) + γ ∗
j (t + dt) + G∗

j−vj(39, t)

−(G∗
j− + G∗

j+)wj(t) + G∗
j+v22(pj, t)

μ + �∗
j (t + dt)

,
(10)

where �∗
j (t + dt) = �j(40, t + dt) and γ ∗

j (t + dt) =
γj(40, t + dt). We then use these predicted nodal potentials
to drive the branch updates via

(μI + diag(�j(1 : 39, t + dt)) − Bj)vj( :, t + dt) =
μvj( :, t) + γj(1 : 39, t + dt) + Istim,j(:, t + dt) + cj(:, t),

(11)

where cj is the node branch coupling vector and Bj is the branch
tridiagonal matrix. For the branches adjacent to a single node,
j < 22, we find that cj is zero at each compartment except for

cj(39, t) = G∗
j−w∗

j (t), (12)

while Bj is the tridiagonal matrix

Bj(1, 1 : 2) = [−Gj(1 +) Gj(1 +)]
Bj(k, k − 1 : k + 1) = [Gj(k −) − (Gj(k −) + Gj(k +))

Gj(k +)], 1 < k < 39,

Bj(39, 38 : 39) = [Gj(39 −) − (Gj(39 −)

+Gj(39 + ))].

Turning to the deck, B22 is the tridiagonal matrix

B22(1, 1 : 2) = [−(G22(1 +) + G∗
1+) Gj(1 +)]

B22(k, k − 1 : k + 1) = [G22(k −) − (G22(k −)

+G22(k +)) G22(k +)],

1 < k < 39, k �= pj

B22(k, k − 1 : k + 1) = [G22(k −) − (G22(k −)

+G22(k +) + G∗
j+) G22(k +)],

1 < k < 39, k = pj

B22(39, 38 : 39) = [G22(39 −) − (G22(39 −) + G∗
20+)].

This differs from the previous Bj in the sense that it has no free
ends (hence 2 terms on the end diagonals) and meets the 20
tines (and hence three terms on those diagonals). The associated
coupling term is then zero except at

c22(pj, t) = G∗
j+w∗

j (t), j = 1, . . . , 21. (13)

Upon updating all branches we may then return to correcting the
nodal potentials, now via

G∗
j−vj(39, t + dt)−(G∗

j− + G∗
j+)

wj(t + dt) + G∗
j+vp(pj, t + dt) =

μ(wj(t + dt) − w∗
j (t)) + �∗

j (t + dt)

wj(t + dt) − γ ∗
j (t + dt) (14)

which we solve explicitly for

wj(t + dt) =

μwj(t) + γ ∗
j (t + dt) + G∗

j−vj(39, t + dt)

+G∗
j+vp(pj, t + dt)

μ + �∗
j (t + dt) + G∗

j− + G∗
j+

.
(15)

With this we may now offer a precise specification of the
Predictor-Corrector Algorithm

[1] Given the branch potentials, node potentials and gating
variables at time t update the gating variables per Equation 7.

[2] Predict the new values of the node potentials via Equation 10.
[3] Update the branch potentials via Equation 11.
[4] Correct the node potentials via Equation 15. Return to

step [1].

2.3. REDUCTION OF THE STRONG PART
Following Kellems et al. (2010) we reduce the dynamics in
the strong zone, (v21, m21, h21, n21) by the method of Proper
Orthogonal Decomposition by collecting snapshots of the mem-
brane potential and associated active current

Iact(t) ≡ gNa,21.m
3
21(t).h21(t).(v21(t) − ENa)

+gK,21.n
4
21(t).(v21(t) − EK )

in

V = [v21(0) v21(dt) · · · v21(Tfin)] and
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F = [Iact(0) Iact(dt) · · · Iact(Tfin)]
under a stimulus regime that generates a spike on branch 21.
The major features of spike generation and propagation are
purportedly captured in the first few singular vectors of V
and F. Accordingly we compute the respective singular value
decompositions

V = U
AT and F = W�CT, (16)

where the matrices of singular vectors, U, A, W and C, are
orthonormal and the matrices of singular values, 
 and �, are
diagonal – and ordered in a decreasing manner.

Our first stab at reduction is to suppose that v21 is well
approximated by the first κ columns of U , i.e.,

v21(t) ≈ Uκ v̂21(t)

where Uκ denotes the first κ columns of U (from Equation 16)
and so the reduced state v̂21(t) ∈ R

κ . On placing this guess in
the (spatially discretized version) of Equation 1 we find that the
reduced state, v̂21, must obey

Cmv̂′
21 = UT

κ B21Uκ v̂21 − UT
κ {gNa,21.m

3
21.h21.(Uκ v̂21 − ENa)

+ gK,21.n
4
21.(Uκ v̂21 − EK ) + gCl,21(Uκ v̂21 − ECl) − c21}

m′
21 = (m∞(Uκ v̂21) − m21)./τm(Uκ v̂21). (17)

This provides a clean reduction of the linear spatial coupling
between compartments, in the sense that

B̃21 ≡ UT
κ B21Uκ

is merely κ-by-κ . The non-linearities however are still computed
on the full dimensional vector Uκ v̂21. To address this we distil
from Wκ , the first κ columns of W (from Equation 16), κ places
along the handle at which it suffices to evaluate the non-linear
gating functionals. These places are selected by Discrete Empirical
Interpolation as those places at which the singular vectors of F
have the greatest content. In particular,

z1 =argmax|Wκ ( :, 1)|
P = ez1

for i = 2 : κ

s = (PTWκ ( :, 1 : i − 1))\PTWκ ( :, i)

r = Wκ ( :, i) − Wκ ( :, 1 : i − 1)s

zi = argmax|r|
P = [P ezi ]

end

where ek denotes the kth column of the identity matrix on
R

39. With these κ places, z = [z1, . . . , zκ ] and their associated
permutation matrix P we reduce the gating variables via

m21(t) ≈ Pm̂21(t). h21(t) ≈ Pĥ21(t) and n21(t) ≈ Pn̂21(t)

and so bring Equation 17 to

Cmv̂′
21 = B̃21v̂21 − R{gNa(z).m̂3

21.ĥ21.(Zv̂21 − ENa)

+ gK (z).n̂4
21.(Zv̂21 − EK )} − UT

κ gCl,21(Uκ v̂21 − ECl)

+ UT
κ c21

m̂′
21 = (m∞(Zv̂21) − m̂21)./τm(Zv̂21) (18)

where gNa(z) denotes the evaluation of gNa,21 at the compart-
ments indexed by z. As both

R = UT
κ Wκ (PTWκ )−1 and Z = PTUκ

are κ-by-κ we have arrived at a κ-dimesional reduction of the
original 39-dimensional active handle. We solve Equation 18,
subject to the initial conditions v̂21( :, 0) = UT

κ v and m̂21( :, 0) =
m∞(Zv̂21( :, 0)), via the standard explicit-implicit Euler method

m̂21(i, t + dt) =
m∞((Zv̂21( :, t))i)dt

+ τm((Zv̂21( :, t))i)m̂21(i, t)

dt + τm((Zv̂21( :, t))i)
(μI − B̃21 + �21)

v̂21( :, t + dt) = μv̂21( :, t) + γ21 + UT
κ c21(t)

(19)

where

�21 = R diag(gNa(z).m̂3
21( :, t + dt).ĥ21( :, t + dt)

+ gK (z).n̂4
21( :, t + dt))Z + UT

κ diag(gCl,21)Uκ

γ21 = R (gNa(z).m̂3
21( :, t + dt).ĥ21( :, t + dt)ENa

+ gK (z).n̂4
21( :, t + dt)EK ) + EClU

T
κ gCl,21

The c21 term in Equation 19 remains the contribution from the
nodal potential, w21. Before specifying this we discuss how to
reduce the remainder of the branches.

2.4. REDUCTION OF THE WEAK PART
In order to perform a single reduction on the remaining branches
it is most convenient to gather the variables in the 800 tine com-
partments and 39 deck compartments into four long vectors
v, m, h and n. The first step is then to linearize the full sys-
tem, Equation 1, about its rest state. More precisely, assuming the
stimulus to be order ε we develop the voltage and gating variables

v(x, t) = v(x) + εṽ(x, t) + O(ε2)

and m(x, t) = m∞(v(x)) + εm̃(x, t) + O(ε2). (20)

On substituting Equation 20 into Equation 1 and identifying
terms of order ε, we find that the so-called quasi-active variables,
ṽ, m̃, h̃ and ñ must solve

Cm∂t ṽ = 1

2Raa
∂x(a2∂xṽ) − (

gNa,jm
3∞(v)h∞(v) + gK,jn

4∞(v)

+ gCl,j )ṽ − 3gNa,jm
2∞(v)h∞(v)(v − ENa)m̃
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− gNa,jm
3∞(v)(v − ENa)h̃ − 4gK,jn

3∞(v)(v − EK )ñ

+ Istim/(2πa)

∂t m̃ = (m′∞(v) − m̃)/τm(v) (21)

subject to current balance where the tines meet the deck and to the
initial conditions ṽ(x, 0) = m̃(x, 0) = 0. On stacking the quasi-
active variables in

y = [m̃; h̃; ñ; ṽ]

and the stimuli and coupling vector in

u = [Istim,1; Istim,2; · · · ; Istim,20; c22] (22)

we may write Equation 21 as an (839 · 4)–dimensional system
for y,

y′(t) = Qy(t) + Bu(t), y(0) = 0 (23)

where the non-zero blocks of Q and B are

Q =

⎛
⎜⎜⎝

Dm,1 Dm,2

Dh,1 Dh,2

Dn,1 Dn,2

Dv,1 Dv,2 Dv,3 H

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

I/Cm

⎞
⎟⎟⎠ .

See §9.4 of Gabbiani and Cox (2010) for the diagonal D matrices
and the Hines matrix, H. Given the geometry of the rake we are
really only interested in the potential at the joint (recall the red
square in Figure 1A). As this is compartment number 820 in the
natural ordering, out of the large system Equation 23 we ask only
for a good approximation to the joint potential

J(t) = eT
839·3+820y,

where en is the unit vector with a one in element n. Following
Hedrick and Cox (2013) we suppose y ≈ X ŷ and choose an X ,
with only 4κ columns, that returns an accurate approximation
of J. This is done by matching the first κ moments of the full
and reduced transfer functions, or, equivalently, via the Arnoldi
scheme

x = H\e820

X = x/‖x‖
for i = 1 : κ − 1

x = H\X( :, i)

for j = 1 : i

x = x − (X( :, j)Tx)X( :, j)

end

X = [X x/‖x‖]
end (24)

where, for simplicity, we have chosen our reduced dimension, κ ,
to agree with that used to reduce the cell’s strong zone. We then
arrive at the full reducer by tiling this X, i.e.,

X =

⎛
⎜⎜⎝

X
X

X
X

⎞
⎟⎟⎠ . (25)

On inserting y = X ŷ into Equation 23 and using X TX = I we
find that ŷ must obeys

ŷ′(t) = X TQX ŷ(t) + X TBu(t), ŷ(0) = 0.

This we solve by backward Euler

(I − dtX TQX )ŷ(t + dt) = ŷ(t) + dtX TBu(t) (26)

and then read off the approximate joint potential via Ĵ(t) =
eT

839·3+820X ŷ(t).

2.5. THE REDUCED STRONG-WEAK NEURON
It remains only to specify the predictor and corrector updates of
the single nodal potential, w21, and to clarify their roles in the
coupling vector c21 appearing in the strong reduction, Equation
19, and the coupling vector c22 in the weak reduction, Equation
26, via its presence in the u of Equation 22.

Regarding the expressions for w∗
21 and w21 in Equation 10

and 15 we note that the required adjacent potentials are readily
derived from our independent reductions,

v21(39, t) ≈ Uκ (39, : )v̂(t) and v22(20, t) ≈ v22(20) + Ĵ(t).

The coupling vector c21 is all zero except c21(39, t) = G∗
21−w∗

21(t),
while the coupling vector c22 is all zero except c22(20, t) =
G∗

21+(w∗
21(t) − v22(20)).

3. RESULTS
We present in Figure 3 structural components of the strong (A)
and weak (B) reductions and in panels (C) and (D) contrast the
responses of the full and reduced models, at SIZ and Joint, to the
respective coherent and random stimuli used in Figure 1.

These results were robust to changes in the stimuli that gen-
erated the snapshots and to changes in the random stimuli,
Equation 6. The reduced system consistently ran in less than
1/20th of the time required by the original system. With κ =
3 the Discrete Empirical Interpolation method identified z =
[1, 21, 26] as the compartments along the handle at which to
evaluate the gating variables. On comparison to the sodium
channel distribution in Equation 4 we note that compartments
21 and 26 are the extent of the SIZ. Regarding Figure 3B we
interpret the columns of X as the dendritic filter, seen at the
joint, of the true inputs. For columns of X and biophysical
interpretations of the elements of X TQX see Hedrick and Cox
(2013). The errors reported in Figures 3C,D are quite small
relative to the original signals in Figures 1C,D and, regarding
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FIGURE 3 | The strong-weak reduction of the rake. (A) The singular
values of the voltage (V) and active current (F) snapshots. We see that
both have decreased by two orders of magnitude by their third index. (B)

An illustration of the three columns of the reducer, X , computed in
Equation 24, indicating how the reduced system processes the true

inputs. (C) Contrasting the response of the full (solid) and reduced
(κ = 3) models at the SIZ (black) and at the Joint (red) to identical
coherent stimuli. (D) Contrasting the response of the full (solid) and
reduced (κ = 3) models at the SIZ (black) and at the Joint (red) to
identical random stimuli.

FIGURE 4 | A shematic of the reduced rake. The true inputs, ui , into the
800 tine compartments are weighted by the columns of X and then
summed as they enter the 3 linear nodes, Li , of the reduced weak zone.
The linear nodes are fully coupled and a linear combination of their
responses contributes to the joint potential, vJ . The 3 fully coupled
non-linear nodes, Ni , of the reduced strong zone contribute to both vJ and
the SIZ potential vS .

the timing of critical SIZ events, produce negligible (< 0.1 ms)
errors. This then permits us to replace the complex 879 com-
partment model of Figure 1A with the 8 compartment model of
Figure 4.

4. DISCUSSION
We have developed and demonstrated a strategy for the system-
atic reduction of models of strong-weak neurons. In particular,
we have replaced a sensory neuron of dimension 879 with a
3-dimensional strong system coupled, via a single node, to a 3-
dimensional weak system, Figure 4, and found negligible absolute
differences in their voltage responses to complex spatio-temporal
inputs while running 20 times faster than the original. We have
achieved the strong-weak distinction through significant non-
uniformity in the density of sodium channels. This was merely
a matter of convenience. The effect can be achieved, see Golding
et al. (2001) and Migliore and Shepherd (2002), by a large class of
non-uniformities.

The critical assumption permitting our significant reduction
is that the bulk of the neuron is weakly excitable - and this means
that its response is well approximated by a quasi-active model.
The delineation of such systems is of course wrapped up in the
equally vexing questions of spike initiation and propagation. For
neurons whose dendrites are not sufficiently weak to meet our
definition we may apply our strong reduction to each branch and
then invoke the activity measures of Rempe and Chopp (2006)
and Rempe et al. (2008) to update these branches only when
necessary. Regarding scope, our methods are equally suited to
synaptic inputs modeled as conductance changes onto trees with
arbitrary branching patterns and arbitrary non-uniform chan-
nel distributions, see Kellems et al. (2010) and Hedrick and Cox
(2013), as well as to inputs via gap junctions, see Hedrick and
Cox (2014). These methods can also be readily adapted to incor-
porate non-uniform distributions of spines and NMDA receptors
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as well as interaction with the cell’s calcium handling machinery
of channels, buffers, receptors and pumps.
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