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Temporal variability of neuronal response characteristics during sensory stimulation
is a ubiquitous phenomenon that may reflect processes such as stimulus-driven
adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge
to functional characterization methods such as the receptive field, since these often
assume stationarity. We propose a novel method for estimation of sensory neurons’
receptive fields that extends the classic static linear receptive field model to the
time-varying case. Here, the long-term estimate of the static receptive field serves as
the mean of a probabilistic prior distribution from which the short-term temporally localized
receptive field may deviate stochastically with time-varying standard deviation. The derived
corresponding generalized linear model permits robust characterization of temporal
variability in receptive field structure also for highly non-Gaussian stimulus ensembles.
We computed and analyzed short-term auditory spectro-temporal receptive field (STRF)
estimates with characteristic temporal resolution 5–30 s based on model simulations
and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil
auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping
frequency-modulated tones. Results demonstrate identification of time-varying STRFs,
with obtained predictive model likelihoods exceeding those from baseline static STRF
estimation. Quantitative characterization of STRF variability reveals a higher degree
thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant
deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize
that the observed variability more likely reflects spontaneous or state-dependent internal
fluctuations that interact with stimulus-induced processing, rather than experimental or
stimulus design.

Keywords: sensory coding, receptive field, inferior colliculus, auditory cortex, time-varying, zero-mean prior,

generalized linear model

1. INTRODUCTION
Neurons in the auditory system must encode information about
sensory stimuli exhibiting a wide range of statistical properties.
Recent evidence suggests complex time-varying encoding mech-
anisms that facilitate this task, including adaptation to stimulus
statistics in terms of regularity (Ulanovsky et al., 2003, 2004;
Malmierca et al., 2009; Netser et al., 2011), (spectro-temporal)
contrast (Escabi et al., 2003; Rabinowitz et al., 2011, 2012),
sound level (Dean et al., 2005; Lesica and Grothe, 2008a), task-
related plasticity (Fritz et al., 2003), learning-induced plasticity
(Weinberger, 1993; Ohl and Scheich, 2005), or attentive mod-
ulation of the response (Ding and Simon, 2012; Mesgarani and
Chang, 2012). These processes have been observed on time scales
ranging from milliseconds to hours. An understanding of the
underlying mechanisms is essential and requires techniques that
allow robust characterization of neural coding, in particular on
short time intervals.

The receptive field (RF) constitutes the classic, functional
model relating sensory stimulus and evoked response of a neuron,

for reviews see (Schwartz et al., 2006; Wu et al., 2006; Sharpee,
2013). However, the RF is primarily a function of bottom-up
processing assuming the response to be unmodulated in the con-
sidered time interval, corresponding to estimation of a linear
time-invariant system. Temporal changes in RF structure have
been analyzed by producing RF estimates for different parts of an
experiment (Fritz et al., 2003; Sharpee et al., 2006), or by recur-
rent linear filtering (Brown et al., 2001; Stanley, 2002). Techniques
that exploit sparsity of RFs in a linear model have been developed
to achieve distinct RF estimates with a comparably small amounts
of data (Sahani and Linden, 2002; Machens et al., 2004; Park
and Pillow, 2011). The resulting estimators allow the investiga-
tion of processing on smaller time scales than standard estimators.
However, the representation of non-Gaussian stimuli in cortical
areas mediated by non-linear transformations may often preclude
application of these methods (David et al., 2004; Sharpee et al.,
2006; Christianson et al., 2008; Meyer et al., 2014).

Here, we propose a novel approach to studying time-varying
encoding mechanisms of sensory neurons. The focus is on
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neurons in the auditory system, which are commonly described
by the spectro-temporal receptive field (STRF), the most proba-
ble spectro-temporal stimulus pattern that generated a measured
spike response (Aertsen and Johannesma, 1981). Changes in
STRF structure, as compared to it’s static component, have been
found to be small in studies of sound level encoding (Lesica
and Grothe, 2008a), spectro-temporal contrast (Escabi et al.,
2003; Rabinowitz et al., 2011), naturalistic stimulus processing
in background noise (Lesica and Grothe, 2008b) and task-related
plasticity in auditory cortex (Fritz et al., 2003). The time-varying
“local” STRF, i.e., the STRF pattern best characterizing neuronal
encoding within a short time-interval of experimental data, may
therefore be represented as a superposition of it’s long-term aver-
age and a time-dependent deviation. The former, denoted here
as “static” STRF, is computed from the whole ensemble of avail-
able data, using methods that allow robust RF estimation for
stimulus ensembles with second- and even higher-order correla-
tions across stimulus dimensions (Paninski, 2004; Sharpee et al.,
2004; Truccolo et al., 2005; David et al., 2007; Calabrese et al.,
2011; Fitzgerald et al., 2011; Meyer et al., 2014). The superposi-
tion Ansatz, thus, reduces the problem of identifying the “local”
STRF to the problem of identifying temporally-localized devia-
tions from the long-term “static” STRF and the formulation of a
suitable statistical model.

A common technique in RF estimation is to bias RF esti-
mates toward solutions that are more probable a priori (Sahani
and Linden, 2002; David et al., 2007; Park and Pillow, 2011).
Sparsity is a special form of prior that biases RF parameters
toward zero, e.g., by assuming a zero-mean Gaussian distribution
of RF parameters (Machens et al., 2004). We adopt this technique
and formulate a prior that biases local STRF estimates toward
an a priori more probable STRF, specifically the static STRF esti-
mate obtained from a long stimulus sequence as described above.
For a given neuron, the static STRF prior is likely more infor-
mative than, e.g., a sparseness prior since RFs show comparably
small variation between different stimulus conditions (e.g., Fritz
et al., 2003; Sharpee et al., 2006). This prior is denoted “adap-
tive prior” because it allows the static RF estimate to adapt to
temporally localized structures in the data. The formulation in
terms of a prior allows us to incorporate the approach into linear
as well as non-linear models, e.g., the generalized linear model
[GLM, Nelder and Wedderburn (1972)], which allows RF estima-
tion under more general conditions than linear models (Paninski,
2004; Truccolo et al., 2005; Pillow et al., 2008).

We derive closed-form solutions for the linear case and show
that when the stimulus ensemble contains strong second-order
correlations, a combination of zero-mean and adaptive prior,
denote “mixed prior,” may improve local RF estimates signif-
icantly. Further, we combine adaptive and mixed priors with
a GLM. The resulting estimator allows conservative but robust
characterization of time-varying neural processing, even for
highly non-Gaussian stimuli like human speech that may lead
to highly biased STRF estimates for linear estimators. We also
apply the proposed approach to recordings from auditory mid-
brain and auditory cortex in anesthetized Mongolian gerbils. We
address the following questions. First, do neurons at different lev-
els in the auditory system perform time-invariant integration of

stimulus features when probed with a complex, dynamic stimu-
lus ensemble? Second, if so, does a time-varying model of sensory
feature integration provide a better description of neural pro-
cesses than a static model? Finally, if response characteristics of
neurons are time-dependent, do changes occur deterministically
or largely at random? Finding answers to these questions may
provide more insight into time-varying encoding of biologically
relevant information.

2. MATERIALS AND METHODS
2.1. NEURAL CODING MODEL
Characterizing a neuron’s response to sensory stimuli involves
presenting stimuli from a fluctuating stimulus ensemble and
recording the evoked response. To simplify matters, we assume
that the response has already been discretized in time bins of
duration �, and ri ∈ {0, 1} indicates whether or not a spike has
been observed in the ith time bin. The history of stimulus features
preceding the response in the ith time bin, e.g., intensity values
of an image patch or the spectro-temporal density of a sound, is
summarized in the vector si.

In a simplified model, we may assume that a neuron inte-
grates stimulus features in terms of a linear filter k, the receptive
field (RF), and the filtered stimulus, zi ≡ sT

i k, is transformed
into a neural response using a static, memoryless non-linearity f .
Such a cascade is known as linear-nonlinear (NL) model (Hunter
and Korenberg, 1986; Chichilnisky, 2001), and the probability of
observing a spike in time bin i is given by

p(spike|si) ∝ f (zi) . (1)

A binary spiking response may be obtained by an inhomogeneous
Poisson process that is modulated by p(spike|s) (Chichilnisky,
2001). Figure 1A illustrates the cascade model for the STRF.

Neural processing, in particular in cortical areas, has been
found to be adaptive, and a static RF may not be sufficient to
account for neural responses (Brown et al., 2001; Stanley, 2002;
Escabi et al., 2003; Sharpee et al., 2006; Rabinowitz et al., 2011;
Mease et al., 2013). A common approach is to estimate the
parameters of the model Equation (1) for different parts of the
data, assuming a short-term time-invariance approximation of
the system (Fritz et al., 2003; Sharpee et al., 2006). Low tempo-
ral resolution is associated with the approach since a sufficient
amount of data is needed to estimate the RF, thus adaptation that
occurs on a faster timescale may not be identified reliably. Here,
we propose an alternative approach that allows the linear RF in
Equation (1) to adapt to temporally localized structures in the
data according to the additive model

kt = k + �kt, (2)

where a temporally localized deviation �kt is superimposed on
the long-term static RF estimate k. We note that t indicates a time
interval (in contrast to a single observation) and kt is the “local
receptive field” (local RF) that is assumed static during this (brief)
time interval. Thus, each local RF kt characterizes the response to
a contiguous subset of the stimulus-response ensemble denoted
by {ri, si : i ∈ Nt}.
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FIGURE 1 | Estimation of time-varying spectro-temporal receptive field

(STRF) parameters in the linear-nonlinear model. (A) In the linear-nonlinear
model, it is assumed that stimulus examples, represented here by
spectro-temporal patches sampled from a speech spectrogram, are filtered
by a linear filter k, the STRF. The output of the linear stage is transformed by
a static non-linearity into a spike rate. In the generative model, a binary spike
response is obtained by a subsequent inhomogeneous Poisson process. (B)

A typical approach to infer the parameters of the model is the maximum a
posteriori (MAP) estimate. The MAP allows to incorporate prior information,
e.g., a prior that enforce sparseness by biasing STRF parameters toward zero
by assuming a zero-mean Gaussian distribution of STRF parameters k. In the
scenario of time-dependent neural processing, the MAP estimate obtained

using all data, which constitutes the most probable static solution, may in
turn be used as informative prior for a “local” (or time-dependent) MAP
estimate kt . Local evidence will result in deviations from the static STRF. (C)

Illustration of the relation between static STRF k (black arrow) and local STRF
kt (gray arrow) in two stimulus dimensions si and si + 1. In case the likelihood
(reddish contour lines) systematically deviates from the static prior (filled gray
contours and gray marginal distributions), the maximum of the MAP estimate
will be shifted by �kt resulting in a time-varying local STRF. The relatively flat
marginal distributions of the sparse (zero-mean) Gaussian prior (dashed lines)
indicate that the sparse solution would be dominated by the likelihood, which
may be difficult to estimate for small sample sizes. For visualization purposes,
the contour lines show likelihood and static prior on a logarithmic scale.

2.2. PRIOR-BASED LEARNING OF TIME-VARYING RECEPTIVE FIELD
PARAMETERS

Let us assume that we have estimated a static RF k for a neu-
ron. Even in case neural processing is time-varying, k constitutes
the most probable stimulus pattern to which the neuron is sensi-
tive across the whole stimulus-response sequence. Thus, k may be
considered the most likely a priori description of the neuron for
every part of the data. However, local evidence in the data may
result in systematic deviations from the static RF. If we assume
that small fluctuations are more probable than large fluctuations,
the relation between static RF and local RFs may be formulated
as prior over local RF parameters. This is outlined in Figure 1B.
Having no prior reason to favor either positive or negative devi-
ations, we use an isotropic multivariate Gaussian prior centered
around the static RF,

p(kt |k, σt) = N
(

kt |k, σ 2
t I

)
, (3)

with standard deviation σt and identity matrix I. The time index
indicates that σt may vary from part to part.

Figure 1C illustrates the relation between local deviation �kt

from the static RF and the prior on local RF parameters. If
the static RF k is in agreement with the local data given by
the likelihood, σt will be small and kt will be very close to k.
Otherwise, the prior distribution will be rather wide, allowing
stronger deviations from k. The estimate may become less reli-
able due to the higher dispersion of the prior distribution. We

will demonstrate that allowing local RF parameters to be either
adaptive or zero-mean may increase robustness in such situations.

The probabilistic formulation in terms of a prior allows to
apply the principle to a wide range of models that can be for-
mulated in the maximum a posteriori (MAP) framework. This
includes linear as well as non-linear models such as the GLM.
For a general form of the likelihood function, p(rt |St, kt), where
the matrix St contains all stimulus examples in part t and rt

the corresponding response values, the MAP estimate can be
written as

k̂t |k, σt = arg max
kt

p(rt |St, kt)p(kt |k, σt). (4)

where p(kt |k, σt) is the prior on kt and the MAP estimate is the
mode of the posterior. Thus, we use a highly informative prior on
the local RF to obtain a robust estimate of the maximum of the
posterior. As data size increases, the likelihood overwhelms the
prior and converges, similarly to the static estimator, toward the
maximum likelihood estimate.

2.3. THE LINEAR-GAUSSIAN CASE
If the response of a neuron may be described by a linear function,
the stimulus-response relation can be written as

ri = sT
i k + εi, εi ∝ N (0, σ 2), (5)
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where εi is a zero-mean Gaussian white noise (GWN) sample
with standard deviation σ . Here, r is assumed to be a
continuous variable, e.g., the average number of spikes for sev-
eral stimulus repetitions. For a complete measurement with N
stimulus-response pairs, the likelihood that the response r =
[r1, r2, r3, . . . , rN ] is generated by S = [s1, s2, s3, . . . , sN ]T and
the RF k is given by

p(r|S, k) = 1√
2πσ

exp

(
− 1

2σ 2

(
r − Sk

)T (
r − Sk

))
(6)

with maximum likelihood (ML) estimate

k̂ =
(

ST S
)−1 (

ST r
)

. (7)

The above estimator allows RF estimation from Gaussian stimu-
lus ensembles. Correlations across different stimulus dimensions
are “rotated out” using the inverse of the covariance matrix
(Paninski, 2003).

2.3.1. The “zero-mean” Gaussian prior
Sparseness is a distinct property of RFs and exploiting sparseness
may improve performance of an estimator significantly (Sahani
and Linden, 2002; David et al., 2007; Calabrese et al., 2011;
Park and Pillow, 2011). A simple form of sparseness assumes
an isotropic multivariate Gaussian distribution centered at zero
with standard deviation σa, p(k|σa) = N

(
k|0, σ 2

a I
)
. The MAP

estimate is given by

k̂zero−mean|α =
(

STS + αI

)−1 (
STr

)
(8)

with α ≡ σ 2

σ 2
α

(Hoerl, 1962). The problem in Equation (8) is

also known as ridge regression, regularized linear regression, and
penalized least squares (Hastie et al., 2001). Regularization is con-
trolled by the hyper parameter α. For α → ∞, Equation (8)
effectively computes the cross-correlation between stimulus and
response, the spike-triggered average [STA, deBoer and Kuyper
(1968)]. The “naive” ML estimator in Equation (7) arises for
α = 0. Often, α is found by cross-validation (Machens et al.,
2004).

2.3.2. The “adaptive” Gaussian prior
The time-varying RF model in Equation (2) assumes that the
time-dependent RF kt can be described by time-dependent devi-
ations from the static RF k. In a probabilistic model, these
deviations from the static RF can be expressed in the form of
a prior that uses the static RF as most probable solution. Thus,
instead of a Gaussian prior distribution with zero-mean, we may
use a Gaussian centered around the static RF k and use this as
prior distribution in the MAP estimate in Equation (4).

In the linear-Gaussian model, the MAP estimate under the
adaptive prior is given by

k̂t |k, βt =
(

ST
t St + βtI

)−1 (
ST

t rt + βt k
)

(9)

with βt ≡ σ 2

σ 2
βt

, and σ 2
βt

is the variance of the Gaussian prior in

Equation (3). The estimator includes the sum of the STA and a
term that enforces adaptation to the static solution. The balance
between both terms, which determines the amount of adaptation
to k, is controlled by the hyperparameter βt . Again, βt may be
found by cross-validation on the training data.

2.3.3. Mixing both priors: the “mixed” Gaussian prior
In many situations, it is necessary to control the amount of
regularization and adaptation independently. In particular in
case the employed stimulus ensembles contains strong second-
order correlations across stimulus dimensions. However, when
the adaptive prior distribution has a high dispersion, i.e., a large
standard deviation, the estimator in Equation (9) will approach
the non-regularized “naive” ML estimator (Equation 7) instead
of the regularized ridge solution (Equation 8). In many situations,
the regularized solution provides a more robust characterization
of response properties than the ML estimator (Sahani and Linden,
2002; Sharpee et al., 2006; Park and Pillow, 2011).

Assuming that both priors are independent, the “mixed” prior,
given by the product of zero-mean and adaptive prior,

p(kt |k, σαt , σβt ) ∝ N
(

kt |0, σ 2
αt

I
) × N

(
kt |k, σ 2

βt
I

)
, (10)

may improve local RF estimates in such situations. Noting that
the product of two Gaussian distributions is also Gaussian, the
resulting estimate for kt can be written as (see Appendix for
details)

k̂t |k, λαt , λβt =
(

ST
t St + (λαt + λβt )I

)−1 (
ST

t rt + λβt k
)

,(11)

where λαt ∝ σ 2

σ 2
αt

and λβt ∝ σ 2

σ 2
βt

. Thus, the MAP estimate depends

on two hyper parameters, and the estimator may vary between
zero-mean (λβt = 0) and adaptive solution (λαt = 0).

2.3.4. Simulated example
To demonstrate the performance of the MAP estimators with the
different priors, we simulated data in the linear-Gaussian model
(cf. Equation 5). The linear filter of the model cell represents a
temporal onset RF with symmetric positive and negative ampli-
tudes. We probed the cell with a short Gaussian noise sequence
(N = 1000 samples). The correlation length of the Gaussian noise
what about the length of the temporal filter. Spikes were cre-
ated from the RF-filtered stimulus by an inhomogeneous Poisson
process. Suppose, we have also probed the neuron with a longer
sequence and the hypothetical static RF estimate systematically
deviates from the RF used to generate the data for the short
sequence. In such a case, the “adaptive” and “mixed” priors may
use the static RF estimate for the long sequence as the prior during
inference of RF parameters for the short sequence.

Figure 2 shows RF estimates based on the different priors. The
hyperparameters in the adaptive and mixed priors were found
using cross-validation. The estimate obtained using the zero-
mean Gaussian prior approximately recovers the true RF but
is very fuzzy due to the small number of samples in the short
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FIGURE 2 | RF estimation from simulated responses using the different

priors in a linear-Gaussian model. A strongly correlated Gaussian noise
sequence (N = 1000 samples) was filtered with a temporal linear RF (red
solid line). Spikes were generated by from the filtered stimulus by an
inhomogeneous Poisson process resulting in 124 spikes. (A) The RF estimate
obtained using a sparse (zero-mean) Gaussian prior on RF parameters. The
estimate is very noisy due to the small number of observations. (B) Suppose
we have estimated a static RF for the same cell, and the RF shows a different

scaling and a slightly different latency (gray line). The adaptive prior biases RF
coefficients toward the static RF. The resulting RF estimate is very smooth
and partially adapts to the rescaled amplitudes but does not account for
temporal shift and asymmetric amplitude scaling. (C) The mixed prior uses an
additional hyper parameter that allows to control the trade-off between
zero-mean and adaptive priors. The resulting estimator allows to account for
the temporal shift at the expense of a slight increase in noise. Numbers in
the upper left corner indicate correlations between estimated and true RF.

sequence. The RF produced by the adaptive prior is very smooth
and reveals strong adaptation to the static RF, which exhibits
asymmetric amplitude scaling and a slight shift in latency. The
mixed prior combines the benefits of both estimates, resulting in
an estimate that closely resembles the structure of the true RF.
Thus, incorporation of prior knowledge, even in case the true
local RF systematically deviates from the static RF, may signifi-
cantly increase the quality of the RF estimate obtained from small
data samples.

2.4. THE NON-GAUSSIAN CASE: EXTENDING THE GENERALIZED
LINEAR MODEL (GLM)

The GLM framework allows RF estimation under more gen-
eral conditions than linear estimators (Nelder and Wedderburn,
1972). In particular, the GLM allows for different non-linearities,
incorporation of spike-interactions in the form of a post-spike fil-
ter (Paninski, 2004; Truccolo et al., 2005; Calabrese et al., 2011),
and correlations between different neurons (Pillow et al., 2008).
Under a GLM, the likelihood for the response r is chosen from
an exponential family of distributions, and the expected output is
given by

E[r|s] = f (z), (12)

where f is an invertible non-linearity and z = sTk + b relates the
input stimulus s to the input of the non-linearity through the RF
k and an optional offset term b.

Here, we adopt the concept of the adaptive prior to a spe-
cial case of GLM, the linear-nonlinear Bernoulli model (Truccolo
et al., 2005; Gerwinn et al., 2010). In the Bernoulli GLM, it is
assumed that the output is distributed according to a Bernoulli
distribution with likelihood

L(
{

pi, ri
} : i ∈ N) =

∏
i∈N

pri
i

(
1 − pi

)1−ri (13)

with pi ≡ p(xi), and ri ∈ {0, 1} denotes the presence (ri = 1)
or absence (ri = 0) of a spike, respectively. The canonical non-
linearity corresponding to the Bernoulli assumption is given by
the logistic function

f (z) = 1

1 + e−z
. (14)

The log-likelihood for a local RF estimate at time t is given by

logLt( {ri} |kt, bt; {si} : i ∈ Nt) =
∑
i ∈ Nt

[
rizi − log

(
1 + ezi

)]
(15)

with zi ≡ si
Tkt + bt . In an analogy to the linear case, we may

extend the GLM by a zero-mean, adaptive or mixed prior. For the
mixed prior, the local MAP estimate is given by

k∗
t |k, α, β = arg max

kt ,bt

∑
i ∈ Nt

[
rizi − log

(
1 + ezi

)]

−α

2
kT

t kt − β

2

(
kt − k

)T (
kt − k

)
(16)

with regularization hyperparameters α and β. The Gaussian
prior is not the conjugate prior to the Bernoulli distribution.
Consequently, there is no closed-form solution to Equation (16).
However, the penalized log-likelihood function is convex, and the
parameters can be found using gradient descent. We used a trust
region Newton conjugate gradient algorithm (Lin et al., 2008) to
find a solution for a set of hyper parameters α and β. The values
for α and β that maximize the Bernoulli log-likelihood in a 5-
fold cross-validation (CV) scheme were used to estimate the final
model parameters.

2.5. ELECTRO-PHYSIOLOGICAL RECORDINGS
2.5.1. Ethics statement
All experiments were conducted in accordance with the inter-
national National Institutes of Health Guidelines for Animals in
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Research and with ethical standards for the care and use of ani-
mals in research defined by the German Law for the protection
of experimental animals. Experiments were approved by the local
ethics committee in the state Saxony-Anhalt, Germany.

2.5.2. Physiology experiment
Single-unit recordings were made in inferior colliculus (IC) and
in the primary auditory cortex (A1) in ketamine-anesthetized
Mongolian gerbils. Recordings were performed in an acoustically
and electrically shielded recording chamber. Sounds were deliv-
ered by an amplifier to a calibrated Canton Plus XS.2 speaker.
Single-unit recordings were made using a single tungsten elec-
trode (3–4 M	) and digitized using a multichannel recording
system (Multichannel Acquisition Processor; Plexon). Single spik-
ing units were verified off-line (SpikeSorter; Plexon). Only units
with stable waveform throughout the recording and spike count
rate of at least two spikes per second were included in the anal-
ysis. This resulted in 30 units for IC and A1, respectively. For a
detailed description of experimental procedures see Happel et al.
(2010) and Meyer et al. (2014).

Stimuli consisted of frequency-modulated (FM) tone com-
plexes (Meyer et al., 2013, 2014). The FM tones were arranged
in consecutive 100 ms blocks, and each block contained four FM
tones with randomly chosen starting and ending frequencies. At
the beginning and the ending of each block a half cosine ramp
of 5 ms was applied to prevent onset and offset artifacts. The fre-
quencies were drawn from the interval 0.5 kHz to 16 kHz such
that their distribution is flat on a logarithmic scale. Thus, the
average spectrum is approximately constant for the auditory filter
bank used for analysis (see below). The sampling frequency of the
acoustic waveforms was 44.1 kHz. Each stimulus had a duration
of 10 s and subsequent stimuli were interleaved with 100–1000 ms
of silence. The total length of the stimulus sequence was between
300 s and 500 s for the IC recordings and between 180 s and 1000 s
for the A1 recordings.

2.5.3. Data preprocessing
As a first step of the data analysis, all stimuli were transformed
into the time-frequency domain using a gammatone filter bank
with octave-like frequency resolution (Hohmann, 2002). The
magnitude of the complex-valued filter bank output was resam-
pled to fs = 400 Hz for IC data and fs = 250 Hz for A1 data,
yielding a spectrogram representation of the acoustic stimulus.
The resulting bin sizes used to quantize spike times were �t =
2.5 ms for IC data and �t = 4 ms for A1 data. To account for
dynamic properties of the cochlea, the resampled filter bank out-
puts were compressed using a static logarithmic function (Gill
et al., 2006).

Stimulus examples were created from the spectrogram by
recasting spectro-temporal patches preceding the response in a
specific time window as vectors s. Thus, the vector si contained
the part of the spectrogram that preceded the time step i�t, i =
1, 2, 3, . . ., up to Twin. We used Twin = 50 ms and Twin = 100 ms
for IC and A1 data, respectively. The spike trains were aligned to
the time bins of the filtered stimuli, i.e., a spike at time ts was
assigned to the ith time bin [(i − 1)�t, i�t) if (i − 1)�t ≤ ts <

i�t. We never observed more than one spike per time bin for

both IC and A1 recordings. Thus, the response can be consid-
ered essentially binary, and the Bernoulli GLM is an adequate
candidate for modeling the data.

2.5.4. Correlation between STRFs
We quantified similarity of STRFs in terms of the correlation
between the STRF estimates (Sharpee et al., 2004; Fitzgerald et al.,
2011). For two D-dimensional vectors u and v, the correlation is
given by

cc = uTv

‖u‖2 ‖v‖2
(17)

where ‖u‖2 =
(∑D

i u2
i

)1/2
denotes the L2-norm. The quantity cc

describes the correlation between u and v, with cc = 1 denoting
perfect correlation and cc = 0 denoting uncorrelated (orthogo-
nal) vectors. For simulated data, u and v may represent true and
estimated RF, respectively. On neural recordings, we used this
quantity to describe similarities between static and local STRF
estimates.

2.5.5. Evaluation of prediction performance
We quantified prediction performance on neural data by keep-
ing back a random set of test data and performing predictions
on these data. The remaining data were used as training set.
Predictions were done using static STRFs or time-varying STRFs
(based on local STRF estimates). We used a cross-validation
scheme similar to repeated random subsampling. For every data
set, a random sample of 10% of the data was kept back as valida-
tion set and a static STRF was estimated using the 90% training
data. We strove to have the same fraction of spikes examples in
both the training and the validation set. Local STRFs were esti-
mated by subdividing the whole data set into non-overlapping
parts (20 s), removing the validation examples, and learning STRF
parameters using the estimated static STRF in the mixed prior.
Thus, the validation set has not been used for learning both static
and local STRFs. This procedure has been repeated for different
part offsets t0, i.e., t0 = 0, 5, 10, 15 s (cf. Figure 4).

Predictions on the validation sets were quantified using a mod-
ified version of the Bernoulli log-likelihood in Equation (15). In
the setting of time-varying computations based on the STRF, the
filtered stimulus may not depend on a fixed filter k but on some
filter kt that may change over time (cf. Equation 2). Thus, the
time-dependent Bernoulli log-likelihood, logLT , is given by

logLT ( {rt} | {kt, bt, St
} : t ∈ T ) =

∑
t ∈T

∑
i ∈ Ñt

rizi

− log
(
1 + e zi

)
, (18)

where zi ≡ si
T kt + bt , Ñt is the test set for each part, and T

includes all parts. kt and bt are local STRF parameters valid for the
respective stimulus-response examples. In case the local model
kt provides a better description of time-varying processing than
the static model k, predictions based on kt should yield higher
predictive power than predictions based on k.
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2.5.6. Clustering of time-varying STRFs
Local STRFs were clustered using a Gaussian mixture model
(GMM) with diagonal covariance matrices. For each data set,
all local STRF estimates (the bootstrap estimates derived using
a random 90% subset in each part) were pooled and a multi-
variate mixture of Gaussians, where each Gaussian had the same
dimensionality as the STRFs, was fit to the data. The parameters
were found using the expectation-maximization (EM) algorithm
(Dempster et al., 1977).

We varied the number of multivariate Gaussians from 1 to 20
and used the number that minimized the Bayesian information
criterion (BIC). The BIC is defined as

BIC = −2 log (L) + d log (N) , (19)

where L is the likelihood of the data given the model, d the num-
ber of parameters to be fitted, and N the total number of local
STRFs (Murphy, 2012). Thus, BIC effectively penalizes overly
complex models. The EM algorithm was started 10 times with
different initial conditions, and the best solution was used for the
analysis. We also tested non-diagonal covariance matrices which
did not improve the results. Further, we found that using the
Akaike information criterion (AIC) resulted in an artificially high
number of clusters with highly correlated cluster centers.

3. RESULTS
3.1. SIMULATED DATA
The performance of different priors in the Bernoulli GLM
is demonstrated with model simulations. We used a linear-
nonlinear model cell with Gabor function-shaped linear STRF
and introduced temporal variability by increasing the strength of
inhibitory filter components over time (cf. Figure 3A), akin to,
e.g., successive stimulus selectivity sharpening (Sadagopan and
Wang, 2010). As an example for natural stimuli, we used 300 s
of human speech from the TIMIT corpus (Garofolo et al., 1993).
Speech utterances were transformed into the time-frequency
domain using a gammatone filter bank with logarithmic fre-
quency resolution between 500 Hz and 8000 Hz. The magnitude
of the filter bank outputs was logarithmically compressed and
subsampled to 250 Hz. After filtering speech spectrograms with
the chosen time-varying linear STRF, a non-linear response was
obtained by applying a static sigmoid function to the filtered stim-
uli. Spikes were generated by an inhomogeneous Poisson process
on the transformed output.

Figure 3B shows the ground-truth time-varying STRF aver-
aged across time and Figure 3C the static STRF estimate obtained
from the entire stimulus-response sequence using a GLM with
zero-mean Gaussian prior. The estimated static STRF closely
resembles the mean true STRF yielding a correlation of 0.98. Local
STRF estimates were obtained by subdividing the whole sequence
into 10 non-overlapping parts, each of length 30 s, and estimating
STRFs using zero-mean, adaptive, and mixed priors, respectively.
The static estimate (cf. Figure 3D) has been used as a prior during
inference of GLM parameter with the adaptive and mixed prior
approaches.

Figure 3C shows the temporal evolution of the linear filter esti-
mate as obtained with a Bernoulli GLM with zero-mean, adaptive,

and mixed priors. STRF estimates produced by the GLM with
zero-mean prior tend to be very noisy due to the small number
of samples and the highly non-Gaussian structure of speech. In
contrast, both adaptive and mixed prior allowed a robust tracking
of the true time-varying STRF for the different parts. Correlation
between estimated STRF and mean true STRF for each part (cf.
Equation 17) verify that the GLM with mixed prior performs
slightly better than the GLM with adaptive prior. Note that STRF
estimates based on adaptive and mixed prior are biased toward
the static STRF. Thus, the proposed approach produces conser-
vative estimates and may underestimate changes in the STRF in
some situations.

Reliability of time-varying STRF estimates and, thus, our abil-
ity to track them, is determined jointly by variability of the under-
lying neuronal system and the part length of estimation windows
used. To assess the impact of the latter on tracking the simu-
lated system, we repeated the above experiment with part lengths
between 5 s and 30 s and evaluated mean correlation with ground
truth STRF and its standard deviation; Figure 3E summarizes
results obtained with lengths 5 s, 15 s, 30 s. As Expected, stan-
dard deviation of STRF estimates tends to increase toward smaller
part lengths, with a large increase observed near 10 s length. The
results suggest that the proposed method allows time-varying
characterization of the investigated system with time-constants as
small as about 10 s.

The time-varying STRF estimates revealed by the GLM with
adaptive prior (middle row in Figure 3C) and with mixed prior
(bottom row in Figure 3C) yield similar correlation values with
the true underlying time-varying STRF. However, the GLM with
mixed prior reveals a slightly better performance for parts in
which the true STRF tends to be more sparse. A summary com-
paring performance of adaptive and mixed prior GLMs for dif-
ferent sets of human speech stimuli and different non-linearities
is shown in Figure 3F. Across all conditions (N = 100), the GLM
with mixed prior reveals systematically higher correlation values
with the true time-varying STRF (p < 3 · 10−13; paired Wilcoxon
test). Thus, the additional hyperparameter in the mixed prior
allows more flexible estimation of time-varying STRFs. The ben-
efit of the mixed prior, however, is rather small and on huge data
sets the adaptive prior, which has only one hyperparameter, may
provide a good estimate of time-varying processing.

3.2. EXPERIMENTAL DATA
To investigate time-varying processing in auditory brain areas,
we probed single units in the inferior colliculus (IC) and the
primary auditory cortex (A1) in anesthetized Mongolian ger-
bils with a dynamic, broadband stimulus sequence, whose spec-
tral extent encompassed the frequency response of each unit.
The sequence was composed of consecutive 100 ms blocks of
frequency-modulated (FM) tone complexes with randomly cho-
sen starting and ending frequencies (for details see Materials
and Methods). The spectrogram for a 1 s example segment
is shown in Figure 4A. Every 10 s the sequence was inter-
leaved with a period of silence (length between 100 ms and
1000 ms). Average spectra for 10 s stimuli (Figure 4B) demon-
strate the fairly stationary long-term characteristic of the stimulus
ensemble.
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FIGURE 3 | Time-adaptive STRF estimation from simulated responses

to human speech. (A) Model cell with time-varying STRF whose
inhibitory components gradually increase over time. Shown are averaged
linear filters for non-overlapping parts of length 30 s. Responses were
generated by filtering 300 s of speech spectrograms with the
time-varying STRF and applying a static non-linearity to the filtered
stimuli. (B) The temporal average of the ground-truth time-varying STRF.
(C) STRF estimates for the different parts of data obtained using a GLM
with zero-mean (top), adaptive (middle), and mixed (bottom) prior. For the
adaptive and the mixed prior, the static STRF in (D) has been used
during inference of STRF parameters. The GLM with zero-mean prior
produces highly unreliable STRF estimates for the different parts. Both
adaptive and mixed prior GLMs allow robust tracking of the time-varying
linear filter. Numbers in the lower left corner of each filter estimate

indicate correlation between estimated local STRF and mean STRF for
each part. The GLM with mixed prior performs marginally better in some
cases with strong deviation of the time-varying from the static STRF. (D)

The static STRF estimated from the whole stimulus-response sequence.
(E) Dependence of mixed prior performance on part length. Shown are
mean and standard deviation of correlations between estimated local and
average true STRF across 10 trials. As part length decreases, local STRF
estimates become more unreliable as indicated by the noticeable
increase in standard deviation. Part lengths of 15 s and longer allowed
robust tracking of time-varying processing. (F) Comparison of
performance of a GLM with adaptive and mixed prior for different human
speech stimulus ensembles and different non-linearities. Across all
conditions (N = 100), the GLM with mixed prior reveals a better
reconstruction of the true time-varying STRF (Wilcoxon rank test).

For each unit, a static STRF estimate was obtained using
the whole stimulus sequence and a GLM with zero-mean prior
(Figure 4C). The stimulus sequence was divided into overlapping
parts of length Tpart = 20 s and temporal shift Tshift = 5 s. Based
on the partitioned data, local STRFs were estimated using the
Bernoulli GLM with mixed prior (see Equation 16), with the static
STRF estimate used as mean in the mixed GLM prior distribution.
The principle is illustrated in Figure 4D.

To quantify fluctuations of local STRF estimates, we used
correlation in terms of normalized subspace projection between

static and local STRFs (cf. Equation 17). To obtain approx-
imate confidence intervals we repeatedly estimated each local
STRF using a random subset of 90% of the data. The results
reported here represent mean and standard deviation across
10 repetitions. Figure 5A shows temporal evolutions of corre-
lation with the static STRF and number of spikes in each part
for three example IC units. The first two units reveal virtu-
ally no deviation from the static STRF, although the second
unit exhibits adaptation as indicated by a decrease in spike
count. The third unit is an example of an IC unit with rather
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FIGURE 4 | Experimental design. Single units in the inferior colliculus
(IC) and the primary auditory cortex (A1) in anesthetized Mongolian
gerbils were probed with a dynamically fluctuating stimulus ensemble.
Acoustic stimuli were composed of random frequency-modulated (FM)
tone complexes arranged in 100 ms blocks. The stimulus sequence was
interleaved every 10 s by a period of silence (100–1000 ms). (A) The
spectrogram for a 1 s example. Amplitude values are given in decibel. (B)

Average spectra for 10 s stimuli indicating stationary characteristics on

medium and long time scales. Note the smaller range of amplitude
values compared to (A). (C) For every unit, an STRF was estimated
using the whole stimulus sequence and a GLM with zero-mean prior.
Silence periods were not included in the analysis. (D) A time-varying
STRF was constructed by subdividing the whole stimulus sequence in
overlapping parts of length Tpart and temporal shift Tshift. For every part,
a local STRF was estimated using a GLM with mixed prior (using the
static STRF), yielding a sequence of time-varying STRFs.

strong fluctuations. Even in this case, the correlation does not
fall below 0.8. The local STRF examples for the three units
reveal hardly any changes in STRF structure (right column of
Figure 5A).

Most A1 units generally showed local STRFs with a higher
degree of variability over time than IC units, ranging from
time-invariant (first example in Figure 5B) to highly fluctuat-
ing local STRFs (third example in Figure 5B). We found parts
that show a high degree of variability (indicated by a high
standard deviation) and parts that reveal only small variations
across the bootstrap estimates. The example STRFs essentially
revealed changes in the strength of excitatory STRF compo-
nents whereas inhibitory regions remained approximately con-
stant. Thus, balance between excitation and inhibition may
play an important role in time-varying integration of stim-
ulus features in the cortex. However, we did not find a
consistent pattern across all units, and a detailed analysis
would require devised experiments beyond the scope of this
study.

3.2.1. Population analysis
Figure 6A summarizes mean correlation of time-varying with
static STRF estimates and corresponding standard deviation for
30 IC units. For the majority of units, mean correlation was not
noticeably different from one never below 0.95. In A1, mean cor-
relations and standard deviations revealed much stronger fluctu-
ations across the neural subpopulation (Figure 6C). A noticeable
number of units yielded a mean correlation lower than 0.9 and
exhibited a considerably larger standard deviation than in IC. We
found that only 2% (4%) of the local STRFs pooled across all IC
parts (N = 2835) have a correlation smaller than 0.9 (0.95) with
the static STRF. In A1, about 20% (34%) of the local STRFs for
all parts (N = 2768) have a correlation of less than 0.9 (0.95).
For each part, we used the average correlation across the 10
bootstrapped local STRF estimates.

The variability of A1 responses in terms of the STRF gives
rise to the question whether the observed fluctuations may also
be explained by the number of spikes. Thus, we calculated
the correlation coefficient (denoted by r in Figure 5) between
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FIGURE 5 | Examples for time-dependent STRF analysis in auditory

midbrain and cortex. For each part, we repeatedly estimated a local
STRF using 90% of the data. To quantify the similarity between local
and static STRFs, we used the correlation in terms of normalized
subspace projection. Correlation values shown here are mean correlations
across all 10 local bootstrap estimates. (A) Each row shows
time-dependent correlations (denoted by cc) between local STRFs and
static STRF (black line) and the corresponding number of spikes in the

parts (blue line) for thee IC units. The gray shaded area indicates one
standard deviation across the local bootstrap estimates. The arrows
indicate the position of the local STRF example shown to the right,
together with the static STRF. Numbers in the right lower corners
indicate correlations between the cc trace and the number of spikes. (B)

The same analysis for three A1 units. There is a considerable increase in
fluctuations compared to IC examples. The local STRF examples primarily
reveal changes in excitatory components at best frequency.

time-evolving correlation of local and static STRF and the num-
ber of spikes in each part. Figures 6B,D show the distribution
of correlation coefficients for IC and A1 units, respectively. In
both regions, variability in the STRF is largely uncorrelated with
the number of spikes as indicated by the Gaussian-like distri-
butions concentrated around zero (IC) or close to zero (A1).
Consequently, a change in spike count does not imply a change
in feature integration in terms of the STRF (and vice versa).

3.2.2. The time-varying STRF estimate yields higher predictive
power than the static STRF

To verify that the time-varying STRF model provides a mean-
ingful characterization of time-dependent neural processing, we
compared prediction performance of local and static STRFs.
If changes in STRF structure were exclusively induced by sen-
sory stimuli, we could fit the model on a specific stimulus
sequence and validate its predictive power on a repeated sequence.
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FIGURE 6 | Population summary for 30 IC and 30 A1 units. (A) Mean and
standard deviation of correlations between local STRFs with the static STRF
for each IC data set. Data sets have been sorted by mean correlation. Shaded
gray area indicates one standard deviation. (B) Distribution of correlations of

STRF fluctuations and the number of spikes in each part for 30 IC units. The
distribution is approximately Gaussian centered at zero. (C,D) The same
analysis as in (A,B) but for 30 A1 units. A1 units reveal a higher degree of
variability compared to IC.

However, as we assume significant modulation of the response
by top-down and random network processes (and potentially
also other influences, e.g., the employed ketamine anesthe-
sia), we need to adopt a different approach to quantify model
performance.

Here we used a cross-validation scheme similar to repeated
random subsampling (see Materials and Methods). Briefly, we
split the whole stimulus-response sequence into a training (90%)
and a validation (10%) set and compared predictions based on the
static STRF (estimated using all training data) with predictions
based on local STRF estimates (estimated for non-overlapping
parts). The static STRF estimate has been used as a prior for local
STRF estimates. Thus, the validation set has not been used for
estimation of STRF parameters. We repeated the procedure for
different randomly selected training/validation sets and different
part shifts to cover all samples and all local STRFs.

The Bernoulli log-likelihood (BLL, Equation 15) is a natu-
ral measure to evaluate predictions on binary data. Thus, we
adapted the BLL to the time-varying scenario (cf. Equation 18).
To normalize the log-likelihood for each unit, we subtracted the
log-likelihood calculated for predictions on the validation set
based on the full STRF estimated using all data (including the
validation set). Thus, a value greater than zero indicates that
cross-validated local STRF estimates have higher predictive power
than the full model that allows the best possible fit on the data by
a time-invariant Bernoulli GLM.

Figure 7A shows cross-validated normalized BLL for IC
recordings. For the majority of units (26 out of 30), local STRF
estimates revealed higher predictive power than the static STRF.
In particular, there is a number of units exhibiting relatively high
STRF variability (a mean correlation of local STRFs with the static
STRF of about 0.95) that showed a high increase in prediction
performance. Note that correlation values refer to correlations

between local and static STRFs on the training data. Across all
units the increase in predictive power is significant (p < 1.5 ×
10−3; paired Wilcoxon test). Similar results were obtained for the
30 A1 units shown in Figure 7B. 28 out of 30 units yielded higher
cross-validated normalized BLL for local STRFs than for the static
STRF method. The increase in predictive power is highly sig-
nificant (p < 2 × 10−5; paired Wilcoxon test). Thus, our results
indicate that time-varying STRF estimates based on the GLM with
mixed prior provide a robust characterization of time-varying
neural integration mechanisms, in particular for cortical data.

To test how prediction performance depends on the part
length used to derive local STRF estimates, we repeated the above
analysis for different part lengths Tpart = 5 s, 10 s, 20 s, 30 s (cf.
Figure 4). The results are summarized in Figures 7C,D for IC
and A1 recordings, respectively. In IC, we found a considerable
increase in prediction performance of the time-varying model
compared to the static model for part lengths greater or equal
to 20 s. In the cortex, however, the increase in prediction per-
formance is also evident for smaller part lengths. These findings
are consistent with the results obtained using simulated data (cf.
Figure 3E). This suggests that the proposed approach is able to
capture time-varying processes in the cortex with a characteristic
temporal resolution of 5–30 s.

3.2.3. Characterization of fluctuations in time-varying STRFs
The increase in predictive power for local STRFs suggests that
changes in STRF structure are correlated with changes in response
properties. However, this does not quantify whether or not these
variations are systematic, e.g., the local STRF may fluctuate ran-
domly or between distinct states. To quantify changes in local
STRFs, we clustered local bootstrap estimates for each unit using
a Gaussian mixture model (GMM; see Materials and Methods).
If local STRFs were fluctuating between distinct states, we should
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FIGURE 7 | Predictive power of time-invariant and time-varying STRF

model. We evaluated the predicted Bernoulli log-likelihood (BLL) of local
STRFs and static STRF for each unit using repeated random subsampling
(see text for details). For each unit, we normalized the log-likelihood by
the log-likelihood of the full model learned using all data (including the
test data; denoted by “full”). A value greater than zero indicates that
even the best static Bernoulli GLM model may not account for
potentially time-varying neural processing. (A) Normalized BLL for 30 IC
units. For the majority of units, predictive power of local STRF estimates
is higher than for the static STRF. Across all units, the observed increase
in predictive power is significant (Wilcoxon rank test). The black solid line
indicates the linear fit. Color encodes mean correlation between local
STRFs and static STRF for each unit. Note that due to random sampling,

the correlation has been calculated for slightly different subsets than in
Figure 6. (B) Normalized BLL for 30 A1 units. Compared to IC, there is
a considerable increase in predictive power of local STRFs (Wilcoxon rank
test). For some units, predicted normalized BLL is greater than zero,
implying that a static model is not sufficient to explain the data. (C)

Average increase in cross-validated log-likelihood of the time-varying over
the static model as a function of the interval used to derive the local
STRFs for IC data. Only units that contained at least five spikes in each
interval were used in the analysis (here: N = 26). (D) The same as in (C)

but for the 22 A1 units that contained at least five spikes in each time
interval. The time-varying model provided a better description of cortical
recordings than the static model, even on small time scales of 5–10 s. ∗
indicates statistical significance (Wilcoxon rank test; α = 0.05).

be able to identify a small number of GMM clusters, and these
clusters should repeatedly occur over time. However, in case fluc-
tuations were not governed by such processes, the number of
clusters should be rather large, and clusters should not occur
more than once.

Figure 8A shows the temporal evolution of local STRF clusters
for the two latter cortical example units in Figure 5B. In general,
we were able to identify distinct clusters that almost never occur
multiple times. The temporal extent of many clusters is about the
length of the time window of local data. This is likely a result
of correlations induced by overlapping parts of the data used to
derive local STRFs. However, in some units the temporal extent
was clearly larger, and we also find clusters that occurred mul-
tiple times (Figure 8B). In IC, we were able to identify only a
very small number of clusters, and the extent of the clusters was
much smaller than in A1 (Figure 8C). Thus, in both regions we
did not find evidence for gradual changes in the STRF or distinct
repetitive neural states.

4. DISCUSSION
4.1. SUMMARY OF FINDINGS
The purpose of this study was to analyze time-varying neural
processing in terms of the STRF. Therefore, we developed a prob-
abilistic approach that characterizes time-varying computations
by time-dependent deviations from the standard static STRF.
The formulation of time-varying STRF inference in terms of a
prior allowed us to apply the proposed approach to a range of

models, including linear models and the GLM. Using simulated
responses to natural stimuli, we demonstrated that a Bernoulli
GLM with mixed prior, a prior that can either be adaptive or
zero-mean, provides a means to analyze time-dependent compu-
tations, even in case the stimulus ensemble has strong second-
and even higher-order correlations across stimulus dimensions.
Hence, the proposed approach allows the investigation of time-
varying cortical responses to behaviorally relevant stimuli, e.g.,
con-specific vocalizations or human speech, on medium time
scales (10–30 s).

We applied the concept of the time-varying STRF to recordings
from IC and A1 in anesthetized Mongolian gerbils. A1 neu-
rons showed a noticeably higher degree of fluctuations in the
STRF compared to neurons in IC. In both regions, fluctuations
could not be explained by the number of spikes, suggesting that
spiking probability is only partially determined by linear feature
integration. To test this, we also analyzed how other parame-
ters in the Bernoulli GLM, namely sigmoid non-linearity and
spiking threshold, change in situations in which the linear time-
varying STRF was highly correlated with the static STRF (data not
shown). We found that a change in spike count was mostly cor-
related with a shift in threshold. In a small subset of units, how-
ever, spiking was also affected by a scaling of the non-linearity.
Note that the STRF describes effective neuronal processing and
its parameters may not directly correspond to a specific neural
implementation. Nevertheless, by investigating how the parame-
ters of the linear-nonlinear model change over time, as we have
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FIGURE 8 | Clustering of time-varying STRFs. (A) Temporal evolution of
clusters of bootstrapped local STRFs for the latter two A1 example units
in Figure 5B. The majority of clusters appeared only once during the
whole stimulus sequence. The temporal extent of the clusters indicates
that consecutive local STRFs describe very similar states. On a global
scale, however, fluctuations appear at random and are not systematic.
Clusters have been sorted by total size in descending order. Color
encodes the number of bootstrap STRF estimates in the different clusters
per time step (white: 0, black: 10). (B) Summary of cluster statistics
across all clusters for 30 A1 units. Each histogram relates the number of

occurrence of clusters to the total temporal extent of the clusters. For
each unit, the total time the time-varying STRF was in a specific state
(cluster) was estimated by counting all time steps in which more than
half of the bootstrap estimates were assigned to the corresponding
cluster. Note that we did not include clusters with the static STRF into
the analysis (cluster 1 in both examples in A). (C) Same analysis as in b
for 30 IC units. In IC, only a few clusters were identifiable, and virtually
all clusters did not occur more than once per stimulus sequence. Thus,
in both regions a time-varying STRF analysis does not reveal repeated
patterns or long-term changes in STRF structure.

done for the linear part, we may obtain insight into the effective
mechanisms underlying these changes.

The time-varying STRF model provided significantly better
prediction of IC and A1 neuron responses compared to the time-
invariant STRF model. The proposed approach provides a simple
and powerful way of extending existing response models for audi-
tory neurons, thus capturing time-dependent coding of these
neurons. For a subset of units in both IC and A1, we found that
predictions on the validation set based on the time-varying model
were better than predictions by a time-invariant model that has
also been trained on the validation set. Consequently, for these
units a static model seems to be insufficient to account for the
neural response. This finding underlines both validity of the pro-
posed approach and the importance of time-varying models to
studying neural processing.

A cluster analysis of time-variant STRFs revealed that fluctu-
ations are consistent, i.e., local STRFs estimated in consecutive,
overlapping time frames were assigned to the same cluster. Note
that the employed GMM did not use temporal information dur-
ing clustering. As a result, any temporally localized clusters were
exclusively induced by structures in the data. These clusters, how-
ever, did not show a repeating pattern. In most cases, clusters
did not occur multiple times. Consequently, fluctuations were
not completely random but there is no evidence for systematic or
gradual changes on longer time scales. We would like to empha-
size that the employed stimulus ensemble is stationary on longer

time scales (cf. Figure 4B) and that experimental design did not
induce behavioral relevance to any stimulus part. In case the stim-
ulus ensemble includes relevant context information and strongly
varies over time, we would expect both gradual or systematic
changes and further evidence of time-dependence in the STRF.

4.2. POSSIBLE ORIGINS OF FLUCTUATIONS IN THE STRF
The origins of the observed fluctuations may be manifold, and
thus we can only speculate. In both IC and A1, neurons were
probed using the same stimulus ensemble, and experimental con-
ditions and protocol were identical. Consequently, the observed
increase in fluctuations in cortical compared to midbrain neurons
is likely a result of characteristic differences between both regions.

Information-theoretic STRF analyses suggest that single cor-
tical neurons may encode multiple features corresponding to
multiple STRFs (Atencio et al., 2008, 2012). A possible question
in relation to the above findings is whether neurons encode these
features simultaneously or whether they “switch” between fea-
tures at different time instants. We identified distinct local STRF
clusters, but these clusters did not frequently occur over time. In
most cases, clusters occurred only once. This suggests that the
observed fluctuations represent a single fluctuating feature rather
than an additional acoustic feature.

Recent studies provide evidence that A1 neurons may respond
to features that are weakly correlated with the spectro-temporal
amplitude pattern (Chechik et al., 2006; Chechik and Nelken,
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2012). For the employed fluctuating stimulus ensemble, such
correlations would presumably vary across time as observed
for cortical neurons. Another potential source is an increase in
context sensitivity through adaptive bottom-up processing. The
amplitude of the FM tones was identical throughout the whole
stimulus sequence, but the local spectro-temporal contrast var-
ied on a time scale up to seconds (cf. Figure 4A). Such changes
may already be sufficient to evoke a change in response properties
(Rabinowitz et al., 2011, 2012). Although changes in spectro-
temporal contrast have been shown to be mainly compensated
for by the neural non-linearity, there may be an interaction with
other time-varying processes. Further, the fixed block structure of
the stimulus ensemble may evoke adaptation to stimulus statis-
tics in terms of regularity (Ulanovsky et al., 2003, 2004), and this
type of adaptation has been found to be more pronounced in
the cortex than in IC (Malmierca et al., 2009). The static STRF, a
simplified model that primarily assumes time-invariant bottom-
up processing, may not be an adequate description of neural
processing in such situations.

Response variabilities across neurons are strongly influenced
by network fluctuations that operate over a range of spatial and
temporal scales, extending in some cases across cortical areas
(Zohary et al., 1994; Smith and Kohn, 2008). They may arise
from stochastic internal sources, while complex deterministic
processes have been suggested to provide a major contribution
(Beck et al., 2012; Toups et al., 2012) that may be discernible
from random noise (Balaguer-Ballester et al., 2014). These fluctu-
ations are sensitive to global or local internal states (for a review,
see Harris and Thiele, 2011), e.g., they are more pronounced
and may also change during anesthesia (Ecker et al., 2014) or in
response to behavioral salience induced by experimental design
(Abolafia et al., 2013). To test whether such effects may con-
tribute to STRF feature integration, we applied the proposed
approach to recordings from a multichannel shaft electrode for
FM tone complex stimuli in two preparations (data not shown;
for a description of the electrode see Happel et al., 2010). If fluc-
tuations in STRFs resulted from global states, there should be
non-zero correlations between adjacent electrode channels. We
found small correlations of fluctuations between the different
channels in the range −0.05 to 0.34. Zohary et al. (1994) observed
comparable correlations in sensory cortex for spike count data
on smaller time scales (approximately 1–2 s). A theoretical analy-
sis demonstrated that even small correlations may have a distinct
impact on global brain performance. Conversely, the observed
fluctuations may be a result of global phenomena, e.g., top-down
modulation, the employed ketamine anesthesia, or variability in
local microcircuits as demonstrated in visual areas (Hansen et al.,
2012). The fact that noise correlations are virtually absent in IC
(Garcia-Lazaro et al., 2013) supports this hypothesis.

4.3. LIMITATIONS, EXTENSIONS, AND POSSIBLE APPLICATIONS
In general, the proposed approach may be applied to any sce-
nario in which sensory feature integration in neurons varies over
time under the above constraints. Throughout different stimu-
lus ensembles and different non-linearities, we found 10 s to be a
robust lower limit for the proposed approach in the auditory sys-
tem. Additional parameters, such as data dimensionality, strength

of correlations between different stimulus dimensions and the
number of spikes in each part, may influence characteristic time
scales. In particular, for continuous response signals, e.g., local
field potentials within cortex (Arieli et al., 1996) or from the corti-
cal surface (Mesgarani and Chang, 2012), the proposed approach
may provide a robust characterization of time-varying processes
on smaller time scales than for spiking neurons.

In the context of time-varying neural processing, state-space
methods have been of special importance, in particular to study
time-varying properties in the hippocampus (Brown et al., 1998,
2001). Due to their recurrent nature, state-space approaches do
not require a division of the data into discrete time intervals
(Stanley, 2002; Eden et al., 2004), and it is also possible to
embed Markovian dynamics into the GLM (Paninski et al., 2010).
However, finding solutions the resulting problem usually involves
approximations to the posterior and, for small data sets, these
may be numerically unstable (Paninski et al., 2010). The pro-
posed approach does not involve any approximations and is very
straightforward to implement using standard gradient descent
techniques. Further, the formulation of the parameter learning
problem in terms of a prior allows to use the approach in a large
range of models, including the GLM, but also non-probabilistic
approaches, e.g., (Meyer et al., 2014). Thus, in case time-varying
processing appears on time scales of about 10 s, the proposed
approach represents an alternative to state-space models, in par-
ticular for highly non-Gaussian stimulus ensembles that require
careful regularization of RF parameters.

The adaptive prior assumes that changes in the STRF are
rather small. This is a realistic assumption, e.g., coarse shape and
best frequency of a neuron usually remain preserved, even under
highly diverse conditions (Escabi et al., 2003; Fritz et al., 2003;
Lesica and Grothe, 2008a,b; Rabinowitz et al., 2011; Schumacher
et al., 2011). However, when deviations from the static STRF
are strong, the adaptive prior will assume the unregularized ML
solution. The mixed prior also includes a regularization term
enforcing sparseness, thus allowing for more robust estimates in
such situations. There are more sophisticated forms of priors,
e.g., Laplace prior (Gerwinn et al., 2010; Calabrese et al., 2011),
smoothness priors (Sahani and Linden, 2002; Machens et al.,
2004), or priors enforcing highly localized RFs (Park and Pillow,
2011), that could be used to increase robustness of local STRF
estimates at the expense of more elaborate and computationally
expensive optimization schemes.

The hyper parameters of the Bernoulli GLM for both static and
local STRF models were found using cross-validation. The parts
of the data from which local STRF parameters have been esti-
mated were rather small and even for two hyper parameters this
could be done efficiently. However, a computationally efficient
alternative to finding hyper parameters of a probabilistic model is
Bayesian inference (see Murphy, 2012 for an overview). If neural
processing can be described by a linear model, approaches based
on empirical Bayes estimation may allow to find multiple hyper
parameters more efficiently (Park and Pillow, 2011). In Gerwinn
et al. (2010), the posterior distribution over the model parame-
ters of a Poisson GLM has been approximated by a Gaussian using
the Expectation Propagation algorithm. It has been demonstrated
that the mean of the posterior distribution may have advantages
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over the MAP estimate in some situations, in particular for the
Laplace prior. Bayesian inference also enables the calculation of
Bayesian confidence intervals that characterize the uncertainty
about the optimal solution. Future research may include Bayesian
inference of time-varying RF parameters.

Simultaneous recordings from several layers in A1 revealed
that spectro-temporal separability, temporal precision, and fea-
ture selectivity varied with layer (Atencio et al., 2009). The
proposed approach may provide complementary time-dependent
information about coding strategies in different cortical layers. In
particular, STRF stationarity may be a layer-dependent property
as found in the visual cortex (Hansen et al., 2012). Furthermore,
time-dependent analysis of multiple simultaneously recorded
neurons in terms of sensory feature integration could help to
understand cortical abstraction from spectro-temporal features
to auditory identities (Nelken et al., 1999, 2003; Chechik and
Nelken, 2012), and temporal dynamics underlying selective atten-
tion (Ding and Simon, 2012; Mesgarani and Chang, 2012).
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